1
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Mao XD, Wei X, Xu T, Li TP, Liu KS. Research progress in breast cancer stem cells: characterization and future perspectives. Am J Cancer Res 2022; 12:3208-3222. [PMID: 35968346 PMCID: PMC9360222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023] Open
Abstract
More and more studies have proved that there are a small number of cells with self-renewal and differentiation ability in breast tumors, namely breast cancer stem cells. Such cells play a key role in the initiation, development and migration of breast tumors. The properties of breast tumor stem cells are regulated by a range of intracellular and extracellular factors, including important signaling pathways, transcription factors, non-coding RNAs, and cytokines such as Hedgehog, Wnt, Notch, microRNA93, microRNA100, and IL-6. Tumor microenvironment (such as mesenchymal stem cells, macrophages and cytokines) plays an important role in the regulation of breast tumor stem cells. Using the keywords including "breast cancer stem cells", "signal pathway", "chemotherapy tolerance", and "non-coding RNA", "triple negative breast cancer", "inhibitors", this study retrieved the original articles and reviews published before October 3, 2021, from PubMed and WEB OF SCI database and this study performed a comprehensive review of them. After treatment, there is a correlation between the metastasis-prone nature and recurrence with breast cancer stem cells. The signaling pathway of breast cancer stem cells plays a significant role in activating the function of breast cancer cells, regulating the differentiation of breast cancer cells and controlling the division of breast cancer cells. This imbalance leads to the uncontrolled growth and development of breast cancer cells. Targeted therapy that blocks the corresponding pathway may become a new perspective for breast cancer treatment. In addition, corresponding therapeutic strategies can be used according to the expression characteristics of different molecular types of breast cancer stem cells. For ER-positive breast cancer, simultaneous endocrine therapy and targeted therapy of tumor stem cells may improve the efficacy of endocrine therapy. Trastuzumab therapy significantly reduces the risk of recurrence of HER2-positive breast cancer. For drug-resistant patients, combination therapy is required due to the different phenotypes of epithelial-mesenchymal transforming tumor stem cells. This study briefly reviews the research progress of breast cancer stem cell-related signaling pathways and their inhibitors, in order to provide a reference for breast cancer patients to obtain more effective clinical treatment.
Collapse
Affiliation(s)
- Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Key Laboratory of TCM Syndrome & Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Key Laboratory of TCM Syndrome & Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Tao Xu
- Xi’an Jiaotong University Global Health InstituteXi’an 710049, Shanxi, China
| | - Tai-Ping Li
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Kang-Sheng Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| |
Collapse
|
4
|
Garnier D, Ratcliffe E, Briand J, Cartron PF, Oliver L, Vallette FM. The Activation of Mesenchymal Stem Cells by Glioblastoma Microvesicles Alters Their Exosomal Secretion of miR-100-5p, miR-9-5p and let-7d-5p. Biomedicines 2022; 10:biomedicines10010112. [PMID: 35052791 PMCID: PMC8773192 DOI: 10.3390/biomedicines10010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and despite initial response to chemo- and radio-therapy, the persistence of glioblastoma stem cells (GSCs) unfortunately always results in tumor recurrence. It is now largely admitted that tumor cells recruit normal cells, including mesenchymal stem cells (MSCs), and components of their environment, to participate in tumor progression, building up what is called the tumor microenvironment (TME). While growth factors and cytokines constitute essential messengers to pass on signals between tumor and TME, recent uncovering of extracellular vesicles (EVs), composed of microvesicles (MVs) and exosomes, opened new perspectives to define the modalities of this communication. In the GBM context particularly, we investigated what could be the nature of the EV exchange between GSCs and MSCs. We show that GSCs MVs can activate MSCs into cancer-associated fibroblasts (CAFs)-like cells, that subsequently increase their secretion of exosomes. Moreover, a significant decrease in anti-tumoral miR-100-5p, miR-9-5p and let-7d-5p was observed in these exosomes. This clearly suggests a miRNA-mediated GBM tumor promotion by MSCs exosomes, after their activation by GBM MVs.
Collapse
Affiliation(s)
- Delphine Garnier
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France
- Correspondence:
| | - Edward Ratcliffe
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Joséphine Briand
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Pierre-François Cartron
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Lisa Oliver
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - François M. Vallette
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| |
Collapse
|
5
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Koleckova M, Ehrmann J, Bouchal J, Janikova M, Brisudova A, Srovnal J, Staffova K, Svoboda M, Slaby O, Radova L, Vomackova K, Melichar B, Veverkova L, Kolar Z. Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer. Sci Rep 2021; 11:5145. [PMID: 33664322 PMCID: PMC7933252 DOI: 10.1038/s41598-021-84350-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancers (TNBC) are a morphologically and genetically heterogeneous group of breast cancers with uncertain prediction of biological behavior and response to therapy. Epithelial to mesenchymal transition (EMT) is a dynamic process characterized by loss of typical epithelial phenotype and acquisition of mesenchymal characteristics. Aberrant activation of EMT can aggravate the prognosis of patients with cancer, however, the mechanisms of EMT and role of microRNAs (miRNAs) in EMT activation is still unclear. The aim of our study was to analyze miRNA expression within areas of TNBCs with cellular morphology that may be related to the EMT process and discuss possible associations. Out of all 3953 re-examined breast cancers, 460 breast cancers were diagnosed as TNBC (11.64%). With regard to complete tumor morphology preservation, the tissue samples obtained from core—cut biopsies and influenced by previous neoadjuvant therapy were excluded. We assembled a set of selected 25 cases to determine miRNA expression levels in relation to present focal spindle cell and apocrine cell morphology within individual TNBCs. We used descriptive (histological typing and morphology), morphometric, molecular (microdissection of tumor and non-tumor morphologies, RNA isolation and purification, microchip analysis) and bioinformatic analysis (including pathway analysis). The results were verified by quantitative real-time PCR (RT-qPCR) on an extended set of 70 TNBCs. The majority of TNBCs were represented by high—grade invasive carcinomas of no special type (NST) with medullary features characterized by well-circumscribed tumors with central necrosis or fibrosis and frequent tendency to spindle-cell and/or apocrine cell transformation. Apocrine and spindle cell transformation showed a specific miRNA expression profile in comparison to other tumor parts, in situ carcinoma or non-tumor structures, particularly down-regulated expression of hsa-miRNA-143-3p and hsa-miRNA-205-5p and up-regulated expression of hsa-miR-22-3p, hsa-miRNA-185-5p, and hsa-miR-4443. Apocrine cell tumor morphology further revealed decreased expression of hsa-miR-145-5p and increased expression of additional 14 miRNAs (e.g. hsa-miR-182-5p, hsa-miR-3135b and hsa-miR-4417). Pathway analysis for target genes of these miRNAs revealed several shared biological processes (i.e. Wnt signaling, ErbB signaling, MAPK signaling, endocytosis and axon guidance), which may in part contribute to the EMT and tumor progression. We provide the first miRNA expression profiling of specific tissue morphologies in TNBC. Our results demonstrate a specific miRNA expression profile of apocrine and spindle cell morphology which can exhibit a certain similarity with the EMT process and may also be relevant for prognosis and therapy resistance of TNBC.
Collapse
Affiliation(s)
- Marketa Koleckova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Jiri Ehrmann
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic. .,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic.
