1
|
Jiang Q, Braun DA, Clauser KR, Ramesh V, Shirole NH, Duke-Cohan JE, Nabilsi N, Kramer NJ, Forman C, Lippincott IE, Klaeger S, Phulphagar KM, Chea V, Kim N, Vanasse AP, Saad E, Parsons T, Carr-Reynolds M, Carulli I, Pinjusic K, Jiang Y, Li R, Syamala S, Rachimi S, Verzani EK, Stevens JD, Lane WJ, Camp SY, Meli K, Pappalardi MB, Herbert ZT, Qiu X, Cejas P, Long HW, Shukla SA, Van Allen EM, Choueiri TK, Churchman LS, Abelin JG, Gurer C, MacBeath G, Childs RW, Carr SA, Keskin DB, Wu CJ, Kaelin WG. HIF regulates multiple translated endogenous retroviruses: Implications for cancer immunotherapy. Cell 2025; 188:1807-1827.e34. [PMID: 40023154 PMCID: PMC11988688 DOI: 10.1016/j.cell.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC), despite having a low mutational burden, is considered immunogenic because it occasionally undergoes spontaneous regressions and often responds to immunotherapies. The signature lesion in ccRCC is inactivation of the VHL tumor suppressor gene and consequent upregulation of the HIF transcription factor. An earlier case report described a ccRCC patient who was cured by an allogeneic stem cell transplant and later found to have donor-derived T cells that recognized a ccRCC-specific peptide encoded by a HIF-responsive endogenous retrovirus (ERV), ERVE-4. We report that ERVE-4 is one of many ERVs that are induced by HIF, translated into HLA-bound peptides in ccRCCs, and capable of generating antigen-specific T cell responses. Moreover, ERV expression can be induced in non-ccRCC tumors with clinical-grade HIF stabilizers. These findings have implications for leveraging ERVs for cancer immunotherapy.
Collapse
Affiliation(s)
- Qinqin Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Braun
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Yale Center of Cellular and Molecular Oncology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vijyendra Ramesh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph E Duke-Cohan
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cleo Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Isabelle E Lippincott
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kshiti M Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vipheaviny Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nawoo Kim
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Allison P Vanasse
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eddy Saad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Isabel Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Katarina Pinjusic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yijia Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jonathan D Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - William J Lane
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kevin Meli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachet A Shukla
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | | | | | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Computer Science, Metropolitan College, Boston University, Boston, MA 02215, USA; Section for Bioinformatics, Department of Health Technology, Technical University of Denmark 2800 Lyngby, Denmark.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Grigoraș A, Amalinei C. The Role of Perirenal Adipose Tissue in Carcinogenesis-From Molecular Mechanism to Therapeutic Perspectives. Cancers (Basel) 2025; 17:1077. [PMID: 40227577 PMCID: PMC11987925 DOI: 10.3390/cancers17071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Perirenal adipose tissue (PRAT) exhibits particular morphological features, with its activity being mainly related to thermogenesis. However, an expanded PRAT area seems to play a significant role in cardiovascular diseases, diabetes mellitus, and chronic kidney disease pathogenesis. Numerous studies have demonstrated that PRAT may support cancer progression and invasion, mainly in obese patients. The mechanism underlying these processes is of dysregulation of PRAT's secretion of adipokines and pro-inflammatory cytokines, such as leptin, adiponectin, chemerin, apelin, omentin-1, vistatin, nesfatin-1, and other pro-inflammatory cytokines, modulated by tumor cells. Cancer cells may also induce a metabolic reprogramming of perirenal adipocytes, leading to increased lipids and lactate transfer to the tumor microenvironment, contributing to cancer growth in a hypoxic milieu. In addition, the PRAT browning process has been specifically detected in renal cell carcinoma (RCC), being characterized by upregulated expression of brown/beige adipocytes markers (UCP1, PPAR-ɣ, c/EBPα, and PGC1α) and downregulated white fat cells markers, such as LEPTIN, SHOX2, HOXC8, and HOXC9. Considering its multifaceted role in cancer, modulation of PRAT's role in tumor progression may open new directions for oncologic therapy improvement. Considering the increasing evidence of the relationship between PRAT and tumor cells, our review aims to provide a comprehensive analysis of the perirenal adipocytes' impact on tumor progression and metastasis.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| |
Collapse
|
3
|
Espinoza FI, Tankov S, Chliate S, Pereira Couto J, Marinari E, Vermeil T, Lecoultre M, El Harane N, Dutoit V, Migliorini D, Walker PR. Targeting HIF-2α in glioblastoma reshapes the immune infiltrate and enhances response to immune checkpoint blockade. Cell Mol Life Sci 2025; 82:119. [PMID: 40095115 PMCID: PMC11914682 DOI: 10.1007/s00018-025-05642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with dismal clinical prognosis and resistance to current therapies. GBM progression is facilitated by the tumor microenvironment (TME), with an immune infiltrate dominated by tumor-associated microglia/macrophages (TAMs) and regulatory T cells (Tregs). The TME is also characterized by hypoxia and the expression of hypoxia-inducible factors (HIFs), with HIF-2α emerging as a potential regulator of tumor progression. However, its role in GBM immunosuppression remains unknown. Here, we investigate HIF-2α and the use of the HIF-2α inhibitor PT2385 to modulate the TME in the immunocompetent GL261 mouse GBM model. PT2385 administration in vivo decreased tumor volume and prolonged survival of tumor-bearing mice, without affecting GL261 viability in vitro. Notably, HIF-2α inhibition alleviated the immunosuppressive TME and synergized with immune checkpoint blockade (ICB) using αPD-1 and αTIM-3 antibodies to promote long-term survival. Comprehensive analysis of the immune infiltrate through single-cell RNA sequencing and flow cytometry revealed that combining PT2385 with ICB reduced numbers of pro-tumoral macrophages and Tregs while increasing numbers of microglia, with a corresponding transcriptional modulation towards an anti-tumoral profile of these TAMs. In vitro, deletion of HIF-2α in microglia impeded their polarization towards a pro-tumoral M2-like profile, and its inhibition impaired Treg migration. Our results show that targeting HIF-2α can switch an immunosuppressive TME towards one that favors a robust and sustained response to ICB based immunotherapy. These findings establish that clinically relevant HIF-2α inhibitors should be explored not only in malignancies with defects in the HIF-2α axis, but also in those exhibiting an immunosuppressive TME that limits immunotherapy responsiveness.
Collapse
Affiliation(s)
- Felipe I Espinoza
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Stoyan Tankov
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Sylvie Chliate
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Joana Pereira Couto
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Eliana Marinari
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Thibaud Vermeil
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Marc Lecoultre
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Nadia El Harane
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Valérie Dutoit
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Denis Migliorini
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Paul R Walker
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland.
| |
Collapse
|
4
|
Wu X, Lazris D, Wong R, Tykodi SS. Belzutifan for the treatment of renal cell carcinoma. Ther Adv Med Oncol 2025; 17:17588359251317846. [PMID: 39926260 PMCID: PMC11806488 DOI: 10.1177/17588359251317846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Belzutifan received its first FDA approval in 2021 for treating clinical manifestations of von Hippel-Lindau (VHL) disease including renal cell carcinoma (RCC) followed by approval in 2023 for treating advanced sporadic RCC that has progressed through multiple lines of treatment. It is the first FDA-approved drug to target hypoxia-inducible factor 2 alpha (HIF-2α). By inhibiting the HIF-2α transcription factor, belzutifan prevents HIF-2α from dimerizing with HIF-1β, thereby preventing the transcription of downstream oncogenes. Most clear cell renal cell carcinoma (ccRCC) tumors are associated with VHL deletion or inactivation resulting in HIF-2α overexpression that represents a key contributor to tumorigenesis, thereby making belzutifan a uniquely optimal drug for targeting ccRCC. Belzutifan has demonstrated activity in clinical trials as a front- and later-line therapy, and in combination with tyrosine kinase inhibitors. It has been largely well tolerated, although anemia represents a common on-target side effect and, along with hypoxia, requires monitoring during treatment. Ongoing phase III trials are investigating belzutifan in combination regimens in the relapsed/refractory, front-line, and adjuvant settings. Future studies will focus on identifying predictive biomarkers and resistance pathways.
Collapse
Affiliation(s)
- Xiancheng Wu
- Department of Medicine, Division of Hematology and Oncology, University of Washington/Fred Hutchinson Cancer Center, 1100 Fairview Avenue N – M1-B208, Seattle, WA 98109-1024, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Lazris
- Department of Medicine, Division of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Risa Wong
- Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Scott S. Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
5
|
Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J, Xie Z. The Role of the Fox Gene in Breast Cancer Progression. Int J Mol Sci 2025; 26:1415. [PMID: 40003882 PMCID: PMC11855465 DOI: 10.3390/ijms26041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Forkhead box (FOX) genes are a family of transcription factors that participate in many biological activities, from early embryogenesis to the formation of organs, and from regulation of glucose metabolism to regulation of longevity. Given the extensive influence in the multicellular process, FOX family proteins are responsible for the progression of many types of cancers, especially lung cancer, breast cancer, prostate cancer, and other cancers. Breast cancer is the most common cancer among women, and 2.3 million women were diagnosed in 2020. So, various drugs targeting the FOX signaling pathway have been developed to inhibit breast cancer progression. While the role of the FOX family gene in cancer development has not received enough attention, discovering more potential drugs targeting the FOX signaling pathway is urgently demanded. Here, we review the main members in the FOX gene family and summarize their signaling pathway, including the regulation of the FOX genes and their effects on breast cancer progression. We hope this review will emphasize the understanding of the role of the FOX gene in breast cancer and inspire the discovery of effective anti-breast cancer medicines targeting the FOX gene in the future.
