1
|
Liu Y, Liu P, Zhang R, Seki N, Forest F, Brueckl WM, Zhao C, Zhang C, Yu J. Preliminary exploration of poor prognostic factor IL-33 and its involvement in perioperative immunotherapy in stage II-III lung squamous cell carcinoma: a retrospective cohort study. J Thorac Dis 2024; 16:6204-6215. [PMID: 39444909 PMCID: PMC11494545 DOI: 10.21037/jtd-24-1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Background Current knowledge about the prognostic role of interleukin-33 (IL-33) in lung squamous cell carcinoma (LUSC) remains limited, particularly in stage II-III patients. This study aimed to verify the correlation between IL-33 expression and poor prognosis in stage II-III LUSC patients at both gene and protein levels and to investigate the potential role of IL-33 blockade in combination with immune checkpoint inhibitors (ICIs) in perioperative immunotherapy. Methods A retrospective analysis was conducted of 103 patients with stage II-III LUSC who underwent surgical resection at Tianjin Medical University Cancer Institute & Hospital from November 1, 2004, to November 30, 2006. Of these, 83 patients were included based on complete follow-up data, and were divided into a gene expression group (38 patients) and a protein expression group (45 patients). IL-33 expression was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). The correlation between IL-33 expression and overall survival (OS) was assessed using Kaplan-Meier survival analysis. Additionally, IHC results from 20 patients were used to explore the correlation between IL-33, programmed death ligand 1 (PD-L1), and Ki-67 expression levels. The total follow-up time exceeded 60 months, and the study endpoint was OS. Results Patients with high IL-33 expression had significantly shorter OS compared to those with low IL-33 expression, both at the gene (P=0.006) and protein expression (P=0.01). Logistic regression analysis confirmed IL-33 as an independent prognostic factor for poor survival in stage II-III LUSC (Pgene=0.04, Pprotein=0.009). Additionally, a significant positive correlation was observed between the protein expression of IL-33 (P=0.03), PD-L1 (P<0.001), and Ki-67 (P=0.01), indicating that high expression of these markers is associated with worse prognosis. Conclusions High IL-33 expression in cancer tissues is associated with poor prognosis in stage II-III LUSC. IL-33 blockade combined with ICIs may provide new treatment regimens and ideas for perioperative immunotherapy in stage II-III LUSC patients.
Collapse
Affiliation(s)
- Yan Liu
- VIP Ward, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Rui Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Fabien Forest
- Department of Pathology and Molecular Pathology, North Hospital, University Hospital of Saint Etienne, Saint Etienne, France
| | - Wolfgang M. Brueckl
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, General Hospital Nuernberg, Nuremberg, Germany
| | - Cuicui Zhao
- VIP Ward, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chuangui Zhang
- VIP Ward, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
2
|
Xiao Q, Xue K, Li L, Zhu K, Fu R, Xiong Z. RNF122 promotes glioblastoma growth via the JAK2/STAT3/c-Myc signaling Axis. CNS Neurosci Ther 2024; 30:e70017. [PMID: 39218810 PMCID: PMC11366496 DOI: 10.1111/cns.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The E3 ubiquitin ligase is well recognized as a significant contributor to glioblastoma (GBM) progression and has promise as a prospective therapeutic target. This study explores the contribution of E3 ubiquitin ligase RNF122 in the GBM progression and the related molecular mechanisms. METHODS RNF122 expression levels were evaluated using qRT-PCR, WB, and IHC, while functional assays besides animal experiments were used to assess RNF122's effect on GBM progression. We also tested the RNF122 impact on JAK2/STAT3/c-Myc signaling using WB. RESULTS RNF122 was upregulated in GBM and correlated to the advanced stage and poor clinical outcomes, representing an independent prognostic factor. Based on functional assays, RNF122 promotes GBM growth and cell cycle, which was validated further in subsequent analyses by JAK2/STAT3/c-Myc pathway activation. Moreover, JAK2/STAT3 signaling pathway inhibitor WP1066 can weaken the effect of overexpression RNF122 on promoting GBM progression. CONCLUSION Our results revealed that RNF122 caused an aggressive phenotype to GBM and was a poor prognosticator; thus, targeting RNF122 may be effectual in GBM treatment.
Collapse
Affiliation(s)
- Qingbao Xiao
- Department of Neurosurgery, Wuhan Third HospitalTongren Hospital of Wuhan UniversityWuhanHubeiChina
| | - Kaming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lin Li
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Kai Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Rong Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhiyong Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
3
|
Guo J, Xie T, Zhang S. Linc00239 Promotes Colorectal Cancer Development via MicroRNA-182-5p/Metadherin Axis. Biochem Genet 2024; 62:1727-1741. [PMID: 37695492 DOI: 10.1007/s10528-023-10510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Long non-coding RNAs (lncRNAs) are associated with colorectal cancer (CRC); however, CRC-related linc00239 functions have not been fully elucidated. Prognostic analysis of patients with CRC with linc00239 overexpression was performed using data from The Cancer Genome Atlas database. Cell Counting Kit-8 and Transwell were used to determine linc00239 functions for CRC cells. The lncRNA-miRNA-mRNA interaction network was used to screen target miRNAs and mRNAs regulated by linc00239. Quantitative real-time polymerase chain reaction and western blotting were used to confirm the miRNA and mRNA expression. Furthermore, a miRNA inhibitor was transfected into CRC cells, and cell function was evaluated. Results indicated a high linc00239 expression in the tumor tissue of patients with CRC. Transfection of linc00239 siRNA into SW480 and LOVO cells decreased cell proliferation, cell migration, and invasion. MiR-182-5p/metadherin (MTDH) axis is a downstream pathway of linc00239. MTDH expression, the activity of cell proliferation, migration, and invasion, which were suppressed by linc00239 siRNA, were partially attenuated when linc00239 siRNA and miR-182-5p inhibitor were co-transfected into the CRC cells. Furthermore, miR-182-5p expression was decreased and MTDH expression was promoted in CRC tissues. Altogether, linc00239 may promote CRC development through the miR-182-5p/MTDH axis.
Collapse
Affiliation(s)
- Jianian Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Tingting Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shi Zhang
- Department of Surgical Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, 510260, China.
| |
Collapse
|
4
|
Cheng Z, Xue K, Xiong C, Zheng Z, Li J, Qiao X. MRPS16 promotes lung adenocarcinoma growth via the PI3K/AKT/Frataxin signalling axis. J Cell Mol Med 2024; 28:e18166. [PMID: 38506080 PMCID: PMC10951875 DOI: 10.1111/jcmm.18166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/26/2023] [Accepted: 01/24/2024] [Indexed: 03/21/2024] Open
Abstract
Although MRPS16 is involved in cancer development, its mechanisms in developing LAUD remain unclear. Herein, qRT-PCR, WB and IHC were utilized for evaluating MRPS16 expression levels, while functional assays besides animal experiments were performed to measure MRPS16 effect on LAUD progression. Using WB, the MRPS16 effect on PI3K/AKT/Frataxin signalling pathway was tested. According to our study, MRPS16 was upregulated in LAUD and was correlated to the advanced TNM stage as well as poor clinical outcomes, which represent an independent prognostic factor. Based on functional assays, MRPS16 is involved in promoting LAUD growth, migration and invasion, which was validated further in subsequent analyses through PI3K/AKT/Frataxin pathway activation. Moreover, MRPS16-knockdown-mediated Frataxin overexpression was shown to restore the reduction in tumour cells proliferation, migration and invasion. Our results revealed that MRPS16 caused an aggressive phenotype to LAUD and was a poor prognosticator; thus, targeting MRPS16 may be effectual in LAUD treatment.
Collapse
Affiliation(s)
- Zaixing Cheng
- Department of Thoracic SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Kaming Xue
- Department of Traditional Chinese MedicineUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Cui Xiong
- Department of EndocrinologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhikun Zheng
- Department of Thoracic SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Jinsong Li
- Department of Thoracic SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xinwei Qiao
- Department of Thoracic SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
5
|
Madrigal T, Ortega-Bernal D, Herrera LA, González-De la Rosa CH, Domínguez-Gómez G, Aréchaga-Ocampo E, Díaz-Chávez J. Mutant p53 Gain-of-Function Induces Migration and Invasion through Overexpression of miR-182-5p in Cancer Cells. Cells 2023; 12:2506. [PMID: 37887350 PMCID: PMC10605582 DOI: 10.3390/cells12202506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The master-key TP53 gene is a tumor suppressor that is mutated in more than 50% of human cancers. Some p53 mutants lose their tumor suppressor activity and acquire new oncogenic functions, known as a gain of function (GOF). Recent studies have shown that p53 mutants can exert oncogenic effects through specific miRNAs. We identified the differentially expressed miRNA profiles of the three most frequent p53 mutants (p53R273C, p53R248Q, and p53R175H) after their transfection into the Saos-2 cell line (null p53) as compared with p53WT transfected cells. The associations between these miRNAs and the signaling pathways in which they might participate were identified with miRPath Software V3.0. QRT-PCR was employed to validate the miRNA profiles. We observed that p53 mutants have an overall negative effect on miRNA expression. In the global expression profile of the human miRNome regulated by the p53R273C mutant, 72 miRNAs were underexpressed and 35 overexpressed; in the p53R175H miRNAs profile, our results showed the downregulation of 93 and upregulation of 10 miRNAs; and in the miRNAs expression profile regulated by the p53R248Q mutant, we found 167 decreased and 6 increased miRNAs compared with p53WT. However, we found overexpression of some miRNAs, like miR-182-5p, in association with processes such as cell migration and invasion. In addition, we explored whether the induction of cell migration and invasion by the p53R48Q mutant was dependent on miR-182-5p because we found overexpression of miR-182-5p, which is associated with processes such as cell migration and invasion. Inhibition of mutant p53R248Q and miR-182-5p increased FOXF2-MTSS1 levels and decreased cell migration and invasion. In summary, our results suggest that p53 mutants increase the expression of miR-182-5p, and this miRNA is necessary for the p53R248Q mutant to induce cell migration and invasion in a cancer cell model.
Collapse
Affiliation(s)
- Tzitzijanik Madrigal
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, San Fernando 22, Sección XVI, Tlalpan, CDMX, Mexico City 14080, Mexico; (T.M.); (L.A.H.)
- Departamento de Ciencias Biológicas y de la Salud, UAM Iztapalapa, Mexico City 09340, Mexico
| | - Daniel Ortega-Bernal
- Departamento de Atención a la Salud, UAM Xochimilco, Mexico City 04960, Mexico;
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonóma Metropolitana, Mexico City 05348, Mexico; (C.H.G.-D.l.R.); (E.A.-O.)
| | - Luis A. Herrera
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, San Fernando 22, Sección XVI, Tlalpan, CDMX, Mexico City 14080, Mexico; (T.M.); (L.A.H.)
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Claudia Haydée González-De la Rosa
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonóma Metropolitana, Mexico City 05348, Mexico; (C.H.G.-D.l.R.); (E.A.-O.)
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonóma Metropolitana, Mexico City 05348, Mexico; (C.H.G.-D.l.R.); (E.A.-O.)