| | - Maria Janikova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Aneta Brisudova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Marek Svoboda
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Katherine Vomackova
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Lucia Veverkova
- Department of Radiology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic
| | - Zdenek Kolar
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic. .,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
7
|
Lv L, Shi Y, Wu J, Li G. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. Int J Nanomedicine 2021; 16:1487-1508. [PMID: 33654398 PMCID: PMC7914063 DOI: 10.2147/ijn.s282110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou, 511300, Guangdong, People's Republic of China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
9
|
Eniafe J, Jiang S. MicroRNA-99 family in cancer and immunity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1635. [PMID: 33230974 DOI: 10.1002/wrna.1635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
The microRNA (miR)-99 family comprising miR-99a, miR-99b, and miR-100 is an evolutionarily conserved family with existence dating prior to the bilaterians. Members are typically oncogenic in leukemia while their functional roles in other cancers alternate between that of a tumor suppressor and a tumor promoter. Targets of the miR-99 family rank in the lists of oncogenes and tumor suppressors, thereby illustrating the dual role of this miR family as oncogenic miRs (oncomiRs) and tumor suppressing miRs (TSmiRs) in different cellular contexts. In addition to their functional roles in cancers, miR-99 family is implicated in the modulation of macrophage inflammatory responses and T-cell subsets biology, thereby exerting critical roles in the maintenance of tissue homeostasis, establishment of peripheral tolerance as well as resolution of an inflammatory reaction. Here, we review emerging knowledge of this miR family and discuss remaining concerns linked to their activities. A better dissection of the functional roles of miR-99 family members in cancer and immunity will help in the development of novel miR-99-based therapeutics for the treatment of human cancer and immune-related diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
10
|
Innis SM, Cabot B. GBAF, a small BAF sub-complex with big implications: a systematic review. Epigenetics Chromatin 2020; 13:48. [PMID: 33143733 PMCID: PMC7607862 DOI: 10.1186/s13072-020-00370-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
ATP-dependent chromatin remodeling by histone-modifying enzymes and chromatin remodeling complexes is crucial for maintaining chromatin organization and facilitating gene transcription. In the SWI/SNF family of ATP-dependent chromatin remodelers, distinct complexes such as BAF, PBAF, GBAF, esBAF and npBAF/nBAF are of particular interest regarding their implications in cellular differentiation and development, as well as in various diseases. The recently identified BAF subcomplex GBAF is no exception to this, and information is emerging linking this complex and its components to crucial events in mammalian development. Furthermore, given the essential nature of many of its subunits in maintaining effective chromatin remodeling function, it comes as no surprise that aberrant expression of GBAF complex components is associated with disease development, including neurodevelopmental disorders and numerous malignancies. It becomes clear that building upon our knowledge of GBAF and BAF complex function will be essential for advancements in both mammalian reproductive applications and the development of more effective therapeutic interventions and strategies. Here, we review the roles of the SWI/SNF chromatin remodeling subcomplex GBAF and its subunits in mammalian development and disease.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Birgit Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Cui T, Bell EH, McElroy J, Liu K, Sebastian E, Johnson B, Gulati PM, Becker AP, Gray A, Geurts M, Subedi D, Yang L, Fleming JL, Meng W, Barnholtz-Sloan JS, Venere M, Wang QE, Robe PA, Haque SJ, Chakravarti A. A Novel miR-146a-POU3F2/SMARCA5 Pathway Regulates Stemness and Therapeutic Response in Glioblastoma. Mol Cancer Res 2020; 19:48-60. [PMID: 32973101 DOI: 10.1158/1541-7786.mcr-20-0353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/24/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Rapid tumor growth, widespread brain-invasion, and therapeutic resistance critically contribute to glioblastoma (GBM) recurrence and dismal patient outcomes. Although GBM stem cells (GSC) are shown to play key roles in these processes, the molecular pathways governing the GSC phenotype (GBM-stemness) remain poorly defined. Here, we show that epigenetic silencing of miR-146a significantly correlated with worse patient outcome and importantly, miR-146a level was significantly lower in recurrent tumors compared with primary ones. Further, miR-146a overexpression significantly inhibited the proliferation and invasion of GBM patient-derived primary cells and increased their response to temozolomide (TMZ), both in vitro and in vivo. Mechanistically, miR-146a directly silenced POU3F2 and SMARCA5, two transcription factors that mutually regulated each other, significantly compromising GBM-stemness and increasing TMZ response. Collectively, our data show that miR-146a-POU3F2/SMARCA5 pathway plays a critical role in suppressing GBM-stemness and increasing TMZ-response, suggesting that POU3F2 and SMARCA5 may serve as novel therapeutic targets in GBM. IMPLICATIONS: miR-146a predicts favorable prognosis and the miR-146a-POU3F2/SMARCA5 pathway is important for the suppression of stemness in GBM.
Collapse
Affiliation(s)
- Tiantian Cui
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Erica H Bell
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Joseph McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, Ohio
| | - Kevin Liu
- The Ohio State University College of Medicine, Columbus, Ohio
| | - Ebin Sebastian
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Benjamin Johnson
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Pooja Manchanda Gulati
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Aline Paixao Becker
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Ashley Gray
- The Ohio State University College of Medicine, Columbus, Ohio
| | - Marjolein Geurts
- Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | | | - Linlin Yang
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Jessica L Fleming
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Wei Meng
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Jill S Barnholtz-Sloan
- Department of Population and Quantitative Health Sciences and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Monica Venere
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Qi-En Wang
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S Jaharul Haque
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
12
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020; 19:61. [PMID: 32188472 PMCID: PMC7079433 DOI: 10.1186/s12943-020-01181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Their detailed roles in breast cancer are still under scrutiny. Main body We systematically reviewed from recent literature the many functional and physical interactions of non-coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect, interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years) we considered the journal impact factor rather than the citation number. The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer. Conclusions A number of coding/non-coding gene interactions have been investigated in breast cancer during recent years and their full extent is still being established. Here, we have unveiled some of the most important networks embracing those interactions, and described their involvement in cancer development and in its malignant progression.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Area of Neuroscience, International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. .,LTTA, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
14
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
15
|
Shi Y, Guo Z, Fang N, Jiang W, Fan Y, He Y, Ma Z, Chen Y. hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother 2019; 117:109151. [PMID: 31229921 DOI: 10.1016/j.biopha.2019.109151] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Circle RNAs (circRNAs) are the novel noncoding RNAs with the covalent closed-loop structure, which play a crucial role in a variety of pathological processes, including cancer. Nevertheless, the expression profiles and functions of circRNAs in esophageal squamous cell cancer (ESCC) remain largely unknown. In this paper, 10 pairs of ESCC tissues were utilized to screen the circRNA expression profiles by means of microarray assay; further, a novel circular RNA named hsa_circ_0006168 was investigated. Meanwhile, the expression of hsa_circ_0006168 was measured in 52 ESCC tissues and in cell lines. Our results suggested that, hsa_circ_0006168 was remarkably increased not only in ESCC tissues but also in cell lines compared with those in normal cases. Besides, high hsa_circ_0006168 expression was positively connected with lymph node metastasis and TNM stage of ESCC patients. In vitro, the proliferation, invasion and migration capacities of ESCC cells were suppressed through down-regulating hsa_circ_0006168 expression. Besides, RNase R digestion assay confirmed that hsa_circ_0006168 was more stable than its linear CNOT6L mRNA form. Moreover, nuclear and cytoplasmic fraction assay indicated that hsa_circ_0006168 was mainly distributed in the cytoplasm of Kyse450 and TE13 cells. Mechanically, it was discovered in this study that hsa_circ_0006168 might regulate the expression of Mammalian Target of Rapamycin (mTOR) by sponging microRNA-100 (miR-100). Taken together, hsa_circ_0006168 can promote ESCC proliferation, migration and invasion through the competing endogenous RNA (ceRNA) mechanism, which has been first confirmed in our results. In ESCC, hsa_circ_0006168 can serve as a potential diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yijun Shi
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Zizhang Guo
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Na Fang
- Institute of Molecular Biology & Translational Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yu Fan
- Institute of Molecular Biology & Translational Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Yaozhou He
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Zijian Ma
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
16
|
Yin J, Hu W, Pan L, Fu W, Dai L, Jiang Z, Zhang F, Zhao J. let‑7 and miR‑17 promote self‑renewal and drive gefitinib resistance in non‑small cell lung cancer. Oncol Rep 2019; 42:495-508. [PMID: 31233201 PMCID: PMC6609324 DOI: 10.3892/or.2019.7197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor‑tyrosinase kinase inhibitor (EGFR‑TKI) resistance represents a major obstacle in the therapy of non‑small cell lung cancer (NSCLC), and the underlying molecular mechanisms are unknown. In this study, it was found that let‑7 family expression was downregulated and miR‑17 family expression was upregulated in gefitinib‑resistant PC9/GR cells compared with gefitinib‑sensitive PC9 cells. The downregulation of let‑7 and upregulation of miR‑17 have significant clinical relevance to gefitinib resistance in NSCLC. Moreover, it was shown that downregulation of let‑7 and upregulation of miR‑17 promoted resistance to gefitinib by regulating the self‑renewal capability of NSCLC cells. In addition, let‑7 participated in the maintenance of stem cell characteristics by regulating the target gene MYC, and miR‑17 participated in regulation of the cell cycle by regulating the target gene CDKN1A. In NSCLC cells, low expression of let‑7 increased MYC expression to help maintain the undifferentiated status, and high expression of miR‑17 decreased CDKN1A expression to help maintain the proliferative potential. Thus, both let‑7 and miR‑17 promoted self‑renewal, which is typical of stem cell‑like characteristics and resulted in gefitinib resistance. Therefore, this study demonstrated that let‑7 and miR‑17 were involved in the regulation of EGFR‑TKI resistance, and could be used as predictive biomarkers of EGFR‑TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Jun Yin
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Weimin Hu
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Lei Pan
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Wenfan Fu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Feng Zhang
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
17
|
Zou L, Xiong X, Yang H, Wang K, Zhou J, Lv D, Yin Y. Identification of microRNA transcriptome reveals that miR-100 is involved in the renewal of porcine intestinal epithelial cells. SCIENCE CHINA-LIFE SCIENCES 2019; 62:816-828. [PMID: 31016537 DOI: 10.1007/s11427-018-9338-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/30/2023]
Abstract
MicroRNAs play important roles in various cellular processes, including differentiation, proliferation and survival. Using a pig model, this study sought to identify the miRNAs responsible for crypt-villus axis renewal of the small intestinal epithelium. Compared to the villus upper cells, there were 15 up-regulated and 41 down-regulated miRNAs in the crypt cells of the jejunum. Notably, we found that miR-100 was expressed more in the villus upper cells than in the crypt cells, suggesting an effect on intestinal epithelium differentiation. Overexpression of miR-100 increased the activity of alkaline phosphatase, confirming that miR-100 promoted IPEC-J2 cell differentiation. MiR-100 can inhibit cell proliferation as evidenced by CCK-8 and cell cycle assay results. We also showed that miR-100 significantly inhibited the migration of IPEC-J2 cells and promoted cell apoptosis through caspase-3-dependent cleavage of Bcl-2. Furthermore, FGFR3 was identified as a potential target of miR-100 by bioinformatics analysis. We confirmed that overexpression of miR-100 suppressed FGFR3 expression in IPEC-J2 cells by directly targeting the FGFR3 3'-UTR. This is the first report of miRNAs acting on the renewal of the intestinal crypt-villus axis. Our results also showed that miR-100 promotes the differentiation and apoptosis, and inhibits the proliferation and migration of enterocytes of pigs.
