1
|
Watanabe F, Sato S, Hirose T, Endo M, Endo A, Ito H, Ohba K, Mori T, Takahashi K. NRIP1 regulates cell proliferation in lung adenocarcinoma cells. J Biochem 2024; 175:323-333. [PMID: 38102728 DOI: 10.1093/jb/mvad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Nuclear receptor interacting protein 1 (NRIP1) is a transcription cofactor that regulates the activity of nuclear receptors and transcription factors. Functional expression of NRIP1 has been identified in multiple cancers. However, the expression and function of NRIP1 in lung adenocarcinoma have remained unclear. Thus, we aimed to clarify the NRIP1 expression and its functions in lung adenocarcinoma cells. NRIP1 and Ki-67 were immunostained in the tissue microarray section consisting of 64 lung adenocarcinoma cases, and the association of NRIP1 immunoreactivity with clinical phenotypes was examined. Survival analysis was performed in lung adenocarcinoma data from The Cancer Genome Atlas (TCGA). Human A549 lung adenocarcinoma cell line with an NRIP1-silencing technique was used in vitro study. Forty-three of 64 cases were immunostained with NRIP1. Ki-67-positive cases were more frequent in NRIP1-positive cases as opposed to NRIP1-negative cases. Higher NRIP1 mRNA expression was associated with poor prognosis in the TCGA lung adenocarcinoma data. NRIP1 was mainly located in the nucleus of A549 cells. NRIP1 silencing significantly reduced the number of living cells, suppressed cell proliferation, and induced apoptosis. These results suggest that NRIP1 participates in the progression and development of lung adenocarcinoma. Targeting NRIP1 may be a possible therapeutic strategy against lung adenocarcinoma.
Collapse
Affiliation(s)
- Fumihiko Watanabe
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295 Fukushima, Japan
| | - Shigemitsu Sato
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Takuo Hirose
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Moe Endo
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
| | - Akari Endo
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Hiroki Ito
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Koji Ohba
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
| | - Takefumi Mori
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
| |
Collapse
|
2
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
3
|
RIP140 inhibits glycolysis-dependent proliferation of breast cancer cells by regulating GLUT3 expression through transcriptional crosstalk between hypoxia induced factor and p53. Cell Mol Life Sci 2022; 79:270. [PMID: 35501580 PMCID: PMC9061696 DOI: 10.1007/s00018-022-04277-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Glycolysis is essential to support cancer cell proliferation, even in the presence of oxygen. The transcriptional co-regulator RIP140 represses the activity of transcription factors that drive cell proliferation and metabolism and plays a role in mammary tumorigenesis. Here we use cell proliferation and metabolic assays to demonstrate that RIP140-deficiency causes a glycolysis-dependent increase in breast tumor growth. We further demonstrate that RIP140 reduces the transcription of the glucose transporter GLUT3 gene, by inhibiting the transcriptional activity of hypoxia inducible factor HIF-2α in cooperation with p53. Interestingly, RIP140 expression was significantly associated with good prognosis only for breast cancer patients with tumors expressing low GLUT3, low HIF-2α and high p53, thus confirming the mechanism of RIP140 anti-tumor activity provided by our experimental data. Overall, our work establishes RIP140 as a critical modulator of the p53/HIF cross-talk to inhibit breast cancer cell glycolysis and proliferation.
Collapse
|
4
|
NRIP1 is activated by C-JUN/C-FOS and activates the expression of PGR, ESR1 and CCND1 in luminal A breast cancer. Sci Rep 2021; 11:21159. [PMID: 34707101 PMCID: PMC8551324 DOI: 10.1038/s41598-021-00291-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
Using chip array assays, we identified differentially expressed genes via a comparison between luminal A breast cancer subtype and normal mammary ductal cells from healthy donors. In silico analysis confirmed by western blot and immunohistochemistry revealed that C-JUN and C-FOS transcription factors are activated in luminal A patients as potential upstream regulators of these differentially expressed genes. Using a chip-on-chip assay, we identified potential C-JUN and C-FOS targets. Among these genes, the NRIP1 gene was revealed to be targeted by C-JUN and C-FOS. This was confirmed after identification and validation with transfection assays specific binding of C-JUN and C-FOS at consensus binding sites. NRIP1 is not only upregulated in luminal A patients and cell lines but also regulates breast cancer-related genes, including PR, ESR1 and CCND1. These results were confirmed by NRIP1 siRNA knockdown and chip array assays, thus highlighting the putative role of NRIP1 in PGR, ESR1 and CCND1 transcriptional regulation and suggesting that NRIP1 could play an important role in breast cancer ductal cell initiation.
