1
|
Kim MS, Kang H, Baek JH, Cho MG, Chung EJ, Kim SJ, Chung JY, Chun KH. Disrupting Notch signaling related HES1 in myeloid cells reinvigorates antitumor T cell responses. Exp Hematol Oncol 2024; 13:122. [PMID: 39702544 DOI: 10.1186/s40164-024-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are immunosuppressive cells within the tumor microenvironment (TME) that hinder anti-tumor immunity. Notch signaling is a pathway crucial for TAM differentiation and function. Here, we investigate the role of HES1, a downstream target of Notch signaling, in TAM-mediated immunosuppression and explore its potential as a target for cancer immunotherapy. METHODS In this work, we constructed conditional Hes1 knockout mice to selectively delete Hes1 in TAMs. We further analyzed the TME composition, T cell infiltration and activation, and anti-tumor effects in these mice, both alone and in combination with PD-1 checkpoint blockade. RESULTS Our study showed that expression levels of Notch target Hes1 were increase in TAMs and mice with conditional knockout of Hes1 gene in TAMs exhibited decreased tumor growth, with increased infiltration and activation of cytotoxic T cells in tumors. Expression of tumor promoting factors was critically altered in Hes1-conditional KO TAMs, leading to the improved tumor microenvironment. Notably, arginase-1 expression was decreased in Hes1-conditional KO mice. Arg1 is known to deplete arginine and deactivate T cells in the TME. Administration of anti-PD-1 monoclonal antibody inhibited tumor growth to a greater extent in Hes1-conditional KO mice than in WT mice. CONCLUSIONS We identified a pivotal role for the Notch signaling pathway in shaping TAM function, suggesting that T-cell dysfunction in the TME is caused when the Notch target, HES1, in TAMs is upregulated by tumor-associated factors (TAFs), which, in turn, increases the expression of arginase-1. Targeting HES1 in TAMs appears to be a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Myung Sup Kim
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeokgu Kang
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Hwan Baek
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moon-Gyu Cho
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seok-Jun Kim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Affiliate Faculty, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Sfeir N, Kajdan M, Jalaguier S, Bonnet S, Teyssier C, Pyrdziak S, Yuan R, Bousquet E, Maraver A, Bernex F, Pirot N, Boissière‐Michot F, Castet‐Nicolas A, Lapierre M, Cavaillès V. RIP140 regulates transcription factor HES1 oscillatory expression and mitogenic activity in colon cancer cells. Mol Oncol 2024; 18:1510-1530. [PMID: 38459621 PMCID: PMC11161732 DOI: 10.1002/1878-0261.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
The transcription factor receptor-interacting protein 140 (RIP140) regulates intestinal homeostasis and tumorigenesis through Wnt signaling. In this study, we investigated its effect on the Notch/HES1 signaling pathway. In colorectal cancer (CRC) cell lines, RIP140 positively regulated HES1 gene expression at the transcriptional level via a recombining binding protein suppressor of hairless (RBPJ)/neurogenic locus notch homolog protein 1 (NICD)-mediated mechanism. In support of these in vitro data, RIP140 and HES1 expression significantly correlated in mouse intestine and in a cohort of CRC samples, thus supporting the positive regulation of HES1 gene expression by RIP140. Interestingly, when the Notch pathway is fully activated, RIP140 exerted a strong inhibition of HES1 gene transcription controlled by the level of HES1 itself. Moreover, RIP140 directly interacts with HES1 and reversed its mitogenic activity in human CRC cells. In line with this observation, HES1 levels were associated with a better patient survival only when tumors expressed high levels of RIP140. Our data identify RIP140 as a key regulator of the Notch/HES1 signaling pathway, with a dual effect on HES1 gene expression at the transcriptional level and a strong impact on colon cancer cell proliferation.