Collapse
Affiliation(s)
- Lijun Zou
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, 410205, China
| | - Xia Xiong
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China.
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kexing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jian Zhou
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China
| | - Dinghong Lv
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
18
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
19
|
Wang W, Liu Y, Guo J, He H, Mi X, Chen C, Xie J, Wang S, Wu P, Cao F, Bai L, Si Q, Xiang R, Luo Y. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis 2018; 7:97. [PMID: 30563983 PMCID: PMC6299090 DOI: 10.1038/s41389-018-0106-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
Tumor-associated macrophages (TAMs), the main part of immune cells in tumor microenvironment (TME), play a potent role in promoting tumorigenesis through mechanisms such as stimulating angiogenesis, enhancing tumor migration and suppressing antitumor immunity. MicroRNAs (miRNAs) are considered as crucial regulators in multiple biological processes. The relationship between miRNAs and macrophages function has been extensively reported, but the roles that miRNAs play in regulating TAMs phenotype remain unclear. In this study, we screened highly expressed microRNAs in TAMs, and first identified that miR-100 represented a TAMs-high expression pattern and maintained TAMs phenotype by targeting mTOR signaling pathway. Moreover, miR-100 expression level in TAMs was positively related to IL-1ra secretion, a traditional immune-suppressive cytokine, which was determined to promote tumor cells stemness via stimulating Hedgehog pathway. Mechanism study suggested that mTOR/Stat5a pathway was involved in IL-1ra transcriptional regulation process mediated by miR-100. More importantly, tumor metastasis and invasion capacity were significantly decreased in a 4T1 mouse breast cancer model injected intratumorally with miR-100 antagomir, and combination therapy with cisplatin showed much better benefit. In this study, we confirm that highly expressed miR-100 maintains the phenotype of TAMs and promotes tumor metastasis via enhancing IL-1ra secretion. Interfering miR-100 expression of TAMs in mouse breast cancer model could inhibit TAMs pro-tumor function and reduce tumor metastasis, which suggests that miR-100 could serve as a potential therapy target to remodel tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Yan Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Jian Guo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Huiwen He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Xue Mi
- Department of Immunology, Medical School of Nankai University, 300071, Tianjin, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Junling Xie
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Shengnan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Peng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Fengqi Cao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Lipeng Bai
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Rong Xiang
- Department of Immunology, Medical School of Nankai University, 300071, Tianjin, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China. .,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.
| |
Collapse
|
20
|
Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol 2018; 107:38-52. [PMID: 30529656 DOI: 10.1016/j.biocel.2018.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Breast cancer remains to be a dreadful disease even with several advancements in radiation and chemotherapies, owing to the drug resistance and tumor relapse caused by breast cancer stem cells. Cancer stem cells are a minute population of cells of solid tumors which show self-renewal and differentiation properties as well as tumorigenic potential. Several signaling pathways including Notch, Hippo, Wnt and Hedgehog and tumor-stroma exchanges play a critical role in the self-renewal and differentiation of cancer stem cells in breast cancer. Cancer stem cells can grow anchorage-independent manner so they disseminate to different parts of the body to form secondary tumors. Cancer stem cells promote angiogenesis by dedifferentiating to endothelial cells as well as secreting proangiogenic and angiogenic factors. Moreover, multidrug resistance genes and drug efflux transporters expressed in breast cancer stem cells confer resistance to various conventional chemotherapeutic drugs. Indeed, these therapies are recognised to enhance the percent of cancer stem cell population in tumors leading to cancer relapse with increased aggressiveness. Hence, devising the therapeutic interventions to target cancer stem cells would be useful in increasing patients' survival rates. In addition, targeting the self-renewal pathways and tumor-stromal cross-talk helps in eradicating this population. Reversal of the cancer stem cell-mediated drug resistance would increase the sensitivity to various conventional drugs for the effective management of breast cancer. In this review, we have discussed the cancer stem cell origin and their involvement in angiogenesis, metastasis and therapy-resistance. We have also summarized different therapeutic approaches to eradicate the same for the successful treatment of breast cancer.
Collapse
Affiliation(s)
- Ramesh Butti
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | | | - Totakura V S Kumar
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Pinaki Banerjee
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Gopal C Kundu
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
21
|
Deng L, Gao X, Liu B, He X, Xu J, Qiang J, Wu Q, Liu S. NMT1 inhibition modulates breast cancer progression through stress-triggered JNK pathway. Cell Death Dis 2018; 9:1143. [PMID: 30446635 PMCID: PMC6240078 DOI: 10.1038/s41419-018-1201-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Myristoylation is one of key post-translational modifications that involved in signal transduction, cellular transformation and tumorigenesis. Increasing evidence demonstrates that targeting myristoylation might provide a new strategy for eliminating cancers. However, the underlying mechanisms are still yielded unclear. In this study, we demonstrated that genetic inhibition of N-myristoyltransferase NMT1 suppressed initiation, proliferation and invasion of breast cancer cells either in vitro or in vivo. We identified ROS could negatively regulate NMT1 expression and NMT1 knockdown conversely promoted oxidative stress, which formed a feedback loop. Furthermore, inhibition of NMT1 caused degraded proteins increase and ER stress, which cross-talked with mitochondria to produce more ROS. And both of oxidative stress and ER stress could activate JNK pathway, leading to autophagy which abrogated breast cancer progression especially triple-negative breast cancer (TNBC). These studies provide a preclinical proof of concept for targeting NMT1 as a strategy to treat breast cancer.
Collapse
Affiliation(s)
- Lu Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China.,School of Life Science, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xinlei Gao
- School of Life Science, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Bingjie Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China.,School of Life Science, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China
| | - Qingfa Wu
- School of Life Science, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
22
|
Liu B, Du R, Zhou L, Xu J, Chen S, Chen J, Yang X, Liu DX, Shao ZM, Zhang L, Yu Z, Xie N, Guan JL, Liu S. miR-200c/141 Regulates Breast Cancer Stem Cell Heterogeneity via Targeting HIPK1/β-Catenin Axis. Am J Cancer Res 2018; 8:5801-5813. [PMID: 30613263 PMCID: PMC6299432 DOI: 10.7150/thno.29380] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence demonstrates the existence of two inter-convertible states of breast cancer stem cells (BCSCs) with distinct behaviors in proliferation and mobility, and the BCSC heterogeneity is accurately regulated by sophisticated mechanisms including microRNAs. The microRNA-200 family including miR-200c/141 cluster was reported to affect cancer cell invasion and metastasis by regulating epithelial to mesenchymal transition (EMT). However, the effect of miR-200 family on BCSC heterogeneity is uncertain. Thus, we investigated whether the miR-200c/141 cluster had different effects on breast tumor growth and metastasis by switching the two states of BCSC. Methods: The spontaneous mammary tumor mouse model with miR-200c/141 conditional knockout was utilized for analyzing the role of miR-200c/141 cluster in vivo. The effect of miR-200c/141 cluster on BCSCs was performed by CD24/CD29 staining and ALDEFLUOR assay. miR-200c/141 target expression and EMT-related marker expression were verified in tumor sections, primary cells and breast cancer cell lines by qRT-PCR or western blotting. Statistical analysis was determined using two-way ANOVA and Student's t-test. All values were presented as the mean ± s.e.m. Results: The deletion of miR-200c/141 cluster regulated BCSC heterogeneity and promoted the EMT-like BCSC generation, which resulted in increased tumor metastasis and inhibited tumor growth by directly upregulating the target gene homeodomain-interacting protein kinase 1 (HIPK1) and sequential β-catenin activation. Conclusions: Our results indicated that miR-200c/141 played biphasic roles in breast tumor progression via affecting the BCSC heterogeneity, suggesting targeting BCSC heterogeneity to simultaneously restrict breast cancer initiation and metastasis could be a promising therapeutic strategy for breast cancer.
