1
|
Jiang Y, Li Y, Zheng D, Du X, Yang H, Wang C, Zhao M, Xiao H, Zhang L, Li X, Shi S. Nano-polymeric platinum activates PAR2 gene editing to suppress tumor metastasis. Biomaterials 2025; 317:123090. [PMID: 39799696 DOI: 10.1016/j.biomaterials.2025.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Metastasis as the hallmark of cancer preferentially contributes to tumor recurrence and therapy resistance, aggrandizing the lethality of patients with cancer. Despite their robust suppressions of tumor progression, chemotherapeutics failed to attenuate cancer cell migration and even triggered pro-metastatic effects. In parallel, protease-activated receptor 2 (PAR2), a member of the G protein-coupled receptor subfamily, actively participates in cancer metastasis via multiple signal transduction pathways. CRISPR/Cas9 that is a dominating genome editing tool can evoke PAR2 knockout to inhibit cancer metastasis. However, the absence of valid delivery systems largely limits its efficacy. Herein, we nanosized polymeric platinum (NanoPt) as therapeutical drug carries to deliver CRISPR/Cas9 to elicit genome editing of PAR2, which drastically augmented anti-metastatic effects and alleviated systematic toxicity of platinum-based treatment in vitro and in vivo. More importantly, the NanoPt@Cas9-PAR2 initiated PAR2 deficiency to mechanistically attenuate EMT process and ferroptosis via RAGE/ERK signalling, consequently preventing cancer cell migration. Our findings indicate that NanoPt@Cas9-PAR2 that mitigated PAR2 signalling and cytotoxic effects of platinum could be a safe and powerful all-in-one combinatorial strategy for cancer treatment.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongmei Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xin Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Science and Education Division, Public Health Clinical Center of Chengdu& Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China.
| |
Collapse
|
2
|
Zhang J, Liu G, Wang W. PRSS53 is a potential novel biomarker related to prognosis and immunity in clear cell renal cell carcinoma. Discov Oncol 2025; 16:362. [PMID: 40111561 PMCID: PMC11925835 DOI: 10.1007/s12672-025-02114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
OBJECTIVE To analyze the expression levels, clinical significance, Immune infiltration and prognostic value of PRSS53 (Protease Serine 53) in clear cell renal cell carcinoma (ccRCC) using bioinformatics methods. METHODS Data on PRSS53 in ccRCC were extracted from databases and platforms, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), The Gene Expression Omnibus (GEO), Xiantao Academic Tool, Human Protein Atlas (HPA) and so on. We analyzed the relationship between PRSS53 expression and the clinical and pathological characteristics, diagnosis, immune infiltration and prognosis in ccRCC patients. Additionally, immunohistochemical analysis was performed on 9 pairs of ccRCC patient samples. RESULTS PRSS53 was significantly upregulated in ccRCC and was closely associated with the TNM stage and histological grade of ccRCC. Receiver operating characteristic (ROC) curve analysis demonstrated the excellent diagnostic performance of PRSS53 in ccRCC (AUC = 0.928). Patients with high PRSS53 expression exhibited lower overall survival (OS) and disease-specific survival (DSS). Gene set enrichment analysis (GSEA) revealed that PRSS53 is involved in cellular functions such as anchored component of membrane, basement membrane and RNA-binding involved in post-transcriptional gene silencing. Single-sample GSEA (ssGSEA) indicated a positive correlation between PRSS53 expression and T helper cells infiltration levels, and a negative correlation with T gamma delta (Tgd) cell infiltration. PRSS53 was predominantly expressed in renal proximal tubules. The immunohistochemical results and HPA database showed that PRSS53 protein expression was significantly lower in clinical ccRCC tissues compared to normal tissues. CONCLUSION PRSS53 is a new prognostic biomarker and potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Jiajun Zhang
- The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224006, China
| | - Guocheng Liu
- The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224006, China
| | - Wei Wang
- The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224006, China.