Collapse
Affiliation(s)
- Nour Sfeir
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Marilyn Kajdan
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Stéphan Jalaguier
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Sandrine Bonnet
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Catherine Teyssier
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Samuel Pyrdziak
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Rong Yuan
- Department of Medical Microbiology, Immunology and Cell Biology, School of MedicineSouthern Illinois UniversitySpringfieldILUSA
| | - Emilie Bousquet
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Antonio Maraver
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Nelly Pirot
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Florence Boissière‐Michot
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
- Translational Research UnitMontpellier Cancer Institute Val d'AurelleFrance
| | - Audrey Castet‐Nicolas
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Marion Lapierre
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| |
Collapse
|
3
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Hu J, Li J, Dai C, Ren J, Yang W, He C, Meng F, Dai C, Zeng S. HES1 deficiency impairs development of human intestinal mesenchyme by suppressing WNT5A expression. Biochem Biophys Res Commun 2023; 655:50-58. [PMID: 36933307 DOI: 10.1016/j.bbrc.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Serious intestinal side-effects that target the NOTCH-HES1 pathway in human cancer differentiation therapy make it necessary to understand the pathway at the human organ level. Herein, we endogenously introduced HES1-/- mutations into human embryonic stem cells (hESCs) and differentiated them into human intestinal organoids (HIO). The HES1-/- hESCs retained ES cell properties and showed gene expression patterns similar to those of wild-type hESCs when they differentiated into definitive endoderm and hindgut. During the formation of the HES1-/- lumen we noted an impaired development of mesenchymal cells in addition to the increased differentiation of secretory epithelium. RNA-Seq revealed that inhibited development of the mesenchymal cells may have been due to a downregulation of WNT5A signaling. Overexpression of HES1 and silencing of WNT5A in the intestinal fibroblast cell line CCD-18Co indicated that HES1 was involved in the activation of WNT5A-induced fibroblast growth and migration, suggesting the likelihood of the Notch pathway in epithelial-mesenchymal crosstalk. Our results facilitated the identification of more precise underlying molecular mechanisms displaying distinct roles in HES1 signaling in stromal and epithelial development in human intestinal mucosa.
Collapse
Affiliation(s)
- Jianmin Hu
- Hunan Guangxiu Hospital, School of Medicine, Hunan Normal University, Changsha, 410001, Hunan, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, 410001, Hunan, China
| | - Jin Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, PR China; Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, National Engineering and Research Center of Human Stem Cells, Changsha, 410001, Hunan, China
| | - Can Dai
- Hunan Guangxiu Hospital, School of Medicine, Hunan Normal University, Changsha, 410001, Hunan, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, 410001, Hunan, China
| | - Jinlin Ren
- Hunan Guangxiu Hospital, School of Medicine, Hunan Normal University, Changsha, 410001, Hunan, China; Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, National Engineering and Research Center of Human Stem Cells, Changsha, 410001, Hunan, China
| | - Wenru Yang
- Hunan Guangxiu Hospital, School of Medicine, Hunan Normal University, Changsha, 410001, Hunan, China
| | - Caixia He
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, National Engineering and Research Center of Human Stem Cells, Changsha, 410001, Hunan, China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, 410001, Hunan, China
| | - Congling Dai
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, PR China; Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, National Engineering and Research Center of Human Stem Cells, Changsha, 410001, Hunan, China
| | - Sicong Zeng
- Hunan Guangxiu Hospital, School of Medicine, Hunan Normal University, Changsha, 410001, Hunan, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, PR China; Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, National Engineering and Research Center of Human Stem Cells, Changsha, 410001, Hunan, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, 410001, Hunan, China.
| |
Collapse
|
5
|
Núñez-Sánchez MA, Herisson FM, Keane JM, García-González N, Rossini V, Pinhiero J, Daly J, Bustamante-Garrido M, Hueston CM, Patel S, Canela N, Herrero P, Claesson MJ, Melgar S, Nally K, Caplice NM, Gahan CG. Microbial bile salt hydrolase activity influences gene expression profiles and gastrointestinal maturation in infant mice. Gut Microbes 2022; 14:2149023. [PMID: 36420990 PMCID: PMC9704388 DOI: 10.1080/19490976.2022.2149023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mechanisms by which early microbial colonizers of the neonate influence gut development are poorly understood. Bacterial bile salt hydrolase (BSH) acts as a putative colonization factor that influences bile acid signatures and microbe-host signaling pathways and we considered whether this activity can influence infant gut development. In silico analysis of the human neonatal gut metagenome confirmed that BSH enzyme sequences are present as early as one day postpartum. Gastrointestinal delivery of cloned BSH to immature gnotobiotic mice accelerated shortening of the colon and regularized gene expression profiles, with monocolonised mice more closely resembling conventionally raised animals. In situ expression of BSH decreased markers of cell proliferation (Ki67, Hes2 and Ascl2) and strongly increased expression of ALPI, a marker of cell differentiation and barrier function. These data suggest an evolutionary paradigm whereby microbial BSH activity potentially influences bacterial colonization and in-turn benefits host gastrointestinal maturation.