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, San Fernando 22, Sección XVI, Tlalpan, CDMX, Mexico City 14080, Mexico; (T.M.); (L.A.H.)
| |
Collapse
|
6
|
Zhou L, Liu H, Chen Z, Chen S, Lu J, Liu C, Liao S, He S, Chen S, Zhou Z. Downregulation of miR-182-5p by NFIB promotes NAD+ salvage synthesis in colorectal cancer by targeting NAMPT. Commun Biol 2023; 6:775. [PMID: 37491379 PMCID: PMC10368701 DOI: 10.1038/s42003-023-05143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Nuclear factor I B (NFIB) plays an important role in tumors. Our previous study found that NFIB can promote colorectal cancer (CRC) cell proliferation in acidic environments. However, its biological functions and the underlying mechanism in CRC are incompletely understood. Nicotinamide adenine dinucleotide (NAD+) effectively affects cancer cell proliferation. Nevertheless, the regulatory mechanism of NAD+ synthesis in cancer remains to be elucidated. Here we show NFIB promotes CRC proliferation in vitro and growth in vivo, and down-regulation of NFIB can reduce the level of NAD+. In addition, supplementation of NAD+ precursor NMN can recapture cell proliferation in CRC cells with NFIB knockdown. Mechanistically, we identified that NFIB promotes CRC cell proliferation by inhibiting miRNA-182-5p targeting and binding to NAMPT, the NAD+ salvage synthetic rate-limiting enzyme. Our results delineate a combination of high expression of NFIB and NAMPT predicted a clinical poorest prognosis. This work provides potential therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hongtao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhiji Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Siyuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Junyu Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Cao Liu
- Department of Emergency, The General Hospital of Xinjiang Military Command, Urumqi, 830000, China
| | - Siqi Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shu Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
7
|
Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, Kontek R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel) 2023; 15:3298. [PMID: 37444408 DOI: 10.3390/cancers15133298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence supports that both long non-coding and micro RNAs (lncRNAs and miRNAs) are implicated in glioma tumorigenesis and progression. Poor outcome of gliomas has been linked to late-stage diagnosis and mostly ineffectiveness of conventional treatment due to low knowledge about the early stage of gliomas, which are not possible to observe with conventional diagnostic approaches. The past few years witnessed a revolutionary advance in biotechnology and neuroscience with the understanding of tumor-related molecules, including non-coding RNAs that are involved in the angiogenesis and progression of glioma cells and thus are used as prognostic biomarkers as well as novel therapeutic targets. The emerging research on lncRNAs and miRNAs highlights their crucial role in glioma progression, offering new insights into the disease. These non-coding RNAs hold significant potential as novel therapeutic targets, paving the way for innovative treatment approaches against glioma. This review encompasses a comprehensive discussion about the role of lncRNAs and miRNAs in gene regulation that is responsible for the promotion or the inhibition of glioma progression and collects the existing links between these key cancer-related molecules.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
8
|
Li X, Cao Y, Xu X, Wang C, Ni Q, Lv X, Yang C, Zhang Z, Qi X, Song G. Sleep Deprivation Promotes Endothelial Inflammation and Atherogenesis by Reducing Exosomal miR-182-5p. Arterioscler Thromb Vasc Biol 2023; 43:995-1014. [PMID: 37021573 DOI: 10.1161/atvbaha.123.319026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Insufficient or disrupted sleep increases the risk of cardiovascular disease, including atherosclerosis. However, we know little about the molecular mechanisms by which sleep modulates atherogenesis. This study aimed to explore the potential role of circulating exosomes in endothelial inflammation and atherogenesis under sleep deprivation status and the molecular mechanisms involved. METHODS Circulating exosomes were isolated from the plasma of volunteers with or without sleep deprivation and mice subjected to 12-week sleep deprivation or control littermates. miRNA array was performed to determine changes in miRNA expression in circulating exosomes. RESULTS Although the total circulating exosome levels did not change significantly, the isolated plasma exosomes from sleep-deprived mice or human were a potent inducer of endothelial inflammation and atherogenesis. Through profiling and functional analysis of the global microRNA in the exosomes, we found miR-182-5p is a key exosomal cargo that mediates the proinflammatory effects of exosomes by upregulation of MYD88 (myeloid differentiation factor 88) and activation of NF-ĸB (nuclear factor kappa-B)/NLRP3 pathway in endothelial cells. Moreover, sleep deprivation or the reduction of melatonin directly decreased the synthesis of miR-182-5p and led to the accumulation of reactive oxygen species in small intestinal epithelium. CONCLUSIONS The findings illustrate an important role for circulating exosomes in distant communications, suggesting a new mechanism underlying the link between sleep disorder and cardiovascular disease.
Collapse
Affiliation(s)
- Xiao Li
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Ying Cao
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Xinxin Xu
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Chongyue Wang
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Qingbin Ni
- Hydrogen medicine center, Tai 'an City Central Hospital, China (Q.N.)
| | - Xiang Lv
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Chao Yang
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Zhaoqiang Zhang
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China (X.Q.)
| | - Guohua Song
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| |
Collapse
|
9
|
Elshaer SS, Abulsoud AI, Fathi D, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Elsakka EGE, Abd-Elmawla MA, Abulsoud LA, Doghish AS. miRNAs role in glioblastoma pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 246:154511. [PMID: 37178618 DOI: 10.1016/j.prp.2023.154511] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
High mortality and morbidity rates and variable clinical behavior are hallmarks of glioblastoma (GBM), the most common and aggressive primary malignant brain tumor. Patients with GBM often have a dismal outlook, even after undergoing surgery, postoperative radiation, and chemotherapy, which has fueled the search for specific targets to provide new insights into the development of contemporary therapies. The ability of microRNAs (miRNAs/miRs) to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, cell cycle, apoptosis, invasion, angiogenesis, stem cell behavior and chemo- and radiotherapy resistance makes them promising candidates as prognostic biomarkers and therapeutic targets or factors to advance GBM therapeutics. Hence, this review is like a crash course in GBM and how miRNAs related to GBM. Here, we will outline the miRNAs whose role in the development of GBM has been established by recent in vitro or in vivo research. Moreover, we will provide a summary of the state of knowledge regarding oncomiRs and tumor suppressor (TS) miRNAs in relation to GBM with an emphasis on their potential applications as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shereen Saeid Elshaer
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
10
|
Zeng Y, Xiong C, Tang N, Wang S, Xiong Z, Liang T, Wang Q, Li M, Li J. FAM72A promotes glioma progression by regulating mitophagy through the Pink1/Parkin signaling pathway. J Cancer 2023; 14:903-915. [PMID: 37151394 PMCID: PMC10158506 DOI: 10.7150/jca.82949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/19/2023] [Indexed: 05/09/2023] Open
Abstract
Background: There is growing evidence that aberrant expression of FAM72A contributes to biological dysfunction, especially mitochondrial dysfunction. However, its role in most tumors remains unclear, especially in glioma. Methods: Herein, a high-throughput sequencing approach was used here to identify FAM72A as the target molecule. Next, we detected the protein and mRNA expression levels of FAM72A in normal brain tissue (NBT) as well as different grades of glioma tissue. CCK-8, colony formation, Transwell assays, and Western blotting, were all used to determine the molecular effects of FAM72A on glioma cells. Results: FAM72A was significantly upregulated in glioma, was significantly correlated with WHO grade and was associated with poor clinical outcomes. In functional assays, FAM72A was shown to promote glioma cell growth. Subsequent mechanistic studies indicated that FAM72A promoted glioma progression by regulating mitophagy through the Pink1/Parkin signaling pathway. In addition, FAM72A promoted mitophagy and maintained Pink1 stability through the Pink1/Parkin signaling pathway. Finally, FAM72A promoted tumor immune escape by upregulating PD-L1 expression. Conclusion: All of these data indicate that FAM72A confers an aggressive phenotype and poor prognosis on gliomas. Targeting FAM72A might represent a new therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Yibin Zeng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Cui Xiong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Nan Tang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Siqi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Zhiyong Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Qiangping Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Menglong Li
- Department of Neurosurgery, Nanshi Hospital of Nanyang, Henan University, No. 988, Zhongzhou West Road, Nanyang City, 442000, China
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| |
Collapse
|
11
|
Ye S, Xiong F, He X, Yuan Y, Li D, Ye D, Shi L, Lin Z, Zhao M, Feng S, Zhou B, Weng H, Hong L, Ye H, Gao S. DNA hypermethylation-induced miR-182 silence targets BCL2 and HOXA9 to facilitate the self-renewal of leukemia stem cell, accelerate acute myeloid leukemia progression, and determine the sensitivity of BCL2 inhibitor venetoclax. Theranostics 2023; 13:77-94. [PMID: 36593968 PMCID: PMC9800726 DOI: 10.7150/thno.77404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: microRNAs (miRNAs) are frequently deregulated and play important roles in the pathogenesis and progression of acute myeloid leukemia (AML). miR-182 functions as an onco-miRNA or tumor suppressor miRNA in the context of different cancers. However, whether miR-182 affects the self-renewal of leukemia stem cells (LSCs) and normal hematopoietic stem progenitor cells (HSPCs) is unknown. Methods: Bisulfite sequencing was used to analyze the methylation status at pri-miR-182 promoter. Lineage-negative HSPCs were isolated from miR-182 knockout (182KO) and wild-type (182WT) mice to construct MLL-AF9-transformed AML model. The effects of miR-182 depletion on the overall survival and function of LSC were analyzed in this mouse model in vivo. Results: miR-182-5p (miR-182) expression was lower in AML blasts than normal controls (NCs) with hypermethylation observed at putative pri-miR-182 promoter in AML blasts but unmethylation in NCs. Overexpression of miR-182 inhibited proliferation, reduced colony formation, and induced apoptosis in leukemic cells. In addition, depletion of miR-182 accelerated the development and shortened the overall survival (OS) in MLL-AF9-transformed murine AML through increasing LSC frequency and self-renewal ability. Consistently, overexpression of miR-182 attenuated AML development and extended the OS in the murine AML model. Most importantly, miR-182 was likely dispensable for normal hematopoiesis. Mechanistically, we identified BCL2 and HOXA9 as two key targets of miR-182 in this context. Most importantly, AML patients with miR-182 unmethylation had high expression of miR-182 followed by low protein expression of BCL2 and resistance to BCL2 inhibitor venetoclax (Ven) in vitro. Conclusions: Our results suggest that miR-182 is a potential therapeutic target for AML patients through attenuating the self-renewal of LSC but not HSPC. miR-182 promoter methylation could determine the sensitivity of Ven treatment and provide a potential biomarker for it.