Collapse
|
5
|
Flindris S, Katsoulas N, Goussia A, Lazaris AC, Navrozoglou I, Paschopoulos M, Thymara I. The Expression of NRIP1 and LCOR in Endometrioid Endometrial Cancer. In Vivo 2021; 35:2631-2640. [PMID: 34410950 DOI: 10.21873/invivo.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of the study was to analyze the expression of nuclear receptor interacting protein 1 (NRIP1) and its partner ligand-dependent nuclear receptor co-repressor (LCOR) in endometrioid endometrial cancer and to investigate their association with estrogen receptor (ER), progesterone receptor (PR), Ki-67, clinicopathological parameters and patient survival. MATERIALS AND METHODS Immunohistochemical evaluation was carried out to investigate the subcellular expression of NRIP1 and LCOR in endometrioid endometrial cancer samples. Statistical analysis was used to identify the correlations of NRIP1 and LCOR expression with clinicopathological variables and to estimate the survival rates. RESULTS Endometrial cancer tissues exhibited higher expression of NRIP1 and LCOR in comparison with the normal tissues. Cytoplasmic LCOR expression was positively associated with ER and PR expression, while cytoplasmic NRIP1 expression was positively associated with ER expression. Moreover, cytoplasmic expression of NRIP1 was positively associated with Ki-67. CONCLUSION Our study demonstrated that high cytoplasmic expression of LCOR may predict a longer overall survival of patients with endometrioid endometrial cancer. Patients with tumors expressing low levels of LCOR showed a worse survival compared to those expressing high levels.
Collapse
Affiliation(s)
- Stefanos Flindris
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece;
| | - Nikolaos Katsoulas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| | - Anna Goussia
- Department of Pathology, University Hospital of Ioannina, Ioannina, Greece
| | - Andreas Christos Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| | - Iordanis Navrozoglou
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Minas Paschopoulos
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Irene Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| |
Collapse
|
6
|
Tsai HC, Wei KC, Chen PY, Huang CY, Chen KT, Lin YJ, Cheng HW, Huang CH, Wang HT. Receptor-Interacting Protein 140 Enhanced Temozolomide-Induced Cellular Apoptosis Through Regulation of E2F1 in Human Glioma Cell Lines. Neuromolecular Med 2021; 24:113-124. [PMID: 34075570 DOI: 10.1007/s12017-021-08667-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.