Collapse
Affiliation(s)
- Shaoxuan Pei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Dechun Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Ziyi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
| |
Collapse
|
6
|
Kumar R, Nolan K, Kassa B, Chanana N, Palmo T, Sharma K, Singh K, Mickael C, Fonseca Balladares D, Nilsson J, Prabhakar A, Mishra A, Lee MH, Sanders L, Kumar S, Molofsky AB, Stenmark KR, Sheppard D, Tuder RM, Gupta MD, Thinlas T, Pasha Q, Graham BB. Monocytes and interstitial macrophages contribute to hypoxic pulmonary hypertension. J Clin Invest 2025; 135:e176865. [PMID: 39883518 PMCID: PMC11910231 DOI: 10.1172/jci176865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Hypoxia is a major cause of pulmonary hypertension (PH) worldwide, and it is likely that interstitial pulmonary macrophages contribute to this vascular pathology. We observed in hypoxia-exposed mice an increase in resident interstitial macrophages, which expanded through proliferation and expressed the monocyte recruitment ligand CCL2. We also observed an increase in CCR2+ macrophages through recruitment, which express the protein thrombospondin-1, which functionally activates TGF-β to cause vascular disease. Blockade of monocyte recruitment with either CCL2-neutralizing antibody treatment or CCR2 deficiency in the bone marrow compartment suppressed hypoxic PH. These data were supported by analysis of plasma samples from humans who traveled from low (225 m) to high (3500 m) elevation, revealing an increase in thrombospondin-1 and TGF-β expression following ascent, which was blocked by dexamethasone prophylaxis. In the hypoxic mouse model, dexamethasone prophylaxis recapitulated these findings by mechanistically suppressing CCL2 expression and CCR2+ monocyte recruitment. These data suggest a pathologic cross talk between 2 discrete interstitial macrophage populations, which can be therapeutically targeted.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Kevin Nolan
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Biruk Kassa
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | | | | - Kanika Singh
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dara Fonseca Balladares
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Julia Nilsson
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Amit Prabhakar
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Aastha Mishra
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Michael H Lee
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Linda Sanders
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dean Sheppard
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mohit D Gupta
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, India
| | - Qadar Pasha
- Genomics and Molecular Medicine and
- Institute of Hypoxia Research, Delhi, India
| | - Brian B Graham
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| |
Collapse
|
7
|
Shi Y, Gilkes DM. HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects. Cell Mol Life Sci 2025; 82:44. [PMID: 39825916 PMCID: PMC11741981 DOI: 10.1007/s00018-024-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance. HIF-1 and HIF-2 are well known and widely described. Although these proteins share a high degree of homology, HIF-1 and HIF-2 have non-redundant roles in cancer. In this review, we summarize the similarities and differences between HIF-1α and HIF-2α in their structure, expression, and DNA binding. We also discuss the canonical and non-canonical regulation of HIF-1α and HIF-2α under hypoxic and normal conditions. Finally, we outline recent strategies aimed at targeting HIF-1α and/or HIF-2α.
Collapse
Affiliation(s)
- Yi Shi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Mendoza EN, Ciriolo MR, Ciccarone F. Hypoxia-Induced Reactive Oxygen Species: Their Role in Cancer Resistance and Emerging Therapies to Overcome It. Antioxidants (Basel) 2025; 14:94. [PMID: 39857427 PMCID: PMC11762716 DOI: 10.3390/antiox14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Normal tissues typically maintain partial oxygen pressure within a range of 3-10% oxygen, ensuring homeostasis through a well-regulated oxygen supply and responsive vascular network. However, in solid tumors, rapid growth often outpaces angiogenesis, creating a hypoxic microenvironment that fosters tumor progression, altered metabolism and resistance to therapy. Hypoxic tumor regions experience uneven oxygen distribution with severe hypoxia in the core due to poor vascularization and high metabolic oxygen consumption. Cancer cells adapt to these conditions through metabolic shifts, predominantly relying on glycolysis, and by upregulating antioxidant defenses to mitigate reactive oxygen species (ROS)-induced oxidative damage. Hypoxia-induced ROS, resulting from mitochondrial dysfunction and enzyme activation, exacerbates genomic instability, tumor aggressiveness, and therapy resistance. Overcoming hypoxia-induced ROS cancer resistance requires a multifaceted approach that targets various aspects of tumor biology. Emerging therapeutic strategies target hypoxia-induced resistance, focusing on hypoxia-inducible factors, ROS levels, and tumor microenvironment subpopulations. Combining innovative therapies with existing treatments holds promise for improving cancer outcomes and overcoming resistance mechanisms.
Collapse
|
9
|
McCall AS, Gutor S, Tanjore H, Burman A, Sherrill T, Chapman M, Calvi CL, Han D, Camarata J, Hunt RP, Nichols D, Banovich NE, Lawson WE, Gokey JJ, Kropski JA, Blackwell TS. Hypoxia-inducible factor 2 regulates alveolar regeneration after repetitive injury in three-dimensional cellular and in vivo models. Sci Transl Med 2025; 17:eadk8623. [PMID: 39772774 DOI: 10.1126/scitranslmed.adk8623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease in which repetitive epithelial injury and incomplete alveolar repair result in accumulation of profibrotic intermediate/transitional "aberrant" epithelial cell states. The mechanisms leading to the emergence and persistence of aberrant epithelial populations in the distal lung remain incompletely understood. By interrogating single-cell RNA sequencing (scRNA-seq) data from patients with IPF and a mouse model of repeated lung epithelial injury, we identified persistent activation of hypoxia-inducible factor (HIF) signaling in these aberrant epithelial cells. Using mouse genetic lineage-tracing strategies together with scRNA-seq, we found that these disease-emergent aberrant epithelial cells predominantly arose from airway-derived (Scgb1a1-CreER-traced) progenitors and exhibited transcriptional programs of Hif2a activation. In mice treated with repetitive intratracheal bleomycin, deletion of Epas1 (Hif2a) but not Hif1a, from airway-derived progenitors, or administration of the small-molecule HIF2 inhibitor PT-2385, using both prevention and rescue approaches, attenuated experimental lung fibrosis, reduced the appearance of aberrant epithelial cells, and promoted alveolar repair. In mouse alveolar organoids, genetic or pharmacologic inhibition of Hif2 promoted alveolar differentiation of airway-derived epithelial progenitors. In addition, treatment of human distal lung organoids with PT-2385 increased colony-forming efficiency, enhanced protein and transcriptional markers of alveolar type 2 epithelial cell maturation, and prevented the emergence of aberrant epithelial cells. Together, these studies showed that HIF2 activation drives the emergence of aberrant epithelial populations after repetitive injury and that targeted HIF2 inhibition may represent an effective therapeutic strategy to promote functional alveolar repair in IPF and other interstitial lung diseases.
Collapse
Affiliation(s)
- A Scott McCall
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sergey Gutor
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hari Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ankita Burman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- University Health Network, Toronto Lung Transplant Program, Toronto, Ontario M5G 2N2, Canada
| | - Taylor Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Micah Chapman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carla L Calvi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jane Camarata
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Raphael P Hunt
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Nichols
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - William E Lawson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
| | - Jason J Gokey
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Wang L, Li J, Tang P, Zhu D, Tai L, Wang Y, Miyata T, Woodgett JR, Di LJ. GSK3β Deficiency Expands Obese Adipose Vasculature to Mitigate Metabolic Disorders. Circ Res 2025; 136:91-111. [PMID: 39629559 DOI: 10.1161/circresaha.124.325187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Maintaining a well-developed vascular system alongside adipose tissue (AT) expansion significantly reduces the risk of metabolic complications. Although GSK3β (glycogen synthase kinase-3 beta) is known for its role in various cellular processes, its specific functions in AT and regulation of body homeostasis have not been reported. METHODS GSK3β-floxed and GSK3α-floxed mice were crossed with adiponectin-Cre mice to generate GSK3β or GSK3α adipocyte-specific knockout mice (GSK3βADKO and GSK3αADKO). A comprehensive whole-body metabolism analysis was performed on obese GSK3βADKO mice induced by a high-fat diet. RNA sequencing was conducted on AT of both obese GSK3βADKO and GSK3αADKO mice. Various analyses, including vessel perfusion studies, lipolysis analysis, multiplex protein assays, in vitro protein phosphorylation assays, and whole-mount histology staining, were performed on AT of obese GSK3βADKO mice. Tube-formation experiments were performed using 3B-11 endothelial cells cultured in the conditional medium of matured adipocytes under hypoxic conditions. Chromatin precipitation and immunofluorescence studies were conducted using cultured adipocytes with GSK3 inhibition. RESULTS Our findings provide the first evidence that adipocyte-specific knockout of GSK3β expands AT vascularization and mitigates obesity-related metabolic disorders. GSK3β deficiency, but not GSK3α, in adipocytes activates AMPK (AMP-activated protein kinase), leading to increased phosphorylation and nuclear accumulation of HIF-2α, resulting in enhanced transcriptional regulation. Consequently, adipocytes increased VEGF (vascular endothelial growth factor) expression, which engages VEGFR2 on endothelial cells, promoting angiogenesis, expanding the vasculature, and improving vessel perfusion within obese AT. GSK3β deficiency promotes AT remodeling, shifting unhealthy adipocyte function toward a healthier state by increasing insulin-sensitizing hormone adiponectin and preserving healthy adipocyte function. These effects lead to reduced fibrosis, reactive oxygen species, and ER (endoplasmic reticulum) stress in obese AT and improve metabolic disorders associated with obesity. CONCLUSIONS Deletion of GSK3β in adipocytes activates the AMPK/HIF-2α/VEGF/VEGFR2 axis, promoting vasculature expansion within obese AT. This results in a significantly improved local microenvironment, reducing inflammation and effectively ameliorating metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Li Wang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
- The Ministry of Education Frontiers Science Center for Precision Oncology (L.W., L.D.), University of Macau, China
- Proteomics, Metabolomics and Drug development core facility, Faculty of Health Sciences (L.W.), University of Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Ping Tang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Dongliang Zhu
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Lixin Tai
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Yuan Wang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Tsukiko Miyata
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and Department of Medical Biophysics, University of Toronto, Ontario, Canada (T.M., J.R.W.)
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and Department of Medical Biophysics, University of Toronto, Ontario, Canada (T.M., J.R.W.)
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
- The Ministry of Education Frontiers Science Center for Precision Oncology (L.W., L.D.), University of Macau, China
| |
Collapse
|
11
|
Valdés A, Pizarro G, González-Montero J, Rojas C, Burotto M. Targeting HIF-2α: the role of belzutifan in clear cell renal carcinoma management. Expert Rev Clin Pharmacol 2025; 18:17-27. [PMID: 39670660 DOI: 10.1080/17512433.2024.2436433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Belzutifan is a first-in-class hypoxia-inducible factor-2 alpha (HIF-2α) inhibitor. It targets the von Hippel-Lindau protein (pVHL)-HIF-vascular endothelial growth factor (VEGF) pathway, which is crucial in cellular responses to hypoxia. By inhibiting HIF-2α, belzutifan disrupts the transcription of genes involved in tumor growth and angiogenesis. AREAS COVERED In this review, we describe the pVHL-HIF-VEGF pathway and how it led to the development of HIF inhibitors, including belzutifan. A search was conducted for trials involving Belzutifan, including phase I-III trials. We describe the relevant toxicity, with emphasis on hypoxia and anemia. EXPERT OPINION Belzutifan is a relatively safe drug, with manageable adverse events, including anemia and hypoxia as on-target toxicity. Ongoing trials are studying its benefit in overall survival for RCC in first-line treatment and its potential in other malignancies. The LITESPARK-005 trial reported the benefit of belzutifan in progression-free survival (PFS) compared to everolimus in later lines of treatment, with improvement in quality-of-life outcomes. Given its different mechanism of action to currently available treatments, belzutifan is expected to play a prominent role in the treatment of clear cell renal carcinoma and other cancers.