- Department of Urology, Yancheng No.1 People's Hospital, Yancheng, 224006, China.
| |
Collapse
|
3
|
Lundgren JG, Flynn MG, List K. GPI-anchored serine proteases: essential roles in development, homeostasis, and disease. Biol Chem 2025:hsz-2024-0135. [PMID: 40094301 DOI: 10.1515/hsz-2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The glycosylphosphatidylinositol (GPI)-anchored serine proteases, prostasin and testisin, have essential roles in diverse physiological functions including development, reproduction, homeostasis and barrier function of epithelia, angiogenesis, coagulation, and fibrinolysis. Important functions in pathological conditions such as cancer, kidney disease and cardiovascular disease have also been reported. In this review, we summarize current knowledge of the cellular and in vivo roles of prostasin and testisin in physiology and pathophysiology and explore the underlying molecular mechanisms. We discuss how new insights of their role in cancer and cardiovascular disease may facilitate translation into clinical settings in the future.
Collapse
Affiliation(s)
- Joseph G Lundgren
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| | - Michael G Flynn
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Verhulst E, De Bruyn M, Berckmans P, Sim Y, Augustyns K, Pintelon I, Berg M, Van Wielendaele P, Lambeir AM, Sterckx YGJ, Nelissen I, De Meester I. Human Transmembrane Serine Protease 2 (TMPRSS2) on Human Seminal Fluid Extracellular Vesicles Is Proteolytically Active. J Extracell Vesicles 2025; 14:e70061. [PMID: 40091430 PMCID: PMC11911546 DOI: 10.1002/jev2.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Human transmembrane serine protease 2 (TMPRSS2) has garnered substantial interest due to its clinical significance in various pathologies, notably its pivotal role in viral entry into host cells. The development of effective strategies to target TMPRSS2 is a current area of intense research and necessitates a consistent source of active TMPRSS2 with sufficient stability. Here, we comprehensively characterised human seminal-fluid extracellular vesicles (SF-EVs, also referred to as prostasomes), bearing a native source of surface-exposed, enzymatically active TMPRSS2 as demonstrated by high-sensitivity flow cytometry and a fluorometric activity assay. Additionally, we recombinantly produced human TMPRSS2 ectodomain in mammalian cells adopting a directed activation strategy. We observed comparable catalytic parameters and inhibition characteristics for both native SF-EV-associated and recombinant TMPRSS2 when exposed to serine protease inhibitor Nafamostat mesylate. Leveraging these findings, we developed a robust in vitro biochemical assay based on these SF-EVs for the screening of TMPRSS2-targeting compounds. Our results will accelerate the discovery and advancement of efficacious therapeutic approaches targeting TMPRSS2 and propel further exploration into the biological role of SF-EV-associated active TMPRSS2.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Michelle De Bruyn
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Pascale Berckmans
- Health Unit, Flemish Institute for Technological Research, Mol, Belgium
| | - Yani Sim
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Maya Berg
- Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research, Mol, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Stagg J, Gutkind JS. Targeting G Protein-Coupled Receptors in Immuno-Oncological Therapies. Annu Rev Pharmacol Toxicol 2025; 65:315-331. [PMID: 39270681 DOI: 10.1146/annurev-pharmtox-061724-080852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The advent of cancer immunotherapy based on PD-1 and CTLA-4 immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, many cancers do not respond to ICB, highlighting the urgent need for additional approaches to achieve durable cancer remission. The large family of G protein-coupled receptors (GPCRs) is the target of more than 30% of all approved drugs, but GPCRs have been underexploited in cancer immunotherapy. In this review, we discuss the central role of GPCRs in immune cell migration and function and describe how single-cell transcriptomic studies are illuminating the complexity of the human tumor immune GPCRome. These receptors include multiple GPCRs expressed in CD8 T cells that are activated by inflammatory mediators, protons, neurotransmitters, and metabolites that accumulate in the tumor microenvironment, thereby promoting T cell dysfunction. We also discuss new opportunities to target GPCRs as a multimodal approach to enhance the response to ICB for a myriad of human malignancies.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada;