Collapse
Affiliation(s)
- Sisi Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Fang Xiong
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Yigang Yuan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Danyang Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Zihan Lin
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Min Zhao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Shuya Feng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Bin Zhou
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Huachun Weng
- The College of Medical Technology, Shanghai University of Medicine& Health Sciences; 279 ZhouZhuGong Street, Pudong District, Shanghai, China
| | - Lili Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Post Road, Hangzhou, Zhejiang Province, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China.,✉ Corresponding authors: Dr. Haige Ye, E-mail: , Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China. Tel: +86-577-55579127; Fax: +86-577-55579127. Dr. Shenmeng Gao, E-mail: , Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China. Tel.: +86-577-55578080; Fax: +86-577-55578080
| | - Shenmeng Gao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China.,✉ Corresponding authors: Dr. Haige Ye, E-mail: , Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China. Tel: +86-577-55579127; Fax: +86-577-55579127. Dr. Shenmeng Gao, E-mail: , Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China. Tel.: +86-577-55578080; Fax: +86-577-55578080
| |
Collapse
|
12
|
Fu W, Hou X, Dong L, Hou W. Roles of STAT3 in the pathogenesis and treatment of glioblastoma. Front Cell Dev Biol 2023; 11:1098482. [PMID: 36923251 PMCID: PMC10009693 DOI: 10.3389/fcell.2023.1098482] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant of astrocytomas mainly involving the cerebral hemispheres and the cerebral cortex. It is one of the fatal and refractory solid tumors, with a 5-year survival rate of merely 5% among the adults. IL6/JAK/STAT3 is an important signaling pathway involved in the pathogenesis and progression of GBM. The expression of STAT3 in GBM tissues is substantially higher than that of normal brain cells. The abnormal activation of STAT3 renders the tumor microenvironment of GBM immunosuppression. Besides, blocking the STAT3 pathway can effectively inhibit the growth and metastasis of GBM. On this basis, inhibition of STAT3 may be a new therapeutic approach for GBM, and the combination of STAT3 targeted therapy and conventional therapies may improve the current status of GBM treatment. This review summarized the roles of STAT3 in the pathogenesis of GBM and the feasibility of STAT3 for GBM target therapy.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xue Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wei Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
13
|
Long non-coding RNA LINC01018 inhibits human glioma cell proliferation and metastasis by directly targeting miRNA-182-5p. J Neurooncol 2022; 160:67-78. [PMID: 36094613 DOI: 10.1007/s11060-022-04113-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/04/2022] [Indexed: 10/14/2022]
Abstract
AIM Accumulating evidence suggests that lncRNAs are potential biomarkers and key regulators of tumor development and progression. However, the precise function of most lncRNAs in glioma remains unknown. In this study, we explored the role of long intergenic non-protein coding RNA 1018 (LINC01018) in human glioma. METHODS Expression levels of LINC01018 and miR-182-5p in clinical glioma tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR). Cell proliferation, migration, and invasion were determined by Cell Counting Kit-8 (CCK-8) assay and Transwell assay. Epithelial-mesenchymal transition (EMT) related proteins were measured by Western blotting. Direct relationship between LINC01018 and miR-182-5p was tested by dual-luciferase reporter assay, RNA immunoprecipitation assay (RIP), and rescue assays. Lastly, bioinformatics analyses were conducted to predict the downstream factors of LINC01018/miR-182-5p axis in glioma. RESULTS LINC01018 was significantly down-regulated in glioma tissues and cell lines. Overexpression of LINC01018 dramatically inhibited cell proliferation, migration, and invasion and reverse EMT process in glioma. LINC01018 directly target to miR-182-5p. Forced up-regulation of miR-182-5p reversed the inhibitory effects on proliferative and metastatic abilities of glioma cells with LINC01018 overexpression. Lastly, the bioinformatics analyses revealed that LINC01018/miR-182-5p axis mediated a cluster of downstream genes (ADRA2C, RAB6B, RAB27B, RAPGEF5, STEAP2, TAGLN3, and UNC13C), which were potential key factors in the development of glioma. CONCLUSION LINC01018 inhibits cell proliferation and metastasis in human glioma by targeting miR-182-5p, and should be considered as a potential therapeutic target in this cancer.
Collapse
|
14
|
Bone marrow-derived mesenchymal stem cells overexpressed with miR-182-5p protects against brain injury in a mouse model of cerebral ischemia. J Stroke Cerebrovasc Dis 2022; 31:106748. [PMID: 36087376 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) plays a critical role in ischemic brain injury by mediating the inflammatory response. The microRNA miR-185-5p suppresses inflammatory signaling by targeting TLR4. This study investigates whether overexpressing miR-182-5p in bone marrow-derived mesenchymal stem cells (BM-MSCs) could potentiate the neuroprotective effects of BM-MSCs in a mouse model of ischemic brain injury. METHODS We isolated BM-MSCs from mice, transfected the cells with miR-182-5p mimic, determined their MSC lineage through flow cytometry analysis of surface markers, examined miR-182-5p and TLR4 expression levels, and injected them into mice undergone middle cerebral artery occlusion (MCAO). MSC transplanted mice were subjected to behavior assays to determine cognitive and motor functions and biochemical analysis to determine neuroinflammation and TLR4/NF-κB in the ischemic hemisphere. RESULTS We found that BM-MSCs overexpressing miR-182-5p showed reduced TLR4 expression without affecting their MSC lineage. Mice transplanted with miR-182-5p overexpressing BM-MSCs after MCAO showed significantly improved cognitive and motor functions and reduced neuroinflammation, including suppressed microglial M1 polarization, reduced inflammatory cytokines, and inhibited TLR4/ NF-κB signaling. CONCLUSION Our findings suggest that overexpressing miR-182-5p in BM-MSCs can enhance the neuroprotective effects of BM-MSCs against ischemic brain injury by suppressing TLR4-mediated inflammatory response.
Collapse
|
15
|
Schneider B, William D, Lamp N, Zimpfer A, Henker C, Classen CF, Erbersdobler A. The miR-183/96/182 cluster is upregulated in glioblastoma carrying EGFR amplification. Mol Cell Biochem 2022; 477:2297-2307. [PMID: 35486213 PMCID: PMC9395473 DOI: 10.1007/s11010-022-04435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) is one of the most frequent primary brain tumors. Limited therapeutic options and high recurrency rates lead to a dismal prognosis. One frequent, putative driver mutation is the genomic amplification of the oncogenic receptor tyrosine kinase EGFR. Often accompanied by variants like EGFRvIII, heterogenous expression and ligand independent signaling render this tumor subtype even more difficult to treat, as EGFR-directed therapeutics show only weak effects at best. So EGFR-amplified GBM is considered to have an even worse prognosis, and therefore, deeper understanding of molecular mechanisms and detection of potential targets for novel therapeutic strategies is urgently needed. In this study, we looked at the level of microRNAs (miRs), small non-coding RNAs frequently deregulated in cancer, both acting as oncogenes and tumor suppressors. Comparative analysis of GBM with and without EGFR amplification should give insight into the expression profiles of miRs, which are considered both as potential targets for directed therapies or as therapeutic reagents. Comparison of miR profiles of EGFR-amplified and EGFR-normal GBM revealed an upregulation of the miR-183/96/182 cluster, which is associated with oncogenic properties in several tumor entities. One prominent target of this miR cluster is FOXO1, a pro-apoptotic factor. By observing FOXO1 downregulation in EGFR-amplified tumors, we can see a significant correlation of EGFR amplification, miR-183/96/182 cluster upregulation, and repression of FOXO1. Although no significant difference in overall survival is shown, these data may contribute to the molecular understanding of this tumor subtype and offer potential targets for miR-based therapies.
Collapse
Affiliation(s)
- Björn Schneider
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Doreen William
- Children and Adolescents Hospital, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
- Present Address: ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Nora Lamp
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Annette Zimpfer
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Christian Henker
- Department of Neurosurgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Carl Friedrich Classen
- Children and Adolescents Hospital, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Andreas Erbersdobler
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| |
Collapse
|
16
|
Bozsodi A, Scholtz B, Papp G, Sapi Z, Biczo A, Varga PP, Lazary A. Potential molecular mechanism in self-renewal is associated with miRNA dysregulation in sacral chordoma - A next-generation RNA sequencing study. Heliyon 2022; 8:e10227. [PMID: 36033338 PMCID: PMC9404356 DOI: 10.1016/j.heliyon.2022.e10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background Chordoma, the most frequent malignant primary spinal neoplasm, characterized by a high rate of recurrence, is an orphan disease where the clarification of the molecular oncogenesis would be crucial to developing new, effective therapies. Dysregulated expression of non-coding RNAs, especially microRNAs (miRNA) has a significant role in cancer development. Methods Next-generation RNA sequencing (NGS) was used for the combinatorial analysis of mRNA-miRNA gene expression profiles in sacral chordoma and nucleus pulposus samples. Advanced bioinformatics workflow was applied to the data to predict miRNA-mRNA regulatory networks with altered activity in chordoma. Results A large set of significantly dysregulated miRNAs in chordoma and their differentially expressed target genes have been identified. Several molecular pathways related to tumorigenesis and the modulation of the immune system are predicted to be dysregulated due to aberrant miRNA expression in chordoma. We identified a gene set including key regulators of the Hippo pathway, which is targeted by differently expressed miRNAs, and validated their altered expression by RT-qPCR. These newly identified miRNA/RNA interactions are predicted to have a role in the self-renewal process of chordoma stem cells, which might sustain the high rate of recurrence for this tumor. Conclusions Our results can significantly contribute to the designation of possible targets for the development of anti-chordoma therapies.
Collapse
Affiliation(s)
- Arpad Bozsodi
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- School of PhD Studies, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Beata Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Dept. of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Gergo Papp
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltan Sapi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Adam Biczo
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Peter Pal Varga
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Aron Lazary
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Corresponding author.
| |
Collapse
|
17
|
Guo Z, Liu X, Shao H. E2F4-induced AGAP2-AS1 up-regulation accelerates the progression of colorectal cancer via miR-182-5p/CFL1 axis. Dig Liver Dis 2022; 54:878-889. [PMID: 34838479 DOI: 10.1016/j.dld.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of numerous diseases including cancers. LncRNA AGAP2 Antisense RNA 1 (AGAP2-AS1) has been found to participate in the tumorigenesis of several kinds of human cancers. Nonetheless, its potential function in colorectal cancer (CRC) was still poorly investigated. METHODS The expression level of RNAs or proteins was assessed by RT-qPCR or western blot analysis. Functional experiments were performed to analyze the role of AGAP2-AS1 in CRC in vitro and in vivo. Mechanism investigations were fulfilled to determine the potential mechanism of the molecules. RESULTS AGAP2-AS1 expression was significantly elevated in CRC cells and could be transcriptionally activated by E2F Transcription Factor 4 (E2F4). Down-regulated AGAP2-AS1 could weaken CRC cell growth, migration, invasion, and epithelial-mesenchymal transition (EMT). MicroRNA-182-5p (miR-182-5p) was the target downstream molecule of AGAP2-AS1. Furthermore, Cofilin 1 (CFL1) was proved as the target of miR-182-5p. Mechanically, AGAP2-AS1 could boost the CFL1 expression via competitively binding to miR-182-5p in CRC. Importantly, CFL1 restoration could counteract the in vitro and in vivo suppression of depleted AGAP2-AS1 on CRC progression. CONCLUSION E2F4-stimulated AGAP2-AS1 aggravated CRC development through regulating miR-182-5p/CFL1 axis, implying that AGAP2-AS1 might become a potent new target for future therapies for CRC.