Collapse
Affiliation(s)
- Alejandro Valdés
- Department of Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
- Department of Medical Oncology, Instituto Nacional del Cáncer, Santiago, Chile
| | - Gonzalo Pizarro
- Department of Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
- Department of Medical Oncology, Hospital Sótero del Río, Santiago, Chile
| | | | - Carlos Rojas
- Department of Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
| | - Mauricio Burotto
- Department of Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
| |
Collapse
|
12
|
Mustafa M, Rashed M, Winum JY. Novel anticancer drug discovery strategies targeting hypoxia-inducible factors. Expert Opin Drug Discov 2025; 20:103-121. [PMID: 39670847 DOI: 10.1080/17460441.2024.2442739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Hypoxia is a key feature of solid tumors, associated with aggressive behaviors such as radiation and chemotherapy resistance, increased metastasis, and poor prognosis. Hypoxia-inducible factors (HIFs) are essential transcription factors that help tumor cells adapt to hypoxic environments by promoting the expression of pro-oncogenic genes. Reducing HIF activity presents a promising strategy for advancing cancer treatment. AREA COVERED In this paper, the authors present an overview of recent studies on the development of HIF-1/2 inhibitors as potential anticancer drugs. The article offers a comprehensive analysis of the structural characteristics of these inhibitors and explores their relationship with anticancer activity, focusing on research conducted over the past decade, from 2015 to 2024. EXPERT OPINION Because they play a big role in medicinal chemistry and the discovery of anticancer drugs, HIF inhibitors have always gotten a lot of attention and have been used to make a lot of important molecules with different biological effects, especially in the field of cancer research. Several techniques and chemical scaffolds have successfully targeted HIF-1α. However, additional research is required to sustain HIF-1α inhibition while maintaining anticancer activity. The FDA approval of Belzutifan provided researchers with an opportunity to conduct broader HIF-2 studies.
Collapse
Affiliation(s)
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
13
|
Iwamura Y, Nakai T, Kato K, Ishioka H, Yamamoto M, Hirano I, Suzuki N. Erythropoietin Production in Embryonic Neural Cells is Controlled by Hypoxia Signaling and Histone Deacetylases with an Undifferentiated Cellular State. Mol Cell Biol 2025; 45:32-45. [PMID: 39620278 DOI: 10.1080/10985549.2024.2428717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025] Open
Abstract
During mammalian development, production sites of the erythroid growth factor erythropoietin (EPO) shift from the neural tissues to the liver in embryos and to the kidneys in adults. Embryonic neural EPO-producing (NEP) cells, a subpopulation of neuroepithelial and neural crest cells, express the Epo gene between embryonic day (E) 8.5 and E11.5 to promote primitive erythropoiesis in mice. While Epo gene expression in the liver and kidneys is induced under hypoxic conditions through hypoxia-inducible transcription factors (HIFs), the Epo gene regulatory mechanisms in NEP cells remain to be elucidated. Here, we confirmed the presence of cells co-expressing EPO and HIFs in mouse neural tubes, where the hypoxic microenvironment activates HIFs. Chemical activation and inhibition of HIFs demonstrated the hypoxic regulation of EPO expression in human fetal neural progenitors and mouse embryonic neural tissues. In addition, we found that histone deacetylase inhibitors can reactivate EPO production in cell lines derived from NEP cells and human neuroblastoma, as well as in mouse primary neural crest cells, while rejuvenating these cells. Furthermore, the ability of the rejuvenated cells to produce EPO was maintained in hypoxia. Thus, EPO production is controlled by epigenetic mechanisms and hypoxia signaling in the immature state of hypoxic NEP cells.
Collapse
Affiliation(s)
- Yuma Iwamura
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Nakai
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koichiro Kato
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirotaka Ishioka
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ikuo Hirano
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norio Suzuki
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Giri S, Poholek AC. Gasping for air: HIF2α in asthma. Immunity 2024; 57:2710-2712. [PMID: 39662085 PMCID: PMC11891762 DOI: 10.1016/j.immuni.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Despite protective roles in various type of infection and in would healing, T helper (Th)2 cells are drivers of inflammation in allergic asthma. In this issue of Immunity, Zou et al. demonstrate the crucial involvement of hypoxia inducible factor (HIF)2α in promoting the differentiation of inflammatory Th2 cells, suggesting HIF2α as a promising therapeutic target for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Shilpi Giri
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Yang Y, Wu T, Wang Y, Luo D, Zhao Z, Sun H, Zhang M, Zhang B, Han B. Hypoxic tumour-derived exosomal miR-1290 exacerbates the suppression of CD8+ T cells by promoting M2 macrophage polarization. Immunology 2024; 173:672-688. [PMID: 39183579 DOI: 10.1111/imm.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Hypoxia plays an important role in the metastasis of hepatocellular carcinoma (HCC). Exosomes have been widely studied as mediators of communication between tumours and immune cells. However, the specific mechanism by which hypoxic HCC cell-derived exosomes suppress antitumor immunity is unclear. Hypoxia scores were determined for The Cancer Genome-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset patients, and HCC patients in the hyperhypoxic group had a higher degree of M2 macrophage infiltration. Patients in the M2 high-invasion group had a lower probability of survival than those in the low-invasion group. In vivo and in vitro experiments demonstrated that exosomes secreted by hypoxic HCC cells promote M2 macrophage polarization. This polarization induces apoptosis in CD8+ T cells. Additionally, it encourages epithelial-mesenchymal transition (EMT), which increases HCC migration. Exosomal miRNA sequencing revealed that miR-1290 was highly expressed in exosomes secreted by hypoxic HCC cells. Mechanistically, miR-1290 in macrophages inhibited Akt2 while upregulating PD-L1 to promote M2 polarization, induce apoptosis in CD8+ T cells, and enhance EMT in HCC. Animal studies found that the miR-1290 antagomir in combination with the immune checkpoint inhibitor produced better antitumor effects than the monotherapies. In conclusion, the secretion of exosome-derived miR-1290 from HCC cells in a hypoxic environment supported immune escape by HCC cells by promoting M2 macrophage polarization to induce apoptosis in CD8+ T cells and enhance EMT that promoted HCC metastasis. Therefore, miR-1290 is an important molecule in antitumor immunity in HCC, and inhibition of miR-1290 could provide a novel immunotherapeutic approach for HCC treatment.
Collapse
Affiliation(s)
- Yeni Yang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tiansong Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dingan Luo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyin Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfa Sun
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Zhang
- Department of Transplantation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Wiley HE, Srinivasan R, Maranchie JK, Chhablani J, Iversen ABB, Kruse A, Jonasch E, Gombos DS, Else T, Demirci H, Maughan BL, Hartnett ME, Coleman HR, Fu W, Perini RF, Liu Y, Linehan WM, Chew EY. Oral Hypoxia-Inducible Factor 2α Inhibitor Belzutifan in Ocular von Hippel-Lindau Disease: Subgroup Analysis of the Single-Arm Phase 2 LITESPARK-004 Study. Ophthalmology 2024; 131:1324-1332. [PMID: 38849055 DOI: 10.1016/j.ophtha.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
PURPOSE To report the efficacy of the oral hypoxia-inducible factor 2α inhibitor belzutifan in participants with von Hippel-Lindau disease-associated retinal hemangioblastomas in the LITESPARK-004 study. DESIGN Subgroup analysis of the phase 2, single-arm, open-label LITESPARK-004 study. PARTICIPANTS Adults with 1 or more von Hippel-Lindau disease-associated measurable renal cell carcinoma tumors not requiring immediate surgical intervention were eligible. METHODS Participants received oral belzutifan 120 mg once daily until disease progression or unacceptable treatment-related toxicity. MAIN OUTCOME MEASURES Efficacy of belzutifan in retinal hemangioblastomas was a secondary end point, measured as response (improved, stable, or progressed) by independent reading center-certified graders based on color fundus imaging performed every 12 weeks using the investigator's preferred imaging standards. Additional assessments, where available, included OCT and ultra-widefield fluorescein angiography. RESULTS Among 61 participants in LITESPARK-004, 12 had 1 or more evaluable active retinal hemangioblastomas in 16 eyes at baseline per independent reading center. As of April 1, 2022, the median follow-up for participants with ocular von Hippel-Lindau disease at baseline was 37.3 months. All 16 eyes were graded as improved, with a response rate of 100.0% (95% confidence interval, 79.4%-100%). No new retinal hemangioblastomas or ocular disease progression were reported as of data cutoff date. Eight participants underwent additional multimodal eye assessments performed at the National Institutes of Health study site. Among this subgroup, 10 of 24 hemangioblastomas in 8 eyes of 6 participants measured 500 μm or more in greatest linear dimension at baseline and were analyzed further. All 10 hemangioblastomas had a mean area reduction of 15% or more by month 12 and of 30% or more by month 24. CONCLUSIONS Belzutifan showed promising activity against ocular von Hippel-Lindau disease, including capacity to control retinal hemangioblastomas, with effects sustained for more than 2 years while treatment is ongoing. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Henry E Wiley
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Ramaprasad Srinivasan
- Molecular Cancer Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jodi K Maranchie
- Department of Urology, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania
| | | | - Anders Kruse
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dan S Gombos
- Section of Ophthalmology, Department of Head & Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Tobias Else
- Department of Internal Medicine, MEND, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan
| | - Hakan Demirci
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan
| | - Benjamin L Maughan
- Division of Medical Oncology at Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - M Elizabeth Hartnett
- Department of Ophthalmology, University of Utah, Salt Lake City, Utah; Department of Ophthalmology, Byers Eye Institute at Stanford University, Palo Alto, California
| | - Hanna R Coleman
- VOIANT (Independent Reading Center), Boston, Massachusetts; Department of Ophthalmology, Columbia University, New York, NY
| | - Wei Fu
- Merck & Co., Inc., Rahway, New Jersey
| | | | | | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
17
|
Liao C, Hu L, Zhang Q. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nat Rev Urol 2024; 21:662-675. [PMID: 38698165 DOI: 10.1038/s41585-024-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel-Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL-HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Janssens LK, Stove CP. The 'ABC' of split-nanoluciferase HIF heterodimerization bioassays: Applications, Benefits & Considerations. Biochem Pharmacol 2024; 229:116478. [PMID: 39128589 DOI: 10.1016/j.bcp.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Hypoxia-inducible factors (HIF) are interesting targets for multiple therapeutic indications. While HIF activation is desired for the treatment of anemia-related and ischemic diseases, HIF inhibition is of tremendous interest to anti-cancer drug development. Different signaling events within the HIF pathway are being targeted by drug discovery programs, with a special interest in HIF-selective (possibly also HIF1/2 isoform-selective) compounds. In this study, we applied recently developed cell-based split-nanoluciferase HIF heterodimerization assays to study the effects of compounds, targeting HIF activity by various mechanisms of action. This study shows that the application of similar or diverse assay protocols allows to detect various influences on HIF heterodimerization as a key signaling event in the oxygen sensing pathway: increased HIF heterodimerization (roxadustat, MG-132), decreased HIF heterodimerization (PX-478, ibuprofen) and direct (HIF isoform-selective) heterodimerization inhibiting effects (PT-2385). Changes in treatment time and in the assay protocol allowed to assess direct and indirect effects on HIFα-HIFβ heterodimerization. In addition to the evaluation of applications of these new bioassays regarding pharmacological characterizations, benefits and considerations are discussed related to the use of cellular, luminescent-based bioassays. Briefly, benefits include the bidirectional nature of the biological readout, the upstream mechanism of detection, the differentiation between HIF1 and HIF2 effects and the simulation of various conditions. Specific and general considerations include cell-based, technical and disease/drug-related aspects (e.g., non-specific effects, color interference). In summary, the versatility of these bioassays offers benefits in widespread applications regarding drug discovery and pharmacological characterization of various therapeutics, applying either the same or optimized experimental protocols.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Silvestrini ML, Solazzo R, Boral S, Cocco MJ, Closson JD, Masetti M, Gardner KH, Chong LT. Gating residues govern ligand unbinding kinetics from the buried cavity in HIF-2α PAS-B. Protein Sci 2024; 33:e5198. [PMID: 39467204 PMCID: PMC11516114 DOI: 10.1002/pro.5198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
While transcription factors have been generally perceived as "undruggable," an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR. To enable the simulations, we applied the weighted ensemble path sampling strategy, which generates continuous pathways for a rare-event process [e.g., ligand (un)binding] with rigorous kinetics in orders of magnitude less computing time compared to conventional simulations. Results reveal the formation of an encounter complex intermediate and two distinct classes of pathways for ligand exit. Based on these pathways, we identified two pairs of conformational gating residues in the receptor: one for the major class (N288 and S304) and another for the minor class (L272 and M309). ZZ-exchange NMR validated the kinetic importance of N288 for ligand unbinding. Our results provide an ideal simulation dataset for rational manipulation of ligand unbinding kinetics.