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
6
|
Xu K, Wang L, Lin M, He G. Update on protease-activated receptor 2 in inflammatory and autoimmune dermatological diseases. Front Immunol 2024; 15:1449126. [PMID: 39364397 PMCID: PMC11446762 DOI: 10.3389/fimmu.2024.1449126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell-surface receptor expressed in various cell types, including keratinocytes, neurons, immune and inflammatory cells. Activation of PAR2, whether via its canonical or biased pathways, triggers a series of signaling cascades that mediate numerous functions. This review aims to highlight the emerging roles and interactions of PAR2 in different skin cells. It specifically summarizes the latest insights into the roles of PAR2 in skin conditions such as atopic dermatitis (AD), psoriasis, vitiligo and melasma. It also considers these roles from the perspective of the cutaneous microenvironment in relation to other inflammatory and autoimmune dermatological disorders. Additionally, the review explores PAR2's involvement in associated comorbidities from both cutaneous and extracutaneous diseases. Therefore, PAR2 may serve as a key target for interactions among various cells within the local skin environment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Si Q, Bai M, Wang X, Wang T, Qin Y. Photonanozyme-Kras-ribosome combination treatment of non-small cell lung cancer after COVID-19. Front Immunol 2024; 15:1420463. [PMID: 39308869 PMCID: PMC11412844 DOI: 10.3389/fimmu.2024.1420463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
With the outbreak of the coronavirus disease 2019 (COVID-19), reductions in T-cell function and exhaustion have been observed in patients post-infection of COVID-19. T cells are key mediators of anti-infection and antitumor, and their exhaustion increases the risk of compromised immune function and elevated susceptibility to cancer. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with high incidence and mortality. Although the survival rate after standard treatment such as surgical treatment and chemotherapy has improved, the therapeutic effect is still limited due to drug resistance, side effects, and recurrence. Recent advances in molecular biology and immunology enable the development of highly targeted therapy and immunotherapy for cancer, which has driven cancer therapies into individualized treatments and gradually entered clinicians' views for treating NSCLC. Currently, with the development of photosensitizer materials, phototherapy has been gradually applied to the treatment of NSCLC. This review provides an overview of recent advancements and limitations in different treatment strategies for NSCLC under the background of COVID-19. We discuss the latest advances in phototherapy as a promising treatment method for NSCLC. After critically examining the successes, challenges, and prospects associated with these treatment modalities, their profound prospects were portrayed.
Collapse
Affiliation(s)
- Qiaoyan Si
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingjian Bai
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tianyu Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Qin
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Agwa MM, Marzouk RE, Sabra SA. Advances in active targeting of ligand-directed polymeric nanomicelles via exploiting overexpressed cellular receptors for precise nanomedicine. RSC Adv 2024; 14:23520-23542. [PMID: 39071479 PMCID: PMC11273262 DOI: 10.1039/d4ra04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Many of the utilized drugs which already exist in the pharmaceutical sector are hydrophobic in nature. These drugs are characterized by being poorly absorbed and difficult to formulate in aqueous environments with low bioavailability, which could result in consuming high and frequent doses in order to fulfil the required therapeutic effect. As a result, there is a decisive demand to find modern alternatives to overcome all these drawbacks. Self-assembling