Collapse
Affiliation(s)
- María A. Núñez-Sánchez
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Florence M. Herisson
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | - Jonathan M. Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Natalia García-González
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jorge Pinhiero
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Jack Daly
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Cara M. Hueston
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shriram Patel
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Nuria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Marcus J. Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Noel M. Caplice
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland,CONTACT Cormac G.M. Gahan APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Zhang Q, Wang HY, Nayak A, Nunez-Cruz S, Slupianek A, Liu X, Basappa J, Fan JS, Chekol S, Nejati R, Bogusz AM, Turner SD, Swaminathan K, Wasik MA. Induction of Transcriptional Inhibitor HES1 and the Related Repression of Tumor-Suppressor TXNIP Are Important Components of Cell-Transformation Program Imposed by Oncogenic Kinase NPM-ALK. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1186-1198. [PMID: 35640677 PMCID: PMC9379685 DOI: 10.1016/j.ajpath.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
This study reports that hairy and enhancer of split homolog-1 (HES1), known to repress gene transcription in progenitor cells of several cell lineages, was strongly expressed in cells and tissues of T-cell lymphoma expressing the oncogenic chimeric tyrosine kinase nucleophosmin (NPM)-anaplastic lymphoma kinase [ALK; ALK+ T-cell lymphoma (TCL)]. The structural analysis of the Orange domain of HES1 indicated that HES1 formed a highly stable homodimer. Of note, repression of HES1 expression led to inhibition of ALK+ TCL cell growth in vivo. The expression of the HES1 gene was induced by NPM-ALK through activation of STAT3, which bound to the gene's promoter and induced the gene's transcription. NPM-ALK also directly phosphorylated HES1 protein. In turn, HES1 up-regulated and down-regulated in ALK+ TCL cells, the expression of numerous genes, protein products of which are involved in key cell functions, such as cell proliferation and viability. Among the genes inhibited by HES1 was thioredoxin-interacting protein (TXNIP), encoding a protein implicated in promotion of cell death in various types of cells. Accordingly, ALK+ TCL cells and tissues lacked expression of TXNIP, and its transcription was co-inhibited by HES1 and STAT3 in an NPM-ALK-dependent manner. Finally, the induced expression of TXNIP induced massive apoptotic cell death of ALK+ TCL cells. The results reveal a novel NPM-ALK-controlled pro-oncogenic regulatory network and document an important role of HES and TXNIP in the NPM-ALK-driven oncogenesis, with the former protein displaying oncogenic and the latter tumor suppressor properties.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anindita Nayak
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artur Slupianek
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Agata M Bogusz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Reis L, Raciti M, Rodriguez PG, Joseph B, Al Rayyes I, Uhlén P, Falk A, da Cunha Lima ST, Ceccatelli S. Glyphosate-based herbicide induces long-lasting impairment in neuronal and glial differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2044-2057. [PMID: 35485992 PMCID: PMC9541419 DOI: 10.1002/tox.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 05/09/2023]
Abstract
Glyphosate-based herbicides (GBH) are among the most sold pesticides in the world. There are several formulations based on the active ingredient glyphosate (GLY) used along with other chemicals to improve the absorption and penetration in plants. The final composition of commercial GBH may modify GLY toxicological profile, potentially enhancing its neurotoxic properties. The developing nervous system is particularly susceptible to insults occurring during the early phases of development, and exposure to chemicals in this period may lead to persistent impairments on neurogenesis and differentiation. The aim of this study was to evaluate the long-lasting effects of a sub-cytotoxic concentration, 2.5 parts per million of GBH and GLY, on the differentiation of human neuroepithelial stem cells (NES) derived from induced pluripotent stem cells (iPSC). We treated NES cells with each compound and evaluated the effects on key cellular processes, such as proliferation and differentiation in daughter cells never directly exposed to the toxicants. We found that GBH induced a more immature neuronal profile associated to increased PAX6, NESTIN and DCX expression, and a shift in the differentiation process toward glial cell fate at the expense of mature neurons, as shown by an increase in the glial markers GFAP, GLT1, GLAST and a decrease in MAP2. Such alterations were associated to dysregulation of key genes critically involved in neurogenesis, including PAX6, HES1, HES5, and DDK1. Altogether, the data indicate that subtoxic concentrations of GBH, but not of GLY, induce long-lasting impairments on the differentiation potential of NES cells.