Collapse
Affiliation(s)
- Hong-Chieh Tsai
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences and School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei Municipal, Taipei, 236, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ko-Ting Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ya-Jui Lin
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hsiao-Wei Cheng
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Department of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chun-Hao Huang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Department of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
7
|
Fang D, Lu G. Expression and role of nuclear receptor-interacting protein 1 (NRIP1) in stomach adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1293. [PMID: 33209873 PMCID: PMC7661897 DOI: 10.21037/atm-20-6197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Nuclear receptor-interacting protein 1 (NRIP1), also named NR140, has been observed differentially express in multiple cancers, but the expression levels and the prognostic role of NRIP1 in stomach adenocarcinoma (STAD) remain unclear. Methods We used the Gene Expression Profiling Interactive Analysis (GEPIA) to analyze the NRIP1 expression levels in STAD, subgroups analysis of expression of NRIP1 via the UALCAN dataset. Further, cBioPortal was used to investigate the aberration type, co-mutations status, and located mutation of NRIP1. Correlated genes, and kinases, microRNA (miRNA), and transcription factor (TF) targets were identified using LinkedOmics. The Kaplan-Meier (K-M) plotter was used to analyze the prognosis of NRIP1 and the significantly correlated genes in STAD. Then, the tumor immune estimation resource (Timer) was used to explore the relation between NRIP1 and the immune cell infiltration, and the role of immune cells in STAD. The Human Protein Atlas (HPA) was used to confirm the NRIP1 protein express in STAD stomach tissue and normal stomach tissue. Results NRIP1 significantly overexpress in STAD, and the NRIP1 expression levels were impacted by clinical features. Overexpression of NRIP1 indicated the poor prognosis of STAD. Functional enrichment analysis showed the NRIP1 mainly enriched in immune response-regulating signaling pathway, cell-substrate adhesion, mRNA processing, and pathway in cancer. Overexpression USP25, SNYJ1 indicated the poor outcome of STAD, but the overexpression of BACH1 indicated protective biomarker. MIR-331 and MIR-132 have important role in STAD. Further, NRIP1 had a significant relation with immune infiltrates and other defined genes that significantly impact immune infiltrates. Immunohistochemical showed NRIP1 protein was higher in STAD than normal sample. Conclusions In this study, we revealed that overexpression of NRIP1 in the STAD sample compared to normal samples, NRIP1 significantly associated with macrophage. The high expression levels of NRIP1 and more macrophage infiltration led to poor prognosis of STAD.
Collapse
Affiliation(s)
- Dalang Fang
- Department of Glandular Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guanming Lu
- Department of Glandular Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
8
|
Sixou S, Müller K, Jalaguier S, Kuhn C, Harbeck N, Mayr D, Engel J, Jeschke U, Ditsch N, Cavaillès V. Importance of RIP140 and LCoR Sub-Cellular Localization for Their Association With Breast Cancer Aggressiveness and Patient Survival. Transl Oncol 2018; 11:1090-1096. [PMID: 30007204 PMCID: PMC6070698 DOI: 10.1016/j.tranon.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022] Open
Abstract
New markers are needed to improve diagnosis and to personalize treatments for patients with breast cancer (BC). Receptor-interacting protein of 140 kDa (RIP140) and ligand-dependent corepressor (LCoR), two transcriptional co-regulators of estrogen receptors, strongly interact in BC cells. Although their role in cancer progression has been outlined in the last few years, their function in BC has not been elucidated yet. In this study, we investigated RIP140 and LCoR localization (cytoplasm vs nucleus) in BC samples from a well-characterized cohort of patients (n = 320). RIP140 and LCoR were expressed in more than 80% of tumors, (predominantly in the cytoplasm), and the two markers were highly correlated. Expression of RIP140 and LCoR in the nucleus was negatively correlated with tumor size. Conversely, RIP140 and LCoR cytoplasmic expression strongly correlated with expression of two tumor aggressiveness markers: N-cadherin and CD133 (epithelial mesenchymal transition and cancer stem cell markers, respectively). Finally, high RIP140 nuclear expression was significantly correlated with longer overall survival, whereas high total or cytoplasmic expression of RIP140 was associated with shorter disease-free survival. Our study strongly suggests that the role of RIP140 and LCoR in BC progression could vary according to their prevalent sub-cellular localization, with opposite prognostic values for nuclear and cytoplasmic expression. The involvement in BC progression/invasiveness of cytoplasmic RIP140 could be balanced by the anti-tumor action of nuclear RIP140, thus explaining the previous contradictory findings about its role in BC.
Collapse
Affiliation(s)
- Sophie Sixou
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany; Université Paul Sabatier Toulouse III, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France.
| | - Katharina Müller
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany.
| | - Stéphan Jalaguier
- IRCM - Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Parc Euromédecine, 208 rue des Apothicaires, F-34298 Montpellier Cedex 5, France.
| | - Christina Kuhn
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany.
| | - Nadia Harbeck
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany.
| | - Doris Mayr
- Department of Pathology, Campus Innenstadt, Ludwig-Maximilians-University Hospital, Thalkirchner Str. 36, D-80337 Munich, Germany.
| | - Jutta Engel
- Tumorregister München (TRM) des Tumorzentrums München (TZM) am Klinikum der Universität München (KUM), Marchionistraße 15, 81377 Munich, Germany.