Collapse
|
23
|
Sun Q, Tripathi V, Yoon JH, Singh D, Hao Q, Min KW, Davila S, Zealy R, Li X, Polycarpou-Schwarz M, Lehrmann E, Zhang Y, Becker K, Freier S, Zhu Y, Diederichs S, Prasanth S, Lal A, Gorospe M, Prasanth K. MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Res 2018; 46:10405-10416. [PMID: 30102375 PMCID: PMC6212728 DOI: 10.1093/nar/gky696] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA (miRNA) host genes (MIRHGs) due to pre-miRNA processing, and are categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, the cellular function of most lnc-miRHGs is not well understood. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs that display elevated levels during the G1 phase of the cell cycle. Depletion of MIR100HG-encoded lncRNAs in human cells results in aberrant cell cycle progression without altering the levels of miRNA encoded within MIR100HG. Notably, MIR100HG interacts with HuR/ELAVL1 as well as with several HuR-target mRNAs. Further, MIR100HG-depleted cells show reduced interaction between HuR and three of its target mRNAs, indicating that MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by a MIRHG-encoded lncRNA in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of lnc-miRHGs that are present in human genome.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Davila
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Richard W Zealy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maria Polycarpou-Schwarz
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | | | - Yuelin Zhu
- Molecular Genetics Section, CCR, NCI, NIH, Bethesda, MD, USA
| | - Sven Diederichs
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115, 79106 Freiburg & German Cancer Consortium (DKTK), Freiburg, Germany
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 2018; 8:44096-44107. [PMID: 28484086 PMCID: PMC5546465 DOI: 10.18632/oncotarget.17307] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Endogenous noncoding circular RNAs (circRNAs) have gained attention for their involvement in carcinogenesis, but their expression pattern in breast cancer has remained largely unknown. In this two-stage study, we first used an Arraystar Human circRNA Array to construct a genome-wide circRNA profile. We then selected candidate circRNAs for validation using a quantitative real-time polymerase chain reaction system. CircRNA/miRNA interactions were predicted and sequence analyses were performed. Among 1155 differentially expressed circRNAs, 715 were upregulated and 440 were downregulated in breast cancer tissues. The validation study demonstrated that hsa_circ_103110, hsa_circ_104689 and hsa_circ_104821 levels were elevated in breast cancer tissues, whereas hsa_circ_006054, hsa_circ_100219 and hsa_circ_406697 were downregulated. These circRNAs targeted complementary miRNA response elements. The area under the receiver operating characteristic curve for distinguishing breast cancer was 0.82 (95% CI: 0.73-0.90) when hsa_circ_006054, hsa_circ_100219 and hsa_circ_406697 were used in combination. This study provides evidence that circRNAs are differentially expressed in breast cancer and are important in carcinogenesis because they participate in cancer-related pathways and sequester miRNAs.
Collapse
|
25
|
Paquet-Fifield S, Koh SL, Cheng L, Beyit LM, Shembrey C, Mølck C, Behrenbruch C, Papin M, Gironella M, Guelfi S, Nasr R, Grillet F, Prudhomme M, Bourgaux JF, Castells A, Pascussi JM, Heriot AG, Puisieux A, Davis MJ, Pannequin J, Hill AF, Sloan EK, Hollande F. Tight Junction Protein Claudin-2 Promotes Self-Renewal of Human Colorectal Cancer Stem-like Cells. Cancer Res 2018; 78:2925-2938. [PMID: 29510994 DOI: 10.1158/0008-5472.can-17-1869] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022]
Abstract
Posttreatment recurrence of colorectal cancer, the third most lethal cancer worldwide, is often driven by a subpopulation of cancer stem cells (CSC). The tight junction (TJ) protein claudin-2 is overexpressed in human colorectal cancer, where it enhances cell proliferation, colony formation, and chemoresistance in vitro While several of these biological processes are features of the CSC phenotype, a role for claudin-2 in the regulation of these has not been identified. Here, we report that elevated claudin-2 expression in stage II/III colorectal tumors is associated with poor recurrence-free survival following 5-fluorouracil-based chemotherapy, an outcome in which CSCs play an instrumental role. In patient-derived organoids, primary cells, and cell lines, claudin-2 promoted colorectal cancer self-renewal in vitro and in multiple mouse xenograft models. Claudin-2 enhanced self-renewal of ALDHHigh CSCs and increased their proportion in colorectal cancer cell populations, limiting their differentiation and promoting the phenotypic transition of non-CSCs toward the ALDHHigh phenotype. Next-generation sequencing in ALDHHigh cells revealed that claudin-2 regulated expression of nine miRNAs known to control stem cell signaling. Among these, miR-222-3p was instrumental for the regulation of self-renewal by claudin-2, and enhancement of this self-renewal required activation of YAP, most likely upstream from miR-222-3p. Taken together, our results indicate that overexpression of claudin-2 promotes self-renewal within colorectal cancer stem-like cells, suggesting a potential role for this protein as a therapeutic target in colorectal cancer.Significance: Claudin-2-mediated regulation of YAP activity and miR-222-3p expression drives CSC renewal in colorectal cancer, making it a potential target for therapy. Cancer Res; 78(11); 2925-38. ©2018 AACR.
Collapse
Affiliation(s)
- Sophie Paquet-Fifield
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Shir Lin Koh
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Laura M Beyit
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Carolyn Shembrey
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Christina Mølck
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Corina Behrenbruch
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia.,Peter MacCallum Cancer Centre, Division of Cancer Surgery, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Marina Papin
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Meritxell Gironella
- Gastrointestinal and Pancreatic Oncology Group, Hospital Clínic of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sophie Guelfi
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Ramona Nasr
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Fanny Grillet
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | | | | | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Hospital Clínic of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jean-Marc Pascussi
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Alexander G Heriot
- Peter MacCallum Cancer Centre, Division of Cancer Surgery, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | | | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Julie Pannequin
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Erica K Sloan
- Peter MacCallum Cancer Centre, Division of Cancer Surgery, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia.,Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville Victoria, Australia.,Cousins Center for PNI, UCLA Semel Institute, Jonsson Comprehensive Cancer Center, and UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California
| | - Frédéric Hollande
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia.
| |
Collapse
|
26
|
Muhammad N, Bhattacharya S, Steele R, Ray RB. Anti-miR-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3. Oncotarget 2018; 7:58595-58605. [PMID: 27517632 PMCID: PMC5295456 DOI: 10.18632/oncotarget.11193] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is a major public health problem worldwide in women and existing treatments are not adequately effective for this deadly disease. microRNAs (miRNAs) regulate the expression of many target genes and play pivotal roles in the development, as well as in the suppression of many cancers including breast cancer. We previously observed that miR-203 was highly upregulated in breast cancer tissues and in ER-positive breast cancer cell lines. In our present study, we observed that anti-miR-203 suppresses breast cancer cell proliferation in vitro. Orthotopic implantation of miR-203 depleted MCF-7 cells into nude mice displays smaller tumor growth as compared to control MCF-7 cells. Furthermore, miR-203 expression is significantly higher in ER-positive breast cancer patients as compared to ER-negative patients. We identified suppressor of cytokine signaling 3 (SOCS3) as a direct target of miR-203. Here we observed that miR-203 expression is inversely correlated with SOCS3 expression in ER-positive breast cancer samples. Additionally, we found that anti-miR-203 suppressed the expression of pStat3, pERK and c-Myc in MCF-7 and ZR-75-1 cells. We also demonstrated that anti-miR-203 decreased mammospheres formation and expression of stem cell markers in MCF-7 and ZR-75-1 cells. Taken together, our data suggest that anti-miR-203 has potential as a novel therapeutic strategy in ER-positive breast cancer treatment.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | | | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA.,Cancer Center, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Moody RR, Lo MC, Meagher JL, Lin CC, Stevers NO, Tinsley SL, Jung I, Matvekas A, Stuckey JA, Sun D. Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. J Biol Chem 2018; 293:2125-2136. [PMID: 29263092 PMCID: PMC5808772 DOI: 10.1074/jbc.m117.811463] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/14/2017] [Indexed: 01/07/2023] Open
Abstract
The transcription factor BCL11A has recently been reported to be a driving force in triple-negative breast cancer (TNBC), contributing to the maintenance of a chemoresistant breast cancer stem cell (BCSC) population. Although BCL11A was shown to suppress γ-globin and p21 and to induce MDM2 expression in the hematopoietic system, its downstream targets in TNBC are still unclear. For its role in transcriptional repression, BCL11A was found to interact with several corepressor complexes; however, the mechanisms underlying these interactions remain unknown. Here, we reveal that BCL11A interacts with histone methyltransferase (PRC2) and histone deacetylase (NuRD and SIN3A) complexes through their common subunit, RBBP4/7. In fluorescence polarization assays, we show that BCL11A competes with histone H3 for binding to the negatively charged top face of RBBP4. To define that interaction, we solved the crystal structure of RBBP4 in complex with an N-terminal peptide of BCL11A (residues 2-16, BCL11A(2-16)). The crystal structure identifies novel interactions between BCL11A and the side of the β-propeller of RBBP4 that are not seen with histone H3. We next show that BCL11A(2-16) pulls down RBBP4, RBBP7, and other components of PRC2, NuRD, and SIN3A from the cell lysate of the TNBC cell line SUM149. Furthermore, we demonstrate the therapeutic potential of targeting the RBBP4-BCL11A binding by showing that a BCL11A peptide can decrease aldehyde dehydrogenase-positive BCSCs and mammosphere formation capacity in SUM149. Together, our findings have uncovered a previously unidentified mechanism that BCL11A may use to recruit epigenetic complexes to regulate transcription and promote tumorigenesis.