polymeric nanomicelles (PMs) with their unique structure appear to be a fascinating choice as a pharmaceutical carrier system for improving the solubility & bioavailability of many drugs. PMs as drug carriers have many advantages including suitable size, high stability, prolonged circulation time, elevated cargo capacity and controlled therapeutic release. Otherwise, the pathological features of some diseased cells, like cancer, allow PMs with particle size <200 nm to be passively uptaken via enhanced permeability and retention phenomenon (EPR). However, the passive targeting approach was proven to be insufficient in many cases. Consequently, the therapeutic efficiency of these PMs can be further reinforced by enhancing their cellular internalization via incorporating targeting ligands. These targeting ligands can enhance the assemblage of loaded cargos in the intended tissues via receptor-mediated endocytosis through exploiting receptors robustly expressed on the exterior of the intended tissue while minimizing their toxic effects. In this review, the up-to-date approaches of harnessing active targeting ligands to exploit certain overexpressed receptors will be summarized concerning the functionalization of the exterior of PMs for ameliorating their targeting potential in the scope of nanomedicine.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El-Behooth St, Dokki Giza 12622 Egypt +202 33370931 +202 33371635
| | - Rehab Elsayed Marzouk
- Medical Biochemistry Department, Faculty of Medicine, Helwan University Helwan Cairo Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| |
Collapse
|
9
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
10
|
Wang Y, Xu Y, Deng Y, Yang L, Wang D, Yang Z, Zhang Y. Computational identification and experimental verification of a novel signature based on SARS-CoV-2-related genes for predicting prognosis, immune microenvironment and therapeutic strategies in lung adenocarcinoma patients. Front Immunol 2024; 15:1366928. [PMID: 38601163 PMCID: PMC11004994 DOI: 10.3389/fimmu.2024.1366928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Background Early research indicates that cancer patients are more vulnerable to adverse outcomes and mortality when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, the specific attributes of SARS-CoV-2 in lung Adenocarcinoma (LUAD) have not been extensively and methodically examined. Methods We acquired 322 SARS-CoV-2 infection-related genes (CRGs) from the Human Protein Atlas database. Using an integrative machine learning approach with 10 algorithms, we developed a SARS-CoV-2 score (Cov-2S) signature across The Cancer Genome Atlas and datasets GSE72094, GSE68465, and GSE31210. Comprehensive multi-omics analysis, including assessments of genetic mutations and copy number variations, was conducted to deepen our understanding of the prognosis signature. We also analyzed the response of different Cov-2S subgroups to immunotherapy and identified targeted drugs for these subgroups, advancing personalized medicine strategies. The expression of Cov-2S genes was confirmed through qRT-PCR, with GGH emerging as a critical gene for further functional studies to elucidate its role in LUAD. Results Out of 34 differentially expressed CRGs identified, 16 correlated with overall survival. We utilized 10 machine learning algorithms, creating 101 combinations, and selected the RFS as the optimal algorithm for constructing a Cov-2S based on the average C-index across four cohorts. This was achieved after integrating several essential clinicopathological features and 58 established signatures. We observed significant differences in biological functions and immune cell statuses within the tumor microenvironments of high and low Cov-2S groups. Notably, patients with a lower Cov-2S showed enhanced sensitivity to immunotherapy. We also identified five potential drugs targeting Cov-2S. In vitro experiments revealed a significant upregulation of GGH in LUAD, and its knockdown markedly inhibited tumor cell proliferation, migration, and invasion. Conclusion Our research has pioneered the development of a consensus Cov-2S signature by employing an innovative approach with 10 machine learning algorithms for LUAD. Cov-2S reliably forecasts the prognosis, mirrors the tumor's local immune condition, and supports clinical decision-making in tumor therapies.
