1
|
Ghosh D, Guin A, Kumar A, Das A, Paul S. Comprehensive insights of etiological drivers of hepatocellular carcinoma: Fostering targeted nano delivery to anti-cancer regimes. Biochim Biophys Acta Rev Cancer 2025; 1880:189318. [PMID: 40222420 DOI: 10.1016/j.bbcan.2025.189318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most prevalent and deadliest malignancies on a global scale. Its complex pathogenesis arises from multifactorial etiologies, including viral infections, metabolic syndromes, and environmental carcinogens, all of which drive genetic and molecular aberrations in hepatocytes. This intricate condition is associated with multiple causative factors, resulting in the abnormal activation of various cellular and molecular pathways. Given that HCC frequently manifests within the context of a compromised or cirrhotic liver, coupled with the tendency of late-stage diagnoses, the overall prognosis tends to be unfavorable. Systemic therapy, especially conventional cytotoxic drugs, generally proves ineffective. Despite advancements in therapeutic interventions, conventional treatments such as chemotherapy often exhibit limited efficacy and substantial systemic toxicity. In this context, nanomedicine, particularly lipid-based nanoparticles (LNPs), has emerged as a promising strategy for enhancing drug delivery specificity and reducing adverse effects. This review provides a comprehensive overview of the molecular and metabolic underpinnings of HCC. Furthermore, we explored the role of lipid-based nano-formulations including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers in targeted drug delivery for HCC. We have highlighted recent advances in LNP-based delivery approaches, FDA-approved drugs, and surface modification strategies to improve liver-specific delivery and therapeutic efficacy. It will provide a comprehensive summary of various treatment strategies, recent clinical advances, receptor-targeting strategies and the role of lipid composition in cellular uptake. The review concludes with a critical assessment of existing challenges and future prospects in nanomedicines-driven HCC therapy.
Collapse
Affiliation(s)
- Dipanjan Ghosh
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Aharna Guin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Aryan Kumar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Amlan Das
- Department of Microbiology & Department of Biochemistry, Royal School of Biosciences, The Assam Royal Global University, Guwahati 781035, Assam, India.
| | - Santanu Paul
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India.
| |
Collapse
|
2
|
Lu L, Zhang Y, Yang Y, Jin M, Ma A, Wang X, Zhao Q, Zhang X, Zheng J, Zheng X. Lipid metabolism: the potential therapeutic targets in glioblastoma. Cell Death Discov 2025; 11:107. [PMID: 40097417 PMCID: PMC11914282 DOI: 10.1038/s41420-025-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Glioblastoma is a highly malignant tumor of the central nervous system with a high mortality rate. The mechanisms driving glioblastoma onset and progression are complex, posing substantial challenges for developing precise therapeutic interventions to improve patient survival. Over a century ago, the discovery of the Warburg effect underscored the importance of abnormal glycolysis in tumors, marking a pivotal moment in cancer research. Subsequent studies have identified mitochondrial energy conversion as a fundamental driver of tumor growth. Recently, lipid metabolism has emerged as a critical factor in cancer cell survival, providing an alternative energy source. Research has shown that lipid metabolism is reprogrammed in glioblastoma, playing a vital role in shaping the biological behavior of tumor cells. In this review, we aim to elucidate the impact of lipid metabolism on glioblastoma tumorigenesis and explore potential therapeutic targets. Additionally, we provide insights into the regulatory mechanisms that govern lipid metabolism, emphasizing the critical roles of key genes and regulators involved in this essential metabolic process.
Collapse
Affiliation(s)
- Lu Lu
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Meihua Jin
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Aiyu Ma
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xu Wang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiuyu Zhao
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jinhua Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
3
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
4
|
Li F, Zhang Y, Li J, Jiang R, Ci S. NUP98-p65 complex regulates DNA repair to maintain glioblastoma stem cells. FASEB J 2025; 39:e70401. [PMID: 39960447 DOI: 10.1096/fj.202403256r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 05/09/2025]
Abstract
The nuclear pore complex (NPC) is an evolutionarily conserved structure that maintains the traffic between the nucleus and cytoplasm. Here, we profiled the expression of nucleoporins (NUPs) in glioblastoma stem cells (GSCs) and found that NUP98 promoted GSC maintenance and therapeutic resistance. GSCs preferentially expressed NUP98, which is essential for GSC tumorigenesis in vitro and in vivo. RNA sequencing demonstrated that NUP98 regulated the expression of key DNA damage and repair pathways. NUP98 formed a complex with transcription factor p65 to directly activate genes involved in homologous repair. Attenuation of NUP98 or p65 expression induced unrepaired intrinsic DNA damage and sensitized GSC to ionizing radiation. Clinically, overexpression of NUP98 informs poor clinical outcome among glioblastoma (GBM) patients. Collectively, our results demonstrate that NUP98-p65 represents a novel node in the regulation of DNA repair, suggesting a therapeutic strategy with potential clinical benefits for GBM patients.
Collapse
Affiliation(s)
- Feifei Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ying Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jiahui Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ranran Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Shusheng Ci
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Basso J, Matos AM, Ghavami S, Fortuna A, Vitorino R, Vitorino C. Are we better together? Addressing a combined treatment of pitavastatin and temozolomide for brain cancer. Eur J Pharmacol 2024; 985:177087. [PMID: 39491742 DOI: 10.1016/j.ejphar.2024.177087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Pitavastatin is commonly prescribed to treat hypercholesterolemia through the regulation of cholesterol biosynthesis. Interestingly, it has also demonstrated a great potential for treating brain tumors, although the detailed cytotoxic mechanism, particularly in glioblastoma, remains incompletely understood. This work explores the activity of pitavastatin in 2D and 3D glioblastoma models, in an attempt to provide a more representative and robust overview of its anticancer potential in glioblastoma. The results show that not only is pitavastatin 10-1000 times-fold more effective in reducing tumoral metabolic activity than temozolomide, but also demonstrate a synergistic activity with this alkylating drug. In addition, low micromolar concentrations of this statin strongly impair the growth and the invasion ability of multicellular tumor spheroids. The obtained qRT-PCR and proteomics data highlight the modulation of cell death via apoptosis (BAX/BCL2, CASP9) and autophagy (BECN1, BNIP3, BNIP3L and LC3B), as well as an epithelial to mesenchymal transition blockage (HTRA1, SERPINE1, WNT5A, ALDH3B1 and EPHA2) and remodeling of the extracellular matrix (VCAN, SERPINE1 and TGFBI). Overall, these results lay the foundation for further investigations on the potential combinatory clinical treatment with temozolomide.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Miguel Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Chemical Engineering and Renewable Resources for Sustainability, CERES, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, R3E 0J9, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Kato C, Iizuka-Ohashi M, Honda M, Konishi E, Yokota I, Boku S, Mizuta N, Morita M, Sakaguchi K, Taguchi T, Watanabe M, Naoi Y. Additional statin treatment enhances the efficacy of HER2 blockade and improves prognosis in Rac1-high/HER2-positive breast cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167458. [PMID: 39128642 DOI: 10.1016/j.bbadis.2024.167458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The prognosis of HER2-positive breast cancer (BC) has improved with the development of anti-HER2 therapies; however, the problem remains that there are still cases where anti-HER2 therapies do not respond well. We found that the expression of SREBF2, a master transcriptional factor in the mevalonate pathway, was correlated with ERBB2 (HER2) expression and a poor prognosis in HER2-positive BC. The target gene expressions of SREBF2 were associated with higher expression of ERBB2 in HER2-positive BC cells. Statins, anti-hypercholesterolemia drugs that inhibit the mevalonate pathway, enhanced the efficacy of HER2-targeting agents with inducing apoptosis in a geranylgeranylation-dependent manner. Mechanistically, statins specifically inhibited membrane localization of Rac1, a target protein of geranylgeranylation, and suppressed the activation of HER2 downstreams AKT and ERK pathways. Consistently, retrospective analysis showed a longer recurrence-free survival in Rac1-high/HER2-positive BC patients treated with HER2-targeting agents with statins than without statins. Our findings thus suggest that Rac1 expression could be used as a biomarker to stratify HER2-positive BC patients that could benefit from dual blockade, i.e., targeting HER2 with inhibition of geranylgeranylation of Rac1 using statins, thereby opening avenues for precision medicine in a new subset of Rac1-high/HER2-positive BC.