Collapse
Affiliation(s)
- Rebecca Reed Moody
- From the Chemical Biology Program, ,Department of Pharmaceutical Sciences, College of Pharmacy
| | - Miao-Chia Lo
- Department of Pharmaceutical Sciences, College of Pharmacy, , To whom correspondence may be addressed. Tel.:
858-784-1624; Fax:
734-936-7675; E-mail:
| | | | | | | | | | - Inkyung Jung
- Department of Pharmaceutical Sciences, College of Pharmacy
| | | | - Jeanne A. Stuckey
- Life Sciences Institute, and ,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Duxin Sun
- From the Chemical Biology Program, ,Department of Pharmaceutical Sciences, College of Pharmacy, , To whom correspondence may be addressed. Tel.:
734-615-8740; Fax:
734-936-7675; E-mail:
| |
Collapse
|
28
|
Rane JK, Erb HHH, Nappo G, Mann VM, Simms MS, Collins AT, Visakorpi T, Maitland NJ. Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget 2018; 7:51965-51980. [PMID: 27340920 PMCID: PMC5239528 DOI: 10.18632/oncotarget.10207] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy is a major primary treatment option for both localized early stage prostate cancer, and for advanced, regionally un-resectable, cancer. However, around 30% of patients still experience biochemical recurrence after radiation therapy within 10 years. Thus, identification of better biomarkers and new targets are urgently required to improve current therapeutic strategies. The miR-99 family has been shown to play an important role in the regulation of the DNA damage response, via targeting of the SWI/SNF chromatin remodeling factors, SMARCA5 and SMARCD1 in cell line models. In the present study, we have demonstrated that low expression of miR-99a and miR-100 is present in cell populations which are relatively radiation insensitive, for example in prostate cancer stem cells and in castration-resistant prostate cancer. Additionally, treatment of cells with the synthetic glucocorticoid, Dexamethasone resulted in decreased miR-99a and 100 expression, suggesting a new mechanism of miR-99a and 100 regulation in androgen-independent prostate cells. Strikingly, treatment of prostate cells with the glucocorticoid receptor inhibitor, Mifepristone was found to sensitize prostate cells to radiation by increasing the levels of miR-99a and miR-100. These results qualify the miR99 family as markers of radiation sensitivity and as potential therapeutic targets to improve efficiency of radiotherapy.
Collapse
Affiliation(s)
- Jayant K Rane
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Rayne Institute, London, SE5 9NU, UK
| | - Holger H H Erb
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Giovanna Nappo
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Vincent M Mann
- Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.,Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
| | - Matthew S Simms
- Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.,Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
| | - Anne T Collins
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere and Tampere University Hospital, Tampere, 33520 Finland
| | - Norman J Maitland
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK
| |
Collapse
|
29
|
Sehl ME, Wicha MS. Modeling of Interactions between Cancer Stem Cells and their Microenvironment: Predicting Clinical Response. Methods Mol Biol 2018; 1711:333-349. [PMID: 29344897 PMCID: PMC6322404 DOI: 10.1007/978-1-4939-7493-1_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Mathematical models of cancer stem cells are useful in translational cancer research for facilitating the understanding of tumor growth dynamics and for predicting treatment response and resistance to combined targeted therapies. In this chapter, we describe appealing aspects of different methods used in mathematical oncology and discuss compelling questions in oncology that can be addressed with these modeling techniques. We describe a simplified version of a model of the breast cancer stem cell niche, illustrate the visualization of the model, and apply stochastic simulation to generate full distributions and average trajectories of cell type populations over time. We further discuss the advent of single-cell data in studying cancer stem cell heterogeneity and how these data can be integrated with modeling to advance understanding of the dynamics of invasive and proliferative populations during cancer progression and response to therapy.
Collapse
Affiliation(s)
- Mary E Sehl
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 2017; 40:457-470. [PMID: 28741069 DOI: 10.1007/s13402-017-0335-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (MSCs) have been shown to be involved in the formation and modulation of tumor stroma and in interacting with tumor cells, partly through their secretome. Exosomes are nano-sized intraluminal multi-vesicular bodies secreted by most types of cells and have been found to mediate intercellular communication through the transfer of genetic information via coding and non-coding RNAs to recipient cells. Since exosomes are considered as protective and enriched sources of shuttle microRNAs (miRNAs), we hypothesized that exosomal transfer of miRNAs from MSCs may affect tumor cell behavior, particularly angiogenesis. METHODS Exosomes derived from MSCs were isolated and characterized by scanning electron microscopy analyses, dynamic light scattering measurements, and Western blotting. Fold changes in miR-100 expression levels were calculated in exosomes and their corresponding donor cells by qRT-PCR. The effects of exosomal transfer of miR-100 from MSCs were assessed by qRT-PCR and Western blotting of the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. The quantification of secreted VEGF protein was determined by enzyme-linked immunosorbent assay. The putative paracrine effects of MSC-derived exosomes on tumor angiogenesis were explored by in vitro angiogenesis assays including endothelial cell proliferation, migration and tube formation assays. RESULTS We found that MSC-derived exosomes induce a significant and dose-dependent decrease in the expression and secretion of vascular endothelial growth factor (VEGF) through modulating the mTOR/HIF-1α signaling axis in breast cancer-derived cells. We also found that miR-100 is enriched in MSC-derived exosomes and that its transfer to breast cancer-derived cells is associated with the down-regulation of VEGF in a time-dependent manner. The putative role of exosomal miR-100 transfer in regulating VEGF expression was substantiated by the ability of anti-miR-100 to rescue the inhibitory effects of MSC-derived exosomes on the expression of VEGF in breast cancer-derived cells. In addition, we found that down-regulation of VEGF mediated by MSC-derived exosomes can affect the vascular behavior of endothelial cells in vitro. CONCLUSIONS Overall, our findings suggest that exosomal transfer of miR-100 may be a novel mechanism underlying the paracrine effects of MSC-derived exosomes and may provide a means by which these vesicles can modulate vascular responses within the microenvironment of breast cancer cells.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | | | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Song XL, Tang Y, Lei XH, Zhao SC, Wu ZQ. miR-618 Inhibits Prostate Cancer Migration and Invasion by Targeting FOXP2. J Cancer 2017; 8:2501-2510. [PMID: 28900488 PMCID: PMC5595080 DOI: 10.7150/jca.17407] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/28/2017] [Indexed: 01/05/2023] Open
Abstract
miRNAs play critical role in the development and progression of prostate cancer. Here we studied the role of miR-618 in prostate cancer migration and invasion. miR-618 was downregulated in metastatic androgen-independent prostate cancer (AIPC), patients with low miR-618 had poor outcome. Overexpression of miR-618 inhibited migration and invasion and induced mesenchymal to epithelial transition (MET). Conversely, knockdown of miR-618 promoted migration and invasion and induced epithelial to mesenchymal transition (EMT). FOXP2 was the direct target of miR-618, and promoted TGF-β expression, inhibition of TGF-β reversed the effect of miR-618 knockdown. We further analyzed the correlation between miR-618 expression and FOXP2 in human prostate cancer tissues, and found there was a negative correlation between miR-618 expression and FOXP2 levels. In conclusion, we found miR-618 inhibited prostate cancer migration and invasion by targeting FOXP2 and inhibiting TGF-β.