Collapse
Affiliation(s)
- Yuzhi Wang
- Department of Laboratory Medicine, Deyang People's Hospital, Deyang, Sichuan, China
- Pathogenic Microbiology and Clinical Immunology Key Laboratory of Deyang City, Deyang People's Hospital, Deyang, Sichuan, China
| | - Yunfei Xu
- Department of Laboratory Medicine, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| | - Yuqin Deng
- Department of Cardiology, Jianyang People's Hospital, Jianyang, China
| | - Liqiong Yang
- Department of Laboratory Medicine, Deyang People's Hospital, Deyang, Sichuan, China
- Pathogenic Microbiology and Clinical Immunology Key Laboratory of Deyang City, Deyang People's Hospital, Deyang, Sichuan, China
| | - Dengchao Wang
- Department of Laboratory Medicine, Deyang People's Hospital, Deyang, Sichuan, China
- Pathogenic Microbiology and Clinical Immunology Key Laboratory of Deyang City, Deyang People's Hospital, Deyang, Sichuan, China
| | - Zhizhen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Blood Transfusion, Deyang People's Hospital, Deyang, Sichuan, China
| |
Collapse
|
11
|
Rani A, Pandey DM, Pandey JP. Biomolecular characterization of Antheraea mylitta cocoonase: A secreted protease. Anal Biochem 2024; 686:115408. [PMID: 38008303 DOI: 10.1016/j.ab.2023.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Cocoonase is a protease secreted during the emergence of silk moths. In the present study cocoonase of Antheraea mylitta was collected, purified and secondary structure was determined using circular dichroism (CD) spectroscopy which revealed the presence of α-helix 4.3%, β-sheet 55%, turn 8% and random coil 32.7%. The thermal stability of cocoonase was studied using CD spectroscopy while the thermal property was observed using Differential Scanning Calorimetry (DSC). Furthermore, MALDI-TOF peptide mass fingerprinting (PMF) was performed for similar protein identification using the MASCOT server. Using casein as the substrate, the kinetic constants Km and Vmax were 13 × 103 mg/ml and 15.09 × 10-2 μg/mg.s1 respectively. The specific activity of cocoonase was observed to be maximum at temperature 40 °C, pH-8.0. The effect of heavy metals Hg2+, Cd2+, Co2+, Pb2+ showed inhibitory activity at higher concentrations, while few metals like Mn2+, Fe3+ enhanced the activity while the effect of Ca2+ was not much on the activity. Soybean trypsin inhibitor and PMSF showed an inhibitory effect on the activity of cocoonase. Additionally, antioxidant scavenging and fibrinolytic properties were also observed. Furthermore, the imperative information generated through the present study will serve to explore cocoonase for its prospective pharmaceutical applications.
Collapse
Affiliation(s)
- Aruna Rani
- Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India; Central Tasar Research and Training Institute (Central Silk Board, MOT Govt. of India), Piska Nagri, Ranchi, 835303, Jharkhand, India
| | - Dev Mani Pandey
- Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Jay Prakash Pandey
- Central Tasar Research and Training Institute (Central Silk Board, MOT Govt. of India), Piska Nagri, Ranchi, 835303, Jharkhand, India.
| |
Collapse
|
12
|
Furuya K, Nakajima M, Tsunedomi R, Nakagami Y, Xu M, Matsui H, Tokumitsu Y, Shindo Y, Watanabe Y, Tomochika S, Maeda N, Iida M, Suzuki N, Takeda S, Hazama S, Ioka T, Hoshii Y, Ueno T, Nagano H. High serum proteinase-3 levels predict poor progression-free survival and lower efficacy of bevacizumab in metastatic colorectal cancer. BMC Cancer 2024; 24:165. [PMID: 38308214 PMCID: PMC10835931 DOI: 10.1186/s12885-024-11924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND To improve the prognosis of patients with metastatic colorectal cancer (mCRC), investigating predictive biomarkers of their prognosis and chemotherapeutic responsiveness is necessary. This study aimed to analyze the clinical significance of serum proteinase-3 (PRTN3) as a predictor for prognosis and chemosensitivity, especially to bevacizumab therapy, in mCRC. METHODS This single-center retrospective observational study enrolled 79 patients with mCRC in our hospital and 353 patients with colorectal cancer in the TCGA database. Preoperative serum PRTN3 levels were measured using an enzyme-linked immunosorbent assay. The clinicopathological characteristics and prognosis according to serum PRTN3 levels were then evaluated. PRTN3 expression in tumor and stromal cells was evaluated immunohistochemically. The impact of PRTN3 levels on angiogenesis and bevacizumab