Collapse
Affiliation(s)
- Chikage Kato
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mahiro Iizuka-Ohashi
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mizuki Honda
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University Hospital, Osaka, Japan
| | | | - Midori Morita
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Sakaguchi
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Taguchi
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motoki Watanabe
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yasuto Naoi
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Yoon SH, Lee S, Kim HS, Song J, Baek M, Ryu S, Lee HB, Moon HG, Noh DY, Jon S, Han W. NSDHL contributes to breast cancer stem-like cell maintenance and tumor-initiating capacity through TGF-β/Smad signaling pathway in MCF-7 tumor spheroid. BMC Cancer 2024; 24:1370. [PMID: 39516821 PMCID: PMC11549796 DOI: 10.1186/s12885-024-13143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND NAD(P)-dependent steroid dehydrogenase-like protein (NSDHL), which is involved in breast tumor growth and metastasis, has been implicated in the maintenance of cancer stem cells. However, its role in regulating breast cancer stem-like cells (BCSCs) remains unclear. We have previously reported the clinical significance of NSDHL in patients with estrogen receptor-positive (ER +) breast cancer. This study aimed to elucidate the molecular mechanisms by which NSDHL regulates the capacity of BCSCs in the ER + human breast cancer cell line, MCF-7. METHODS NSDHL knockdown suppressed tumor spheroid formation in MCF-7 human breast cancer cells grown on ultralow-attachment plates. RNA sequencing revealed that NSDHL knockdown induced widespread transcriptional changes in the MCF-7 spheroids. TGF-β signaling pathway was the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (fold change ≥ 2, P ≤ 0.05) identified in NSDHL-knockdown MCF-7 spheroids compared with the control. In orthotopic tumor models injected with NSDHL-knockdown MCF-7 spheroids, tumor initiation and growth were strongly suppressed compared with those in the control. RESULTS BCSC populations with CD44+/CD24- and CD49f+/EpCAM + phenotypes and high ALDH activity were decreased in NSDHL-knockdown MCF-7 spheroids and xenograft tumors relative to controls, along with decreased secretion of TGF-β1 and 3, phosphorylation of Smad2/3, and expression of SOX2. In RNA-sequencing data from The (TCGA) database, a positive correlation between the expression of NSDHL and SOX2 was found in luminal-type breast cancer specimens (n = 998). Our findings revealed that NSDHL plays an important role in maintaining the BCSC population and tumor-initiating capacity of ER-positive MCF-7 spheroids, suggesting that NSDHL is an attractive therapeutic target for eliminating BCSCs, thus preventing breast cancer initiation and progression. CONCLUSIONS Our findings suggest that NSDHL regulates the BCSC/tumor-initiating cell population in MCF-7 spheroids and xenograft tumors.
Collapse
Affiliation(s)
- So-Hyun Yoon
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangeun Lee
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Hoe Suk Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Junhyuk Song
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Moonjou Baek
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Seungyeon Ryu
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
8
|
Fan S, Guo J, Nie H, Xiong H, Xia Y. Aberrant Energy Metabolism in Tumors and Potential Therapeutic Targets. Genes Chromosomes Cancer 2024; 63:e70008. [PMID: 39584783 PMCID: PMC11587691 DOI: 10.1002/gcc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Energy metabolic reprogramming is frequently observed during tumor progression as tumor cells necessitate adequate energy production for rapid proliferation. Although current medical research shows promising prospects in studying the characteristics of tumor energy metabolism and developing anti-tumor drugs targeting energy metabolism, there is a lack of systematic compendiums and comprehensive reviews in this field. The objective of this study is to conduct a systematic review on the characteristics of tumor cells' energy metabolism, with a specific focus on comparing abnormalities between tumor and normal cells, as well as summarizing potential targets for tumor therapy. Additionally, this review also elucidates the aberrant mechanisms underlying four major energy metabolic pathways (glucose, lipid, glutamine, and mitochondria-dependent) during carcinogenesis and tumor progression. Through the utilization of graphical representations, we have identified anomalies in crucial energy metabolism pathways, encompassing transporter proteins (glucose transporter, CD36, and ASCT2), signaling molecules (Ras, AMPK, and PTEN), as well as transcription factors (Myc, HIF-1α, CREB-1, and p53). The key molecules responsible for aberrant energy metabolism in tumors may serve as potential targets for cancer therapy. Therefore, this review provides an overview of the distinct energy-generating pathways within tumor cells, laying the groundwork for developing innovative strategies for precise cancer treatment.
Collapse
Affiliation(s)
- Shuhao Fan
- Shandong First Medical UniversityJinanShandongPeople's Republic of China
- College of Medical EngineeringJining Medical UniversityJiningShandongPeople's Republic of China
| | - Jianhua Guo
- College of Medical EngineeringJining Medical UniversityJiningShandongPeople's Republic of China
| | - Hui Nie
- Shandong First Medical UniversityJinanShandongPeople's Republic of China
- College of Medical EngineeringJining Medical UniversityJiningShandongPeople's Republic of China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical UniversityJiningShandongPeople's Republic of China
| | - Yong Xia
- Shandong First Medical UniversityJinanShandongPeople's Republic of China
- College of Medical EngineeringJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
9
|
Li F, Yang K, Gao X, Zhang M, Gu D, Wu X, Lu C, Wu Q, Dixit D, Gimple RC, You Y, Mack SC, Shi Y, Kang T, Agnihotri SA, Taylor MD, Rich JN, Zhang N, Wang X. A peptide encoded by upstream open reading frame of MYC binds to tropomyosin receptor kinase B and promotes glioblastoma growth in mice. Sci Transl Med 2024; 16:eadk9524. [PMID: 39356747 DOI: 10.1126/scitranslmed.adk9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
MYC promotes tumor growth through multiple mechanisms. Here, we show that, in human glioblastomas, the variant MYC transcript encodes a 114-amino acid peptide, MYC pre-mRNA encoded protein (MPEP), from the upstream open reading frame (uORF) MPEP. Secreted MPEP promotes patient-derived xenograft tumor growth in vivo, independent of MYC through direct binding, and activation of tropomyosin receptor kinase B (TRKB), which induces downstream AKT-mTOR signaling. Targeting MPEP through genetic ablation reduced growth of patient-derived 4121 and 3691 glioblastoma stem cells. Administration of an MPEP-neutralizing antibody in combination with a small-molecule TRKB inhibitor reduced glioblastoma growth in patient-derived xenograft tumor-bearing mice. The overexpression of MPEP in surgical glioblastoma specimens predicted a poor prognosis, supporting its clinical relevance. In summary, our results demonstrate that tumor-specific translation of a MYC-associated uORF promotes glioblastoma growth, suggesting a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Fanying Li
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinya Gao
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xujia Wu
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Chenfei Lu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan C Gimple
- Physician Scientist Training Program, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongping You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Stephen C Mack
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Shi
- Institute of Pathology, Ministry of Education Key Laboratory of Tumor Immunopathology, Southwest Hospital, Chongqing 400038, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China
| | - Sameer A Agnihotri
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Institute for Brain Tumors, Jiangsu Provincial Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
10
|
Li N, Wang G, Guo M, Zhu N, Yu W. The mechanism and clinical application of farnesyl diphosphate farnesyltransferase 1 in cancer metabolism. Biochem Biophys Res Commun 2024; 719:150046. [PMID: 38749088 DOI: 10.1016/j.bbrc.2024.150046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
Cancer poses a significant risk to human well-being. Among the crucial characteristics of cancer is metabolic reprogramming. To meet the relentless metabolic needs, cancer cells enhance cholesterol metabolism within the adverse tumor microenvironment. Reprograming cholesterol metabolism includes a series of modifications in the synthesis, absorption, esterification, and metabolites associated with cholesterol. These adjustments have a strong correlation with the proliferation, invasion, metastasis, and other characteristics of malignant tumors. FDFT1, also known as farnesyl diphosphate farnesyltransferase 1, is an enzyme crucial in the process of cholesterol biosynthesis. Its significant involvement in tumor metabolism has garnered considerable interest. The significance of FDFT1 in cancer metabolism cannot be overstated, as it actively interacts with cancer cells. This paper aims to analyze and consolidate the mechanism of FDFT1 in cancer metabolism and explore its clinical application. The goal is to contribute new strategies and targets for the prevention and treatment of cancer metabolism.