Collapse
Affiliation(s)
| | - Riccardo Solazzo
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum‐Università di BolognaBolognaItaly
| | - Soumendu Boral
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
| | - Melanie J. Cocco
- Department of Pharmaceutical SciencesUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Joseph D. Closson
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- PhD Program in BiochemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Matteo Masetti
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum‐Università di BolognaBolognaItaly
| | - Kevin H. Gardner
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkNew YorkUSA
- PhD Programs in Biochemistry, Biology, and ChemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Lillian T. Chong
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
20
|
Stransky LA, Gao W, Schmidt LS, Bi K, Ricketts CJ, Ramesh V, James A, Difilippantonio S, Ileva L, Kalen JD, Karim B, Jeon A, Morgan T, Warner AC, Turan S, Unite J, Tran B, Choudhari S, Zhao Y, Linn DE, Yun C, Dhandapani S, Parab V, Pinheiro EM, Morris N, He L, Vigeant SM, Pignon JC, Sticco-Ivins M, Signoretti S, Van Allen EM, Linehan WM, Kaelin WG. Toward a CRISPR-based mouse model of Vhl-deficient clear cell kidney cancer: Initial experience and lessons learned. Proc Natl Acad Sci U S A 2024; 121:e2408549121. [PMID: 39365820 PMCID: PMC11474080 DOI: 10.1073/pnas.2408549121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
CRISPR is revolutionizing the ability to do somatic gene editing in mice for the purpose of creating new cancer models. Inactivation of the VHL tumor suppressor gene is the signature initiating event in the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Such tumors are usually driven by the excessive HIF2 activity that arises when the VHL gene product, pVHL, is defective. Given the pressing need for a robust immunocompetent mouse model of human ccRCC, we directly injected adenovirus-associated viruses (AAVs) encoding sgRNAs against VHL and other known/suspected ccRCC tumor suppressor genes into the kidneys of C57BL/6 mice under conditions where Cas9 was under the control of one of two different kidney-specific promoters (Cdh16 or Pax8) to induce kidney tumors. An AAV targeting Vhl, Pbrm1, Keap1, and Tsc1 reproducibly caused macroscopic ccRCCs that partially resembled human ccRCC tumors with respect to transcriptome and cell of origin and responded to a ccRCC standard-of-care agent, axitinib. Unfortunately, these tumors, like those produced by earlier genetically engineered mouse ccRCCs, are HIF2 independent.
Collapse
Affiliation(s)
- Laura A. Stransky
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Wenhua Gao
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kevin Bi
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Vijyendra Ramesh
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Amy James
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Simone Difilippantonio
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lilia Ileva
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Albert Jeon
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Tamara Morgan
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Andrew C. Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Sevilay Turan
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Joanne Unite
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Bao Tran
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Sulbha Choudhari
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Yongmei Zhao
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | | | - Changhong Yun
- Pharmacokinetics, Merck & Co., Inc., Boston, MA02115
| | | | - Vaishali Parab
- Pharmacokinetics, Merck & Co., Inc., South San Francisco, CA94080
| | | | - Nicole Morris
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lixia He
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Sean M. Vigeant
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Jean-Christophe Pignon
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
| | - Maura Sticco-Ivins
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Eliezer M. Van Allen
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - William G. Kaelin
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
21
|
Cheng B, Ma X, Zhou Y, Liu J, Fei X, Pan W, Peng X, Wang W, Chen J. Recent progress in the development of hypoxia-inducible factor 2α (HIF-2α) modulators: Inhibitors, agonists, and degraders (2009-2024). Eur J Med Chem 2024; 275:116645. [PMID: 38959730 DOI: 10.1016/j.ejmech.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Hypoxia-inducible factor 2α (HIF-2α) is a critical transcription factor that regulates cellular responses under hypoxic conditions. In situations of insufficient oxygen supply or patients with Von Hippel-Lindau (VHL) mutations, HIF-2α accumulates and forms a heterodimeric complex with aryl hydrocarbon receptor nuclear translocator (ARNT, or HIF-β). This complex further binds to coactivator p300 and interacts with hypoxia response elements (HREs) on the DNA of downstream target genes, regulating the transcription of a variety of genes (e.g. VEGFA, CCND1, CXCR4, SLC2A1, etc) involved in various processes like angiogenesis, mitochondrial metabolism, cell proliferation, and metastasis. Targeting HIF-2α holds great promise for effectively addressing solid tumors associated with aberrant oxygen-sensing pathways and hypoxia mechanisms, offering broad application prospects. In this review, we provide an overview of recent advancements (2009-2024) in HIF-2α modulators such as inhibitors, agonists, and degraders for cancer therapy. Additionally, we discuss in detail the challenges and future directions regarding HIF-2α modulators.
Collapse
Affiliation(s)
- Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Xianshi Ma
- Yangxin County People's Hospital of Hubei Province, Yangxin, Hubei, 435200, China
| | - Yingxing Zhou
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jin Liu
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiaoting Fei
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China
| | - Wei Pan
- Cardiology Department, Geriatric Department, Foshan Women and Children Hospital, Foshan, Guangdong, 528000, China.
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Wei Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, 510280, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Rioja P, Rey-Cardenas M, De Velasco G. Targeting HIF-2α and anemia: A therapeutic breakthrough for clear-cell renal cell carcinoma. Cancer Treat Rev 2024; 129:102801. [PMID: 39032449 DOI: 10.1016/j.ctrv.2024.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Renal cell carcinoma (RCC) is a heterogenous disease which the incidence is increasing worldwide. The identification and understanding of the role of the Von Hipple Lindau (VHP) in regulating the hypoxia-inducible factor signaling pathway has revolutionized the treatment of this disease. Belzutifan is an oral hypoxia-inducible factor (HIF)-2α inhibitor, which has demonstrated efficacy in treating von Hippel-Lindau (VHL) disease and for the treatment of adults with RCC who experienced disease progression after PD-1/PD-L1- and VEGFR-targeted therapies. One of the most common adverse effect of this drug is anemia; however, it is treatment is not well known. This review summarizes role of the VHL-HIF pathway in ccRCC aroused the interest of targeting HIF activity, the history of belzutifan development and their relationship to anemia as well as propose a management algorithm.
Collapse
Affiliation(s)
- Patricia Rioja
- Department of Medical Oncology, National Institute of Neoplastic Diseases, Lima, Peru.
| | - M Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Guillermo De Velasco
- Department of Medical Oncology, University Hospital 12 de Octubre, Instituto de investigación (imas12), Madrid, Spain
| |
Collapse
|
23
|
Wang R, Gomez Salazar M, Pruñonosa Cervera I, Coutts A, French K, Pinto MM, Gohlke S, García-Martín R, Blüher M, Schofield CJ, Kourtzelis I, Stimson RH, Bénézech C, Christian M, Schulz TJ, Gudmundsson EF, Jennings LL, Gudnason VG, Chavakis T, Morton NM, Emilsson V, Michailidou Z. Adipocyte deletion of the oxygen-sensor PHD2 sustains elevated energy expenditure at thermoneutrality. Nat Commun 2024; 15:7483. [PMID: 39209825 PMCID: PMC11362468 DOI: 10.1038/s41467-024-51718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Enhancing thermogenic brown adipose tissue (BAT) function is a promising therapeutic strategy for metabolic disease. However, predominantly thermoneutral modern human living conditions deactivate BAT. We demonstrate that selective adipocyte deficiency of the oxygen-sensor HIF-prolyl hydroxylase (PHD2) gene overcomes BAT dormancy at thermoneutrality. Adipocyte-PHD2-deficient mice maintain higher energy expenditure having greater BAT thermogenic capacity. In human and murine adipocytes, a PHD inhibitor increases Ucp1 levels. In murine brown adipocytes, antagonising the major PHD2 target, hypoxia-inducible factor-(HIF)-2a abolishes Ucp1 that cannot be rescued by PHD inhibition. Mechanistically, PHD2 deficiency leads to HIF2 stabilisation and binding of HIF2 to the Ucp1 promoter, thus enhancing its expression in brown adipocytes. Serum proteomics analysis of 5457 participants in the deeply phenotyped Age, Gene and Environment Study reveal that serum PHD2 associates with increased risk of metabolic disease. Here we show that adipose-PHD2-inhibition is a therapeutic strategy for metabolic disease and identify serum PHD2 as a disease biomarker.