sensitivity was evaluated using the tube formation assay. RESULTS Serum PRTN3 levels were an independent poor prognostic factor for progression-free survival (PFS) (hazard ratio, 2.082; 95% confidence interval, 1.118-3.647; P=0.010) in patients with mCRC. Similarly, prognostic analysis with TCGA data sets showed poorer overall survival in patients with PRTN3 expression than that in patients without PRTN3 expression, especially in patients with stage IV. Immunohistochemical analysis of resected specimens revealed that stromal neutrophils expressed PRTN3, and their expression level was significantly correlated with serum PRTN3 levels. Interestingly, the effectiveness of first-line chemotherapy was significantly poorer in the high serum PRTN3 level group. High serum PRTN3 was significantly associated with poor PFS (hazard ratio, 3.027; 95% confidence interval, 1.175-7.793; P=0.0161) in patients treated with bevacizumab, an anti-angiogenic inhibitor. The tube formation assay revealed that PRTN3 administration notably augmented angiogenesis while simultaneously attenuating the anti-angiogenic influence exerted by bevacizumab therapy. CONCLUSIONS Serum PRTN3 levels could be a novel predictive biomarker of PFS of first-line chemotherapy, especially for bevacizumab therapy, in patients with mCRC.
Collapse
Affiliation(s)
- Kei Furuya
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yusaku Watanabe
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
13
|
Jiang Y, Lu L. New insight into the agonism of protease-activated receptors as an immunotherapeutic strategy. J Biol Chem 2024; 300:105614. [PMID: 38159863 PMCID: PMC10810747 DOI: 10.1016/j.jbc.2023.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
The activation and mobilization of immune cells play a crucial role in immunotherapy. Existing therapeutic interventions, such as cytokines administration, aim to enhance immune cell activity. However, these approaches usually result in modest effectiveness and toxic side effects, thereby restricting their clinical application. Protease-activated receptors (PARs), a subfamily of G protein-coupled receptors, actively participate in the immune system by directly activating immune cells. The activation of PARs by proteases or synthetic ligands can modulate immune cell behavior, signaling, and responses to treat immune-related diseases, suggesting the significance of PARs agonism in immunotherapy. However, the agonism of PARs in therapeutical applications remains rarely discussed, since it has been traditionally considered that PARs activation facilitates disease progressions. This review aims to comprehensively summarize the activation, rather than inhibition, of PARs in immune-related physiological responses and diseases. Additionally, we will discuss the emerging immunotherapeutic potential of PARs agonism, providing a new strategic direction for PARs-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
14
|
Chen J, Ren T, Xie L, Hu H, Li X, Maitusong M, Zhou X, Hu W, Xu D, Qian Y, Cheng S, Yu K, Wang JA, Liu X. Enhancing aortic valve drug delivery with PAR2-targeting magnetic nano-cargoes for calcification alleviation. Nat Commun 2024; 15:557. [PMID: 38228638 PMCID: PMC10792006 DOI: 10.1038/s41467-024-44726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.
Collapse
Affiliation(s)
- Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Tanchen Ren
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Haochang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200030, Shanghai, P.R. China
| | - Miribani Maitusong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xuhao Zhou
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Wangxing Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Dilin Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Yi Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Si Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Kaixiang Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Jian An Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, P.R. China.
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| |
Collapse
|
15
|
Han LL, Lu QQ, Zheng WW, Li YL, Song YY, Zhang XZ, Long SR, Liu RD, Wang ZQ, Cui J. A novel trypsin of Trichinella spiralis mediates larval invasion of gut epithelium via binding to PAR2 and activating ERK1/2 pathway. PLoS Negl Trop Dis 2024; 18:e0011874. [PMID: 38166153 PMCID: PMC10786404 DOI: 10.1371/journal.pntd.0011874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.