Collapse
Affiliation(s)
- Nanxin Li
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Guojuan Wang
- Department of Oncology, Affiliated Hospital of Jiangxi University of Chinese Medicine, No.445, Bayi Avenue, Nanchang, 330006, China.
| | - Min Guo
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Naicheng Zhu
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Wenyan Yu
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
11
|
Zhang Z, Zou Z, Zhang H, Zhang DM. Regulatory network analysis based on integrated miRNA-TF reveals key genes in heart failure. Sci Rep 2024; 14:13896. [PMID: 38886500 PMCID: PMC11183224 DOI: 10.1038/s41598-024-64732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
The etiology and pathophysiology of heart failure are still unknown. Increasing evidence suggests that abnormal microRNAs (miRNAs) and transcription factors (TFs) expression may be associated with the development of heart failure. Therefore, this study aims to explore key miRNAs, TFs, and related genes in heart failure to gain a greater understanding of the pathogenesis of heart failure. To search and download the dataset of mRNA chips related to heart failure from the GEO database (GSE59867, GSE9128, and GSE134766), we analyzed differential genes and screened the common differentially expressed genes on two chips using R language software. The binary interactions and circuits among miRNAs, TFs, and corresponding genes were determined by Pearson correlation coefficient. A regulatory network of miRNAs, TFs, and target genes was constructed based on bioinformatics. By comparing the sequences of patients with and without heart failure, five downregulated genes with hypermethylated mRNA and three upregulated genes with hypomethylated mRNA were identified. The miRNA-TF gene regulatory network consisted of 26 miRNAs, 22 TFs and six genes. GO and KEGG analysis results revealed that BP terms like cellular response to organic substance, cellular response to cytokine stimulus, and KEGG pathways like osteoclast differentiation, MAPK signaling pathway, and legionellosis were enriched of the DEGs. TMEM87A, PPP2R2A, DUSP1, and miR-92a have great potential as biomarkers for heart failure. The integrated analysis of the mRNA expression spectrum and microRNA-transcription factor-gene revealed the regulatory network of heart failure, which may provide clues to its alternative treatment.
Collapse
Affiliation(s)
- Ziyue Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Ziying Zou
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Dai-Min Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Zuo Q, Wu Y, Hu Y, Shao C, Liang Y, Chen L, Guo Q, Huang P, Chen Q. Targeting lipid reprogramming in the tumor microenvironment by traditional Chinese medicines as a potential cancer treatment. Heliyon 2024; 10:e30807. [PMID: 38765144 PMCID: PMC11101863 DOI: 10.1016/j.heliyon.2024.e30807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
In the last ten years, there has been a notable rise in the study of metabolic abnormalities in cancer cells. However, compared to glucose or glutamine metabolism, less attention has been paid to the importance of lipid metabolism in tumorigenesis. Recent developments in lipidomics technologies have allowed for detailed analysis of lipid profiles within cancer cells and other cellular players present within the tumor microenvironment (TME). Traditional Chinese medicine (TCM) and its bioactive components have a long history of use in cancer treatments and are also being studied for their potential role in regulating metabolic reprogramming within TME. This review focuses on four core abnormalities altered by lipid reprogramming in cancer cells: de novo synthesis and exogenous uptake of fatty acids (FAs), upregulated fatty acid oxidation (FAO), cholesterol accumulation, which offer benefits for tumor growth and metastasis. The review also discusses how altered lipid metabolism impacts infiltrating immune cell function and phenotype as these interactions between cancer-stromal become more pronounced during tumor progression. Finally, recent literature is highlighted regarding how cancer cells can be metabolically reprogrammed by specific Chinese herbal components with potential therapeutic benefits related to lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Qian Zuo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yingchao Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuyu Hu
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Cui Shao
- The First Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqi Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Qianqian Guo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ping Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
14
|
Nguyen TT, Torrini C, Shang E, Shu C, Mun JY, Gao Q, Humala N, Akman HO, Zhang G, Westhoff MA, Karpel-Massler G, Bruce JN, Canoll P, Siegelin MD. OGDH and Bcl-xL loss causes synthetic lethality in glioblastoma. JCI Insight 2024; 9:e172565. [PMID: 38483541 PMCID: PMC11141877 DOI: 10.1172/jci.insight.172565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.
Collapse
Affiliation(s)
- Trang Tt Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Consuelo Torrini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, New York, USA
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Jeong-Yeon Mun
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Qiuqiang Gao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | | | - Hasan O Akman
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
15
|
Li S, Peng M, Tan S, Oyang L, Lin J, Xia L, Wang J, Wu N, Jiang X, Peng Q, Zhou Y, Liao Q. The roles and molecular mechanisms of non-coding RNA in cancer metabolic reprogramming. Cancer Cell Int 2024; 24:37. [PMID: 38238756 PMCID: PMC10795359 DOI: 10.1186/s12935-023-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
16
|
Zhao L, Qiu Z, Yang Z, Xu L, Pearce TM, Wu Q, Yang K, Li F, Saulnier O, Fei F, Yu H, Gimple RC, Varadharajan V, Liu J, Hendrikse LD, Fong V, Wang W, Zhang J, Lv D, Lee D, Lehrich BM, Jin C, Ouyang L, Dixit D, Wu H, Wang X, Sloan AE, Wang X, Huan T, Mark Brown J, Goldman SA, Taylor MD, Zhou S, Rich JN. Lymphatic endothelial-like cells promote glioblastoma stem cell growth through cytokine-driven cholesterol metabolism. NATURE CANCER 2024; 5:147-166. [PMID: 38172338 DOI: 10.1038/s43018-023-00658-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.
Collapse
Affiliation(s)
- Linjie Zhao
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zhixin Qiu
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, China
| | - Lian Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Thomas M Pearce
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qiulian Wu
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - FuLong Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Huaxu Yu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan C Gimple
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Juxiu Liu
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Liam D Hendrikse
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Vernon Fong
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Wang
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Jiao Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Deguan Lv
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Derrick Lee
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Brandon M Lehrich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chunyu Jin
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Andrew E Sloan
- Department of Neurosurgery, Case Western Reserve University, Cleveland, OH, USA
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven A Goldman
- University of Rochester Medical Center, Rochester, NY, USA
- University of Copenhagen, Copenhagen, Denmark
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, China.
| | - Jeremy N Rich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Lu J, Chen S, Bai X, Liao M, Qiu Y, Zheng LL, Yu H. Targeting cholesterol metabolism in Cancer: From molecular mechanisms to therapeutic implications. Biochem Pharmacol 2023; 218:115907. [PMID: 37931664 DOI: 10.1016/j.bcp.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Cholesterol is an essential component of cell membranes and helps to maintain their structure and function. Abnormal cholesterol metabolism has been linked to the development and progression of tumors. Changes in cholesterol metabolism triggered by internal or external stimuli can promote tumor growth. During metastasis, tumor cells require large amounts of cholesterol to support their growth and colonization of new organs. Recent research has shown that cholesterol metabolism is reprogrammed during tumor development, and this can also affect the anti-tumor activity of immune cells in the surrounding environment. However, identifying the specific targets in cholesterol metabolism that regulate cancer progression and the tumor microenvironment is still a challenge. Additionally, exploring the potential of combining statin drugs with other therapies for different types of cancer could be a worthwhile avenue for future drug development. In this review, we focus on the molecular mechanisms of cholesterol and its derivatives in cell metabolism and the tumor microenvironment, and discuss specific targets and relevant therapeutic agents that inhibit aspects of cholesterol homeostasis.