Collapse
Affiliation(s)
- Xian-Lu Song
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Yao Tang
- Department of Pathology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiang-Hui Lei
- Department of Pathology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Affiliated Chenzhou Hospital, Southern Medical University (The First People's Hospital of Chenzhou), Chenzhou 423000, China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zi-Qing Wu
- Department of Pathology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Screening of the prognostic targets for breast cancer based co-expression modules analysis. Mol Med Rep 2017; 16:4038-4044. [PMID: 28731166 PMCID: PMC5646985 DOI: 10.3892/mmr.2017.7063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/23/2017] [Indexed: 12/28/2022] Open
Abstract
The purpose of the present study was to screen the prognostic targets for breast cancer based on a co-expression modules analysis. The microarray dataset GSE73383 was downloaded from the Gene Expression Omnibus (GEO) database, including 15 breast cancer samples with good prognosis and 9 breast cancer samples with poor prognosis. The differentially expressed genes (DEGs) were identified with the limma package. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Furthermore, the co-expression analysis of DEGs was conducted with weighted correlation analysis. The interaction associations were analyzed with the Human Protein Reference Database and BioGRID. The protein-protein interactions (PPI) network was constructed and visualized by Cytoscape software. A total of 491 DEGs were identified in breast cancer samples with poor prognosis compared with those with good prognosis, and they were enriched in 85 GO terms and 4 KEGG pathways. 368 DEGs were co-expressed with others, and they were clustered into 10 modules. Module 6 was the most relevant to the clinical features, and 21 genes and 273 interaction pairs were selected out. Abnormal expression levels of required for meiotic nuclear division 5 homolog A (RMND5A) and angiopoietin-like protein 1 (ANGPTL1) were associated with a poor prognosis. It was indicated that SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily D, member 1, SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily D, member 1, dihydropyrimidinase-like 2, RMND5A and ANGPTL1 were potential prognostic markers in breast cancer, and the cell cycle may be involved in the regulation of breast cancer.
Collapse
|
33
|
Zhao Y, Wang Z, Hou Y, Zhang K, Peng X. gga-miR-99a targets SMARCA5 to regulate Mycoplasma gallisepticum (HS strain) infection by depressing cell proliferation in chicken. Gene 2017; 627:239-247. [PMID: 28652181 DOI: 10.1016/j.gene.2017.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Mycoplasma gallisepticum (MG), one of the primary etiological agents of poultry chronic respiratory disease, has caused significant economic losses worldwide, and increasing evidence has recently indicated that miRNAs are involved in its microbial pathogenesis. gga-miR-99a, a member of the miR-99 family, plays an essential role in a variety of diseases. Through miRNA Solexa sequencing, we previously found that gga-miR-99a is significantly down-regulated in the lungs of MG-infected chicken embryos. In this study, we further verified that the expression of gga-miR-99 was significantly down-regulated in both MG-infected lungs and a chicken embryonic fibroblast cell line (DF-1) by qPCR. Moreover, we predicted and validated SMARCA5 as its target gene through a luciferase reporter assay, qPCR, and western blot analysis. The over-expression of gga-miR-99a significantly depressed SMARCA5 expression, whereas a gga-miR-99a inhibitor enhanced the expression of SMARCA5. Inversely, SMARCA5 was significantly up-regulated and gga-miR-99a was obviously down-regulated in MG-HS-infected chicken embryonic lungs and DF-1 cells. At 72h post-transfection, the over-expression of gga-miR-99a significantly repressed the proliferation of DF-1 cells by inhibiting the transition from the G1 phase to the S and G2 phases. This study reveals that gga-miR-99a plays a key role in MG infection through the regulation of SMARCA5 expression and provides new insights regarding the mechanisms of MG pathogenesis.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiwei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
34
|
Ren J, Zhou Q, Li H, Li J, Pang L, Su L, Gu Q, Zhu Z, Liu B. Characterization of exosomal RNAs derived from human gastric cancer cells by deep sequencing. Tumour Biol 2017; 39:1010428317695012. [PMID: 28381156 DOI: 10.1177/1010428317695012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exosomes secreted from the cell to the extracellular environment play an important role in intercellular communication. Next-generation sequencing technology, which has achieved great development recently, allows us to detect more complete data and gain even deeper analyses of RNA transcriptomes. In our research, we extracted exosomes from different gastric cancer cell lines and immortalized normal gastric mucosal epithelial cell line and examined the amounts of exosomal proteins and RNAs. Our data showed that the secreted amount of cancer cell-derived exosomes, which contain proteins and RNAs, was much higher than that of normal cell-derived exosomes. Moreover, next-generation sequencing technology confirmed the presence of small non-coding RNAs in exosomes. Based on publicly available databases, we classified small non-coding RNAs. According to the microRNA profiles of exosomes, hsa-miR-21-5p and hsa-miR-30a-5p were two of the most abundant sequences among all libraries. The expression levels of the two microRNAs, miR-100 and miR-148a, in exosomes were validated through reverse transcription polymerase chain reaction. The reverse transcription polymerase chain reaction result, consistent with the trend of sequencing result, indicated a significant difference in exosomes between gastric cancer and gastric mucosal epithelial cell lines. We also predicted novel microRNA candidates but they need to be validated. This research provided an atlas of small non-coding RNA in exosomes and may make a little contribution to the understanding of exosomal RNA composition and finding parts of differential expression of RNAs in exosomes.
Collapse
Affiliation(s)
- Jia Ren
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Zhou
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Pang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinlong Gu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Qin Y, Chen W, Liu B, Zhou L, Deng L, Niu W, Bao D, Cheng C, Li D, Liu S, Niu C. MiR-200c Inhibits the Tumor Progression of Glioma via Targeting Moesin. Am J Cancer Res 2017; 7:1663-1673. [PMID: 28529643 PMCID: PMC5436519 DOI: 10.7150/thno.17886] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/08/2017] [Indexed: 12/27/2022] Open
Abstract
We attempt to demonstrate the regulatory role of miR-200c in glioma progression and its mechanisms behind. Here, we show that miR-200c expression was significantly reduced in the glioma tissues compared to paratumor tissues, especially in malignant glioma. Exogenous overexpression of miR-200c inhibited the proliferation and invasion of glioma cells. In addition, the in vivo mouse xenograft model showed that miR-200c inhibited glioma growth and liver metastasis, which is mainly regulated by targeting moesin (MSN). We demonstrated that the expression of MSN in glioma specimens were negatively correlated with miR-200c expression, and MSN overexpression rescued the phenotype about cell proliferation and invasion induced by miR-200c. Moreover, knockdown of MSN was able to mimic the effects induced by miR-200c in glioma cells. These results indicate that miR-200c plays an important role in the regulation of glioma through targeting MSN.
Collapse
|
36
|
miR-1307 promotes the proliferation of prostate cancer by targeting FOXO3A. Biomed Pharmacother 2017; 88:430-435. [DOI: 10.1016/j.biopha.2016.11.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/15/2016] [Accepted: 11/27/2016] [Indexed: 11/21/2022] Open
|
37
|
Qin W, Dasgupta S, Corradi J, Sauter ER. Human Milk and Matched Serum Demonstrate Concentration of Select miRNAs. Breastfeed Med 2017; 12:63-66. [PMID: 28002682 DOI: 10.1089/bfm.2016.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pregnancy-associated breast cancers (PABCs), especially those diagnosed after childbirth, are often aggressive, with a poor prognosis. Factors influencing PABC are largely unknown. Micro(mi)RNAs are present in many human body fluids and shown to influence cancer development and/or growth. SUBJECTS AND METHODS In six nursing mothers, we determined if breast cancer-associated miRNAs were (1) detectable in human breast milk and (2) if detectable, their relative expression in milk fractions compared to matched serum. We evaluated by quantitative PCR the expression of 11 cancer-associated miRNAs (10a-5p, 16, 21, 100, 140, 145, 155, 181, 199, 205, 212) in breast milk cells, fat and supernatant (skim milk), and matched serum. RESULTS miRNA expression was detectable in all samples. For 10/11 miRNAs, mean relative expression compared to control (ΔCt) values was lowest in milk cells, the exception being miR205. Relative concentration was highest in the skim fraction of milk for all miRNAs. Expression was higher in skim milk than matched serum for 7/11 miRNAs and in serum for 4/11 miRNAs. miR205 expression was higher in all milk fractions than in matched serum. CONCLUSION In conclusion, the expression of breast cancer-associated miRNAs is detectable in human breast milk and serum samples. The concentration is highest in skim milk, but is also detectable in milk fat and milk cells.