Collapse
Affiliation(s)
- Zhen Guo
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Xuezhong Liu
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Hongjin Shao
- Anorectal Department, Liaocheng People's Hospital, NO.67 Dongchang West Road, Dongchangfu District, Liaocheng, Shandong 252000, China.
| |
Collapse
|
18
|
Wang H, Zeng Z, Yi R, Luo J, Chen J, Lou J. MicroRNA-3200-3p targeting CAMK2A modulates the proliferation and metastasis of glioma in vitro. Bioengineered 2022; 13:7785-7797. [PMID: 35287547 PMCID: PMC9208524 DOI: 10.1080/21655979.2022.2048995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MicroRNA (miRNA) is strongly interrelated with the pathogenesis of glioma. However, its potential biological effect and underlying mechanism of miR-3200-3p in human glioma remain elusive. In the current study, we checked the level of miR-3200-3p in different glioma cells. Then, its biological functions on glioma cell proliferation metastasis was investigated using the miR-3200-3p mimic and inhibitor. The direct target of miR-3200-3p was tested in these cells. Results demonstrated that miR-3200-3p is remarkably downregulated in human glioma cells. The relative level of miR-3200-3p is strongly associated with biological features, including proliferation, colony formation, and metastasis. Additionally, Ca2+/calmodulin dependent kinase 2a (CAMK2A) might be the direct target gene of miR-3200-3p, and CAMK2A overexpression reversed the anticancer roles of miR-3200-3p on glioma cellular function. Importantly, these results further showed that miR-3200-3p downregulated the proliferation and metastasis by suppressing the expression of CAMK2A, thus regulating the Ras/Raf/MEK/ERK pathway. This study provided provided insights into the biological role of miR-3200-3p, which might function as a potential biomarker in glioma therapy.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Zhaobin Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Renhui Yi
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Jun Luo
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Jinming Chen
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Jianyun Lou
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| |
Collapse
|
19
|
Mukherjee S, Pillai PP. Current insights on extracellular vesicle-mediated glioblastoma progression: Implications in drug resistance and epithelial-mesenchymal transition. Biochim Biophys Acta Gen Subj 2022; 1866:130065. [PMID: 34902452 DOI: 10.1016/j.bbagen.2021.130065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most fatal tumors of the central nervous system with high rate of disease progression, diagnosis, prognosis and low survival rate. Therapeutic approaches that relied on surgical resection and chemotherapy have been unable to curb the disease progression and subsequently leading to increase in incidences of GBM reoccurrence. SCOPE OF THE REVIEW In the recent times, membrane-bound extracellular vesicles (EVs) have been observed as one of the key reasons for the uncontrolled growth of GBM. EVs are shown to have the potential to contribute to the disease progression via mediating drug resistance and epithelial-mesenchymal transition. The GBM-derived EVs (GDEVs) with its cargo contents act as the biological trojan horse and lead to disease progression after being received by the recipient target cells. This review article highlights the biophysical, biochemical properties of EVs, its cargo contents and its potential role in the growth and progression of GBM by altering tumour microenvironment. MAJOR CONCLUSIONS EVs are being explored for serving as novel disease biomarkers in a variety of cancer types such as adenocarcinoma, pancreatic cancer, color rectal cancer, gliomas and glioblastomas. Improvement in the EV isolation protocols, polymer-based separation techniques and transcriptomics, have made EVs a key diagnostic marker to unravel the progression and early GBM diagnosis. GDEVs role in tumour progression is under extensive investigations. GENERAL SIGNIFICANCE Attempts have been also made to discuss and compare the usage of EVs as potential therapeutic targets versus existing therapies targeting drug resistance and EMT.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
20
|
Hu S, Ren S, Cai Y, Liu J, Han Y, Zhao Y, Yang J, Zhou X, Wang X. Glycoprotein PTGDS promotes tumorigenesis of diffuse large B-cell lymphoma by MYH9-mediated regulation of Wnt-β-catenin-STAT3 signaling. Cell Death Differ 2022; 29:642-656. [PMID: 34743203 PMCID: PMC8901925 DOI: 10.1038/s41418-021-00880-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
Glycoprotein prostaglandin D2 synthase (PTGDS) is a member of the lipocalin superfamily and plays dual roles in prostaglandins metabolism and lipid transport. PTGDS has been involved in various cellular processes including the tumorigenesis of solid tumors, yet its role in carcinogenesis is contradictory and the significance of PTGDS in hematological malignancies is ill-defined. Here, we aimed to explore the expression and function of PTGDS in diffuse large B-cell lymphoma (DLBCL), especially the potential role of PTGDS inhibitor, AT56, in lymphoma therapy. Remarkable high expression of PTGDS was found in DLBCL, which was significantly correlated with poor prognosis. PTGDS overexpression and rhPTGDS were found to promote cell proliferation. Besides, in vitro and in vivo studies indicated that PTGDS knockdown and AT56 treatment exerted an anti-tumor effect by regulating cell viability, proliferation, apoptosis, cell cycle, and invasion, and enhanced the drug sensitivity to adriamycin and bendamustine through promoting DNA damage. Moreover, the co-immunoprecipitation-based mass spectrum identified the interaction between PTGDS and MYH9, which was found to promote DLBCL progression. PTGDS inhibition led to reduced expression of MYH9, and then declined activation of the Wnt-β-catenin-STAT3 pathway through influencing the ubiquitination and degradation of GSK3-β in DLBCL. The rescue experiment demonstrated that PTGDS exerted an oncogenic role through regulating MYH9 and then the Wnt-β-catenin-STAT3 pathway. Based on point mutation of glycosylation sites, we confirmed the N-glycosylation of PTGDS in Asn51 and Asn78 and found that abnormal glycosylation of PTGDS resulted in its nuclear translocation, prolonged half-life, and enhanced cell proliferation. Collectively, our findings identified for the first time that glycoprotein PTGDS promoted tumorigenesis of DLBCL through MYH9-mediated regulation of Wnt-β-catenin-STAT3 signaling, and highlighted the potential role of AT56 as a novel therapeutic strategy for DLBCL treatment.
Collapse
Affiliation(s)
- Shunfeng Hu
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Shuai Ren
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Yiqing Cai
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Jiarui Liu
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Yang Han
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Yi Zhao
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Juan Yang
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021, Jinan, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China. .,School of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, 250021, Jinan, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, 250021, Jinan, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, 251006, Suzhou, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021, Jinan, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China. .,School of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, 250021, Jinan, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, 250021, Jinan, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, 251006, Suzhou, China.
| |
Collapse
|
21
|
Souza MF, Cólus IMS, Fonseca AS, Antunes VC, Kumar D, Cavalli LR. MiR-182-5p Modulates Prostate Cancer Aggressive Phenotypes by Targeting EMT Associated Pathways. Biomolecules 2022; 12:187. [PMID: 35204688 PMCID: PMC8961520 DOI: 10.3390/biom12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is a clinically heterogeneous disease, where deregulation of epigenetic events, such as miRNA expression alterations, are determinants for its development and progression. MiR-182-5p, a member of the miR-183 family, when overexpressed has been associated with PCa tumor progression and decreased patients' survival rates. In this study, we determined the regulatory role of miR-182-5p in modulating aggressive tumor phenotypes in androgen-refractory PCa cell lines (PC3 and DU-145). The transient transfection of the cell lines with miR-182-5p inhibitor and mimic systems, significantly affected cell proliferation, adhesion, migration, and the viability of the cells to the chemotherapeutic agents, docetaxel, and abiraterone. It also affected the protein expression levels of the tumor progression marker pAKT. These changes, however, were differentially observed in the cell lines studied. A comprehensive biological and functional enrichment analysis and miRNA/mRNA interaction revealed its strong involvement in the epithelial-mesenchymal transition (EMT) process; expression analysis of EMT markers in the PCa transfected cells directly or indirectly modulated the analyzed tumor phenotypes. In conclusion, miR-182-5p differentially impacts tumorigenesis in androgen-refractory PCa cells, in a compatible oncomiR mode of action by targeting EMT-associated pathways.
Collapse
Affiliation(s)
- Marilesia Ferreira Souza
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ilce Mara Syllos Cólus
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Valquíria Casanova Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Luciane Regina Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| |
Collapse
|
22
|
Liu L, Xu Q, Xiong Y, Deng H, Zhou J. LncRNA LINC01094 contributes to glioma progression by modulating miR-224-5p/CHSY1 axis. Hum Cell 2022; 35:214-225. [PMID: 34716872 DOI: 10.1007/s13577-021-00637-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/07/2021] [Indexed: 01/20/2023]
Abstract
Glioma serves as the most common malignancy influencing modern people and is associated with severe morbidity and high mortality. Long non-coding RNAs (lncRNAs) as crucial regulators participate in multiple cancer progression. However, the role of lncRNA LINC01094 in the development of glioma remains unclear. Here, we aimed to explore the effect of lncRNA LINC01094 on the glioma progression and the underlying mechanism. Significantly, we revealed that the expression levels of LINC01094 were elevated in the glioma patient tissues compared to adjacent normal tissues. The LINC01094 expression was enhanced in the glioma cell lines. The depletion of LINC01094 inhibited cell viability and colony formation in the glioma cells. Meanwhile, the migration and invasion of glioma cells were impaired by the depletion of LINC01094. Mechanically, we identified that LINC01094 was able to sponge the miR-224-5p in the glioma cells and miR-224-5p inhibitor could reverse the effect of LINC01094 on glioma progression. In addition, miR-224-5p targeted CHSY1 and LINC01094 up-regulated CHSY1 by targeting miR-224-5p in the glioma cells. LINC01094 promoted glioma progression by the positive regulation of CHSY1. Moreover, tumorigenicity analysis showed that LINC01094 enhanced tumor growth of glioma in vivo. Thus, we conclude that lncRNA LINC01094 promotes glioma progression by modulating miR-224-5p/CHSY1 axis. Our finding provides new insights into the mechanism by which lncRNA LINC01094 contributes to the development of glioma, improving the understanding of lncRNA LINC01094 and glioma. LncRNA LINC01094, miR-224-5p, and CHSY1 may serve as potential targets for glioma.
Collapse
Affiliation(s)
- Luotong Liu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qian Xu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Xiong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
23
|
Yang S, Chen K, Cao K, Xu S, Ma C, Cai Y, Hu Y, Zhou Y. miR-182-5p Inhibits NKAPL Expression and Promotes the Proliferation of Osteosarcoma. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Lin G, Li J, Cai J, Zhang H, Xin Q, Wang N, Xie W, Zhang Y, Xu N. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J Cancer 2021; 12:6715-6726. [PMID: 34659561 PMCID: PMC8518006 DOI: 10.7150/jca.62816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. MBNL2 is a member of the RNA binding protein MBNL family that is widely expressed in mammalian cells. We report here that MBNL2 is downregulated in breast, lung and liver cancer tissues, the promoter methylation levels of MBNL2 are higher in cancer tissues than normal tissues. The enrichment analysis of MBNL2 correlated genes indicates the potential function of MBNL2 on cancer progression. MBNL2 regulates cancer cell migration and invasion by modulating PI3K/AKT-mediated epithelial-mesenchymal transition. PI3K/AKT inhibitor overcomes the promotive effect of shMBNL2 on metastasis. The expression of MBNL2 is directly targeted by miR-182. miR-182 is upregulated in breast, lung and liver cancers and has good potential for cancer diagnosis. miR-182 promotes cancer cell migration and invasion by inhibiting the expression of MBNL2. Re-introduction of exogenous MBNL2 reverses the promotive effect of miR-182 on metastasis. Collectively, these findings suggest that MBNL2 plays a tumor suppressive function through miR-182-MBNL2-AKT-EMT signaling pathways.