Collapse
Affiliation(s)
- Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuejiao Bai
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
18
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
19
|
Li Y, Tuerxun H, Liu X, Zhao Y, Wen S, Li Y, Cao J, Zhao Y. Nrf2--a hidden bridge linking cancer stem cells to ferroptosis. Crit Rev Oncol Hematol 2023; 190:104105. [PMID: 37598896 DOI: 10.1016/j.critrevonc.2023.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023] Open
Abstract
Cancer stem cells (CSCs), a small population of stem cells existing in cancer cells, are considered as the "culprits" of tumor recurrence, metastasis, and drug resistance. Ferroptosis is a promising new lead in anti-cancer therapy. Because of unique metabolic characteristics, CSCs' growth is more dependent on the iron and lipid than ordinary cancer cells. When the metabolism of iron/lipid is disordered, that is, imbalanced redox homeostasis, CSCs are more susceptible to ferroptosis. The expression of Nuclear factor E2-related factor 2 (Nrf2), a molecule playing a major regulatory role in redox homeostasis, determines whether the cells are under oxidative stress and ferroptosis occurs. Nrf2 expression level is higher in CSCs, indicating stronger dependence on Nrf2. Here we expound the unique biological and metabolic characteristics of CSCs, explore the mechanism of inducing ferroptosis by targeting Nrf2, thus providing promising new targets for eliminating aggressive tumors and achieving the goal of curing tumors.
Collapse
Affiliation(s)
- Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yaping Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jingjing Cao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
20
|
Miller DM, Yadanapudi K, Rai V, Rai SN, Chen J, Frieboes HB, Masters A, McCallum A, Williams BJ. Untangling the web of glioblastoma treatment resistance using a multi-omic and multidisciplinary approach. Am J Med Sci 2023; 366:185-198. [PMID: 37330006 DOI: 10.1016/j.amjms.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/01/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM), the most common human brain tumor, has been notoriously resistant to treatment. As a result, the dismal overall survival of GBM patients has not changed over the past three decades. GBM has been stubbornly resistant to checkpoint inhibitor immunotherapies, which have been remarkably effective in the treatment of other tumors. It is clear that GBM resistance to therapy is multifactorial. Although therapeutic transport into brain tumors is inhibited by the blood brain barrier, there is evolving evidence that overcoming this barrier is not the predominant factor. GBMs generally have a low mutation burden, exist in an immunosuppressed environment and they are inherently resistant to immune stimulation, all of which contribute to treatment resistance. In this review, we evaluate the contribution of multi-omic approaches (genomic and metabolomic) along with analyzing immune cell populations and tumor biophysical characteristics to better understand and overcome GBM multifactorial resistance to treatment.
Collapse
Affiliation(s)
- Donald M Miller
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yadanapudi
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Veeresh Rai
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shesh N Rai
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Biostatistics and Informatics Shared Resources, University of Cincinnati Cancer Center, Cincinnati, OH, USA; Cancer Data Science Center of University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph Chen
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA; Center for Preventative Medicine, University of Louisville, Louisville, KY, USA
| | - Adrianna Masters
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville, Louisville, KY, USA
| | - Abigail McCallum
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Brian J Williams
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
21
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
22
|
Bernhard C, Reita D, Martin S, Entz-Werle N, Dontenwill M. Glioblastoma Metabolism: Insights and Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24119137. [PMID: 37298093 DOI: 10.3390/ijms24119137] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor metabolism is emerging as a potential target for cancer therapies. This new approach holds particular promise for the treatment of glioblastoma, a highly lethal brain tumor that is resistant to conventional treatments, for which improving therapeutic strategies is a major challenge. The presence of glioma stem cells is a critical factor in therapy resistance, thus making it essential to eliminate these cells for the long-term survival of cancer patients. Recent advancements in our understanding of cancer metabolism have shown that glioblastoma metabolism is highly heterogeneous, and that cancer stem cells exhibit specific metabolic traits that support their unique functionality. The objective of this review is to examine the metabolic changes in glioblastoma and investigate the role of specific metabolic processes in tumorigenesis, as well as associated therapeutic approaches, with a particular focus on glioma stem cell populations.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Damien Reita
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Laboratory of Biochemistry and Molecular Biology, Department of Cancer Molecular Genetics, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Natacha Entz-Werle
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| |
Collapse
|
23
|
Srivastava S, Patil K, Thompson EW, Nakhai SA, Kim YN, Haynes C, Bryant C, Pai SB. Disruption of Glioblastoma Multiforme Cell Circuits with Cinnamaldehyde Highlights Potential Targets with Implications for Novel Therapeutic Strategies. Cells 2023; 12:cells12091277. [PMID: 37174677 PMCID: PMC10177046 DOI: 10.3390/cells12091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a major aggressive primary brain tumor with dismal survival outcome and few therapeutic options. Although Temozolomide (TMZ) is a part of the standard therapy, over time, it can cause DNA damage leading to deleterious effects, necessitating the discovery of drugs with minimal side effects. To this end, we investigated the effect of cinnamaldehyde (CA), a highly purified, single ingredient from cinnamon, on the GBM cell lines U87 and U251 and the neuroglioma cell line H4. On observing similar impact on the viability in all the three cell lines, detailed studies were conducted with CA and its isomer/analog, trans-CA (TCA), and methoxy-CA (MCA) on U87 cells. The compounds exhibited equal potency when assessed at the cellular level in inhibiting U87 cells as well as at the molecular level, resulting in an increase in reactive oxygen species (ROS) and an increase in the apoptotic and multicaspase cell populations. To further characterize the key entities, protein profiling was performed with CA. The studies revealed differential regulation of entities that could be key to glioblastoma cell circuits such as downregulation of pyruvate kinase-PKM2, the key enzyme of the glycolytic pathway that is central to the Warburg effect. This allows for monitoring the levels of PKM2 after therapy using recently developed noninvasive technology employing PET [18F] DASA-23. Additionally, the observation of downregulation of phosphomevalonate kinase is significant as the brain tumor initiating cells (BTIC) are maintained by the metabolism occurring via the mevalonate pathway. Results from the current study, if translated in vivo, could provide additional efficacious treatment options for glioblastoma with minimal side effects.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Elizabeth W Thompson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Shadi A Nakhai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Yoo Na Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Casey Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Crystal Bryant
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
24
|
Zhang W, Jiang B, Zhu H, Cheng A, Li C, Huang H, Li X, Kuang Y. miR-33b in human cancer: Mechanistic and clinical perspectives. Biomed Pharmacother 2023; 161:114432. [PMID: 36841026 DOI: 10.1016/j.biopha.2023.114432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The microRNAs (miRNAs), an extensive class of small noncoding RNAs (∼22 nucleotides), have been shown to have critical functions in various biological processes during development. miR-33b (or hsa-miR-33b) is down-regulated in cancer of multiple systems. Notably, at least 27 protein-coding genes can be targeted by miR-33b. miR-33b regulates the cell cycle, cell proliferation, various metabolism pathways, epithelial-mesenchymal transition (EMT), cancer cell invasion and migration, etc. In prostate cancer, Cullin 4B (CUL4B) can be recruited to the promoter to inhibit the expression of miR-33b. In gastric cancer, the hypermethylation of the CpG island regulated the expression of miR-33b. Besides, miR-33b could be negatively regulated by 7 competing-endogenous RNAs (ceRNAs), which are all long non-coding RNAs (lncRNAs). There are at least 4 signaling pathways, including NF-κB, MAP8, Notch1, and Wnt/β-catenin signaling pathways, which could be regulated partially by miR-33b. Additionally, low expression of miR-33b was associated with clinicopathology and prognosis in cancer patients. In addition, the aberrant expression of miR-33b was connected with the resistance of cancer cells to 5 anticancer drugs (cisplatin, docetaxel, bortezomib, paclitaxel, and daunorubicin). Importantly, our work systematically summarizes the aberrant expression of miR-33b in various neoplastic diseases and the effect of its downregulation on the biological behavior of cancer cells. Furthermore, this review focuses on recent advances in understanding the molecular regulation mechanisms of miR-33b. Moreso, the relationship between the miR-33b expression levels and the clinicopathological data and prognosis of tumor patients was summarized for the first time. Overall, we suggest that the current studies of miR-33b are insufficient but provide potential hints and direction for future miR-33b-related research.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Bincan Jiang
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, China
| | - Can Li
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Haoxuan Huang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Xuewen Li
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Yirui Kuang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
25
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
26
|
Pieri V, Gallotti AL, Drago D, Cominelli M, Pagano I, Conti V, Valtorta S, Coliva A, Lago S, Michelatti D, Massimino L, Ungaro F, Perani L, Spinelli A, Castellano A, Falini A, Zippo A, Poliani PL, Moresco RM, Andolfo A, Galli R. Aberrant L-Fucose Accumulation and Increased Core Fucosylation Are Metabolic Liabilities in Mesenchymal Glioblastoma. Cancer Res 2023; 83:195-218. [PMID: 36409826 DOI: 10.1158/0008-5472.can-22-0677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/28/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.