Collapse
Affiliation(s)
- Wenyi Qin
- 1 Department of Surgery, University of Texas HSC , Tyler, Texas
| | - Santanu Dasgupta
- 2 Department of Cellular and Molecular Biology, University of Texas HSC , Tyler, Texas
| | - John Corradi
- 3 Research Administration, Hartford Healthcare , Hartford, Connecticut
| | - Edward R Sauter
- 4 Breast Health, Hartford Healthcare , Hartford, Connecticut
| |
Collapse
|
38
|
Liu Y, Burness ML, Martin-Trevino R, Guy J, Bai S, Harouaka R, Brooks MD, Shang L, Fox A, Luther TK, Davis A, Baker TL, Colacino J, Clouthier SG, Shao ZM, Wicha MS, Liu S. RAD51 Mediates Resistance of Cancer Stem Cells to PARP Inhibition in Triple-Negative Breast Cancer. Clin Cancer Res 2016; 23:514-522. [DOI: 10.1158/1078-0432.ccr-15-1348] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022]
|
39
|
MicroRNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR. Oncotarget 2016; 7:5702-14. [PMID: 26744318 PMCID: PMC4868715 DOI: 10.18632/oncotarget.6790] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
Luminal A breast cancer usually responds to hormonal therapies but does not benefit from chemotherapies, including microtubule-targeted paclitaxel. MicroRNAs could play a role in mediating this differential response. In this study, we examined the role of micro RNA 100 (miR-100) in the sensitivity of breast cancer to paclitaxel treatment. We found that while miR-100 was downregulated in both human breast cancer primary tumors and cell lines, the degree of downregulation was greater in the luminal A subtype than in other subtypes. The IC50 of paclitaxel was much higher in luminal A than in basal-like breast cancer cell lines. Ectopic miR-100 expression in the MCF-7 luminal A cell line enhanced the effect of paclitaxel on cell cycle arrest, multinucleation, and apoptosis, while knockdown of miR-100 in the MDA-MB-231 basal-like line compromised these effects. Similarly, overexpression of miR-100 enhanced the effects of paclitaxel on tumorigenesis in MCF-7 cells. Rapamycin-mediated inhibition of the mammalian target of rapamycin (mTOR), a target of miR-100, also sensitized MCF-7 cells to paclitaxel. Gene set enrichment analysis showed that genes that are part of the known paclitaxel-sensitive signature had a significant expression correlation with miR-100 in breast cancer samples. In addition, patients with lower levels of miR-100 expression had worse overall survival. These results suggest that miR-100 plays a causal role in determining the sensitivity of breast cancers to paclitaxel treatment.
Collapse
|
40
|
Wang J, Lei ZJ, Guo Y, Wang T, Qin ZY, Xiao HL, Fan LL, Chen DF, Bian XW, Liu J, Wang B. miRNA-regulated delivery of lincRNA-p21 suppresses β-catenin signaling and tumorigenicity of colorectal cancer stem cells. Oncotarget 2016; 6:37852-70. [PMID: 26497997 PMCID: PMC4741970 DOI: 10.18632/oncotarget.5635] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are key cellular targets for effective cancer therapy, due to their critical roles in cancer progression and chemo/radio-resistance. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) are important players in the biology of cancers. However, it remains unknown whether lncRNAs could be exploited to target CSCs. We report that large intergenic non-coding RNA p21 (lincRNA-p21) is a potent suppressor of stem-like traits of CSCs purified from both primary colorectal cancer (CRC) tissues and cell lines. A novel lincRNA-p21-expressing adenoviral vector, which was armed with miRNA responsive element (MRE) of miR-451 (Ad-lnc-p21-MRE), was generated to eliminate CRC CSCs. Integration of miR-451 MREs into the adenovirus efficiently delivered lincRNA-p21 into CSCs that contained low levels of miR-451. Moreover, lincRNA-p21 inhibited the activity of β-catenin signaling, thereby attenuating the viability, self-renewal, and glycolysis of CSCs in vitro. By limiting dilution and serial tumor formation assay, we demonstrated that Ad-lnc-p21-MRE significantly suppressed the self-renewal potential and tumorigenicity of CSCs in nude mice. Importantly, application of miR-451 MREs appeared to protect normal liver cells from off-target expression of lincRNA-p21 in both tumor-bearing and naïve mice. Taken together, these findings suggest that lncRNAs may be promising therapeutic molecules to eradicate CSCs and MREs of tumor-suppressor miRNAs, such as miR-451, may be exploited to ensure the specificity of CSC-targeting strategies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zeng-jie Lei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yan Guo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Tao Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhong-yi Qin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hua-liang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Li-lin Fan
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dong-feng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jia Liu
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bin Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
41
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
42
|
Yang K, Tang XD, Guo W, Xu XL, Ren TT, Ren CM, Wang SD, Bao X, Zhang F, Sun KK. BMPR2-pSMAD1/5 signaling pathway regulates RUNX2 expression and impacts the progression of dedifferentiated chondrosarcoma. Am J Cancer Res 2016; 6:1302-1316. [PMID: 27429845 PMCID: PMC4937734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/08/2016] [Indexed: 06/06/2023] Open
Abstract
Bone morphogenetic protein receptors (BMPRs) are multifunctional proteins; they have indispensible roles in the process of BMP signaling. However, their function in dedifferentiated chondrosarcoma is uncertain. It has been reported that BMPR2 is associated with chondrosarcoma. Moreover, the detection of BMPR2 is more frequent in dedifferentiated chondrosarcomas (DDCS) than in conventional chondrosarcomas (CCS). BMPR2, phospho-SMAD1/5 (pSMAD1/5), and runt-related transcription factor 2 (RUNX2) expressions were found to be associated with the pathological grades of chondrosarcoma and could be a promising target of treatment outcome. Moreover, BMPR2 was found to induce the RUNX2 expression via pSmad1/5. Knockdown of BMPR2 and pSmad1/5 results in the downregulation of RUNX2 expression in DDCS cells, while the upregulation of BMPR2 and Smad1/5 in CCS cells leads to increased RUNX2 expression. The luciferase reporter gene assay suggested that BMPR2 can induce the RUNX2 expression at the transcriptional level. By chromatin immunoprecipitation (ChIP) and electrophoresis mobility shift assay (EMSA), it was found that pSmad1/5 combined directly to RUNX2. The in vivo tumorigenicity assay in mice showed that the inhibition of BMPR2 or Smad1/5 in DDCS cell line reduced tumor growth, while the upregulation of BMPR2 or Smad1/5 in CCS cell line increased tumor growth. Furthermore, a BMPR signaling inhibitor, LDN-193189, was introduced to investigate its role as a potential drug to treat DDCS. Taken together, the present-study results suggest that BMPR2-pSmad1/5 signaling pathway has an important role in regulating not only the RUNX2 expression but also the tumorigenesis of DDCS.
Collapse
Affiliation(s)
- Kang Yang
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Xiao-Dong Tang
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Xiao-Long Xu
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Ting-Ting Ren
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Cong-Min Ren
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Shi-Dong Wang
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Xing Bao
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Fan Zhang
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Kun-Kun Sun
- Department of Pathology, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| |
Collapse
|
43
|
Morata-Tarifa C, Jiménez G, García MA, Entrena JM, Griñán-Lisón C, Aguilera M, Picon-Ruiz M, Marchal JA. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. Sci Rep 2016; 6:18772. [PMID: 26752044 PMCID: PMC4707518 DOI: 10.1038/srep18772] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/19/2015] [Indexed: 01/16/2023] Open
Abstract
Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.
Collapse
Affiliation(s)
- Cynthia Morata-Tarifa
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-Univesity of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-Univesity of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| | - María A. García
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-Univesity of Granada, Granada, Spain
- Department of Oncology, University Hospital Virgen de las Nieves, Granada, Spain
| | - José M. Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-Univesity of Granada, Granada, Spain
| | - Margarita Aguilera
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-Univesity of Granada, Granada, Spain
- Department of Microbiology, University of Granada, Granada, Spain
| | - Manuel Picon-Ruiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-Univesity of Granada, Granada, Spain
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Juan A. Marchal
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-Univesity of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
44
|
Abstract
Accumulating evidence has shown the presence of cancer stem cells in a wide spectrum of human cancers, which have the ability to self-renew and differentiate, thus leading to tumorigenesis, proliferation, cancer dissemination, drug resistance, and tumor relapse. Cancer cell plasticity allows tumor to invade and grow at primary or distant sites. Epithelial-mesenchymal transition (EMT) is the most important mechanism of cancer cell plasticity and cancer stem cells. Substantial evidence has supported a noncoding RNA network, especially miRNA, in regulating cancer cell plasticity and cancer stem cell biology. Besides, lncRNA is also found to participate in cancer development. Understanding the mechanisms of these processes might be valuable for developing accurate targeted therapies to tackle cancer progression and cancer stem cells.
Collapse
|
45
|
Abstract
The discovery of small regulatory noncoding RNAs revolutionized our thinking on gene regulation. The class of microRNAs (miRs), a group of small noncoding RNAs (20-22 nt in length) that bind imperfectly to the 3'-untranslated region of target mRNA, has been insistently implicated in several pathological conditions including cancer. Indeed, major hallmarks of cancer, such as cell differentiation, cell proliferation, cell cycle, cell survival, and cell invasion, has been described as being regulated by miRs. Recent studies have also implicated miRs in cancer drug resistance. Regardless of the several studies done until now, drug resistance still is a burden for cancer therapy and patients' outcome, often resulting in more aggressive tumors that tend to metastasize to distant organs. Hence, with this review, we aim to summarize the miRs that influence molecular pathways that are involved in cancer drug resistance, such as drug metabolism, drug influx/efflux, DNA damage response (DDR), epithelial-to-mesenchymal transition (EMT), and cancer stem cells.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal.
| |
Collapse
|
46
|
Zhao Z, Li S, Song E, Liu S. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells. Protein Cell 2015; 7:89-99. [PMID: 26349457 PMCID: PMC4742390 DOI: 10.1007/s13238-015-0199-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histone-modifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).