Collapse
Affiliation(s)
- Luã Reis
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Marilena Raciti
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Bertrand Joseph
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Per Uhlén
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Anna Falk
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Suzana Telles da Cunha Lima
- Laboratório de Bioprospecção e Biotecnologia, Instituto de BiologiaUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | | |
Collapse
|
8
|
Xie L, Fletcher RB, Bhatia D, Shah D, Phipps J, Deshmukh S, Zhang H, Ye J, Lee S, Le L, Newman M, Chen H, Sura A, Gupta S, Sanman LE, Yang F, Meng W, Baribault H, Vanhove GF, Yeh WC, Li Y, Lu C. Robust Colonic Epithelial Regeneration and Amelioration of Colitis via FZD-Specific Activation of Wnt Signaling. Cell Mol Gastroenterol Hepatol 2022; 14:435-464. [PMID: 35569814 PMCID: PMC9305022 DOI: 10.1016/j.jcmgh.2022.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Current management of inflammatory bowel disease leaves a clear unmet need to treat the severe epithelial damage. Modulation of Wnt signaling might present an opportunity to achieve histological remission and mucosal healing when treating IBD. Exogenous R-spondin, which amplifies Wnt signals by maintaining cell surface expression of Frizzled (Fzd) and low-density lipoprotein receptor-related protein receptors, not only helps repair intestine epithelial damage, but also induces hyperplasia of normal epithelium. Wnt signaling may also be modulated with the recently developed Wnt mimetics, recombinant antibody-based molecules mimicking endogenous Wnts. METHODS We first compared the epithelial healing effects of RSPO2 and a Wnt mimetic with broad Fzd specificity in an acute dextran sulfate sodium mouse colitis model. Guided by Fzd expression patterns in the colon epithelium, we also examined the effects of Wnt mimetics with subfamily Fzd specificities. RESULTS In the DSS model, Wnt mimetics repaired damaged colon epithelium and reduced disease activity and inflammation and had no apparent effect on uninjured tissue. We further identified that the FZD5/8 and LRP6 receptor-specific Wnt mimetic, SZN-1326-p, was associated with the robust repair effect. Through a range of approaches including single-cell transcriptome analyses, we demonstrated that SZN-1326-p directly impacted epithelial cells, driving transient expansion of stem and progenitor cells, promoting differentiation of epithelial cells, histologically restoring the damaged epithelium, and secondarily to epithelial repair, reducing inflammation. CONCLUSIONS It is feasible to design Wnt mimetics such as SZN-1326-p that impact damaged intestine epithelium specifically and restore its physiological functions, an approach that holds promise for treating epithelial damage in inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chenggang Lu
- Correspondence Address correspondence to: Chenggang Lu, PhD, Surrozen, Inc., 171 Oyster Point Boulevard, Suite 400, South San Francisco, CA 94080.
| |
Collapse
|
9
|
Nagao M, Fukuda A, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Masuda T, Araki O, Yoshikawa T, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Muta Y, Tsuda M, Maruno T, Nakanishi Y, Taketo MM, Ferrer J, Tsuruyama T, Nakanuma Y, Taura K, Uemoto S, Seno H. Concurrent Activation of Kras and Canonical Wnt Signaling Induces Premalignant Lesions That Progress to Extrahepatic Biliary Cancer in Mice. Cancer Res 2022; 82:1803-1817. [PMID: 35247892 DOI: 10.1158/0008-5472.can-21-2176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Biliary cancer has long been known to carry a poor prognosis, yet the molecular pathogenesis of carcinoma of the extrahepatic biliary system and its precursor lesions remains elusive. Here we investigated the role of Kras and canonical Wnt pathways in the tumorigenesis of the extrahepatic bile duct (EHBD) and gall bladder (GB). In mice, concurrent activation of Kras and Wnt pathways induced biliary neoplasms that resembled human intracholecystic papillary-tubular neoplasm (ICPN) and biliary intraepithelial neoplasia (BilIN), putative precursors to invasive biliary cancer. At a low frequency, these lesions progressed to adenocarcinoma in a xenograft model, establishing them as precancerous lesions. Global gene expression analysis revealed increased expression of genes associated with c-Myc and TGFβ pathways in mutant biliary spheroids. Silencing or pharmacologic inhibition of c-Myc suppressed proliferation of mutant biliary spheroids, whereas silencing of Smad4/Tgfbr2 or pharmacologic inhibition of TGFβ signaling increased proliferation of mutant biliary spheroids and cancer formation in vivo. Human ICPNs displayed activated Kras and Wnt signals and c-Myc and TGFβ pathways. Thus, these data provide direct evidence that concurrent activation of the Kras and canonical Wnt pathways results in formation of ICPN and BilIN, which could develop into biliary cancer. SIGNIFICANCE This work shows how dysregulation of canonical cell growth pathways drives precursors to biliary cancers and identifies several molecular vulnerabilities as potential therapeutic targets in these precursors to prevent oncogenic progression.