Collapse
Affiliation(s)
- Valentina Pieri
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy.,Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Alberto L Gallotti
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Denise Drago
- ProMeFa, Center for Omics Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Manuela Cominelli
- Molecular and Translational Medicine Department, Pathology Unit, University of Brescia, Brescia, Italy
| | - Ilaria Pagano
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Valentina Conti
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvia Valtorta
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Daniela Michelatti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Luca Massimino
- Gastroenterology and Endoscopy Department, Experimental Gastroenterology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Endoscopy Department, Experimental Gastroenterology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laura Perani
- Experimental Imaging Center, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Pietro L Poliani
- Molecular and Translational Medicine Department, Pathology Unit, University of Brescia, Brescia, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy.,Institute of Bioimaging and Molecular Physiology (IBFM), CNR, Segrate, Italy.,Department of Medicine and Surgery and Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - Annapaola Andolfo
- ProMeFa, Center for Omics Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Rossella Galli
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
27
|
Lee D, Gimple RC, Wu X, Prager BC, Qiu Z, Wu Q, Daggubati V, Mariappan A, Gopalakrishnan J, Sarkisian MR, Raleigh DR, Rich JN. Superenhancer activation of KLHDC8A drives glioma ciliation and hedgehog signaling. J Clin Invest 2023; 133:e163592. [PMID: 36394953 PMCID: PMC9843063 DOI: 10.1172/jci163592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain-containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound chaperonin-containing TCP1 (CCT) to promote the assembly of primary cilia to activate hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and hedgehog signaling. Combinatorial targeting of Aurora B/C kinase and hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as what we believe to be a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment.
Collapse
Affiliation(s)
- Derrick Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Ryan C. Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xujia Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Briana C. Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Qiulian Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Vikas Daggubati
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Matthew R. Sarkisian
- Department of Neuroscience, McKnight Brain Institute and
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
| | - David R. Raleigh
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Jeremy N. Rich
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Moreira-Barbosa C, Matos A, Fernandes R, Mendes-Ferreira M, Rodrigues R, Cruz T, Costa ÂM, Cardoso AP, Ghilardi C, Oliveira MJ, Ribeiro R. The role of fatty acids metabolism on cancer progression and therapeutics development. BIOACTIVE LIPIDS 2023:101-132. [DOI: 10.1016/b978-0-12-824043-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Chen Y, Li M, Yang Y, Lu Y, Li X. Antidiabetic drug metformin suppresses tumorigenesis through inhibition of mevalonate pathway enzyme HMGCS1. J Biol Chem 2022; 298:102678. [PMID: 36356901 PMCID: PMC9723917 DOI: 10.1016/j.jbc.2022.102678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Metformin, an antidiabetic drug, shows some potent antitumor effects. However, the molecular mechanism of metformin in tumor suppression has not been clarified. Here, we provided evidence using in vitro and in vivo data that metformin inhibited mevalonate pathway by downregulation of 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1), a key enzyme in this pathway. Our results further demonstrated that metformin downregulated HMGCS1 expression through inhibition of transcription factor nuclear factor E2-related factor 2. In addition, we determined that HMGCS1 was highly expressed in human liver and lung cancer tissues and associated with lower survival rates. In summary, our study indicated that metformin suppresses tumorigenesis through inhibition of the nuclear factor E2-related factor 2-HMGCS1 axis, which might be a potential target in cancer prevention and treatment.
Collapse
Affiliation(s)
- Yiyan Chen
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yanying Yang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,For correspondence: Xiaoying Li; Yan Lu
| | - Xiaoying Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China,For correspondence: Xiaoying Li; Yan Lu
| |
Collapse
|
30
|
Ediriweera MK. Use of cholesterol metabolism for anti-cancer strategies. Drug Discov Today 2022; 27:103347. [PMID: 36087905 DOI: 10.1016/j.drudis.2022.103347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Irregularities in cholesterol metabolism occur in a range of human cancers. Cholesterol precursors and derivatives support tumorigenesis and weaken immune responses. Intriguing preclinical and clinical findings demonstrate that cholesterol biosynthesis inhibition achieved by targeting major events and metabolites in cholesterol metabolism is an ideal anti-tumor strategy. Investigations addressing the effects of β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), 2,3-oxidosqualene cyclase (OSC), squalene synthase (SQS), liver X receptors (LXR), and cholesterol trafficking and esterification inhibition on cancer progression have shown encouraging results. Notably, manipulation of cholesterol metabolism strengthens the function of immune cells in the tumor microenvironment (TME). In this review, I discuss the role of cholesterol metabolism in cancer progression and the latest research related to cholesterol metabolism-based anti-cancer therapies and intend to bring this stylish biochemistry topic to the Sri Lankan research landscape.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| |
Collapse
|
31
|
Romeo MA, Gilardini Montani MS, Arena A, Benedetti R, D’Orazi G, Cirone M. c-Myc Sustains Pancreatic Cancer Cell Survival and mutp53 Stability through the Mevalonate Pathway. Biomedicines 2022; 10:biomedicines10102489. [PMID: 36289751 PMCID: PMC9599358 DOI: 10.3390/biomedicines10102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
It has been shown that wild-type (wt)p53 inhibits oncogene c-Myc while mutant (mut)p53 may transactivate it, with an opposite behavior that frequently occurs in the crosstalk of wt or mutp53 with molecules/pathways promoting carcinogenesis. Even if it has been reported that mutp53 sustains c-Myc, whether c-Myc could in turn influence mutp53 expression remains to be investigated. In this study, we found that pharmacological or genetic inhibition of c-Myc downregulated mutp53, impaired cell survival and increased DNA damage in pancreatic cancer cells. At the molecular level, we observed that c-Myc inhibition reduced the expression of mevalonate kinase (MVK), a molecule belonging to the mevalonate pathway that—according to previous findings—can control mutp53 stability, and thus contributes to cancer cell survival. In conclusion, this study unveils another criminal alliance between oncogenes, such as c-Myc and mutp53, that plays a key role in oncogenesis.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | | | - Andrea Arena
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gabriella D’Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00128 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, Via dei Vestini 33, 66100 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
32
|
Li D, Zhang Q, Li L, Chen K, Yang J, Dixit D, Gimple RC, Ci S, Lu C, Hu L, Gao J, Shan D, Li Y, Zhang J, Shi Z, Gu D, Yuan W, Wu Q, Yang K, Zhao L, Qiu Z, Lv D, Gao W, Yang H, Lin F, Wang Q, Man J, Li C, Tao W, Agnihotri S, Qian X, Shi Y, You Y, Zhang N, Rich JN, Wang X. β2-Microglobulin Maintains Glioblastoma Stem Cells and Induces M2-like Polarization of Tumor-Associated Macrophages. Cancer Res 2022; 82:3321-3334. [PMID: 35841593 DOI: 10.1158/0008-5472.can-22-0507] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is a complex ecosystem that includes a heterogeneous tumor population and the tumor-immune microenvironment (TIME), prominently containing tumor-associated macrophages (TAM) and microglia. Here, we demonstrated that β2-microglobulin (B2M), a subunit of the class I major histocompatibility complex (MHC-I), promotes the maintenance of stem-like neoplastic populations and reprograms the TIME to an anti-inflammatory, tumor-promoting state. B2M activated PI3K/AKT/mTOR signaling by interacting with PIP5K1A in GBM stem cells (GSC) and promoting MYC-induced secretion of transforming growth factor-β1 (TGFβ1). Inhibition of B2M attenuated GSC survival, self-renewal, and tumor growth. B2M-induced TGFβ1 secretion activated paracrine SMAD and PI3K/AKT signaling in TAMs and promoted an M2-like macrophage phenotype. These findings reveal tumor-promoting functions of B2M and suggest that targeting B2M or its downstream axis may provide an effective approach for treating GBM. SIGNIFICANCE β2-microglobulin signaling in glioblastoma cells activates a PI3K/AKT/MYC/TGFβ1 axis that maintains stem cells and induces M2-like macrophage polarization, highlighting potential therapeutic strategies for targeting tumor cells and the immunosuppressive microenvironment in glioblastoma.