Collapse
Affiliation(s)
- Guanglan Lin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiao Li
- Department of Neurology, Wuhan Hankou Hospital, Wuhan 430010, China
| | - Jin Cai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haowei Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qilei Xin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ningchao Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
25
|
Shiina M, Hashimoto Y, Kulkarni P, Dasgupta P, Shahryari V, Yamamura S, Tanaka Y, Dahiya R. Role of miR-182/PDCD4 axis in aggressive behavior of prostate cancer in the African Americans. BMC Cancer 2021; 21:1028. [PMID: 34525952 PMCID: PMC8444584 DOI: 10.1186/s12885-021-08723-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed cancers among men. African Americans (AA) are at an increased risk of developing prostate cancer compared to European Americans (EA). miRNAs play a critical role in these tumors, leading to tumor progression. In this study, we investigated the role of miR-182 in racial disparity in prostate cancer. Results We found significantly increased levels of miR-182 in prostate cancer tissues compared to BPH. Also, miR-182 shows increased expression in AA prostate cancer cell line and tissue samples compared to EA. We performed biochemical recurrence (BCR) - free survival time in AA and EA patients and found that high miR-182 expression had significantly shorter BCR-free survival than patients with low miR-182 expression (P = 0.031). To elucidate the role of miR-182, we knocked down miR-182 in EA (DU-145 and LNCaP) and AA (MDA-PCa-2b) cell lines and found an increase in apoptosis, arrest of the cell cycle, and inhibition of colony formation in the AA cell line to a greater extent than EA cell lines. Conclusions Our results showed that PDCD4 is a direct miR-182 target and its inhibition is associated with aggressiveness and high Gleason grade in prostate cancer among AA. These findings show that miR-182 is highly expressed in AA patients and miR-182 may be a target for effective therapy in AA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08723-6.
Collapse
Affiliation(s)
- Marisa Shiina
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Yutaka Hashimoto
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Priyanka Kulkarni
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Pritha Dasgupta
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Varahram Shahryari
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Soichiro Yamamura
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Yuichiro Tanaka
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Rajvir Dahiya
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| |
Collapse
|
26
|
Bian Z, Ji W, Xu B, Huo Z, Huang H, Huang J, Jiao J, Shao J, Zhang X. Noncoding RNAs involved in the STAT3 pathway in glioma. Cancer Cell Int 2021; 21:445. [PMID: 34425834 PMCID: PMC8381529 DOI: 10.1186/s12935-021-02144-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
Glioma is the most common malignant primary brain tumour in adults. Despite improvements in neurosurgery and radiotherapy, the prognosis of glioma patients remains poor. One of the main limitations is that there are no proper clinical therapeutic targets for glioma. Therefore, it is crucial to find one or more effective targets. Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT family of genes. Abnormal expression of STAT3 is involved in the process of cell proliferation, migration, invasion, immunosuppression, angiogenesis, dryness maintenance, and resistance to radiotherapy and chemotherapy in glioma. Therefore, STAT3 has been considered an ideal therapeutic target in glioma. Noncoding RNAs (ncRNAs) are a group of genes with limited or no protein-coding capacity that can regulate gene expression at the epigenetic, transcriptional and posttranscriptional level. In this review, we summarized the ncRNAs that are correlated with the ectopic expression of STAT3 in glioma.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Hui Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China.
| | - Xiaolu Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China.
| |
Collapse
|
27
|
Wu X, Wang W, Wu G, Peng C, Liu J. miR-182-5p Serves as an Oncogene in Lung Adenocarcinoma through Binding to STARD13. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7074343. [PMID: 34335864 PMCID: PMC8321761 DOI: 10.1155/2021/7074343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/01/2021] [Indexed: 01/02/2023]
Abstract
Lung cancer as one of the commonest invasive malignancies is featured by high morbidity and mortality, wherein lung adenocarcinoma (LUAD) is the most prevalent subtype. Accumulating evidence exhibited that microRNAs are involved in LUAD occurrence and progression. In this study, miR-182-5p was observed to increase in both LUAD tissue and cell lines. Overexpression of miR-182-5p could prominently facilitate cell proliferation, migration, and invasion in LUAD. Through bioinformatics analysis, STARD13 was theorized as the target gene of miR-182-5p, which was lowly expressed in LUAD. Further molecular experiments manifested that miR-182-5p bound to the 3'-untranslated region of STARD13, and there was an inverse correlation between STARD13 and miR-182-5p in LUAD. Rescue experiments demonstrated that silencing STARD13 conspicuously restored the inhibitory effect of decreased miR-182-5p on cell proliferation, migration, and invasion in LUAD. Together, our findings revealed novel roles of the miR-182-5p/STARD13 axis in LUAD progression.
Collapse
Affiliation(s)
- Xuhui Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China 330006
| | - Wei Wang
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China 330006
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China 323000
| | - CongXiong Peng
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China 323000
| | - Jichun Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China 330006
| |
Collapse
|
28
|
Ji N, Wang Y, Gong X, Ni S, Zhang H. CircMTO1 inhibits ox-LDL-stimulated vascular smooth muscle cell proliferation and migration via regulating the miR-182-5p/RASA1 axis. Mol Med 2021; 27:73. [PMID: 34238206 PMCID: PMC8268171 DOI: 10.1186/s10020-021-00330-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play critical roles in the development of atherosclerosis (AS). This study investigated the role of circMTO1 in the progression of AS. METHODS Serum samples from AS patients and healthy volunteers and vascular smooth muscle cells (VSMCs) were used as the study materials. The expressions of circMTO1 and miR-182-5p were measured by RT-qPCR. The effects of circMTO1, miR-182-5p, and RASA1 on VSMC proliferation and apoptosis were examined by MTT and BrdU assays and wound healing and flow cytometric analyses, respectively. Downstream target genes of circMTO1 and miR-182-5p were predicted using target gene prediction and screening and confirmed using a luciferase reporter assay. RASA1 expression was detected by RT-qPCR and Western blot. RESULTS circMTO1 expression was decreased, while miR-182-5p expression was increased in human AS sera and oxidized low-density lipoprotein (ox-LDL)-stimulated VSMCs. CircMTO1 overexpression inhibited the proliferation and promoted the apoptosis of ox-LDL-stimulated VSMCs. CircMTO1 was found to be served as a sponge of miR-182-5p and RASA1 as a target of miR-182-5p. Moreover, circMTO1 acted as a ceRNA of miR-182-5p to enhance RASA1 expression. Furthermore, miR-182-5p overexpression and RASA1 knockdown reversed the effects of circMTO1 overexpression on the proliferation, migration, and apoptosis of ox-LDL-stimulated VSMCs. CONCLUSION CircMTO1 inhibited the proliferation and promoted the apoptosis of ox-LDL-stimulated VSMCs by regulating miR-182-5p/RASA1 axis. These results suggest that circMTO1 has potential in AS treatment.
Collapse
Affiliation(s)
- Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China
| | - Xinyan Gong
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China
| | - Shimao Ni
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
29
|
Wang Y, Shan A, Zhou Z, Li W, Xie L, Du B, Lei B. LncRNA TCONS_00004099-derived microRNA regulates oncogenesis through PTPRF in gliomas. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1023. [PMID: 34277823 PMCID: PMC8267291 DOI: 10.21037/atm-21-2442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 01/25/2023]
Abstract
Background Glioblastoma is the most common and aggressive primary tumor in the central nervous system (CNS). Patients with glioblastomas have poor prognosis due to its aggressive clinical behavior and resistance to the chemotherapeutic agent temozolomide (TMZ). Aberrant long non-coding RNAs (lncRNAs) are involved in glioma progression and its regulatory mechanisms. Analysis of sequencing data identified a new lncRNA, named lncRNA TCONS_00004099, which could derive a new microRNA and was highly expressed in glioma. Methods To elucidate the role of lncRNA TCONS_00004099 in gliomas, Quantitative Real-time PCR (qPCR) was used to assess the differential expression of lncRNA TCONS_00004099 and its related miRNA in glioma tissues, normal brain tissues, glioma cell lines (U87 and U251 cells), and a normal human embryonic brain cell line (HEB). Cell Counting Kit-8 (CCK8) assays to assess cell proliferation, flow cytometry assays examining apoptosis and the cell cycle, colony formation assays, wound healing assay, transwell assays, and zebrafish xenograft models were performed to further clarify the effects of the lncRNA and the related miRNA. Finally, Western blots were carried out to verify the mechanisms related to PTPRF (Protein Tyrosine Phosphatase Receptor Type F). Results LncRNA TCONS_00004099 was significantly increased in glioma tissues and glioma cell lines. A novel miRNA (miRNA TCONS_00004099) derived from the lncRNA was identified by qPCR. Knockdown of this lncRNA suppressed cell proliferation, migration, invasion and enhanced TMZ-induced apoptosis in U87 and U251 cell lines in vitro and in vivo. The miRNA mimics or inhibitor of miRNA TCONS_00004099 was used to reverse the effects of knockdown or overexpression of lncRNA TCONS_00004099, respectively. Western Blot analyses verified that PTPRF is one of the downstream targets of lncRNA TCONS_00004099. Conclusions These results demonstrated that lncRNA TCONS_00004099 promoted malignant behaviors in gliomas, including proliferation, metastasis, and anti-apoptosis. The effect of lncRNA TCONS_00004099 was mediated through miRNA TCONS_00004099 and its target PTPRF. Thus, the lncRNA TCONS_00004099/miRNA/PTPRF axis may be a potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Yuhao Wang
- Nosocomial Infection Control Center, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Aijun Shan
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhiwei Zhou
- Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Wenpeng Li
- Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Xie
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Du
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Bingxi Lei
- Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Gao X, Wang X, He H, Cao Y. LINC02308 promotes the progression of glioma through activating mTOR/AKT-signaling pathway by targeting miR-30e-3p/TM4SF1 axis. Cell Biol Toxicol 2021; 38:223-236. [PMID: 33945031 DOI: 10.1007/s10565-021-09604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Glioma is a common brain malignancy, and the purpose of this study is to investigate the function of LINC02308 in glioma. METHODS The differentially expressed lncRNAs were screened by microarray. The expression of LINC02308 in glioma tissues and cells was evaluated. The interaction among LINC02308, miR-30e-3p, and TM4SF1 was determined. Cell proliferation and apoptosis were evaluated. The expression of mTOR/AKT-signaling and apoptosis-related markers was detected by Western blot. A xenograft tumor mouse model was constructed to investigate the roles of LINC02308. RESULTS LINC02308 was significantly overexpressed in glioma, and a high LINC02308 level was correlated with a poor prognosis. LINC02308 silencing markedly inhibited proliferation and reduced apoptosis of glioma cells and also suppressed tumor growth in the xenograft tumor mouse model. Finally, we demonstrated that LINC02308 played its oncogenic role through binding to miR-30e-3p so as to relieve miR-30e-3p-induced suppression of TM4SF1. CONCLUSIONS LINC02308 promoted glioma tumorigenesis as a sponge of miR-30e-3p to upregulate TM4SF1 and activate AKT/mTOR pathway. Graphical Abstract Hypothesis diagram illustrates the function and mechanism of LINC02308 in glioma. A schematic representation of the functional mechanism of LINC02308 in glioma.