Collapse
Affiliation(s)
- Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Wen Wen Zheng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yang Li Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Pawar NR, Buzza MS, Duru N, Strong AA, Antalis TM. Matriptase drives dissemination of ovarian cancer spheroids by a PAR-2/PI3K/Akt/MMP9 signaling axis. J Cell Biol 2023; 222:e202209114. [PMID: 37737895 PMCID: PMC10515437 DOI: 10.1083/jcb.202209114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
The transmembrane serine protease matriptase is a key regulator of both barrier-disruptive and protective epithelial cell-cell interactions. Elevated matriptase is a consistent feature of epithelial ovarian cancers (OvCa), where multicellular spheroids shed from the primary tumor into the peritoneal cavity are critical drivers of metastasis. Dynamic cell-to-cell adhesive contacts are required for spheroid formation and maintenance. Here, we show that overactive matriptase, reflected in an increased ratio of matriptase to its inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), disrupts cell-cell contacts to produce loose prometastatic spheroids that display increased mesothelial cell adhesion and submesothelial invasion. We show that these activities are dependent on the matriptase activation of a protease-activated receptor-2 (PAR-2) signaling pathway involving PI3K/Akt and MMP9-induced disruption of cell-cell adhesion by the release of the soluble E-cadherin ectodomain. These data reveal a novel pathological connection between matriptase activation of PAR-2 and disruption of cell-cell adhesion, and support the clinical investigation of this signaling axis as a therapeutic strategy for aggressive metastatic OvCa.
Collapse
Affiliation(s)
- Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, USA
| | - Nadire Duru
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amando A. Strong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
17
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
18
|
Hao L, Zhao RT, Welch NL, Tan EKW, Zhong Q, Harzallah NS, Ngambenjawong C, Ko H, Fleming HE, Sabeti PC, Bhatia SN. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics. NATURE NANOTECHNOLOGY 2023; 18:798-807. [PMID: 37095220 PMCID: PMC10359190 DOI: 10.1038/s41565-023-01372-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Synthetic biomarkers, bioengineered sensors that generate molecular reporters in diseased microenvironments, represent an emerging paradigm in precision diagnostics. Despite the utility of DNA barcodes as a multiplexing tool, their susceptibility to nucleases in vivo has limited their utility. Here we exploit chemically stabilized nucleic acids to multiplex synthetic biomarkers and produce diagnostic signals in biofluids that can be 'read out' via CRISPR nucleases. The strategy relies on microenvironmental endopeptidase to trigger the release of nucleic acid barcodes and polymerase-amplification-free, CRISPR-Cas-mediated barcode detection in unprocessed urine. Our data suggest that DNA-encoded nanosensors can non-invasively detect and differentiate disease states in transplanted and autochthonous murine cancer models. We also demonstrate that CRISPR-Cas amplification can be harnessed to convert the readout to a point-of-care paper diagnostic tool. Finally, we employ a microfluidic platform for densely multiplexed, CRISPR-mediated DNA barcode readout that can potentially evaluate complex human diseases rapidly and guide therapeutic decisions.
Collapse
Affiliation(s)
- Liangliang Hao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renee T Zhao
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole L Welch
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Edward Kah Wei Tan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qian Zhong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nour Saida Harzallah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chayanon Ngambenjawong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Henry Ko
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather E Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Pardis C Sabeti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Plasse TF, Fathi R, Fehrmann C, McComsey GA. Upamostat: a serine protease inhibitor for antiviral, gastrointestinal, and anticancer indications. Expert Opin Investig Drugs 2023; 32:1095-1103. [PMID: 37970658 DOI: 10.1080/13543784.2023.2284385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Serine proteases are involved in many normal metabolic processes but also contribute to diseases of several organ systems, including viral and gastrointestinal diseases and oncology. Upamostat is an orally bioavailable prodrug of WX-UK1, which is most active against trypsins and closely related enzymes. AREAS COVERED Research over the past two decades suggests several diseases in the three areas noted above which upamostat may be active. Upamostat has been studied clinically against several cancers and for outpatient treatment of COVID-19. Preclinical and clinical pharmacokinetic and metabolism studies demonstrate good bioavailability, sustained tissue levels, and high concentrations of the active moiety, WX-UK1, in stool, potentially important for treatment of gastrointestinal diseases. Clinical studies suggest activity against SARS-CoV-2; results against pancreatic cancer are also encouraging, though studies in both indications are not definitive. The drug was very well tolerated for periods of 2 weeks to several months. EXPERT OPINION Upamostat is an orally bioavailable serine protease inhibitor with an excellent safety profile and favorable pharmacokinetic properties. It has demonstrated preliminary evidence of efficacy against COVID-19, and nonclinical data suggest potential applicability against other viral illnesses, gastrointestinal diseases, and cancer.