Collapse
Affiliation(s)
- Daqi Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Zhang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kexin Chen
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junlei Yang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shusheng Ci
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenfei Lu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lang Hu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiancheng Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Yuan
- Department of Pathology, The Fourth Affiliated Hospital of Nantong University, The First people's Hospital of Yancheng, Yancheng, China
| | - Qiulian Wu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Linjie Zhao
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Zhixin Qiu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Deguan Lv
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Lin
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Weiwei Tao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shi
- Institute of Pathology, Ministry of Education Key Laboratory of Tumor Immunopathology, Southwest Hospital, Chongqing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, China
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Kishk A, Pacheco MP, Heurtaux T, Sinkkonen L, Pang J, Fritah S, Niclou SP, Sauter T. Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells 2022; 11:2486. [PMID: 36010563 PMCID: PMC9406599 DOI: 10.3390/cells11162486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jun Pang
- Department of Computer Science, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Sabrina Fritah
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
34
|
Sardar D, Chen HC, Reyes A, Varadharajan S, Jain A, Mohila C, Curry R, Lozzi B, Rajendran K, Cervantes A, Yu K, Jalali A, Rao G, Mack SC, Deneen B. Sox9 directs divergent epigenomic states in brain tumor subtypes. Proc Natl Acad Sci U S A 2022; 119:e2202015119. [PMID: 35858326 PMCID: PMC9303974 DOI: 10.1073/pnas.2202015119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 01/17/2023] Open
Abstract
Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations; however, the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here, we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). Using our autochthonous mouse models, we found that Sox9 suppresses HGG growth and expands associated H3K27ac states, while promoting ZFTA-RELA (ZRFUS) EPN growth and diminishing H3K27ac states. These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG and an association with the ZRFUS oncofusion in EPN. Mechanistic studies revealed extensive Sox9 and ZRFUS promoter co-occupancy, indicating functional synergy in promoting EPN tumorigenesis. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.
Collapse
Affiliation(s)
- Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Hsiao-Chi Chen
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Amanda Reyes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004
| | - Srinidhi Varadharajan
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030
| | - Carrie Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Rachel Curry
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Genetics and Genomics Program, Baylor College of Medicine, Houston, TX 77030
| | - Kavitha Rajendran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030
| | - Stephen C. Mack
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
35
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
36
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
37
|
Proto MC, Fiore D, Piscopo C, Laezza C, Bifulco M, Gazzerro P. Modified Adenosines Sensitize Glioblastoma Cells to Temozolomide by Affecting DNA Methyltransferases. Front Pharmacol 2022; 13:815646. [PMID: 35559231 PMCID: PMC9086827 DOI: 10.3389/fphar.2022.815646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, and due to its unique features, its management is certainly one of the most challenging ones among all cancers. N6-isopentenyladenosine (IPA) and its analog N6-benzyladenosine (N6-BA) are modified nucleosides endowed with potent antitumor activity on different types of human cancers, including GBM. Corroborating our previous finding, we demonstrated that IPA and N6-BA affect GBM cell line proliferation by modulating the expression of the F-box WD repeat domain-containing-7 (FBXW7), a tumor suppressor with a crucial role in the turnover of many proteins, such as SREBPs and Mcl1, involved in malignant progression and chemoresistance. Luciferase assay revealed that IPA-mediated upregulation of FBXW7 translates in transcriptional inactivation of its oncogenic substrates (Myc, NFkB, or HIF-1α). Moreover, downregulating MGMT expression, IPA strongly enhances the killing effect of temozolomide (TMZ), producing a favorable sensitizing effect starting from a concentration range much lower than TMZ EC50. Through DNA methyltransferase (DNMT) activity assay, analysis of the global DNA methylation, and the histone modification profiles, we demonstrated that the modified adenosines behave similar to 5-AZA-dC, known DNMT inhibitor. Overall, our results provide new perspectives for the first time, suggesting the modified adenosines as epigenetic tools able to improve chemo- and radiotherapy efficacy in glioblastoma and potentially other cancers.
Collapse
Affiliation(s)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
38
|
Bian W, Wang Z, Li X, Jiang X, Zhang H, Liu Z, Zhang D. Identification of vital modules and genes associated with heart failure based on weighted gene coexpression network analysis. ESC Heart Fail 2022; 9:1370-1379. [PMID: 35128826 PMCID: PMC8934958 DOI: 10.1002/ehf2.13827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
AIMS Heart failure (HF) is a chronic heart disease with a high incidence and mortality. Due to the regulatory complexity of gene coexpression networks, the underlying hub genes regulation in HF remain incompletely appreciated. We aimed to explore potential key modules and genes for HF using weighted gene coexpression network analysis (WGCNA). METHODS AND RESULTS The expression profiles by high throughput sequencing of heart tissues samples from HF and non-HF samples were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HF and non-HF samples were firstly identified. Then, a coexpression network was constructed to identify key modules and potential hub genes. The biological functions of potential hub genes were analysed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, a protein-protein interaction (PPI) network was constructed using the STRING online tool. A total of 135 DEGs (133 up-regulated and 2 down-regulated DEGs) between HF and non-HF samples were identified in the GSE135055 and GSE123976 datasets. Moreover, a total of 38 modules were screened based on WGCNA in the GSE135055 dataset, and six potential hub genes (UCK2, ASB1, CCNI, CUX1, IRX6, and STX16) were screened from the key module by setting the gene significance over 0.2 and the module membership over 0.8. Furthermore, 78 potential hub genes were obtained by taking the intersection of the 135 DEGs and all genes in the key module, and enrichment analysis revealed that they were mainly involved in the MAPK and PI3K-AKT signalling pathways. Finally, in a PPI network constructed with the 78 potential hub genes, CUX1 and ASB1 were identified as hub genes in HF because they were also identified as potential hub genes in the WGCNA. CONCLUSIONS To the best of our knowledge, our study is the first to employ WGCNA to identify the key module and hub genes for HF. Our study identified a module and two genes that might play important roles in HF, which may provide potential biomarkers for the diagnosis of HF and improve our knowledge of the molecular mechanisms underlying HF.
Collapse
Affiliation(s)
- Weikang Bian
- Department of CardiologyNanjing First Hospital, Nanjing Medical University68 Changle RoadNanjing210006China
| | - Zhicheng Wang
- Department of CardiologyNanjing First Hospital, Nanjing Medical University68 Changle RoadNanjing210006China
| | - Xiaobo Li
- Department of CardiologyNanjing First Hospital, Nanjing Medical University68 Changle RoadNanjing210006China
| | - Xiao‐Xin Jiang
- Department of CardiologyNanjing First Hospital, Nanjing Medical University68 Changle RoadNanjing210006China
| | - Hongsong Zhang
- Department of CardiologyNanjing First Hospital, Nanjing Medical University68 Changle RoadNanjing210006China
| | - Zhizhong Liu
- Department of CardiologyNanjing First Hospital, Nanjing Medical University68 Changle RoadNanjing210006China
| | - Dai‐Min Zhang
- Department of CardiologyNanjing First Hospital, Nanjing Medical University68 Changle RoadNanjing210006China
- Department of CardiologySir Run Run Hospital, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
39
|
Masui K, Cavenee WK, Mischel PS, Shibata N. The metabolomic landscape plays a critical role in glioma oncogenesis. Cancer Sci 2022; 113:1555-1563. [PMID: 35271755 PMCID: PMC9128185 DOI: 10.1111/cas.15325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022] Open
Abstract
Cancer cells depend on metabolic reprogramming for survival, undergoing profound shifts in nutrient sensing, nutrient uptake and flux through anabolic pathways, in order to drive nucleotide, lipid, and protein synthesis and provide key intermediates needed for those pathways. Although metabolic enzymes themselves can be mutated, including to generate oncometabolites, this is a relatively rare event in cancer. Usually, gene amplification, overexpression, and/or downstream signal transduction upregulate rate‐limiting metabolic enzymes and limit feedback loops, to drive persistent tumor growth. Recent molecular‐genetic advances have revealed discrete links between oncogenotypes and the resultant metabolic phenotypes. However, more comprehensive approaches are needed to unravel the dynamic spatio‐temporal regulatory map of enzymes and metabolites that enable cancer cells to adapt to their microenvironment to maximize tumor growth. Proteomic and metabolomic analyses are powerful tools for analyzing a repertoire of metabolic enzymes as well as intermediary metabolites, and in conjunction with other omics approaches could provide critical information in this regard. Here, we provide an overview of cancer metabolism, especially from an omics perspective and with a particular focus on the genomically well characterized malignant brain tumor, glioblastoma. We further discuss how metabolomics could be leveraged to improve the management of patients, by linking cancer cell genotype, epigenotype, and phenotype through metabolic reprogramming.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
40
|
Xu Y, Yu Q, Wang P, Wu Z, Zhang L, Wu S, Li M, Wu B, Li H, Zhuang H, Zhang X, Huang Y, Gan X, Xu R. A Selective Small-Molecule c-Myc Degrader Potently Regresses Lethal c-Myc Overexpressing Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104344. [PMID: 35048559 PMCID: PMC8922104 DOI: 10.1002/advs.202104344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Indexed: 05/31/2023]
Abstract
MYC oncogene is involved in the majority of human cancers and is often associated with poor outcomes, rendering it an extraordinarily desirable target, but therapeutic targeting of c-Myc protein has been a challenge for >30 years. Here, WBC100, a novel oral active molecule glue that selectively degrades c-Myc protein over other proteins and potently kills c-Myc overexpressing cancer cells is reported. WBC100 targets the nuclear localization signal 1 (NLS1)-Basic-nuclear localization signal 2 (NLS2) region of c-Myc and induces c-Myc protein degradation through ubiquitin E3 ligase CHIP mediated 26S proteasome pathway, leading to apoptosis of cancer cells. In vivo, WBC100 potently regresses multiple lethal c-Myc overexpressing tumors such as acute myeloid leukemia, pancreatic, and gastric cancers with good tolerability in multiple xenograft mouse models. Identification of the NLS1-Basic-NLS2 region as a druggable pocket for targeting the "undruggable" c-Myc protein and that single-agent WBC100 potently regresses c-Myc overexpressing tumors through selective c-Myc proteolysis opens new perspectives for pharmacologically intervening c-Myc in human cancers.