| | - Udo Jeschke
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany.
| | - Nina Ditsch
- Department of Obstetrics and Gynaecology, Campus Großhadern, Ludwig-Maximilians-University Hospital, Marchionistraße 15, 81377 Munich, Germany.
| | - Vincent Cavaillès
- IRCM - Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Parc Euromédecine, 208 rue des Apothicaires, F-34298 Montpellier Cedex 5, France.
| |
Collapse
|
9
|
Wang J, Chen X, Osland J, Gerber SJ, Luan C, Delfino K, Goodwin L, Yuan R. Deletion of Nrip1 Extends Female Mice Longevity, Increases Autophagy, and Delays Cell Senescence. J Gerontol A Biol Sci Med Sci 2018; 73:882-892. [PMID: 29346516 PMCID: PMC6001896 DOI: 10.1093/gerona/glx257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022] Open
Abstract
Using age of female sexual maturation as a biomarker, we previously identified nuclear receptor interacting protein 1 (Nrip1) as a candidate gene that may regulate aging and longevity. In the current report, we found that the deletion of Nrip1 can significantly extend longevity of female mice (log-rank test, p = .0004). We also found that Nrip1 expression is altered differently in various tissues during aging and under diet restriction. Remarkably, Nrip1 expression is elevated with aging in visceral white adipose tissue (WAT), but significantly reduced after 4 months of diet restriction. However, in gastrocnemius muscle, Nrip1 expression is significantly upregulated after the diet restriction. In mouse embryonic fibroblasts, we found that the deletion of Nrip1 can suppress fibroblast proliferation, enhance autophagy under normal culture or amino acid starvation conditions, as well as delay oxidative and replicative senescence. Importantly, in WAT of old animals, the deletion of the Nrip could significantly upregulate autophagy and reduce the number of senescent cells. These results suggest that deleting Nrip1 can extend female longevity, but tissue-specific deletion may have varying effects on health span. The deletion of Nrip1 in WAT may delay senescence in WAT and extend health span.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, P. R. China
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| | - Xundi Chen
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University School of Medicine, Springfield
| | - Jared Osland
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| | - Skyler J Gerber
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University School of Medicine, Springfield
| | - Chao Luan
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
- Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology Nanjing, P. R. China
| | - Kristin Delfino
- Department of Surgery, Center for Clinical Research, Southern Illinois University School of Medicine, Springfield
| | | | - Rong Yuan
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| |
Collapse
|
10
|
Papachristou EK, Kishore K, Holding AN, Harvey K, Roumeliotis TI, Chilamakuri CSR, Omarjee S, Chia KM, Swarbrick A, Lim E, Markowetz F, Eldridge M, Siersbaek R, D'Santos CS, Carroll JS. A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes. Nat Commun 2018; 9:2311. [PMID: 29899353 PMCID: PMC5998130 DOI: 10.1038/s41467-018-04619-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/03/2018] [Indexed: 11/10/2022] Open
Abstract
Understanding the dynamics of endogenous protein-protein interactions in complex networks is pivotal in deciphering disease mechanisms. To enable the in-depth analysis of protein interactions in chromatin-associated protein complexes, we have previously developed a method termed RIME (Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins). Here, we present a quantitative multiplexed method (qPLEX-RIME), which integrates RIME with isobaric labelling and tribrid mass spectrometry for the study of protein interactome dynamics in a quantitative fashion with increased sensitivity. Using the qPLEX-RIME method, we delineate the temporal changes of the Estrogen Receptor alpha (ERα) interactome in breast cancer cells treated with 4-hydroxytamoxifen. Furthermore, we identify endogenous ERα-associated proteins in human Patient-Derived Xenograft tumours and in primary human breast cancer clinical tissue. Our results demonstrate that the combination of RIME with isobaric labelling offers a powerful tool for the in-depth and quantitative characterisation of protein interactome dynamics, which is applicable to clinical samples.