Collapse
Affiliation(s)
- Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuichi Fukunaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.,Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Osamu Araki
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takaaki Yoshikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Kenji Masuo
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Makoto Mark Taketo
- Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka, Japan.,iACT, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Spain.,Genetics and Genomics Section, Department of Metabolism, Digestion and Reproduction, National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, United Kingdom
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yasuni Nakanuma
- Department of Diagnostic Pathology, Fukui Prefecture Saiseikai Hospital, Fukui, Japan
| | - Kojiro Taura
- Division of Hepatobiliary Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepatobiliary Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
10
|
Mahfoudhi E, Ricordel C, Lecuyer G, Mouric C, Lena H, Pedeux R. Preclinical Models for Acquired Resistance to Third-Generation EGFR Inhibitors in NSCLC: Functional Studies and Drug Combinations Used to Overcome Resistance. Front Oncol 2022; 12:853501. [PMID: 35463360 PMCID: PMC9023070 DOI: 10.3389/fonc.2022.853501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are currently recommended as first-line treatment for advanced non-small-cell lung cancer (NSCLC) with EGFR-activating mutations. Third-generation (3rd G) EGFR-TKIs, including osimertinib, offer an effective treatment option for patients with NSCLC resistant 1st and 2nd EGFR-TKIs. However, the efficacy of 3rd G EGFR-TKIs is limited by acquired resistance that has become a growing clinical challenge. Several clinical and preclinical studies are being carried out to better understand the mechanisms of resistance to 3rd G EGFR-TKIs and have revealed various genetic aberrations associated with molecular heterogeneity of cancer cells. Studies focusing on epigenetic events are limited despite several indications of their involvement in the development of resistance. Preclinical models, established in most cases in a similar manner, have shown different prevalence of resistance mechanisms from clinical samples. Clinically identified mechanisms include EGFR mutations that were not identified in preclinical models. Thus, NRAS genetic alterations were not observed in patients but have been described in cell lines resistant to 3rd G EGFR-TKI. Mainly, resistance to 3rd G EGFR-TKI in preclinical models is related to the activation of alternative signaling pathways through tyrosine kinase receptor (TKR) activation or to histological and phenotypic transformations. Yet, preclinical models have provided some insight into the complex network between dominant drivers and associated events that lead to the emergence of resistance and consequently have identified new therapeutic targets. This review provides an overview of preclinical studies developed to investigate the mechanisms of acquired resistance to 3rd G EGFR-TKIs, including osimertinib and rociletinib, across all lines of therapy. In fact, some of the models described were first generated to be resistant to first- and second-generation EGFR-TKIs and often carried the T790M mutation, while others had never been exposed to TKIs. The review further describes the therapeutic opportunities to overcome resistance, based on preclinical studies.
Collapse
Affiliation(s)
- Emna Mahfoudhi
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Charles Ricordel
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Service de Pneumologie, Université de Rennes 1, Rennes, France
| | - Gwendoline Lecuyer
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Cécile Mouric
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Hervé Lena
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Service de Pneumologie, Université de Rennes 1, Rennes, France
| | - Rémy Pedeux
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| |
Collapse
|
11
|
Yoshikawa T, Fukuda A, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Muta Y, Tsuda M, Maruno T, Nakanishi Y, Kawada K, Takaishi S, Seno H. Brg1 is required to maintain colorectal cancer stem cells. J Pathol 2021; 255:257-269. [PMID: 34415580 DOI: 10.1002/path.5759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 01/09/2023]
Abstract
Tumor cells capable of self-renewal and continuous production of progeny cells are called tumor stem cells (TSCs) and are considered to be potential therapeutic targets. However, the mechanisms underlying the survival and function of TSCs are not fully understood. We previously reported that chromatin remodeling regulator Brg1 is essential for intestinal stem cells in mice and Dclk1 is an intestinal TSC marker. In this study, we investigated the role of Brg1 in Dclk1+ intestinal tumor cells for the maintenance of intestinal tumors in mice. Specific ablation of Brg1 in Dclk1+ intestinal tumor cells reduced intestinal tumors in ApcMin mice, and continuous ablation of Brg1 maintained the reduction of intestinal tumors. Lineage tracing in the context of Brg1 ablation in Dclk1+ intestinal tumor cells revealed that Brg1-null Dclk1+ intestinal tumor cells did not give rise to their descendent tumor cells, indicating that Brg1 is essential for the self-renewal of Dclk1+ intestinal