Collapse
Affiliation(s)
- Rongling Wang
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mario Gomez Salazar
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Iris Pruñonosa Cervera
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Amanda Coutts
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Karen French
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marlene Magalhaes Pinto
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Ruben García-Martín
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Campus-UAM, Madrid, Spain
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research University of Oxford, Oxford, UK
| | - Ioannis Kourtzelis
- Hull York Medical School, York Biomedical Research Institute, University of York, York, UK
| | - Roland H Stimson
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Lori L Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Vilmundur G Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Triantafyllos Chavakis
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Nicholas M Morton
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Zoi Michailidou
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK.
| |
Collapse
|
24
|
Meng B, Zhao N, Mlcochova P, Ferreira IATM, Ortmann BM, Davis T, Wit N, Rehwinkel J, Cook S, Maxwell PH, Nathan JA, Gupta RK. Hypoxia drives HIF2-dependent reversible macrophage cell cycle entry. Cell Rep 2024; 43:114471. [PMID: 38996069 DOI: 10.1016/j.celrep.2024.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Low-oxygen conditions (hypoxia) have been associated primarily with cell-cycle arrest in dividing cells. Macrophages are typically quiescent in G0 but can proliferate in response to tissue signals. Here we show that hypoxia (1% oxygen tension) results in reversible entry into the cell cycle in macrophages. Cell cycle progression is largely limited to G0-G1/S phase transition with little progression to G2/M. This cell cycle transitioning is triggered by an HIF2α-directed transcriptional program. The response is accompanied by increased expression of cell-cycle-associated proteins, including CDK1, which is known to phosphorylate SAMHD1 at T592 and thereby regulate antiviral activity. Prolyl hydroxylase (PHD) inhibitors are able to recapitulate HIF2α-dependent cell cycle entry in macrophages. Finally, tumor-associated macrophages (TAMs) in lung cancers exhibit transcriptomic profiles representing responses to low oxygen and cell cycle progression at the single-cell level. These findings have implications for inflammation and tumor progression/metastasis where low-oxygen environments are common.
Collapse
Affiliation(s)
- Bo Meng
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Na Zhao
- University of Oxford, Oxford, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Niek Wit
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK; Africa Health Research Institute, Durban, KwaZulu Natal, South Africa.
| |
Collapse
|
25
|
Bou-Gharios J, Noël G, Burckel H. Preclinical and clinical advances to overcome hypoxia in glioblastoma multiforme. Cell Death Dis 2024; 15:503. [PMID: 39003252 PMCID: PMC11246422 DOI: 10.1038/s41419-024-06904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard clinical treatment of GBM includes a maximal surgical resection followed by concomitant radiotherapy (RT) and chemotherapy sessions with Temozolomide (TMZ) in addition to adjuvant TMZ cycles. Despite the severity of this protocol, GBM is highly resistant and recurs in almost all cases while the protocol remains unchanged since 2005. Limited-diffusion or chronic hypoxia has been identified as one of the major key players driving this aggressive phenotype. The presence of hypoxia within the tumor bulk contributes to the activation of hypoxia signaling pathway mediated by the hypoxia-inducing factors (HIFs), which in turn activate biological mechanisms to ensure the adaptation and survival of GBM under limited oxygen and nutrient supply. Activated downstream pathways are involved in maintaining stem cell-like phenotype, inducing mesenchymal shift, invasion, and migration, altering the cellular and oxygen metabolism, and increasing angiogenesis, autophagy, and immunosuppression. Therefore, in this review will discuss the recent preclinical and clinical approaches that aim at targeting tumor hypoxia to enhance the response of GBM to conventional therapies along with their results and limitations upon clinical translation.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging In Healthcare (IMIS), UMR 7357, University of Strasbourg, 4 rue Kirschleger, 67000, Strasbourg, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging In Healthcare (IMIS), UMR 7357, University of Strasbourg, 4 rue Kirschleger, 67000, Strasbourg, France
- Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Department of Radiation Oncology, 17 rue Albert Calmette, 67200, Strasbourg, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging In Healthcare (IMIS), UMR 7357, University of Strasbourg, 4 rue Kirschleger, 67000, Strasbourg, France.
| |
Collapse
|
26
|
Wang S, Li H, Liu X, Yin T, Li T, Zheng M, Liu M, Meng X, Zhou J, Wang Y, Chen Y. VHL suppresses UBE3B-mediated breast tumor growth and metastasis. Cell Death Dis 2024; 15:446. [PMID: 38914543 PMCID: PMC11196597 DOI: 10.1038/s41419-024-06844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Protein homeostasis is predominantly governed through post-translational modification (PTM). UBE3B, identified as an oncoprotein, exhibits elevated protein levels in breast cancer. However, the impact of PTM on UBE3B remains unexplored. In this study, we show that VHL is a bona fide E3 ligase for UBE3B. Mechanistically, VHL directly binds to UBE3B, facilitating its lysine 48 (K48)-linked polyubiquitination at K286 and K427 in a prolyl hydroxylase (PHD)-independent manner. Consequently, this promotes the proteasomal degradation of UBE3B. The K286/427R mutation of UBE3B dramatically abolishes the inhibitory effect of VHL on breast tumor growth and lung metastasis. Additionally, the protein levels of UBE3B and VHL exhibit a negative correlation in breast cancer tissues. These findings delineate an important layer of UBE3B regulation by VHL.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Huiyan Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tingting Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Tingru Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Miaomiao Zheng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiaoqian Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yijie Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Yan Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
27
|
Bacigalupa ZA, Arner EN, Vlach LM, Wolf MM, Brown WA, Krystofiak ES, Ye X, Hongo RA, Landis M, Amason EK, Beckermann KE, Rathmell WK, Rathmell JC. HIF-2α expression and metabolic signaling require ACSS2 in clear cell renal cell carcinoma. J Clin Invest 2024; 134:e164249. [PMID: 38941296 PMCID: PMC11178540 DOI: 10.1172/jci164249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/01/2024] [Indexed: 06/30/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is an aggressive cancer driven by VHL loss and aberrant HIF-2α signaling. Identifying means to regulate HIF-2α thus has potential therapeutic benefit. Acetyl-CoA synthetase 2 (ACSS2) converts acetate to acetyl-CoA and is associated with poor patient prognosis in ccRCC. Here we tested the effects of ACSS2 on HIF-2α and cancer cell metabolism and growth in ccRCC models and clinical samples. ACSS2 inhibition reduced HIF-2α levels and suppressed ccRCC cell line growth in vitro, in vivo, and in cultures of primary ccRCC patient tumors. This treatment reduced glycolytic signaling, cholesterol metabolism, and mitochondrial integrity, all of which are consistent with loss of HIF-2α. Mechanistically, ACSS2 inhibition decreased chromatin accessibility and HIF-2α expression and stability. While HIF-2α protein levels are widely regulated through pVHL-dependent proteolytic degradation, we identify a potential pVHL-independent pathway of degradation via the E3 ligase MUL1. We show that MUL1 can directly interact with HIF-2α and that overexpression of MUL1 decreased HIF-2α levels in a manner partially dependent on ACSS2. These findings identify multiple mechanisms to regulate HIF-2α stability and ACSS2 inhibition as a strategy to complement HIF-2α-targeted therapies and deplete pathogenically stabilized HIF-2α.
Collapse
Affiliation(s)
- Zachary A. Bacigalupa
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emily N. Arner
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
| | | | - Melissa M. Wolf
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
| | | | - Evan S. Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, and
| | - Rachel A. Hongo
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
| | - Madelyn Landis
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
| | | | | | - W. Kimryn Rathmell
- Department of Medicine
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, and
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Brugarolas J, Obara G, Beckermann KE, Rini B, Lam ET, Hamilton J, Schluep T, Yi M, Wong S, Mao ZL, Gamelin E, Tannir NM. A First-in-Human Phase 1 Study of a Tumor-Directed RNA-Interference Drug against HIF2α in Patients with Advanced Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2024; 30:2402-2411. [PMID: 38652038 PMCID: PMC11145158 DOI: 10.1158/1078-0432.ccr-23-3029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/09/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE ARO-HIF2 is an siRNA drug designed to selectively target hypoxia-inducible factor-2α (HIF2α) interrupting downstream pro-oncogenic signaling in clear cell renal cell carcinoma (ccRCC). The aims of this Phase 1 study (AROHIF21001) were to evaluate safety, tolerability, pharmacokinetics, and establish a recommended Phase 2 dose. PATIENTS AND METHODS Subjects with ccRCC and progressive disease after at least 2 prior therapies that included VEGF and immune checkpoint inhibitors were progressively enrolled into dose-escalation cohorts of ARO-HIF2 administered intravenously at 225, 525, or 1,050 mg weekly. RESULTS Twenty-six subjects received ARO-HIF2. The most common treatment emergent adverse events (AE) irrespective of causality were fatigue (50.0%), dizziness (26.9%), dyspnea (23.1%), and nausea (23.1%). Four subjects (15.4%) had treatment-related serious AEs. AEs of special interest included neuropathy, hypoxia, and dyspnea. ARO-HIF2 was almost completely cleared from plasma circulation within 48 hours with minimal renal clearance. Reductions in HIF2α were observed between pre- and post-dosing tumor biopsies, but the magnitude was quite variable. The objective response rate was 7.7% and the disease control rate was 38.5%. Responses were accompanied by ARO-HIF2 uptake in tumor cells, HIF2α downregulation, as well as rapid suppression of tumor produced erythropoietin (EPO) in a patient with paraneoplastic polycythemia. CONCLUSIONS ARO-HIF2 downregulated HIF2α in advanced ccRCC-inhibiting tumor growth in a subset of subjects. Further development was hampered by off-target neurotoxicity and low response rate. This study provides proof of concept that siRNA can target tumors in a specific manner.