Collapse
Affiliation(s)
- Evangelia K Papachristou
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Andrew N Holding
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kate Harvey
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | - Soleilmane Omarjee
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kee Ming Chia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alex Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, UNSW, Sydney, NSW 2052, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, UNSW, Sydney, NSW 2052, Australia
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rasmus Siersbaek
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK. Clive.D'
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
11
|
Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A, Xiao T, Li W, Qiu X, Buchwalter G, Feiglin A, Abell-Hart K, Fei T, Rao P, Long H, Kwiatkowski N, Zhang T, Gray N, Melchers D, Houtman R, Liu XS, Cohen O, Wagle N, Winer EP, Zhao J, Brown M. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell 2018; 33:173-186.e5. [PMID: 29438694 PMCID: PMC5813700 DOI: 10.1016/j.ccell.2018.01.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER+) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets.
Collapse
Affiliation(s)
- Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02210, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew Pun
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - MacIntosh Cornwell
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Weihan Liu
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Agostina Nardone
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Tengfei Xiao
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Wei Li
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Gilles Buchwalter
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA
| | - Kayley Abell-Hart
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Teng Fei
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Prakash Rao
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Diane Melchers
- PamGene International BV, Hertogenbosch 5211, the Netherlands
| | - Rene Houtman
- PamGene International BV, Hertogenbosch 5211, the Netherlands
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA
| | - Ofir Cohen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nikhil Wagle
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02210, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric P Winer
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02210, USA
| | - Jean Zhao
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02210, USA.
| |
Collapse
|
12
|
Nautiyal J. Transcriptional coregulator RIP140: an essential regulator of physiology. J Mol Endocrinol 2017; 58:R147-R158. [PMID: 28073818 DOI: 10.1530/jme-16-0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
Transcriptional coregulators drive gene regulatory decisions in the transcriptional space. Although transcription factors including all nuclear receptors provide a docking platform for coregulators to bind, these proteins bring enzymatic capabilities to the gene regulatory sites. RIP140 is a transcriptional coregulator essential for several physiological processes, and aberrations in its function may lead to diseased states. Unlike several other coregulators that are known either for their coactivating or corepressing roles, in gene regulation, RIP140 is capable of acting both as a coactivator and a corepressor. The role of RIP140 in female reproductive axis and recent findings of its role in carcinogenesis and adipose biology have been summarised.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Institute of Reproductive and Developmental BiologyFaculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
13
|
Piao H, Chu X, Lv W, Zhao Y. Involvement of receptor-interacting protein 140 in estrogen-mediated osteoclasts differentiation, apoptosis, and bone resorption. J Physiol Sci 2017; 67:141-150. [PMID: 27016936 PMCID: PMC10716944 DOI: 10.1007/s12576-016-0447-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/10/2016] [Indexed: 01/28/2023]
Abstract
Estrogen withdrawal following menopause results in an increase of osteoclasts formation and bone resorption, which is one of the most important mechanisms of postmenopausal osteoporosis. Recently, growing evidence has suggested that receptor-interacting protein 140 was implicated in estrogen-regulated metabolic disease, including fat metabolism and lipid metabolism. However, little is known regarding the role of receptor-interacting protein 140 in the regulation of bone metabolic by estrogen. In the present study, Western blotting disclosed that estrogen brings a significant increasing expression of receptor-interacting protein 140 in osteoclasts, but not in osteoblasts and bone marrow mesenchymal stem cells. Furthermore, analysis of TRAP staining and bone resorption assay showed that depletion of receptor-interacting protein 140 could significantly alleviate the inhibitory effects of estrogen on osteoclasts formation and bone resorption activity. Moreover, estrogen could induce osteoclasts apoptosis by increasing receptor-interacting protein 140 expression through the Fas/FasL pathway. Taken together, receptor-interacting protein 140 might be a critical player in estrogen-mediated osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
| | - Xiaojie Chu
- Daqing Oilfield General Hospital, Daqing, China
| | - Wentao Lv
- Department of Pharmacy and Laboratory Medicine, Daqing Medical College, Daqing, China
| | - Yan Zhao
- Daqing Oilfield General Hospital, Daqing, China.