tumor cells. Five days after Brg1 ablation, we observed increased apoptosis in Dclk1+ tumor cells. Furthermore, Brg1 was crucial for the stemness of intestinal tumor cells in a spheroid culture system. BRG1 knockdown also impaired cell proliferation and increased apoptosis in human colorectal cancer (CRC) cells. Microarray analysis revealed that apoptosis-related genes were upregulated and stem cell-related genes were downregulated in human CRC cells by BRG1 suppression. Consistently, high BRG1 expression correlated with poor disease-specific survival in human CRC patients. These data indicate that Brg1 plays a crucial role in intestinal TSCs in mice by inhibiting apoptosis and is critical for cell survival and stem cell features in human CRC cells. Thus, BRG1 represents a new therapeutic target for human CRC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Takaaki Yoshikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichi Fukunaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Araki
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Masuo
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory for Malignancy Control Research (DSK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kawada
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Takaishi
- Laboratory for Malignancy Control Research (DSK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
13
|
Kwak SY, Shim S, Park S, Kim H, Lee SJ, Kim MJ, Jang WS, Kim YH, Jang H. Ghrelin reverts intestinal stem cell loss associated with radiation-induced enteropathy by activating Notch signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153424. [PMID: 33278782 DOI: 10.1016/j.phymed.2020.153424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUD Exposure to high-dose radiation, such as after a nuclear accident or radiotherapy, elicits severe intestinal damage and is associated with a high mortality rate. In treating patients exhibiting radiation-induced intestinal dysfunction, countermeasures to radiation are required. In principle, the cellular event underlying radiation-induced gastrointestinal syndrome is intestinal stem cell (ISC) apoptosis in the crypts. High-dose irradiation induces the loss of ISCs and impairs intestinal barrier function, including epithelial regeneration and integrity. Notch signaling plays a critical role in the maintenance of the intestinal epithelium and regulates ISC self-renewal. Ghrelin, a hormone produced mainly by enteroendocrine cells in the gastrointestinal tract, has diverse physiological and biological functions. PURPOSE We investigate whether ghrelin mitigates radiation-induced enteropathy, focusing on its role in maintaining epithelial function. METHODS To investigate the effect of ghrelin in radiation-induced epithelial damage, we analyzed proliferation and Notch signaling in human intestinal epithelial cell. And we performed histological analysis, inflammatory response, barrier functional assays, and expression of notch related gene and epithelial stem cell using a mouse model of radiation-induced enteritis. RESULTS In this study, we found that ghrelin treatment accelerated the reversal of radiation-induced epithelial damage including barrier dysfunction and defective self-renewing property of ISCs by activating Notch signaling. Exogenous injection of ghrelin also attenuated the severity of radiation-induced intestinal injury in a mouse model. CONCLUSION These data suggest that ghrelin may be used as a potential therapeutic agent for radiation-induced enteropathy.
Collapse
Affiliation(s)
- Seo-Young Kwak
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Young-Heon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea.
| |
Collapse
|
14
|
Li X, Li Y, Du X, Wang X, Guan S, Cao Y, Jin F, Li F. HES1 promotes breast cancer stem cells by elevating Slug in triple-negative breast cancer. Int J Biol Sci 2021; 17:247-258. [PMID: 33390847 PMCID: PMC7757037 DOI: 10.7150/ijbs.53477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. TNBC is enriched with breast cancer stem cells (BCSCs), which are responsible for cancer initiation, cancer progression and worse prognosis. Our previous study found that HES1 was overexpressed and promoted invasion in TNBC. However, the role of HES1 in modulating BCSC stemness of TNBC remains unclear. Here, we found that HES1 upregulates Slug both in transcriptional level and in protein level. HES1 also has a positive correlation with Slug expression in 150 TNBC patient samples. TNBC patients with high HES1 and Slug levels show worse prognosis in both progression-free survival and overall survival analyses. Survival analyses indicate that the effects of HES1 on survival prognosis may depend on Slug. Furthermore, we reveal that HES1 is a novel transcriptional activator for Slug through acting directly on its promoter. Meanwhile, HES1 knockdown reduces BCSC self-renewal, BCSC population, and cancer cell proliferation in TNBC, whereas overexpression of Slug restores the oncogenic function of HES1, both in vitro and in vivo, suggesting that HES1 performs its oncogenic role through upregulating Slug. Taken together, HES1 promotes BCSC stemness properties via targeting Slug, highlighting that HES1 might be a novel candidate for BCSC stemness regulation in TNBC and providing new clues for identifying promising prognostic biomarkers and therapeutic targets of TNBC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, 110122 Shenyang, Liaoning, China