Collapse
Affiliation(s)
- Zhiju Zhao
- Innovation Center for Cell Signalling and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, 230027, China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, Wuhu, 241002, China
| | - Erwei Song
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Suling Liu
- Innovation Center for Cell Signalling and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, 230027, China.
| |
Collapse
|
47
|
Zhao LL, Jin F, Ye X, Zhu L, Yang JS, Yang WJ. Expression profiles of miRNAs and involvement of miR-100 and miR-34 in regulation of cell cycle arrest in Artemia. Biochem J 2015; 470:223-31. [PMID: 26348910 DOI: 10.1042/bj20150116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/23/2015] [Indexed: 01/14/2023]
Abstract
Regulation of the cell cycle is complex but critical for proper development, reproduction and stress resistance. To survive unfavourable environmental conditions, the crustacean Artemia produces diapause embryos whose metabolism is maintained at extremely low levels. In the present study, the expression profiles of miRNAs during Artemia diapause entry and termination were characterized using high-throughput sequencing. A total of 13 unclassified miRNAs and 370 miRNAs belonging to 87 families were identified; among them, 107 were differentially expressed during diapause entry and termination. We focused on the roles of two of these miRNAs, miR-100 and miR-34, in regulating cell cycle progression; during the various stages of diapause entry, these miRNAs displayed opposing patterns of expression. A functional analysis revealed that miR-100 and miR-34 regulate the cell cycle during diapause entry by targeting polo-like kinase 1 (PLK1), leading to activation of the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase-ribosomal S6 kinase 2 (MEK-ERK-RSK2) pathway and cyclin K, leading to suppression of RNA polymerase II (RNAP II) activity respectively. The findings presented in the present study provide insights into the functions of miR-100 and miR-34 and suggest that the expression profiles of miRNAs in Artemia can be used to characterize their functions in cell cycle regulation.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Feng Jin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiang Ye
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Lin Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
48
|
Gong Y, He T, Yang L, Yang G, Chen Y, Zhang X. The role of miR-100 in regulating apoptosis of breast cancer cells. Sci Rep 2015; 5:11650. [PMID: 26130569 PMCID: PMC4486956 DOI: 10.1038/srep11650] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is a serious health problem worldwide. Inhibition of apoptosis plays a major role in breast cancer tumorigenesis. MicroRNAs (miRNAs) play crucial roles in the regulation of apoptosis. However, the regulation of breast cancer apoptosis by miRNAs has not been intensively investigated. To address this issue, the effect of miR-100 on the cell proliferation of different breast cancer cells was characterized in the present study. The results showed that miR-100 was significantly upregulated in SK-BR-3 cells compared with other human breast cancer cells (MCF7, MDA-MB-453, T47D, HCC1954 and SUM149). Silencing miR-100 expression with anti-miRNA-100 oligonucleotide (AMO-miR-100) initiated apoptosis of SK-BR-3 cells in vitro and in vivo. However, the overexpression of miR-100 led to the proliferation inhibition of the miR-100-downregulated breast cancer cells. Antagonism of miR-100 in SK-BR-3 cells increased the expression of MTMR3, a target gene of miR-100, which resulted in the activation of p27 and eventually led to G2/M cell-cycle arrest and apoptosis. The downregulation of miR-100 sensitized SK-BR-3 cells to chemotherapy. Therefore, our finding highlights a novel aspect of the miR-100-MTMR3-p27 pathway in the molecular etiology of breast cancer.
Collapse
Affiliation(s)
- Yi Gong
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Tianliang He
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Lu Yang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Geng Yang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Yulei Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| |
Collapse
|
49
|
Pal B, Chen Y, Bert A, Hu Y, Sheridan JM, Beck T, Shi W, Satterley K, Jamieson P, Goodall GJ, Lindeman GJ, Smyth GK, Visvader JE. Integration of microRNA signatures of distinct mammary epithelial cell types with their gene expression and epigenetic portraits. Breast Cancer Res 2015; 17:85. [PMID: 26080807 PMCID: PMC4497411 DOI: 10.1186/s13058-015-0585-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/13/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) have been implicated in governing lineage specification and differentiation in multiple organs; however, little is known about their specific roles in mammopoiesis. We have determined the global miRNA expression profiles of functionally distinct epithelial subpopulations in mouse and human mammary tissue, and compared these to their cognate transcriptomes and epigenomes. Finally, the human miRNA signatures were used to interrogate the different subtypes of breast cancer, with a view to determining miRNA networks deregulated during oncogenesis. METHODS RNA from sorted mouse and human mammary cell subpopulations was subjected to miRNA expression analysis using the TaqMan MicroRNA Array. Differentially expressed (DE) miRNAs were correlated with gene expression and histone methylation profiles. Analysis of miRNA signatures of the intrinsic subtypes of breast cancer in The Cancer Genome Atlas (TCGA) database versus those of normal human epithelial subpopulations was performed. RESULTS Unique miRNA signatures characterized each subset (mammary stem cell (MaSC)/basal, luminal progenitor, mature luminal, stromal), with a high degree of conservation across species. Comparison of miRNA and transcriptome profiles for the epithelial subtypes revealed an inverse relationship and pinpointed key developmental genes. Interestingly, expression of the primate-specific miRNA cluster (19q13.4) was found to be restricted to the MaSC/basal subset. Comparative analysis of miRNA signatures with H3 lysine modification maps of the different epithelial subsets revealed a tight correlation between active or repressive marks for the top DE miRNAs, including derepression of miRNAs in Ezh2-deficient cellular subsets. Interrogation of TCGA-identified miRNA profiles with the miRNA signatures of different human subsets revealed specific relationships. CONCLUSIONS The derivation of global miRNA expression profiles for the different mammary subpopulations provides a comprehensive resource for understanding the interplay between miRNA networks and target gene expression. These data have highlighted lineage-specific miRNAs and potential miRNA-mRNA networks, some of which are disrupted in neoplasia. Furthermore, our findings suggest that key developmental miRNAs are regulated by global changes in histone modification, thus linking the mammary epigenome with genome-wide changes in the expression of genes and miRNAs. Comparative miRNA signature analyses between normal breast epithelial cells and breast tumors confirmed an important linkage between luminal progenitor cells and basal-like tumors.
Collapse
Affiliation(s)
- Bhupinder Pal
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Yunshun Chen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
| | - Andrew Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia.
| | - Yifang Hu
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
| | - Julie M Sheridan
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Tamara Beck
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Wei Shi
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Computing and Information Systems, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Keith Satterley
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
| | - Paul Jamieson
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia. .,School of Medicine and School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Geoffrey J Lindeman
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia.
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Jane E Visvader
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
50
|
Kruppel-like factor 4 signals through microRNA-206 to promote tumor initiation and cell survival. Oncogenesis 2015; 4:e155. [PMID: 26053033 PMCID: PMC4753526 DOI: 10.1038/oncsis.2015.8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/25/2015] [Accepted: 03/11/2015] [Indexed: 12/19/2022] Open
Abstract
Tumor cell heterogeneity poses a major hurdle in the treatment of cancer. Mammary cancer stem-like cells (MaCSCs), or tumor-initiating cells, are highly tumorigenic sub-populations that have the potential to self-renew and to differentiate. These cells are clinically important, as they display therapeutic resistance and may contribute to treatment failure and recurrence, but the signaling axes relevant to the tumorigenic phenotype are poorly defined. The zinc-finger transcription factor Kruppel-like factor 4 (KLF4) is a pluripotency mediator that is enriched in MaCSCs. KLF4 promotes RAS-extracellular signal-regulated kinase pathway activity and tumor cell survival in triple-negative breast cancer (TNBC) cells. In this study, we found that both KLF4 and a downstream effector, microRNA-206 (miR-206), are selectively enriched in the MaCSC fractions of cultured human TNBC cell lines, as well as in the aldehyde dehydrogenase-high MaCSC sub-population of cells derived from xenografted human mammary carcinomas. The suppression of endogenous KLF4 or miR-206 activities abrogated cell survival and in vivo tumor initiation, despite having only subtle effects on MaCSC abundance. Using a combinatorial approach that included in silico as well as loss- and gain-of-function in vitro assays, we identified miR-206-mediated repression of the pro-apoptotic molecules programmed cell death 4 (PDCD4) and connexin 43 (CX43/GJA1). Depletion of either of these two miR-206-regulated transcripts promoted resistance to anoikis, a prominent feature of CSCs, but did not consistently alter MaCSC abundance. Consistent with increased levels of miR-206 in MaCSCs, the expression of both PDCD4 and CX43 was suppressed in these cells relative to control cells. These results identify miR-206 as an effector of KLF4-mediated prosurvival signaling in MaCSCs through repression of PDCD4 and CX43. Consequently, our study suggests that a pluripotency factor exerts prosurvival signaling in MaCSCs, and that antagonism of KLF4-miR-206 signaling may selectively target the MaCSC niche in TNBC.
Collapse
|