| |
Collapse
|
14
|
Kulkoyluoglu E, Madak-Erdogan Z. Nuclear and extranuclear-initiated estrogen receptor signaling crosstalk and endocrine resistance in breast cancer. Steroids 2016; 114:41-47. [PMID: 27394959 DOI: 10.1016/j.steroids.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
Estrogens regulate function of reproductive and non-reproductive tissues in healthy and diseased states including breast cancer. They mainly work through estrogen receptor alpha (ERα) and/or estrogen receptor beta (ERβ). There are various ERα targeting agents that have been used for treatment of ER (+) breast tumors. The impact of direct nuclear activity of ER is very well characterized in ER (+) breast cancers and development and progression of endocrine resistance. Recent studies also suggested important roles for extranuclear-initiated ERα pathways, which would decrease the potency and efficiency of ERα targeting agents. In this mini-review, we will discuss the role of nuclear and extra-nuclear ER signaling and how they relate to therapy resistance in breast cancer.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, USA.
| |
Collapse
|
15
|
Aziz MH, Chen X, Zhang Q, DeFrain C, Osland J, Luo Y, Shi X, Yuan R. Suppressing NRIP1 inhibits growth of breast cancer cells in vitro and in vivo. Oncotarget 2016; 6:39714-24. [PMID: 26492163 PMCID: PMC4741857 DOI: 10.18632/oncotarget.5356] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/03/2015] [Indexed: 11/25/2022] Open
Abstract
Earlier age at menarche is a major risk factor for breast cancer. Our previous study identified Nrip1 (also known as Rip140) as a candidate gene for delaying female sexual maturation (FSM) and found that knocking out Nrip1 could significantly delay FSM in mice. To investigate the effects of NRIP1 in breast cancer we used human cell lines and tissue arrays along with an in vivo study of DMBA-induced carcinogenesis in Nrip1 knockout mice. Analysis of tissue arrays found that NRIP1 is elevated in tumors compared to cancer adjacent normal tissue. Interestingly, in benign tumors NRIP1 levels are higher in the cytosol of stromal cells, but NRIP1 levels are higher in the nuclei of epithelial cells in malignancies. We also found overexpression of NRIP1 in breast cancer cell lines, and that suppression of NRIP1 by siRNA in these cells significantly induced apoptosis and inhibited cell growth. Furthermore, in vivo data suggests that NRIP1 is upregulated in DMBA-induced breast cancer. Importantly, we found that DMBA-induced carcinogenesis is suppressed in Nrip1 knockdown mice. These findings suggest that NRIP1 plays a critical role in promoting the progression and development of breast cancer and that it may be a potential therapeutic target for the new breast cancer treatments.
Collapse
Affiliation(s)
- Moammir H Aziz
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Xundi Chen
- Department of Medical Microbiology and Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Qi Zhang
- Zhongda Hospital, Southeast University of China, Nanjing 210009, China
| | - Chad DeFrain
- Department of Pathology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Jared Osland
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Yizhou Luo
- Department of Oncology, Nanjing Junxie Hospital, Nanjing 210002, China
| | - Xin Shi
- Zhongda Hospital, Southeast University of China, Nanjing 210009, China
| | - Rong Yuan
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA.,Department of Medical Microbiology and Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| |
Collapse
|
16
|
Gibson WJ, Hoivik EA, Halle MK, Taylor-Weiner A, Cherniack AD, Berg A, Holst F, Zack TI, Werner HMJ, Staby KM, Rosenberg M, Stefansson IM, Kusonmano K, Chevalier A, Mauland KK, Trovik J, Krakstad C, Giannakis M, Hodis E, Woie K, Bjorge L, Vintermyr OK, Wala JA, Lawrence MS, Getz G, Carter SL, Beroukhim R, Salvesen HB. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat Genet 2016; 48:848-55. [PMID: 27348297 PMCID: PMC4963271 DOI: 10.1038/ng.3602] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
Recent studies have detailed the genomic landscape of primary endometrial cancers, but the evolution of these cancers into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed The Cancer Genome Atlas (TCGA) data, identifying new recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor gene NRIP1 in 12% of patients. We found that likely driver events were present in both primary and metastatic tissue samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity in endometrial cancers and relative homogeneity across metastatic sites.