Collapse
Affiliation(s)
- James Brugarolas
- The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gregory Obara
- Comprehensive Cancer Centers of Nevada, Henderson, Nevada
| | | | - Brian Rini
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Elaine T. Lam
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Min Yi
- Arrowhead Pharmaceuticals, Pasadena, California
| | - So Wong
- Arrowhead Pharmaceuticals, Pasadena, California
| | | | | | - Nizar M. Tannir
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
29
|
Yazdani B, Sirous H, Enguita FJ, Brogi S, Wing PAC, Fassihi A. Discovery of novel direct small-molecule inhibitors targeting HIF-2α using structure-based virtual screening, molecular dynamics simulation, and MM-GBSA calculations. Mol Divers 2024; 28:1203-1224. [PMID: 37120484 DOI: 10.1007/s11030-023-10650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Hypoxia-inducible factors (HIFs) are the main regulatory factors implicated in the adaptation of cancer cells to hypoxic stress, which has provoked much interest as an attractive target for the design of promising chemotherapeutic agents. Since indirect HIF inhibitors (HIFIs) lead to the occurrence of various side effects, the need of the hour is to develop direct HIFIs, physically interacting with important functional domains within the HIF protein structure. Accordingly, in the present study, it was attempted to develop an exhaustive structure-based virtual screening (VS) process coupled with molecular docking, molecular dynamic (MD) simulation, and MM-GBSA calculations for the identification of novel direct inhibitors against the HIF-2α subunit. For this purpose, a focused library of over 200,000 compounds from the NCI database was used for VS against the PAS-B domain of the target protein, HIF-2α. This domain was suggested to be a possible ligand-binding site, which is characterized by a large internal hydrophobic cavity, unique to the HIF-2α subunit. The top-ranked compounds, NSC106416, NSC217021, NSC217026, NSC215639, and NSC277811 with the best docking scores were taken up for the subsequent in silico ADME properties and PAINS filtration. The selected drug-like hits were employed for carrying out MD simulation which was followed by MM-GBSA calculations to retrieve the candidates showing the highest in silico binding affinity towards the PAS-B domain of HIF-2α. The analysis of results indicated that all molecules, except the NSC277811, fulfilled necessary drug-likeness properties. Four selected drug-like candidates, NSC106416, NSC217021, NSC217026, and NSC215639 were found to expose the stability profiles within the cavity located inside the PAS-B domain of HIF-2α over simulation time. Finally, the results of the MM-GBSA rescoring method were indicative of the highest binding affinity of NSC217026 for the binding site of the HIF-2α PAS-B domain among selected final hits. Consequently, the hit NSC217026 could serve as a promising scaffold for further optimization toward the design of direct HIF-2α inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Behnaz Yazdani
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Francisco J Enguita
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Simone Brogi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Afshin Fassihi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| |
Collapse
|
30
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
31
|
Curry L, Soleimani M. Belzutifan: a novel therapeutic for the management of von Hippel-Lindau disease and beyond. Future Oncol 2024; 20:1251-1266. [PMID: 38639572 PMCID: PMC11318713 DOI: 10.2217/fon-2023-0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024] Open
Abstract
The identification of the VHL gene and its role in regulating the hypoxia-inducible factor signaling pathway has helped to revolutionize the treatment of renal cell carcinoma (RCC). Belzutifan is a novel small-molecule inhibitor of hypoxia-inducible factor 2α which has demonstrated efficacy in treating von Hippel-Lindau (VHL) disease, earning regulatory approvals for this indication. There is also early evidence for efficacy in sporadic RCC. Belzutifan has a favorable safety profile. Several clinical trials are currently ongoing, which should help in identifying this promising drug's role in RCC and beyond. This review summarizes the history, pharmacology and clinical evidence for belzutifan use to date, and also explores unanswered questions as they relate to this novel therapeutic agent.
Collapse
Affiliation(s)
- Lauren Curry
- Division of Medical Oncology; British Columbia Cancer–Vancouver Cancer Centre/University of British Columbia, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| | - Maryam Soleimani
- Division of Medical Oncology; British Columbia Cancer–Vancouver Cancer Centre/University of British Columbia, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| |
Collapse
|
32
|
Ball A, Mohammed S, Doigneaux C, Gardner RM, Easton JW, Turner S, Essex JW, Pairaudeau G, Tavassoli A. Identification and Development of Cyclic Peptide Inhibitors of Hypoxia Inducible Factors 1 and 2 That Disrupt Hypoxia-Response Signaling in Cancer Cells. J Am Chem Soc 2024; 146:8877-8886. [PMID: 38503564 PMCID: PMC10996005 DOI: 10.1021/jacs.3c10508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Hypoxia inducible factor (HIF) is a heterodimeric transcription factor composed of an oxygen-regulated α subunit and a constitutively expressed β subunit that serves as the master regulator of the cellular response to low oxygen concentrations. The HIF transcription factor senses and responds to hypoxia by significantly altering transcription and reprogramming cells to enable adaptation to a hypoxic microenvironment. Given the central role played by HIF in the survival and growth of tumors in hypoxia, inhibition of this transcription factor serves as a potential therapeutic approach for treating a variety of cancers. Here, we report the identification, optimization, and characterization of a series of cyclic peptides that disrupt the function of HIF-1 and HIF-2 transcription factors by inhibiting the interaction of both HIF-1α and HIF-2α with HIF-1β. These compounds are shown to bind to HIF-α and disrupt the protein-protein interaction between the α and β subunits of the transcription factor, resulting in disruption of hypoxia-response signaling by our lead molecule in several cancer cell lines.
Collapse
Affiliation(s)
- Andrew
T. Ball
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Soran Mohammed
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Cyrielle Doigneaux
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Reece M. Gardner
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - James W. Easton
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Steven Turner
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Garry Pairaudeau
- Discovery
Sciences IMED Biotech Unit, AstraZeneca, 310 Cambridge Science Park, Milton
Road, Cambridge CB4 0WG, U.K.
| | - Ali Tavassoli
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
33
|
Chen S, Liu Y, Wang Z, Qi C, Yu Y, Xu L, Hou T, Sheng R. Identification of 3-aryl-5-methyl-isoxazole-4-carboxamide derivatives and analogs as novel HIF-2α agonists through docking-based virtual screening and structural modification. Eur J Med Chem 2024; 268:116227. [PMID: 38387335 DOI: 10.1016/j.ejmech.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Hypoxia-inducible factor-2 (HIF-2) serves as the pivotal transcription factor in cellular responses to low oxygen levels, particularly concerning the regulation of erythropoietin (EPO) production. A docking-based virtual screening on crystal structures of HIF-2α inhibitors unexpectedly identified 3-phenyl-5-methyl-isoxazole-4-carboxamide derivative v19 as a hit of HIF-2α agonist. Further structural optimizations of compound v19 led to the discovery of a series of HIF-2α agonists with novel scaffolds. The most promising compounds 12g and 14d exhibited potent HIF-2α agonistic activities in vitro with EC50 values of 2.29 μM and 1.78 μM, respectively. Molecular dynamics simulations have revealed their capacity to allosterically enhance HIF-2 dimerization, which shed light on their mechanism of action. Moreover, compound 14d demonstrated a favorable pharmacokinetic (PK) profile, boasting an impressive oral bioavailability value of 68.71 %. These findings strongly suggest that compound 14d is an auspicious lead compound for the treatment of renal anemia.
Collapse
Affiliation(s)
- Siyuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yao Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengcheng Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanzhen Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321036, China.
| |
Collapse
|
34
|
Ries B, Alibay I, Swenson DWH, Baumann HM, Henry MM, Eastwood JRB, Gowers RJ. Kartograf: A Geometrically Accurate Atom Mapper for Hybrid-Topology Relative Free Energy Calculations. J Chem Theory Comput 2024; 20:1862-1877. [PMID: 38330251 PMCID: PMC10941767 DOI: 10.1021/acs.jctc.3c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Relative binding free energy (RBFE) calculations have emerged as a powerful tool that supports ligand optimization in drug discovery. Despite many successes, the use of RBFEs can often be limited by automation problems, in particular, the setup of such calculations. Atom mapping algorithms are an essential component in setting up automatic large-scale hybrid-topology RBFE calculation campaigns. Traditional algorithms typically employ a 2D subgraph isomorphism solver (SIS) in order to estimate the maximum common substructure. SIS-based approaches can be limited by time-intensive operations and issues with capturing geometry-linked chemical properties, potentially leading to suboptimal solutions. To overcome these limitations, we have developed Kartograf, a geometric-graph-based algorithm that uses primarily the 3D coordinates of atoms to find a mapping between two ligands. In free energy approaches, the ligand conformations are usually derived from docking or other previous modeling approaches, giving the coordinates a certain importance. By considering the spatial relationships between atoms related to the molecule coordinates, our algorithm bypasses the computationally complex subgraph matching of SIS-based approaches and reduces the problem to a much simpler bipartite graph matching problem. Moreover, Kartograf effectively circumvents typical mapping issues induced by molecule symmetry and stereoisomerism, making it a more robust approach for atom mapping from a geometric perspective. To validate our method, we calculated mappings with our novel approach using a diverse set of small molecules and used the mappings in relative hydration and binding free energy calculations. The comparison with two SIS-based algorithms showed that Kartograf offers a fast alternative approach. The code for Kartograf is freely available on GitHub (https://github.com/OpenFreeEnergy/kartograf). While developed for the OpenFE ecosystem, Kartograf can also be utilized as a standalone Python package.