Collapse
Affiliation(s)
- Xianfeng Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun City, Jilin Province, 130031, People's Republic of China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province, 637000, People's Republic of China
| | - Huaiqiang He
- Department of Intensive Medicine, The First Hospital of Jilin University, Changchun City, Jilin Province, 130031, People's Republic of China
| | - Yang Cao
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun City, Jilin Province, 130031, People's Republic of China. .,Department of Clinical Laboratory, The First Hospital of Jilin University, No. 3302 Jilin Road, Erdao District, Changchun City, Jilin Province, ,130021, People's Republic of China.
| |
Collapse
|
31
|
Xiao Y, Huang W, Huang H, Wang L, Wang M, Zhang T, Fang X, Xia X. miR-182-5p and miR-96-5p Target PIAS1 and Mediate the Negative Feedback Regulatory Loop between PIAS1 and STAT3 in Endometrial Cancer. DNA Cell Biol 2021; 40:618-628. [PMID: 33751900 DOI: 10.1089/dna.2020.6379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The expressions and roles of protein inhibitor of activated STAT (PIAS) proteins, a group of proteins with STAT inhibition and SUMOylation E3 ligase activity, are rarely revealed in endometrial cancer (EC). In this study, we analyzed the expressions of PIASs and their relationships with clinical features by mining online data through web servers, including UALCAN and Gene Expression Profiling Interactive Analysis (GEPIA) in EC. The expressions of PIASs in EC tissues were further validated by immunohistochemistry (IHC). The online analyses revealed only PIAS1 was consistently downregulated both at mRNA and protein level in EC, which was validated by the IHC. Subsequently, the mechanism of PIAS1 downregulation was explored with online tools like UALCAN, cBioPortal, LinkedOmics, and the Encyclopedia of RNA Interactomes (ENCORI). The results indicated that the mutation rate of PIAS1 was extremely low and not associated with PIAS1 expression. The promoter methylation level of PIAS1 was comparable between normal and EC tissues. miR-182-5p and miR-96-5p with negative association with PIAS1 in EC were predicted to target PIAS1. Dual luciferase reporter assay confirmed miR-182-5p and miR-96-5p could target PIAS1 in EC. MiR-182-5p and miR-96-5p inhibitors could upregulate PIAS1 in EC cells. Moreover, ectopic PIAS1 expression and STAT3 inhibitor treatment significantly inhibited STAT3's activity and the levels of miR-182-5p and miR-96-5p in EC cells. Collectively, our findings revealed PIAS1 was downregulated in EC, which was caused by upregulation of miR-182-5p and miR-96-5p, and PIAS1 downregulation further activated STAT3 and increased the expression of miR-182-5p and miR-96-5p, confirming miR-182-5p and miR-96-5p mediated the negative feedback regulatory loop between PIAS1 and STAT3 in EC.
Collapse
Affiliation(s)
- Yuzhen Xiao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyan Huang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
33
|
Marisetty A, Wei J, Kong LY, Ott M, Fang D, Sabbagh A, Heimberger AB. MiR-181 Family Modulates Osteopontin in Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12123813. [PMID: 33348707 PMCID: PMC7765845 DOI: 10.3390/cancers12123813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary MicroRNAs can silence a broad set of target genes that may benefit heterogeneous tumors like glioblastoma. We have previously shown that osteopontin has an oncogenic role and may have immune modulatory effects on macrophages. In the current study, we used miRNAs to target osteopontin in tumor cells and modulate immune cells to elicit an antitumor effect. Intravenous delivery of miR-181a to immune competent mice bearing intracranial glioblastoma demonstrated a 22% increase in median survival duration relative to that of control mice. The overexpression of miR-181a in tumor cells led to decreased OPN production and proliferation and increased apoptosis in vitro, and increased survival duration of the mice when compared to its controls. miR-181a controls osteopontin expression in tumor cells by regulating their proliferation and apoptosis. Abstract MiRNAs can silence a wide range of genes, which may be an advantage for targeting heterogenous tumors like glioblastoma. Osteopontin (OPN) plays both an oncogenic role in a variety of cancers and can immune modulate macrophages. We conducted a genome wide profiling and bioinformatic analysis to identify miR-181a/b/c/d as potential miRNAs that target OPN. Luciferase assays confirmed the binding potential of miRNAs to OPN. Expression levels of miR-181a/b/c/d and OPN were evaluated by using quantitative real-time PCR and enzyme-linked immunosorbent assay in mouse and human glioblastomas and macrophages that showed these miRNAs were downregulated in Glioblastoma associated CD11b+ cells compared to their matched blood CD14b+ cells. miRNA mimicking and overexpression using lentiviruses showed that MiR-181a overexpression in glioblastoma cells led to decreased OPN production and proliferation and increased apoptosis in vitro. MiR-181a treatment of immune competent mice bearing intracranial glioblastoma demonstrated a 22% increase in median survival duration relative to that of control mice.
Collapse
|
34
|
He W, Jin H, Liu Q, Sun Q. miR‑182‑5p contributes to radioresistance in nasopharyngeal carcinoma by regulating BNIP3 expression. Mol Med Rep 2020; 23:130. [PMID: 33313953 PMCID: PMC7751459 DOI: 10.3892/mmr.2020.11769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Radioresistance is the primary roadblock limiting the success of treatment of nasopharyngeal carcinoma (NPC). microRNA (miRNA/miR)-182-5p has been reported to affect the sensitivity of cancer cells to irradiation; however, the role of miR-182-5p in NPC has not been assessed. The aim of the present study was to investigate the contribution of miR-182-5p to the radioresistance of NPC cells. The key mRNA and miRNA involved in NPC radioresistance were identified using bioinformatics analysis. The two cell lines used in the present study were 5–8F cells (radio-sensitive) and 5–8F-R cells (radioresistant). A dual-luciferase reporter assay system was used to validate the binding between BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) mRNA and miR-182-5p. Reverse transcription-quantitative PCR and western blotting were used to determine the RNA and protein expression levels. To obtain a deeper insight into the effects of the BNIP3/miR-182-5p axis on NPC radioresistance, Cell Counting Kit-8, wound healing, Transwell invasion and colony formation assays, as well as flow cytometry analysis were performed. The results showed that miR-182-5p and BNIP3 were up and downregulated, respectively, in 5–8F-R cells. BNIP3 was also confirmed to be the target of miR-182-5p, and miR-182-5p reversed the inhibitory effect of BNIP3 in 5–8F-R cells. The cellular experiments showed that upregulation of BNIP3 not only inhibited cell proliferation, viability, invasion and migration, but also promoted the apoptosis of 5–8F-R cells. However, the effects of BNIP3 were attenuated by the simultaneous upregulation of miR-182-5p. Thus, through downregulation of BNIP3, miR-182-5p contributed to radiation resistance of NPC cells.
Collapse
Affiliation(s)
- Wei He
- Department of Oncology, Wuhan Puren Hospital, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Hongyan Jin
- Department of Oncology, Wuhan Puren Hospital, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Qian Liu
- Department of Oncology, Wuhan Puren Hospital, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Quanxin Sun
- Department of Oncology, The Third People's Hospital of Hubei Province Affiliated to Jianghan University, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|
35
|
Caponnetto F, Dalla E, Mangoni D, Piazza S, Radovic S, Ius T, Skrap M, Di Loreto C, Beltrami AP, Manini I, Cesselli D. The miRNA Content of Exosomes Released from the Glioma Microenvironment Can Affect Malignant Progression. Biomedicines 2020; 8:biomedicines8120564. [PMID: 33287106 PMCID: PMC7761654 DOI: 10.3390/biomedicines8120564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Low-grade gliomas (LGG) are infiltrative primary brain tumors that in 70% of the cases undergo anaplastic transformation, deeply affecting prognosis. However, the timing of progression is heterogeneous. Recently, the tumor microenvironment (TME) has gained much attention either as prognostic factor or therapeutic target. Through the release of extracellular vesicles, the TME contributes to tumor progression by transferring bioactive molecules such as microRNA. The aim of the study was to take advantage of glioma-associated stem cells (GASC), an in vitro model of the glioma microenvironment endowed with a prognostic significance, and their released exosomes, to investigate the possible role of exosome miRNAs in favoring the anaplastic transformation of LGG. Therefore, by deep sequencing, we analyzed and compared the miRNA profile of GASC and exosomes obtained from LGG patients characterized by different prognosis. Results showed that exosomes presented a different signature, when compared to their cellular counterpart and that, although sharing several miRNAs, exosomes of patients with a bad prognosis, selectively expressed some miRNAs possibly responsible for the more aggressive phenotype. These findings get insights into the value of TME and exosomes as potential biomarkers for precision medicine approaches aimed at improving LGG prognostic stratification and therapeutic strategies.
Collapse
Affiliation(s)
- Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Silvano Piazza
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | | | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
36
|
miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis 2020; 11:929. [PMID: 33116120 PMCID: PMC7595188 DOI: 10.1038/s41419-020-03135-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat's kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3'UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.
Collapse
|
37
|
Zhou Y, An H, Wu G. MicroRNA-6071 Suppresses Glioblastoma Progression Through the Inhibition of PI3K/AKT/mTOR Pathway by Binding to ULBP2. Onco Targets Ther 2020; 13:9429-9441. [PMID: 33061429 PMCID: PMC7520159 DOI: 10.2147/ott.s265791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The purpose of this study was to explore the effect of microRNA-6071 (miR-6071) on glioblastoma (GBM) and its potential mechanisms. Methods In this study, the expressions of miR-6071 and UL16 binding protein 2 (ULBP2) were measured by qRT-RCR in GBM tissues and cells. The prognostic values of miR-6071 and ULBP2 were evaluated by Kaplan–Meier methods using the data obtained from The Cancer Genome Atlas (TCGA) database. The cell clones, proliferation, apoptosis, migration and invasion in GBM cells were detected by colony formation assay, EdU assay, flow cytometry, wound-healing assay and transwell assay. The targeting relationship between miR-6071 and ULBP2 was predicted by Targetscan 7.2 and further verified by dual-luciferase reporter gene assay. Moreover, the expressions of Bax, caspase-3, Bcl-2, matrix metalloproteinases 2 (MMP-2), MMP-9, phosphatidylinositol 3′-kinase (PI3K), p-PI3K, protein kinase B (AKT), p-AKT, mammalian target of rapamycin (mTOR) and p-mTOR were measured by Western blot. Results miR-6071 was lowly expressed and ULBP2 was highly expressed in GBM tissues and cells. miR-6071 significantly repressed the proliferation, migration and invasion, and promoted apoptosis in GBM cells. Moreover, miR-6071 also inhibited the activation of PI3K/AKT/mTOR pathway in GBM cells. Additionally, miR-6071 has been shown to negatively regulate ULBP2 expression. We also confirmed that ULBP2 could reverse the effects of miR-6071 on GBM cells through regulating PI3K/AKT/mTOR pathway. Conclusion Our study demonstrated that miR-6071 could suppress cell proliferation, migration and invasion, as well as promote apoptosis through the inhibition of PI3K/Akt/mTOR pathway by binding to ULBP2 in GBM.