Collapse
Affiliation(s)
- Ying Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Qingfeng Yu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Ping Wang
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Zhaoxing Wu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Lei Zhang
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Shuigao Wu
- Weben PharmaceuticalsHangzhou310051China
| | - Mengyuan Li
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Bowen Wu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Hongzhi Li
- Department of Molecular MedicineBeckman Research InstituteCity of Hope National Medical CenterDuarteCA91010USA
| | - Haifeng Zhuang
- Department of Hematologythe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou310009China
| | - Xuzhao Zhang
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Yu Huang
- Academy of Chinese Medical SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | | | - Rongzhen Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Institute of HematologyZhejiang UniversityHangzhou310009China
| |
Collapse
|
41
|
Statins and Gliomas: A Systematic Review of the Preclinical Studies and Meta-Analysis of the Clinical Literature. Drugs 2022; 82:293-310. [PMID: 35122635 DOI: 10.1007/s40265-021-01668-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gliomas represent most common primary brain tumors. Glioblastoma (GBM) is the most common subtype and carries a poor prognosis. There is growing interest in the anti-glioma properties of statins. The aim of this study was to conduct a systematic review of the preclinical literature and to meta-analyze existing clinical studies to determine what benefit, if any, statins may confer in the context of glioma. METHODS The PubMed, Embase, Cochrane, and Web of Science libraries were queried in May 2021. Preclinical studies were included if they investigated the anti-cancer effects of statins in glioma in vitro and in vivo. Clinical studies were included if they reported incidence rates of glioma by statin use, or mortality outcomes among GBM patients by statin use. Pooled point estimates were calculated using a random-effects model. RESULTS In total, 64 publications, 51 preclinical and 13 clinical, were included. Preclinical studies indicated that statins inhibited glioma cell proliferation, migration, and invasion. These effects were time- and concentration-dependent. Synergistic anti-glioma effects were observed when statins were combined with other anti-cancer therapies. Clinical observational studies showed an inverse, albeit non-statistically significant, association between statin use and incidence rate of glioma (HR = 0.84, 95% CI 0.62-1.13, I2 = 72%, p-heterogeneity = 0.003, 6 studies). Statin use was not associated with better overall survival following GBM surgery (HR = 1.05, 95% CI 0.85-1.30, I2 = 30%, p-heterogeneity = 0.23, 4 studies). CONCLUSION Statins were potent anti-cancer drugs that suppressed glioma growth through various mechanisms in vitro; these effects have translated into the clinical realm, clinically but not statistically, in terms of glioma incidence but not GBM survival.
Collapse
|
42
|
Kanmalar M, Abdul Sani SF, Kamri NINB, Said NABM, Jamil AHBA, Kuppusamy S, Mun KS, Bradley DA. Raman spectroscopy biochemical characterisation of bladder cancer cisplatin resistance regulated by FDFT1: a review. Cell Mol Biol Lett 2022; 27:9. [PMID: 35093030 PMCID: PMC8903573 DOI: 10.1186/s11658-022-00307-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer is the fourth most common malignancy in males. It can present across the whole continuum of severity, from mild through well-differentiated disease to extremely malignant tumours with poor survival rates. As with other vital organ malignancies, proper clinical management involves accurate diagnosis and staging. Chemotherapy consisting of a cisplatin-based regimen is the mainstay in the management of muscle-invasive bladder cancers. Control via cisplatin-based chemotherapy is threatened by the development of chemoresistance. Intracellular cholesterol biosynthesis in bladder cancer cells is considered a contributory factor in determining the chemotherapy response. Farnesyl-diphosphate farnesyltransferase 1 (FDFT1), one of the main regulatory components in cholesterol biosynthesis, may play a role in determining sensitivity towards chemotherapy compounds in bladder cancer. FDFT1-associated molecular identification might serve as an alternative or appendage strategy for early prediction of potentially chemoresistant muscle-invasive bladder cancer tissues. This can be accomplished using Raman spectroscopy. Developments in the instrumentation have led to it becoming one of the most convenient forms of analysis, and there is a highly realistic chance that it will become an effective tool in the pathology lab. Chemosensitive bladder cancer tissues tend to have a higher lipid content, more protein genes and more cholesterol metabolites. These are believed to be associated with resistance towards bladder cancer chemotherapy. Herein, Raman peak assignments have been tabulated as an aid to indicating metabolic changes in bladder cancer tissues that are potentially correlated with FDFT1 expression.
Collapse
Affiliation(s)
- M Kanmalar
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Fairus Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amirah Hajirah B A Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S Kuppusamy
- Department of Surgery, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - K S Mun
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - D A Bradley
- Centre for Applied Physics and Radiation Technologies, Sunway University, Jalan University, 46150, Petaling Jaya, Malaysia
- Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
43
|
Kaur J, Bhattacharyya S. Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy. Front Oncol 2021; 11:756888. [PMID: 34804950 PMCID: PMC8602811 DOI: 10.3389/fonc.2021.756888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023] Open
Abstract
The subpopulation of cancer stem cells (CSCs) within tumor bulk are known for tumor recurrence and metastasis. CSCs show intrinsic resistance to conventional therapies and phenotypic plasticity within the tumor, which make these a difficult target for conventional therapies. CSCs have different metabolic phenotypes based on their needs as compared to the bulk cancer cells. CSCs show metabolic plasticity and constantly alter their metabolic state between glycolysis and oxidative metabolism (OXPHOS) to adapt to scarcity of nutrients and therapeutic stress. The metabolic characteristics of CSCs are distinct compared to non-CSCs and thus provide an opportunity to devise more effective strategies to target CSCs. Mechanism for metabolic switch in CSCs is still unravelled, however existing evidence suggests that tumor microenvironment affects the metabolic phenotype of cancer cells. Understanding CSCs metabolism may help in discovering new and effective clinical targets to prevent cancer relapse and metastasis. This review summarises the current knowledge of CSCs metabolism and highlights the potential targeted treatment strategies.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
44
|
Deshmukh R, Allega MF, Tardito S. A map of the altered glioma metabolism. Trends Mol Med 2021; 27:1045-1059. [PMID: 34489164 DOI: 10.1016/j.molmed.2021.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The frequent occurrence of neomorphic isocitrate dehydrogenase 1 (IDH1) mutations in low-grade glioma led to an IDH-centric classification of these tumors. However, exploiting metabolic alterations of glioma for diagnostic imaging and treatment has marginally improved patients' prognosis. Here we discuss the nutritional microenvironment of glioma, shaped by the distinctive dependence of the brain on glucose and ketone bodies for energy, and on amino acids for neurotransmission. We highlight the progress in metabolic applications for glioma diagnosis and therapy, and present a map that streamlines the rewired glioma metabolism. The map illustrates the altered reactions in central carbon and nitrogen metabolism that drive glioma biology, and represent metabolic vulnerabilities with translational potential.