Collapse
Affiliation(s)
- Benjamin Ries
- Medicinal
Chemistry, Boehringer Ingelheim Pharma GmbH
& Co KG, Birkendorfer Str 65, 88397 Biberach an der Riss, Germany
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - Irfan Alibay
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - David W. H. Swenson
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - Hannah M. Baumann
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - Michael M. Henry
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
- Computational
and Systems Biology Program, Sloan Kettering
Institute, Memorial Sloan Kettering Cancer Center, New York, 1275 New York, United States
| | - James R. B. Eastwood
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - Richard J. Gowers
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| |
Collapse
|
35
|
Xie J, Zhang Y, Li B, Xi W, Wang Y, Li L, Liu C, Shen L, Han B, Kong Y, Yao H, Zhang Z. Inhibition of OGFOD1 by FG4592 confers neuroprotection by activating unfolded protein response and autophagy after ischemic stroke. J Transl Med 2024; 22:248. [PMID: 38454480 PMCID: PMC10921652 DOI: 10.1186/s12967-024-04993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Acute ischemic stroke is a common neurological disease with a significant financial burden but lacks effective drugs. Hypoxia-inducible factor (HIF) and prolyl hydroxylases (PHDs) participate in the pathophysiological process of ischemia. However, whether FG4592, the first clinically approved PHDs inhibitor, can alleviate ischemic brain injury remains unclear. METHODS The infarct volumes and behaviour tests were first analyzed in mice after ischemic stroke with systemic administration of FG4592. The knockdown of HIF-1α and pretreatments of HIF-1/2α inhibitors were then used to verify whether the neuroprotection of FG4592 is HIF-dependent. The targets predicting and molecular docking methods were applied to find other targets of FG4592. Molecular, cell biological and gene knockdown methods were finally conducted to explore the potential neuroprotective mechanisms of FG4592. RESULTS We found that the systemic administration of FG4592 decreased infarct volume and improved neurological defects of mice after transient or permanent ischemia. Meanwhile, FG4592 also activated autophagy and inhibited apoptosis in peri-infarct tissue of mice brains. However, in vitro and in vivo results suggested that the neuroprotection of FG4592 was not classical HIF-dependent. 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) was found to be a novel target of FG4592 and regulated the Pro-62 hydroxylation in the small ribosomal protein s23 (Rps23) with the help of target predicting and molecular docking methods. Subsequently, the knockdown of OGFOD1 protected the cell against ischemia/reperfusion injury and activated unfolded protein response (UPR) and autophagy. Moreover, FG4592 was also found to activate UPR and autophagic flux in HIF-1α independent manner. Blocking UPR attenuated the neuroprotection, pro-autophagy effect and anti-apoptosis ability of FG4592. CONCLUSION This study demonstrated that FG4592 could be a candidate drug for treating ischemic stroke. The neuroprotection of FG4592 might be mediated by inhibiting alternative target OGFOD1, which activated the UPR and autophagy and inhibited apoptosis after ischemic injury. The inhibition of OGFOD1 is a novel therapy for ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bin Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Wen Xi
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lu Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Chenchen Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - HongHong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, Jiangsu, China.
- The Brain Cognition and Brain Disease Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
36
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
37
|
Wang Z, Yan M, Ye L, Zhou Q, Duan Y, Jiang H, Wang L, Ouyang Y, Zhang H, Shen Y, Ji G, Chen X, Tian Q, Xiao L, Wu Q, Meng Y, Liu G, Ma L, Lei B, Lu Z, Xu D. VHL suppresses autophagy and tumor growth through PHD1-dependent Beclin1 hydroxylation. EMBO J 2024; 43:931-955. [PMID: 38360997 PMCID: PMC10943020 DOI: 10.1038/s44318-024-00051-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.
Collapse
Affiliation(s)
- Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Leiguang Ye
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Yuran Duan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Hongfei Jiang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, 266061, Qingdao, Shandong, China
| | - Lei Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Yuan Ouyang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huahe Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang Province, China
| | - Yuli Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Guimei Ji
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Xiaohan Chen
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150001, Harbin, Heilongjiang Province, China
| | - Qi Tian
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Qingang Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Guijun Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, 266061, Qingdao, Shandong, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang Province, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
| |
Collapse
|
38
|
Shi J, Lv Q, Miao D, Xiong Z, Wei Z, Wu S, Tan D, Wang K, Zhang X. HIF2α Promotes Cancer Metastasis through TCF7L2-Dependent Fatty Acid Synthesis in ccRCC. RESEARCH (WASHINGTON, D.C.) 2024; 7:0322. [PMID: 38390305 PMCID: PMC10882601 DOI: 10.34133/research.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Recent studies have highlighted the notable involvement of the crosstalk between hypoxia-inducible factor 2 alpha (HIF2α) and Wnt signaling components in tumorigenesis. However, the cellular function and precise regulatory mechanisms of HIF2α and Wnt signaling interactions in clear cell renal cell carcinoma (ccRCC) remain elusive. To analyze the correlation between HIF2α and Wnt signaling, we utilized the Cancer Genome Atlas - Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) public database, HIF2α RNA sequencing data, and conducted luciferase reporter assays. A Wnt-related gene set was employed to identify key regulators of Wnt signaling controlled by HIF2α in ccRCC. Furthermore, we assessed the biological effects of TCF7L2 on ccRCC metastasis and lipid metabolism in both in vivo and in vitro settings. Our outcomes confirm TCF7L2 as a key gene involved in HIF2α-mediated regulation of the canonical Wnt pathway. Functional studies demonstrate that TCF7L2 promotes metastasis in ccRCC. Mechanistic investigations reveal that HIF2α stabilizes TCF7L2 mRNA in a method based on m6A by transcriptionally regulating METTL3. Up-regulation of TCF7L2 enhances cellular fatty acid oxidation, which promotes histone acetylation. This facilitates the transcription of genes connected to epithelial-mesenchymal transition and ultimately enhances metastasis of ccRCC. These outcomes offer a novel understanding into the involvement of lipid metabolism in the signaling pathway regulation, offering valuable implications for targeted treatment in ccRCC.
Collapse
Affiliation(s)
- Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Songming Wu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| |
Collapse
|
39
|
Sharma D, Partch CL. PAS Dimerization at the Nexus of the Mammalian Circadian Clock. J Mol Biol 2024; 436:168341. [PMID: 37924861 PMCID: PMC11729053 DOI: 10.1016/j.jmb.2023.168341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Circadian rhythms are genetically encoded molecular clocks for internal biological timekeeping. Organisms from single-cell bacteria to humans use these clocks to adapt to the external environment and synchronize their physiology and behavior to solar light/dark cycles. Although the proteins that constitute the molecular 'cogs' and give rise to circadian rhythms are now known, we still lack a detailed understanding of how these proteins interact to generate and sustain the ∼24-hour circadian clock. Structural studies have helped to expand the architecture of clock proteins and have revealed the abundance of the only well-defined structured regions in the mammalian clock called Per-ARNT-Sim (PAS) domains. PAS domains are modular, evolutionarily conserved sensory and signaling domains that typically mediate protein-protein interactions. In the mammalian circadian clock, PAS domains modulate homo and heterodimerization of several core clock proteins that assemble into transcription factors or repressors. This review will focus on the functional importance of the PAS domains in the circadian clock from a biophysical and biochemical standpoint and describe their roles in clock protein interactions and circadian timekeeping.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States; Center for Circadian Biology, University of California San Diego, CA, United States.
| |
Collapse
|
40
|
Kim H, Liu Y, Kim J, Kim Y, Klouda T, Fisch S, Baek SH, Liu T, Dahlberg S, Hu CJ, Tian W, Jiang X, Kosmas K, Christou HA, Korman BD, Vargas SO, Wu JC, Stenmark KR, Perez VDJ, Nicolls MR, Raby BA, Yuan K. Pericytes contribute to pulmonary vascular remodeling via HIF2α signaling. EMBO Rep 2024; 25:616-645. [PMID: 38243138 PMCID: PMC10897382 DOI: 10.1038/s44319-023-00054-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.
Collapse
Affiliation(s)
- Hyunbum Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Liu
- Stanford Cardiovascular Institute; Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jiwon Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunhye Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy Klouda
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudeshna Fisch
- Department of Medicine, Brigham and Women Hospital, Boston, MA, USA
| | - Seung Han Baek
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiffany Liu
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suzanne Dahlberg
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Wen Tian
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford University, Stanford, CA, USA
| | - Xinguo Jiang
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford University, Stanford, CA, USA
| | - Kosmas Kosmas
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Helen A Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Korman
- Division of Allergy/Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Sara O Vargas
- Division of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute; Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford University, Stanford, CA, USA
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Ortmann BM. Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ ONCOLOGY 2024; 3:e000154. [PMID: 39886164 PMCID: PMC11203102 DOI: 10.1136/bmjonc-2023-000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF). HIF is a transcription factor that orchestrates cellular responses to low oxygen levels, driving angiogenesis, metabolic adaptation and immune regulation. HIF's dysregulation is frequently observed in various cancer types and correlates with increased aggressiveness, metastasis, resistance to therapy and poor patient prognosis. Consequently, understanding the cellular mechanisms underlying HIF activation and its downstream effects has become crucial to developing targeted cancer therapies for improving cancer patient outcomes and represents a key step towards precision medicine. Recent advancements in drug development have led to the emergence of HIF inhibitors, which aim to disrupt HIF-driven processes in cancer providing therapeutic benefit. Here, we provide a review of the molecular mechanisms through which HIF promotes tumour growth and resistance, emphasising the potential clinical benefits of HIF-targeted therapies. This review will discuss the challenges and opportunities associated with translating HIF inhibition into clinical practice, including ongoing clinical trials and future directions in the development of HIF-based cancer treatments.
Collapse
Affiliation(s)
- Brian M Ortmann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
42
|
Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: mechanism and therapy. Discov Oncol 2024; 15:2. [PMID: 38165484 PMCID: PMC10761656 DOI: 10.1007/s12672-023-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia, which activates a variety of signaling pathways to enhance tumor cell growth and metabolism, is among the primary features of tumor cells. Hypoxia-inducible factors (HIFs) have a substantial impact on a variety of facets of tumor biology, such as epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and improved radiation resistance. HIFs induce hypoxia-adaptive responses in tumor cells. Many academics have presented preclinical and clinical research targeting HIFs in tumor therapy, highlighting the potential applicability of targeted HIFs. In recent years, the discovery of numerous pharmacological drugs targeting the regulatory mechanisms of HIFs has garnered substantial attention. Additionally, HIF inhibitors have attained positive results when used in conjunction with traditional oncology radiation and/or chemotherapy, as well as with the very promising addition of tumor immunotherapy. Immune checkpoint inhibitors (CPIs), which are employed in a range of cancer treatments over the past decades, are essential in tumor immunotherapy. Nevertheless, the use of immunotherapy has been severely hampered by tumor resistance and treatment-related toxicity. According to research, HIF inhibitors paired with CPIs may be game changers for multiple malignancies, decreasing malignant cell plasticity and cancer therapy resistance, among other things, and opening up substantial new pathways for immunotherapy drug development. The structure, activation mechanisms, and pharmacological sites of action of the HIF family are briefly reviewed in this work. This review further explores the interactions between HIF inhibitors and other tumor immunotherapy components and covers the potential clinical use of HIF inhibitors in combination with CPIs.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China.
| |
Collapse
|
43
|
Yoshikawa K, Hagimoto H, Nakamura E. [The development of innovative therapeutic drugs targeting hypoxia responses]. Nihon Yakurigaku Zasshi 2024; 159:160-164. [PMID: 38692880 DOI: 10.1254/fpj.23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The 2019 Nobel Prize in Physiology or Medicine was awarded to Dr. William G. Kaelin Jr, Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza for their elucidation of new physiological mechanisms "How cells sense and adapt to oxygen availability". Moreover, two different drugs, HIF-PH inhibitors and HIF-2 inhibitors were also developed based on the discovery. Interestingly, those three doctors have different backgrounds as a medical oncologist, a nephrologist, and a pediatrician, respectively. They have started the research based on their own unique perspectives and eventually merged as "the elucidation of the response mechanism of living organisms to hypoxic environments". In this review, we will explain how the translational research that has begun to solve unmet clinical needs successfully contributed to the development of innovative therapeutic drugs.