Collapse
Affiliation(s)
- Yunyan Zhou
- Second Department of Neurology, Rongcheng People's Hospital, Shandong Province, Rongcheng, Shandong 264300, People's Republic of China
| | - Hongwei An
- Surgery of Lingcheng, Hospital of Traditional Chinese Medicine in Dezhou City, Dezhou, Shandong 253500, People's Republic of China
| | - Gang Wu
- Department of Neurology, Yan'an Hospital of Kunming, Kunming, Yunnan 650051, People's Republic of China
| |
Collapse
|
38
|
Zhang X, Niu W, Mu M, Hu S, Niu C. Long non-coding RNA LPP-AS2 promotes glioma tumorigenesis via miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:196. [PMID: 32962742 PMCID: PMC7510091 DOI: 10.1186/s13046-020-01695-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Background Glioblastoma is the most common primary malignant intracranial tumor with poor clinical prognosis in adults. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) function as important regulators in cancer progression, including glioblastoma. Here, we identified a new lncRNA LPP antisense RNA-2 (LPP-AS2) and investigated its function and mechanism in the development of glioma. Methods High-throughput RNA sequencing was performed to discriminate differentially expressed lncRNAs and mRNAs between glioma tissues and normal brain tissues. Expression of LPP-AS2, epidermal growth factor receptor (EGFR) and miR-7-5p in glioma tissues and cell lines was detected by real-time quantitative PCR (RT-qPCR), and the functions of lncRNA LPP-AS2 in glioma were assessed by in vivo and in vitro assays. Insight into the underlying mechanism of competitive endogenous RNAs (ceRNAs) was obtained via bioinformatic analysis, dual luciferase reporter assays, RNA pulldown assays, RNA immunoprecipitation (RIP) and rescue experiments. Results The results of high-throughput RNA-seq indicated lncRNA LPP-AS2 was upregulated in glioma tissues and further confirmed by RT-qPCR. Higher LPP-AS2 expression was related to a poor prognosis in glioma patients. Based on functional studies, LPP-AS2 depletion inhibited glioma cell proliferation, invasion and promoted apoptosis in vitro and restrained tumor growth in vivo, overexpression of LPP-AS2 resulted in the opposite effects. In addition, LPP-AS2 and EGFR were observed in co-expression networks. LPP-AS2 was found to function as a ceRNA to regulate EGFR expression by sponging miR-7-5p in glioma cells. The result of chromatin immunoprecipitation (ChIP) assays validated that c-MYC binds directly to the promoter region of LPP-AS2. As a downstream protein of EGFR, c-MYC was modulated by LPP-AS2 and in turn enhanced LPP-AS2 expression. Thus, lncRNA LPP-AS2 promoted glioma tumorigenesis via a miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop. Conclusions Our study elucidated that LPP-AS2 acted as an oncogene through a novel molecular pathway in glioma and might be a potential therapeutic approach for glioma diagnosis, therapy and prognosis.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Maolin Mu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Shanshan Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China. .,Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China. .,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China. .,Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China. .,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
39
|
Li J, Yuan H, Xu H, Zhao H, Xiong N. Hypoxic Cancer-Secreted Exosomal miR-182-5p Promotes Glioblastoma Angiogenesis by Targeting Kruppel-like Factor 2 and 4. Mol Cancer Res 2020; 18:1218-1231. [PMID: 32366676 DOI: 10.1158/1541-7786.mcr-19-0725] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/22/2019] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor and has a complex molecular profile. Hypoxia plays a critical role during tumor progression and in the tumor microenvironment (TME). Exosomes released by tumor cells contain informative nucleic acids, proteins, and lipids involved in the interaction between cancer and stromal cells, thus leading to TME remodeling. Accumulating evidence indicates that exosomes play a pivotal role in cell-to-cell communication. However, the mechanism by which hypoxia affects tumor angiogenesis via exosomes derived from tumor cells remains largely unknown. In our study, we found that, compared with the parental cells under normoxic conditions, the GBM cells produced more exosomes, and miR-182-5p was significantly upregulated in the exosomes from GBM cells under hypoxic conditions. Exosomal miR-182-5p directly suppressed its targets Kruppel-like factor 2 and 4, leading to the accumulation of VEGFR, thus promoting tumor angiogenesis. Furthermore, exosome-mediated miR-182-5p also inhibited tight junction-related proteins (such as ZO-1, occludin, and claudin-5), thus enhancing vascular permeability and tumor transendothelial migration. Knockdown of miR-182-5p reduced angiogenesis and tumor proliferation. Interestingly, we found elevated levels circulating miR-182-5p in patient blood serum and cerebrospinal fluid samples, and its expression level was inversely related to the prognosis. IMPLICATIONS: Overall, our data clarify the diagnostic and prognostic value of tumor-derived exosome-mediated miR-182-5p and reveal the distinctive cross-talk between tumor cells and human umbilical vein endothelial cells mediated by tumor-derived exosomes that modulate tumor vasculature.
Collapse
Affiliation(s)
- Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hongliang Yuan
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hao Xu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanxiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.
| |
Collapse
|
40
|
Li M, Ruan B, Wei J, Yang Q, Chen M, Ji M, Hou P. ACYP2 contributes to malignant progression of glioma through promoting Ca 2+ efflux and subsequently activating c-Myc and STAT3 signals. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:106. [PMID: 32517717 PMCID: PMC7285537 DOI: 10.1186/s13046-020-01607-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Background Acylphosphatase 2 (ACYP2) is involved in cell differentiation, energy metabolism and hydrolysis of intracellular ion pump. It has been reported as a negative regulator in leukemia and a positive regulator in colon cancer, respectively. However, its biological role in glioma remains totally unclear. Methods We performed quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC) and western blot assays to evaluate ACYP2 expression. The functions of ACYP2 in glioma cells were determined by a series of in vitro and in vivo experiments, including cell proliferation, colony formation, cell cycle, apoptosis, migration, invasion and nude mouse tumorigenicity assays. In addition, western blot and co-immunoprecipitation (Co-IP) assays were used to identify its downstream targets. Results Knocking down ACYP2 in glioma cells significantly inhibited cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice, and induced cell cycle arrest and apoptosis. Conversely, ectopic expression of ACYP2 in glioma cells dramatically promoted malignant phenotypes of glioma cells. Mechanistically, ACYP2 promoted malignant progression of glioma cells through regulating intracellular Ca2+ homeostasis via its interaction with PMCA4, thereby activating c-Myc and PTP1B/STAT3 signals. This could be effectively reversed by Ca2+ chelator BAPTA-AM or calpain inhibitor calpeptin. Conclusions Our data demonstrate that ACYP2 functions as an oncogene in glioma through activating c-Myc and STAT3 signals via the regulation of intracellular Ca2+ homeostasis, and indicate that ACYP2 may be a potential therapeutic target and prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Mengdan Li
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Banjun Ruan
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jing Wei
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Qi Yang
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Peng Hou
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China. .,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
41
|
MiR-182-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-C. Cancer Lett 2020; 488:18-26. [PMID: 32473243 DOI: 10.1016/j.canlet.2020.04.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/21/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are gene modulators essential for biological processes. However, the precise functions of miRNAs in growth and development of colon cancer are still elusive. To clarify their role, here we analyzed a miRNA microarray of colon cancer. MiR-182-5p was found markedly downregulated in colon cancer tissues and cells, and strongly correlated with pathological stage, differentiation, and lymphatic metastasis. In vitro, miR-182-5p overexpression repressed colon cancer cell proliferation, colony formation, migration, and invasion, and triggered G1 arrest and apoptosis. MiR-182-5p overexpression also downregulated vascular endothelial growth factor (VEGF)-C and inhibited the activity of a luciferase reporter containing the VEGF-C 3'-untranslated region. Moreover, miR-182-5p overexpression in colon cancer cells and human umbilical vein endothelial cells (HUVECs) downregulated VEGF-A as well as VEGF receptor (VEGFR)-2 and VEGFR-3, thereby inhibiting the phosphorylation of ERK and AKT. In vivo, miR-182-5p overexpression strikingly suppressed oncogenicity of SW620 cells as well as angiogenesis and lymphangiogenesis of xenograft tumors in nude mice. These data indicate that miR-182-5p regulates colon cancer tumorigenesis partially through modulating angiogenesis and lymphangiogenesis by targeting VEGF-C, and inhibiting ERK and AKT signaling pathways.
Collapse
|
42
|
Recent Trends of microRNA Significance in Pediatric Population Glioblastoma and Current Knowledge of Micro RNA Function in Glioblastoma Multiforme. Int J Mol Sci 2020; 21:ijms21093046. [PMID: 32349263 PMCID: PMC7246719 DOI: 10.3390/ijms21093046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system tumors are a significant problem for modern medicine because of their location. The explanation of the importance of microRNA (miRNA) in the development of cancerous changes plays an important role in this respect. The first papers describing the presence of miRNA were published in the 1990s. The role of miRNA has been pointed out in many medical conditions such as kidney disease, diabetes, neurodegenerative disorder, arthritis and cancer. There are several miRNAs responsible for invasiveness, apoptosis, resistance to treatment, angiogenesis, proliferation and immunology, and many others. The research conducted in recent years analyzing this group of tumors has shown the important role of miRNA in the course of gliomagenesis. These particles seem to participate in many stages of the development of cancer processes, such as proliferation, angiogenesis, regulation of apoptosis or cell resistance to cytostatics.
Collapse
|
43
|
Screening and Functional Analysis of Hub MicroRNAs Related to Tumor Development in Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3981931. [PMID: 32090086 PMCID: PMC6998761 DOI: 10.1155/2020/3981931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022]
Abstract
Various microRNAs (miRNAs) are of importance in the development of colon cancer, but most of the mechanisms of the miRNAs are still unclear. In order to clarify the hub miRNAs and their roles in colon cancer development, GSE98406 was used to screen hub miRNAs by bioinformatics analysis. 46 DE-miRNAs (14 were upregulated and 32 were downregulated) and 1738 target genes of DE-miRNAs were ascertained. miRNAs-gene-networks and miRNAs-GO-networks were built to get more knowledge about the function of candidate miRNAs. After validation, three miRNAs (miR-17-5p, miR-182-5p and miR-200a-3p) were recognized to be hub miRNAs associated with the progression of colon cancer. More importantly, the hub miRNAs and the putative targets genes might be new diagnostic and therapeutic targets for colon cancer in the future.