Collapse
Affiliation(s)
- William J Gibson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Erling A Hoivik
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Mari K Halle
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Anna Berg
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Frederik Holst
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Travis I Zack
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Henrica M J Werner
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Kjersti M Staby
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Mara Rosenberg
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Ingunn M Stefansson
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kanthida Kusonmano
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
- Present address: Bioinformatics and Systems Biology Program, Computational Biology Unit, School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi, Bangkok, Thailand
| | - Aaron Chevalier
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Karen K Mauland
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Jone Trovik
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marios Giannakis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eran Hodis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathrine Woie
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Line Bjorge
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jeremiah A Wala
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Scott L Carter
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Joint Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Broad Institute, Boston, Massachusetts, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Helga B Salvesen
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
17
|
Légaré S, Basik M. Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer. Mol Endocrinol 2016; 30:965-76. [PMID: 27581354 DOI: 10.1210/me.2016-1072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers.
Collapse
Affiliation(s)
- Stéphanie Légaré
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| | - Mark Basik
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| |
Collapse
|
18
|
De Marchi T, Foekens JA, Umar A, Martens JWM. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov Today 2016; 21:1181-8. [PMID: 27233379 DOI: 10.1016/j.drudis.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer represents the majority (∼70%) of all breast malignancies. In this subgroup of breast cancers, endocrine therapies are effective both in the adjuvant and recurrent settings, although resistance remains a major issue. Several high-throughput approaches have been used to elucidate mechanisms of resistance and to derive potential predictive markers or alternative therapies. In this review, we cover the state-of-the-art of endocrine-resistance biomarker discovery with regard to the latest technological developments, and discuss current opportunities and restrictions for their implementation into a clinical setting.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Flach KD, Zwart W. The first decade of estrogen receptor cistromics in breast cancer. J Endocrinol 2016; 229:R43-56. [PMID: 26906743 DOI: 10.1530/joe-16-0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 02/03/2023]
Abstract
The advent of genome-wide transcription factor profiling has revolutionized the field of breast cancer research. Estrogen receptor α (ERα), the major drug target in hormone receptor-positive breast cancer, has been known as a key transcriptional regulator in tumor progression for over 30 years. Even though this function of ERα is heavily exploited and widely accepted as an Achilles heel for hormonal breast cancer, only since the last decade we have been able to understand how this transcription factor is functioning on a genome-wide scale. Initial ChIP-on-chip (chromatin immunoprecipitation coupled with tiling array) analyses have taught us that ERα is an enhancer-associated factor binding to many thousands of sites throughout the human genome and revealed the identity of a number of directly interacting transcription factors that are essential for ERα action. More recently, with the development of massive parallel sequencing technologies and refinements thereof in sample processing, a genome-wide interrogation of ERα has become feasible and affordable with unprecedented data quality and richness. These studies have revealed numerous additional biological insights into ERα behavior in cell lines and especially in clinical specimens. Therefore, what have we actually learned during this first decade of cistromics in breast cancer and where may future developments in the field take us?
Collapse
Affiliation(s)
- Koen D Flach
- Division of Molecular PathologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Molecular PathologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Luo F, Zhou R, Lei H, Mou Y, Zhang P, Sun Y, Chen T, He L, Yan T. Umbelliferone attenuates lipopolysaccharide-induced acute lung injury linked with regulation of TLRs–MyD88 and RIP140/NF-κB signaling pathways. RSC Adv 2016. [DOI: 10.1039/c6ra18293c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Umbelliferone (Umb), isolated from the chloroform fraction of Potentilla evestita, exerts a variety of pharmacological activities.