Collapse
Affiliation(s)
- Kiyotsugu Yoshikawa
- Laboratory of Pharmacotherapy, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | | | | |
Collapse
|
44
|
Golijanin B, Malshy K, Khaleel S, Lagos G, Amin A, Cheng L, Golijanin D, Mega A. Evolution of the HIF targeted therapy in clear cell renal cell carcinoma. Cancer Treat Rev 2023; 121:102645. [PMID: 37879247 DOI: 10.1016/j.ctrv.2023.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer, affecting hundreds of thousands of people worldwide and can affect people of any age. The pathogenesis of ccRCC is most commonly due to biallelic loss of the tumor suppressor gene VHL. VHL is the recognition subunit of an E3-ubiquitin-ligase-complex essential for degradation of the hypoxia-inducible factors (HIF) 1α and 2α. Dysfunctional degradation of HIF results in overaccumulation, which is particularly concerning with the HIF2α subunit. This leads to nuclear translocation, dimerization, and transactivation of numerous HIF-regulated genes responsible for cell survival and proliferation in ccRCC. FDA-approved therapies for RCC have primarily focused on targeting downstream effectors of HIF, then incorporated immunotherapeutics, and now, novel approaches are moving back to HIF with a focus on interfering with upstream targets. This review summarizes the role of HIF in the pathogenesis of ccRCC, novel HIF2α-focused therapeutic approaches, and opportunities for ccRCC treatment.
Collapse
Affiliation(s)
- Borivoj Golijanin
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States.
| | - Kamil Malshy
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Sari Khaleel
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Galina Lagos
- Lifespan Cancer Institute, Department of Hematology and Oncology, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Dragan Golijanin
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Anthony Mega
- Lifespan Cancer Institute, Department of Hematology and Oncology, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| |
Collapse
|
45
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
Magliulo D, Simoni M, Caserta C, Fracassi C, Belluschi S, Giannetti K, Pini R, Zapparoli E, Beretta S, Uggè M, Draghi E, Rossari F, Coltella N, Tresoldi C, Morelli MJ, Di Micco R, Gentner B, Vago L, Bernardi R. The transcription factor HIF2α partakes in the differentiation block of acute myeloid leukemia. EMBO Mol Med 2023; 15:e17810. [PMID: 37807875 PMCID: PMC10630882 DOI: 10.15252/emmm.202317810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.
Collapse
Affiliation(s)
- Daniela Magliulo
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Matilde Simoni
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Carolina Caserta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Fracassi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Serena Belluschi
- Vita Salute San Raffaele University School of MedicineMilanItaly
- Present address:
MogrifyCambridgeUK
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Pini
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ettore Zapparoli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Martina Uggè
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Eleonora Draghi
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Federico Rossari
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita Salute San Raffaele University School of MedicineMilanItaly
| | - Nadia Coltella
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Tresoldi
- Unit of Hematology and Bone Marrow TransplantationIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marco J Morelli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Present address:
Ludwig Institute for Cancer researchLausanne UniversityLausanneSwitzerland
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Rosa Bernardi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
47
|
Zhou S, Yan J, Song K, Ge RL. High-Altitude Hypoxia Induces Excessive Erythrocytosis in Mice via Upregulation of the Intestinal HIF2a/Iron-Metabolism Pathway. Biomedicines 2023; 11:2992. [PMID: 38001992 PMCID: PMC10669251 DOI: 10.3390/biomedicines11112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive erythrocytosis (EE) is a preclinical form of chronic mountain sickness (CMS). The dysregulation of iron metabolism in high-altitude hypoxia may induce EE. The intestinal hypoxia-inducible factor 2 alpha (HIF2a) regulates the genes involved in iron metabolism. Considering these findings, we aimed to investigate the function and mechanism of intestinal HIF2α and the iron metabolism pathway in high-altitude EE mice. C57BL/6J mice were randomized into four groups: the low-altitude group, the high-altitude group, the high-altitude + HIF2α inhibitor group, and the high-altitude + vehicle group. In-vitro experiments were performed using the human intestinal cell line HCT116 cultured under hypoxic conditions for 24 h. Results showed that high-altitude hypoxia significantly increased the expression of intestinal HIF2α and iron metabolism-related genes, including Dmt1, Dcytb, Fpn, Tfrc, and Fth in EE mice. Genetic blockade of the intestinal HIF2α-iron metabolism pathway decreased iron availability in HCT116 cells during hypoxia. The HIF2α inhibitor PT2385 suppressed intestinal HIF2α expression, decreased iron hypermetabolism, and reduced excessive erythrocytosis in mice. These data support the hypothesis that exposure to high-altitude hypoxia can lead to iron hypermetabolism by activating intestinal HIF2α transcriptional regulation, and reduced iron availability improves EE by inhibiting intestinal HIF2α signaling.
Collapse
Affiliation(s)
- Sisi Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (S.Z.); (J.Y.); (K.S.)
- Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Jun Yan
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (S.Z.); (J.Y.); (K.S.)
- Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Kang Song
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (S.Z.); (J.Y.); (K.S.)
- Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (S.Z.); (J.Y.); (K.S.)
- Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| |
Collapse
|
48
|
Wang Y, Liu X, Wang M, Wang Y, Wang S, Jin L, Liu M, Zhou J, Chen Y. UBE3B promotes breast cancer progression by antagonizing HIF-2α degradation. Oncogene 2023; 42:3394-3406. [PMID: 37783786 DOI: 10.1038/s41388-023-02842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Mutations in E3 ubiquitin ligase UBE3B have been linked to Kaufman Oculocerebrofacial Syndrome (KOS). Accumulating evidence indicates that UBE3B may play an important role in cancer. However, the precise role of UBE3B in cancer and the underlying mechanism remain largely uncharted. Here, we reported that UBE3B is an E3 ligase for hypoxia-inducible factor 2α (HIF-2α). Mechanically, UBE3B physically interacts with HIF-2α and promotes its lysine 63 (K63)-linked polyubiquitination, thereby inhibiting the Von Hippel-Lindau (VHL) E3 ligase complex-mediated HIF-2α degradation. UBE3B depletion inhibits breast cancer cell proliferation, colony formation, migration, and invasion in vitro and suppresses breast tumor growth and lung metastasis in vivo. We further identified K394, K497, and K503 of HIF-2α as key ubiquitination sites for UBE3B. K394/497/503R mutation of HIF-2α dramatically abolishes UBE3B-mediated breast cancer growth and lung metastasis. Intriguingly, the protein levels of UBE3B are upregulated and positively correlated with HIF-2α protein levels in breast cancer tissues. These findings uncover a critical mechanism underlying the role of UBE3B in HIF-2α regulation and breast cancer progression.
Collapse
Affiliation(s)
- Yijie Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Lai Jin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yan Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
49
|
Roennfeldt AE, Allen TP, Trowbridge BN, Beard MR, Whitelaw ML, Russell DL, Bersten DC, Peet DJ. NanoFIRE: A NanoLuciferase and Fluorescent Integrated Reporter Element for Robust and Sensitive Investigation of HIF and Other Signalling Pathways. Biomolecules 2023; 13:1545. [PMID: 37892227 PMCID: PMC10605489 DOI: 10.3390/biom13101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The Hypoxia Inducible Factor (HIF) transcription factors are imperative for cell adaption to low oxygen conditions and development; however, they also contribute to ischaemic disease and cancer. To identify novel genetic regulators which target the HIF pathway or small molecules for therapeutic use, cell-based reporter systems are commonly used. Here, we present a new, highly sensitive and versatile reporter system, NanoFIRE: a NanoLuciferase and Fluorescent Integrated Reporter Element. Under the control of a Hypoxic Response Element (HRE-NanoFIRE), this system is a robust sensor of HIF activity within cells and potently responds to both hypoxia and chemical inducers of the HIF pathway in a highly reproducible and sensitive manner, consistently achieving 20 to 150-fold induction across different cell types and a Z' score > 0.5. We demonstrate that the NanoFIRE system is adaptable via substitution of the response element controlling NanoLuciferase and show that it can report on the activity of the transcriptional regulator Factor Inhibiting HIF, and an unrelated transcription factor, the Progesterone Receptor. Furthermore, the lentivirus-mediated stable integration of NanoFIRE highlights the versatility of this system across a wide range of cell types, including primary cells. Together, these findings demonstrate that NanoFIRE is a robust reporter system for the investigation of HIF and other transcription factor-mediated signalling pathways in cells, with applications in high throughput screening for the identification of novel small molecule and genetic regulators.
Collapse
Affiliation(s)
- Alison E. Roennfeldt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - Timothy P. Allen
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
| | - Brooke N. Trowbridge
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Michael R. Beard
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Murray L. Whitelaw
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 169857, Singapore
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - David C. Bersten
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia;
| | - Daniel J. Peet
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (A.E.R.); (T.P.A.); (B.N.T.); (M.R.B.); (M.L.W.)
| |
Collapse
|
50
|
Qin Q, Nein E, Flaten A, Zhang T. Toxicity Management of Systemic Kidney Cancer Therapies. Hematol Oncol Clin North Am 2023; 37:993-1003. [PMID: 37353375 DOI: 10.1016/j.hoc.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Systemic treatments for metastatic renal cell carcinoma have expanded to include antiangiogenic agents targeting either vascular endothelial growth factor receptor, immune checkpoint inhibitors against cytotoxic T-lymphocyte antigen 4, or programmed cell death 1 pathways, and combinations of these treatments. The hypoxia inducible factor-2 inhibitors are emerging, whereas mammalian target of rapamycin (inhibitors) role is fading. To sustain optimal efficacy of these agents, potential toxicities must be recognized early and clinically managed. Here, the authors discuss the adverse events attributable to these treatments and management strategies.
Collapse
Affiliation(s)
- Qian Qin
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8852, USA; Harold C. Simmons Comprehensive Cancer Center
| | - Ellen Nein
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8852, USA
| | - Andrea Flaten
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8852, USA; Harold C. Simmons Comprehensive Cancer Center
| | - Tian Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8852, USA; Harold C. Simmons Comprehensive Cancer Center.
| |
Collapse
|