Collapse
|
44
|
Zhang C, Zhang B, Yuan B, Chen C, Zhou Y, Zhang Y, Sheng Z, Sun N, Wu X. RNA-Seq profiling of circular RNAs in human small cell lung cancer. Epigenomics 2020; 12:685-700. [PMID: 32079426 DOI: 10.2217/epi-2019-0382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We aimed to explore the circular RNA (circRNA) profile of small-cell lung cancer (SCLC). Materials & methods: Total RNA was extracted from six paired SCLC tumors and adjacent noncancerous tissues. Next-generation sequencing was performed to identify the circRNA expression profile of SCLC. Results: We found that five circRNAs were significantly upregulated and 30 circRNAs were significantly downregulated in the SCLC tissues. We confirmed the five upregulated and four randomly selected downregulated circRNAs using real-time quantitative PCR. Notably, circ-STXBP5L was selectively upregulated in SCLC samples, but undetectable in the normal control tissues. Bioinformatics analysis demonstrated that circ-STXBP5L may participate in SCLC carcinogenesis by regulating numerous cancer-related pathways. Conclusion: This study may provide new insights into the early diagnosis and development of targeted therapies for SCLC.
Collapse
Affiliation(s)
- Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Bin Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, PR China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Ying Zhou
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Yu Zhang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Department of Respiratory Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhihong Sheng
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Nan Sun
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Xiaoyuan Wu
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
45
|
Yang W, Warrington NM, Taylor SJ, Whitmire P, Carrasco E, Singleton KW, Wu N, Lathia JD, Berens ME, Kim AH, Barnholtz-Sloan JS, Swanson KR, Luo J, Rubin JB. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci Transl Med 2020; 11:11/473/eaao5253. [PMID: 30602536 DOI: 10.1126/scitranslmed.aao5253] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/20/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
Sex differences in the incidence and outcome of human disease are broadly recognized but, in most cases, not sufficiently understood to enable sex-specific approaches to treatment. Glioblastoma (GBM), the most common malignant brain tumor, provides a case in point. Despite well-established differences in incidence and emerging indications of differences in outcome, there are few insights that distinguish male and female GBM at the molecular level or allow specific targeting of these biological differences. Here, using a quantitative imaging-based measure of response, we found that standard therapy is more effective in female compared with male patients with GBM. We then applied a computational algorithm to linked GBM transcriptome and outcome data and identified sex-specific molecular subtypes of GBM in which cell cycle and integrin signaling are the critical determinants of survival for male and female patients, respectively. The clinical relevance of cell cycle and integrin signaling pathway signatures was further established through correlations between gene expression and in vitro chemotherapy sensitivity in a panel of male and female patient-derived GBM cell lines. Together, these results suggest that greater precision in GBM molecular subtyping can be achieved through sex-specific analyses and that improved outcomes for all patients might be accomplished by tailoring treatment to sex differences in molecular mechanisms.
Collapse
Affiliation(s)
- Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara J Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paula Whitmire
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Eduardo Carrasco
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Kyle W Singleton
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Ningying Wu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.,School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland OH, 44195, USA
| | | | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kristin R Swanson
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA.,School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA. .,Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
46
|
Matsuyama H, Suzuki HI. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int J Mol Sci 2019; 21:E132. [PMID: 31878193 PMCID: PMC6981965 DOI: 10.3390/ijms21010132] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 22-nucleotide-long, small non-coding RNAs that post-transcriptionally regulate gene expression. The biogenesis of miRNAs involves multiple steps, including the transcription of primary miRNAs (pri-miRNAs), nuclear Drosha-mediated processing, cytoplasmic Dicer-mediated processing, and loading onto Argonaute (Ago) proteins. Further, miRNAs control diverse biological and pathological processes via the silencing of target mRNAs. This review summarizes recent findings regarding the quantitative aspects of miRNA homeostasis, including Drosha-mediated pri-miRNA processing, Ago-mediated asymmetric miRNA strand selection, and modifications of miRNA pathway components, as well as the roles of RNA modifications (epitranscriptomics), epigenetics, transcription factor circuits, and super-enhancers in miRNA regulation. These recent advances have facilitated a system-level understanding of miRNA networks, as well as the improvement of RNAi performance for both gene-specific targeting and genome-wide screening. The comprehensive understanding and modeling of miRNA biogenesis and function have been applied to the design of synthetic gene circuits. In addition, the relationships between miRNA genes and super-enhancers provide the molecular basis for the highly biased cell type-specific expression patterns of miRNAs and the evolution of miRNA-target connections, while highlighting the importance of alterations of super-enhancer-associated miRNAs in a variety of human diseases.
Collapse
Affiliation(s)
- Hironori Matsuyama
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., 1-11-1 Karasaki, Otsu-shi, Shiga 520-0106, Japan;
| | - Hiroshi I. Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
47
|
Zheng H, Bi FR, Yang Y, Hong YG, Ni JS, Ma L, Liu MH, Hao LQ, Zhou WP, Song LH, Yan HL. Downregulation of miR-196-5p Induced by Hypoxia Drives Tumorigenesis and Metastasis in Hepatocellular Carcinoma. HORMONES & CANCER 2019; 10:177-189. [PMID: 31713780 PMCID: PMC10355717 DOI: 10.1007/s12672-019-00370-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/09/2019] [Indexed: 02/04/2023]
Abstract
In hepatocellular carcinoma (HCC), the hypoxic tumor microenvironment can drive enhance tumor malignancy and recurrence. The microRNA (miRNA) miR-196-5p has been shown to modulate the progression of several cancer types, but its roles in HCC remain uncertain. In the present report we observed significant miR-196-5p downregulation in HCC tissues and cells, and we found that the expression of this miRNA significantly impaired the proliferation and metastatic potential of HCC in vitro and in vivo. We identified high-mobility group AT-hook 2 (HMGA2) as a miR-196-5p target gene that was associated with the ability of miR-196-5p to modulate the progression of HCC. Expression of miR-196-5p and HMGA2 were correlated with the clinical characteristics and poor outcomes in patients with HCC. Finally, we found that hypoxic conditions were linked with reduced miR-196-5p expression in the context of HCC. Together these results highlight the role for miR-196-5p as an inhibitor of the proliferation and metastasis of HCC via the targeting of HMGA2, with this novel hypoxia/miR-196-5p/HMGA2 pathway serving as a potential target for future therapeutic intervention.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Feng-Rui Bi
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Yong-Gang Hong
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jun-Sheng Ni
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Long Ma
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ming-Hua Liu
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Li-Qiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China.
| | - Li-Hua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hong-Li Yan
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
48
|
Pivotal Role of STAT3 in Shaping Glioblastoma Immune Microenvironment. Cells 2019; 8:cells8111398. [PMID: 31698775 PMCID: PMC6912524 DOI: 10.3390/cells8111398] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma belongs to the most malignant intracranial tumors characterized by indispensable growth and aggressiveness that highly associates with dismal prognosis and therapy resistance. Tumor heterogeneity that often challenges therapeutic schemes is largely attributed to the complex interaction of neoplastic cells with tumor microenvironment (TME). Soluble immunoregulatory molecules secreted by glioma cells attract astrocytes, circulating stem cells and a range of immune cells to TME, inducing a local production of cytokines, chemokines and growth factors that reprogram immune cells to inflammatory phenotypes and manipulate host’s immune response in favor of cancer growth and metastasis. Accumulating evidence indicates that these tolerogenic properties are highly regulated by the constitutive and persistent activation of the oncogenic signal transducer and activator of transcription 3 (STAT3) protein, which impairs anti-tumor immunity and enhances tumor progression. Herein, we discuss current experimental and clinical evidence that highlights the pivotal role of STAT3 in glioma tumorigenesis and particularly in shaping tumor immune microenvironment in an effort to justify the high need of selective targeting for glioma immunotherapy.
Collapse
|
49
|
Li SC, Huang LH, Chien KJ, Pan CY, Lin PH, Lin Y, Weng KP, Tsai KW. MiR-182-5p enhances in vitro neutrophil infiltration in Kawasaki disease. Mol Genet Genomic Med 2019; 7:e990. [PMID: 31605468 PMCID: PMC6900372 DOI: 10.1002/mgg3.990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Background Kawasaki disease (KD) patients could develop coronary artery lesion (CAL) which threatens children's life. A previous study identified KD biomarker miRNAs that could discriminate KD patients from febrile non‐KD patients. We wonder whether these KD prediction biomarkers could be further applied to predict CAL formation in KD patients. Methods To examine this hypothesis, we conducted a meta‐analysis, miRNA mimic transfection, in vitro cell model and microarray assays. Results We first showed that miR‐182‐5p and miR‐183‐5p kept higher levels in the KD patients with CAL than those without CAL (p < .05). Further machine learning alignment confirmed that CAL formation could be predicted, with an auROC value of 0.86. We further treated neutrophil cells with miR‐182‐5p mimic, followed by in vitro transendotherial migration assay. As a result, miR‐182‐5p overexpression significantly (p < .05) enhanced neutrophil cells to infiltrate the endothelial layer composed of human coronary artery endothelium cells. Further microarray assay and pathway enrichment analysis showed that the genes activated with miR‐182‐5p overexpression were significantly enriched in the leukocyte transendothelial migration pathway (kegg_pathway_194, p < .05). Conclusion Therefore, our study suggested that miR‐182‐5p enhanced in vitro leukocyte infiltration by activating the leukocyte transendothelial migration pathway in CAL formation in KD.
Collapse
Affiliation(s)
- Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Jen Chien
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chao-Yu Pan
- Institute of Biomedical Science, Academia Sinica and Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Hsien Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ken-Pen Weng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Wu Y, Zhu X, Shen R, Huang J, Xu X, He S. miR-182 contributes to cell adhesion-mediated drug resistance in multiple myeloma via targeting PDCD4. Pathol Res Pract 2019; 215:152603. [PMID: 31540771 DOI: 10.1016/j.prp.2019.152603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022]
Abstract
miR-182 is a well-described oncogenic miRNA playing a crucial role in the development of many malignancies. However, the role of miR-182 in multiple myeloma (MM) remains unclear. Here, we demonstrate that adhesion of H929 and MM.1S cells to fibronectin could induce miR-182 expression and decrease PDCD4 expression. Furthermore, miR-182 was found to negatively regulate PDCD4 expression in H929 and MM.1S cells. In addition, PDCD4 down-regulation was required for cell adhesion-mediated drug resistance (CAM-DR). Intriguingly, miR-182 up-regulation could promote CAM-DR in H929 and MM.1S cells. Moreover, miR-182 up-regulation and PDCD4 down-regulation enhanced AKT phosphorylation at Ser473 in both H929 and MM.1S cells. Our data suggest that cell adhesion-mediated miR-182 up-regulation and PDCD4 down-regulation may confer drug resistance via enhancing AKT phosphorylation at Ser473.
Collapse
Affiliation(s)
- Yaxun Wu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Rong Shen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Jieyu Huang
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, Jiangsu, China.
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, Jiangsu, China.
| |
Collapse
|