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, 110001 Shenyang, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, 110122 Shenyang, Liaoning, China
| | - Xianqiang Du
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Anji Road, Quanzhou, China
| | - Xu Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, 110001 Shenyang, China
| | - Shu Guan
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, 110001 Shenyang, China
| | - Yu Cao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, 110001 Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, 110001 Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, 110122 Shenyang, Liaoning, China
| |
Collapse
|
15
|
Lee SA, Li KN, Tumbar T. Stem cell-intrinsic mechanisms regulating adult hair follicle homeostasis. Exp Dermatol 2020; 30:430-447. [PMID: 33278851 DOI: 10.1111/exd.14251] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Adult hair follicle stem cells (HFSCs) undergo dynamic and periodic molecular changes in their cellular states throughout the hair homeostatic cycle. These states are tightly regulated by cell-intrinsic mechanisms and by extrinsic signals from the microenvironment. HFSCs are essential not only for fuelling hair growth, but also for skin wound healing. Increasing evidence suggests an important role of HFSCs in organizing multiple skin components around the hair follicle, thus functioning as an organizing centre during adult skin homeostasis. Here, we focus on recent findings on cell-intrinsic mechanisms of HFSC homeostasis, which include transcription factors, histone modifications, DNA regulatory elements, non-coding RNAs, cell metabolism, cell polarity and post-transcriptional mRNA processing. Several transcription factors are now known to participate in well-known signalling pathways that control hair follicle homeostasis, as well as in super-enhancer activities to modulate HFSC and progenitor lineage progression. Interestingly, HFSCs have been shown to secrete molecules that are important in guiding the organization of several skin components around the hair follicle, including nerves, arrector pili muscle and vasculature. Finally, we discuss recent technological advances in the field such as single-cell RNA sequencing and live imaging, which revealed HFSC and progenitor heterogeneity and brought new light to understanding crosstalking between HFSCs and the microenvironment. The field is well on its way to generate a comprehensive map of molecular interactions that should serve as a solid theoretical platform for application in hair and skin disease and ageing.
Collapse
Affiliation(s)
- Seon A Lee
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kefei Nina Li
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
16
|
Singh SN, Malik MZ, Singh RKB. Molecular crosstalk: Notch can manipulate Hes1 and miR-9 behavior. J Theor Biol 2020; 504:110404. [PMID: 32717196 DOI: 10.1016/j.jtbi.2020.110404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/05/2020] [Accepted: 07/08/2020] [Indexed: 01/18/2023]
Abstract
We propose a Hes1-Notch-miR-9 regulatory network and studied the regulating mechanism of miR-9 and Hes1 dynamics driven by Notch. Change in Notch concentration, which serves as a stress signal, can trigger the dynamics of Hes1 and miR-9 at five different states, namely, sTable (2), sustain (1) and mixed (2) states those may correspond to different cellular states. Further, this Notch stress signal introduce time reversal oscillation, which behaves as backward wave, after a certain threshold value of the stress signal and defends the system from moving to apoptosis. We also observe heterogeneous patterns of Hes1, miR-9 and other molecular species in various two dimensional parameter spaces and found that the variability in the patterns is triggered by Hill coefficient and Hes1 stress signal. The phase or bifurcation diagram in time period of oscillation (TN) driven by Notch signal provides all five states, predicts minimum threshold value TNc beyond which tendency to build up backward wave starts and TNc serves as bifurcation point of the system.
Collapse
Affiliation(s)
- Shakti Nath Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
17
|
Aceto GM, Catalano T, Curia MC. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1726309. [PMID: 32258104 PMCID: PMC7102468 DOI: 10.1155/2020/1726309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage. The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium. Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence. It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis. For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production. The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition. We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development. In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells. Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations. Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis.
Collapse
Affiliation(s)
- Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
18
|
Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 2019; 577:260-265. [PMID: 31853061 DOI: 10.1038/s41586-019-1856-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/08/2019] [Indexed: 01/28/2023]
Abstract
Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer1-3. However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.