Collapse
Affiliation(s)
- Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Maria Francesca Allega
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
45
|
Luttman JH, Hoj JP, Lin KH, Lin J, Gu JJ, Rouse C, Nichols AG, MacIver NJ, Wood KC, Pendergast AM. ABL allosteric inhibitors synergize with statins to enhance apoptosis of metastatic lung cancer cells. Cell Rep 2021; 37:109880. [PMID: 34706244 PMCID: PMC8579324 DOI: 10.1016/j.celrep.2021.109880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Targeting mitochondrial metabolism has emerged as a treatment option for cancer patients. The ABL tyrosine kinases promote metastasis, and enhanced ABL signaling is associated with a poor prognosis in lung adenocarcinoma patients. Here we show that ABL kinase allosteric inhibitors impair mitochondrial integrity and decrease oxidative phosphorylation. To identify metabolic vulnerabilities that enhance this phenotype, we utilized a CRISPR/Cas9 loss-of-function screen and identified HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway and target of statin therapies, as a top-scoring sensitizer to ABL inhibition. Combination treatment with ABL allosteric inhibitors and statins decreases metastatic lung cancer cell survival in vitro in a synergistic manner. Notably, combination therapy in mouse models of lung cancer brain metastasis and therapy resistance impairs metastatic colonization with a concomitant increase in animal survival. Thus, metabolic combination therapy might be effective to decrease metastatic outgrowth, leading to increased survival for lung cancer patients with advanced disease. Metabolic reprogramming in tumors is an adaptation that generates vulnerabilities that can be exploited for developing new therapies. Here Luttman et al. identify synergism between ABL allosteric inhibitors and lipophilic statins to impair metastatic lung cancer cell outgrowth and colonization, leading to increased survival in mouse models of advanced disease.
Collapse
Affiliation(s)
- Jillian Hattaway Luttman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jacob P Hoj
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaxing Lin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Clay Rouse
- Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, NC, USA
| | - Amanda G Nichols
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
46
|
Ossoli A, Wolska A, Remaley AT, Gomaraschi M. High-density lipoproteins: A promising tool against cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159068. [PMID: 34653581 DOI: 10.1016/j.bbalip.2021.159068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoproteins (HDL) are well known for their protective role against the development and progression of atherosclerosis. Atheroprotection is mainly due to the key role of HDL within the reverse cholesterol transport, and to their ability to exert a series of antioxidant and anti-inflammatory activities. Through the same mechanisms HDL could also affect cancer cell proliferation and tumor progression. Many types of cancers share common alterations of cellular metabolism, including lipid metabolism. In this context, not only fatty acids but also cholesterol and its metabolites play a key role. HDL were shown to reduce cancer cell content of cholesterol, overall rewiring cholesterol homeostasis. In addition, HDL reduce oxidative stress and the levels of pro-inflammatory molecules in cancer cells and in the tumor microenvironment (TME). Here, HDL can also help in reverting tumor immune escape and in inhibiting angiogenesis. Interestingly, HDL are good candidates for drug delivery, targeting antineoplastic agents to the tumor mass mainly through their binding to the scavenger receptor BI. Since they could affect cancer development and progression per se, HDL-based drug delivery systems may render cancer cells more sensitive to antitumor agents and reduce the development of drug resistance.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Gomaraschi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
47
|
Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021; 12:730751. [PMID: 34603046 PMCID: PMC8479196 DOI: 10.3389/fphar.2021.730751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence showed that cancer stem cells (CSCs) play significant roles in cancer initiation, resistance to therapy, recurrence and metastasis. Cancer stem cells possess the ability of self-renewal and can initiate tumor growth and avoid lethal factors through flexible metabolic reprogramming. Abnormal lipid metabolism has been reported to be involved in the cancer stemness and promote the development of cancer. Lipid metabolism includes lipid uptake, lipolysis, fatty acid oxidation, de novo lipogenesis, and lipid desaturation. Abnormal lipid metabolism leads to ferroptosis of CSCs. In this review, we comprehensively summarized the role of intra- and extracellular lipid signals in cancer stemness, and explored the feasibility of using lipid metabolism-related treatment strategies for future cancer.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
48
|
Levy JJ, Chen Y, Azizgolshani N, Petersen CL, Titus AJ, Moen EL, Vaickus LJ, Salas LA, Christensen BC. MethylSPWNet and MethylCapsNet: Biologically Motivated Organization of DNAm Neural Networks, Inspired by Capsule Networks. NPJ Syst Biol Appl 2021; 7:33. [PMID: 34417465 PMCID: PMC8379254 DOI: 10.1038/s41540-021-00193-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation (DNAm) alterations have been heavily implicated in carcinogenesis and the pathophysiology of diseases through upstream regulation of gene expression. DNAm deep-learning approaches are able to capture features associated with aging, cell type, and disease progression, but lack incorporation of prior biological knowledge. Here, we present modular, user-friendly deep-learning methodology and software, MethylCapsNet and MethylSPWNet, that group CpGs into biologically relevant capsules-such as gene promoter context, CpG island relationship, or user-defined groupings-and relate them to diagnostic and prognostic outcomes. We demonstrate these models' utility on 3,897 individuals in the classification of central nervous system (CNS) tumors. MethylCapsNet and MethylSPWNet provide an opportunity to increase DNAm deep-learning analyses' interpretability by enabling a flexible organization of DNAm data into biologically relevant capsules.
Collapse
Affiliation(s)
- Joshua J Levy
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA.
| | - Youdinghuan Chen
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Nasim Azizgolshani
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Curtis L Petersen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| | - Alexander J Titus
- Department of Life Sciences, University of New Hampshire, Manchester, NH, USA
| | - Erika L Moen
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Louis J Vaickus
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
49
|
Abstract
Metabolism is an important part of tumorigenesis as well as progression. The various cancer metabolism pathways, such as glucose metabolism and glutamine metabolism, directly regulate the development and progression of cancer. The pathways by which the cancer cells rewire their metabolism according to their needs, surrounding environment and host tissue conditions are an important area of study. The regulation of these metabolic pathways is determined by various oncogenes, tumor suppressor genes, as well as various constituent cells of the tumor microenvironment. Expanded studies on metabolism will help identify efficient biomarkers for diagnosis and strategies for therapeutic interventions and countering ways by which cancers may acquire resistance to therapy.
Collapse
|
50
|
Nguyen TTT, Westhoff MA, Karpel-Massler G, Siegelin MD. Targeting super-enhancers reprograms glioblastoma central carbon metabolism. Oncotarget 2021; 12:1309-1313. [PMID: 34194627 PMCID: PMC8238252 DOI: 10.18632/oncotarget.27938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
The concept that tumor cells demand a distinct form of metabolism was appreciated almost a century ago when the German biochemist Otto Warburg realized that tumor cells heavily utilize glucose and produce lactic acid while relatively reducing oxidative metabolism. How this phenomenon is orchestrated and regulated is only partially understood and seems to involve certain transcription factors, including c-Myc, HIF1A and others. The epigenome eintails the posttranslational modification of histone proteins which in turn are involved in regulation of transcription. Recently, it was found that cis-regulatory elements appear to facilitate the Warburg effects since several genes encoding for glycolysis and associated pathways are surrounded by enhancer/super-enhancer regions. Disruption of these regions by FDA-approved HDAC inhibitors suppressed the transcription of these genes and elicited a reversal of the Warburg effect with activation of transcription factors facilitating oxidative energy metabolism with increases in transcription factors that are part of the PPARA family. Therefore, combined targeting of HDACs and oxidative metabolism suppressed tumor growth in patient-derived xenograft models of solid tumors, including glioblastoma.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|