Collapse
Affiliation(s)
- Fen Luo
- Department of Physiology and Pharmacology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Rui Zhou
- Department of Physiology and Pharmacology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hui Lei
- Pharmaceutical Experiment Center of China Pharmaceutical University
- Nanjing 211198
- China
| | - Yi Mou
- Taizhou University
- Taizhou 225300
- China
| | - Ping Zhang
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yi Sun
- Department of Pharmacology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Tong Chen
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Department of Pharmacology
| | - Ling He
- Department of Pharmacology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Tianhua Yan
- Department of Physiology and Pharmacology
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
21
|
Liu Y, Hilakivi-Clarke L, Zhang Y, Wang X, Pan YX, Xuan J, Fleck SC, Doerge DR, Helferich WG. Isoflavones in soy flour diet have different effects on whole-genome expression patterns than purified isoflavone mix in human MCF-7 breast tumors in ovariectomized athymic nude mice. Mol Nutr Food Res 2015; 59:1419-30. [PMID: 25820259 PMCID: PMC5763549 DOI: 10.1002/mnfr.201500028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/04/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
SCOPE Soy flour diet (MS) prevented isoflavones from stimulating MCF-7 tumor growth in athymic nude mice, indicating that other bioactive compounds in soy can negate the estrogenic properties of isoflavones. The underlying signal transduction pathways to explain the protective effects of soy flour consumption were studied here. METHODS AND RESULTS Ovariectomized athymic nude mice inoculated with MCF-7 human breast cancer cells were fed either Soy flour diet (MS) or purified isoflavone mix diet (MI), both with equivalent amounts of genistein. Positive controls received estradiol pellets and negative controls received sham pellets. GeneChip Human Genome U133 Plus 2.0 Array platform was used to evaluate gene expressions, and results were analyzed using bioinformatics approaches. Tumors in MS-fed mice exhibited higher expression of tumor growth suppressing genes ATP2A3 and BLNK and lower expression of oncogene MYC. Tumors in MI-fed mice expressed a higher level of oncogene MYB and a lower level of MHC-I and MHC-II, allowing tumor cells to escape immunosurveillance. MS-induced gene expression alterations were predictive of prolonged survival among estrogen-receptor-positive breast cancer patients, whilst MI-induced gene changes were predictive of shortened survival. CONCLUSION Our findings suggest that dietary soy flour affects gene expression differently than purified isoflavones, which may explain why soy foods prevent isoflavones-induced stimulation of MCF-7 tumor growth in athymic nude mice.
Collapse
Affiliation(s)
- Yunxian Liu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Leena Hilakivi-Clarke
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yukun Zhang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Xiao Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Yuan-xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Stefanie C. Fleck
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Daniel R. Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
22
|
The emerging role of the transcriptional coregulator RIP140 in solid tumors. Biochim Biophys Acta Rev Cancer 2015; 1856:144-50. [PMID: 26116758 DOI: 10.1016/j.bbcan.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022]
Abstract
RIP140 is a transcriptional coregulator (also known as NRIP1) which plays very important physiological roles by finely tuning the activity of a large number of transcription factors. Noticeably, the RIP140 gene has been shown to be involved in the regulation of energy expenditure, in mammary gland development and intestinal homeostasis as well as in behavior and cognition. RIP140 is also involved in the regulation of various oncogenic signaling pathways and participates in the development and progression of solid tumors. This short review aims to summarize the role of this transcription factor on nuclear estrogen receptors, E2F and Wnt signaling pathways based on recent observations focusing on breast, ovary, liver and colon tumors.
Collapse
|
23
|
Abstract
Sustained estrogenic exposure increases the risk and/or the progression of various cancers, including those of the breast, endometrium and ovary. Unexpectedly, physiological level of estrogen together with a novel IKKα inhibitor BAY11-7082 could effectively induce cell apoptosis in ER-positive breast cancer cells, suggesting combining estrogen with IKKα inhibition may be beneficial for breast cancer patients. This opinion article touches upon the dual role estrogen played in inducing cancer cell death and asks whether use of estrogen in combination with IKKα-targeted therapy would be possible reconsider the newly identified crosstalk between ER and NFκB pathway which can be utilized to switch the effects of estrogen on cell death.
Collapse
Affiliation(s)
- Wen Zhou
- Braman Family Breast Cancer Institute, University of Miami Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Fl 33136, USA ; Department of Biological Sciences, Columbia University, New York, 10027, USA
| | - Xiaoxia Zhu
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| |
Collapse
|