Collapse
|
19
|
Inagaki-Ohara K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int J Mol Sci 2019; 20:ijms20112622. [PMID: 31141984 PMCID: PMC6600422 DOI: 10.3390/ijms20112622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipocyte-derived hormone and its receptor (ObR) expressed in the hypothalamus are well known as an essential regulator of appetite and energy expenditure. Obesity induces abundant leptin production, however, reduced sensitivity to leptin leads to the development of metabolic disorders, so called leptin resistance. The stomach has been identified as an organ that simultaneously expresses leptin and ObR. Accumulating evidence has shown gastric leptin to perform diverse functions, such as those in nutrient absorption and carcinogenesis in the gastrointestinal system, independent of its well-known role in appetite regulation and obesity. Overexpression of leptin and phosphorylated ObR is implicated in gastric cancer in humans and in murine model, and diet-induced obesity causes precancerous lesions in the stomach in mice. While the underlying pathomechanisms remain unclear, leptin signaling can affect gastric mucosal milieu. In this review, we focus on the significant role of the gastric leptin signaling in neoplasia and tumorigenesis in stomach in the context of hereditary and diet-induced obesity.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
20
|
Janghorban M, Xin L, Rosen JM, Zhang XHF. Notch Signaling as a Regulator of the Tumor Immune Response: To Target or Not To Target? Front Immunol 2018; 9:1649. [PMID: 30061899 PMCID: PMC6055003 DOI: 10.3389/fimmu.2018.01649] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
The Notch signaling pathway regulates important cellular processes involved in stem cell maintenance, proliferation, development, survival, and inflammation. These responses to Notch signaling involving both canonical and non-canonical pathways can be spatially and temporally variable and are highly cell-type dependent. Notch signaling can elicit opposite effects in regulating tumorigenicity (tumor-promoting versus tumor-suppressing function) as well as controlling immune cell responses. In various cancer types, Notch signaling elicits a "cancer stem cell (CSC)" phenotype that results in decreased proliferation, but resistance to various therapies, hence potentially contributing to cell dormancy and relapse. CSCs can reshape their niche by releasing paracrine factors and inflammatory cytokines, and the niche in return can support their quiescence and resistance to therapies as well as the immune response. Moreover, Notch signaling is one of the key regulators of hematopoiesis, immune cell differentiation, and inflammation and is implicated in various autoimmune diseases, carcinogenesis (leukemia), and tumor-induced immunosuppression. Notch can control the fate of various T cell types, including Th1, Th2, and the regulatory T cells (Tregs), and myeloid cells including macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs). Both MDSCs and Tregs play an important role in supporting tumor cells (and CSCs) and in evading the immune response. In this review, we will discuss how Notch signaling regulates multiple aspects of the tumor-promoting environment by elucidating its role in CSCs, hematopoiesis, normal immune cell differentiation, and subsequently in tumor-supporting immunogenicity.
Collapse
Affiliation(s)
- Mahnaz Janghorban
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel) 2018; 6:E31. [PMID: 29652830 PMCID: PMC6024750 DOI: 10.3390/medsci6020031] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
22
|
Middelhoff M, Westphalen CB, Hayakawa Y, Yan KS, Gershon MD, Wang TC, Quante M. Dclk1-expressing tuft cells: critical modulators of the intestinal niche? Am J Physiol Gastrointest Liver Physiol 2017; 313:G285-G299. [PMID: 28684459 PMCID: PMC5668570 DOI: 10.1152/ajpgi.00073.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 01/31/2023]
Abstract
Dclk1-expressing tuft cells constitute a unique intestinal epithelial lineage that is distinct from enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. Tuft cells express taste-related receptors and distinct transcription factors and interact closely with the enteric nervous system, suggesting a chemosensory cell lineage. In addition, recent work has shown that tuft cells interact closely with cells of the immune system, with a critical role in the cellular regulatory network governing responses to luminal parasites. Importantly, ablation of tuft cells severely impairs epithelial proliferation and tissue regeneration after injury, implicating tuft cells in the modulation of epithelial stem/progenitor function. Finally, tuft cells expand during chronic inflammation and in preneoplastic tissues, suggesting a possible early role in inflammation-associated tumorigenesis. Hence, we outline and discuss emerging evidence that strongly supports tuft cells as key regulatory cells in the complex network of the intestinal microenvironment.
Collapse
Affiliation(s)
- Moritz Middelhoff
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York; ,2II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany;
| | - C. Benedikt Westphalen
- 3Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany;
| | - Yoku Hayakawa
- 4Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;
| | - Kelley S. Yan
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York; ,5Department of Genetics and Development, Columbia University Medical Center, New York, New York; and
| | - Michael D. Gershon
- 6Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Timothy C. Wang
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York;
| | - Michael Quante
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany;
| |
Collapse
|