Collapse
Affiliation(s)
- T F Plasse
- RedHill Biopharma, Ltd, Tel Aviv, Israel
| | - R Fathi
- RedHill Biopharma, Ltd, Tel Aviv, Israel
| | - C Fehrmann
- CEEF Solutions, Beaconsfield, Quebec, Canada
| | - G A McComsey
- CEEF Solutions, Beaconsfield, Quebec, Canada
- University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
20
|
Li S, Chen Z, Zhang W, Wang T, Wang X, Wang C, Chao J, Liu L. Elevated expression of the membrane-anchored serine protease TMPRSS11E in NSCLC progression. Carcinogenesis 2022; 43:1092-1102. [PMID: 35951670 DOI: 10.1093/carcin/bgac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023] Open
Abstract
TMPRSS11E was found to be upregulated in human nonsmall cell lung cancer samples (NSCLC) and cell lines, and high expression was associated with poor survival of NSCLC patients. The results of in vitro and in vivo experiments showed that overexpressing TMPRSS11E resulted in A549 cell proliferation and migration promotion, while the TMPRSS11E S372A mutant with the mutated catalytic domain lost the promoting function. In addition, in mouse xenograft models, silencing TMPRSS11E expression inhibited the growth of 95D cell-derived tumors. To explore the mechanism of marked upregulation of TMPRSS11E in NSCLC cells, promoter analysis, EMSA, and ChIP assays were performed. STAT3 was identified as the transcription factor responsible for TMPRSS11E transcription. Moreover, the purified recombinant TMPRSS11E catalytic domain exhibited enzymatic activity for the proteolytic cleavage of PAR2. Recombinant TMPRSS11E catalytic domain incubation further activated the PAR2-EGFR-STAT3 pathway. These findings established a mechanism of TMPRSS11E-PAR2-EGFR-STAT3 positive feedback, and the oncogenic role of TMPRSS11E as a PAR2 modulator in NSCLC was revealed.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Zhenfa Chen
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Wei Zhang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Ting Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Xihua Wang
- Department of Respiration, Zhongda Hospital, Nanjing 210009, China
| | - Chao Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, Medical School of Southeast University, Nanjing 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medicine School of Southeast University, Nanjing 210009, China
| |
Collapse
|
21
|
Lv J, Liu J, Chao G, Zhang S. PARs in the inflammation-cancer transformation of CRC. Clin Transl Oncol 2022; 25:1242-1251. [PMID: 36547764 DOI: 10.1007/s12094-022-03052-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the common malignancies with a global trend of increasing incidence and mortality. There is an urgent need to identify new predictive markers and therapeutic targets for the treatment of CRC. Protease-activated receptors (PARs) are a class of G-protein-coupled receptors, with currently identified subtypes including PAR1, PAR2, PAR3 and PAR4. Increasingly, studies suggest that PARs play an important role in the growth and metastasis of CRC. By targeting multiple signaling pathways may contribute to the pathogenesis of CRC. In this review, we first describe recent studies on the role of PARs in CRC inflammation-cancer transformation, focusing on the important role of PARs in signaling pathways associated with inflammation-cancer transformation, and summarize the progress of research on PARs-targeted drugs.
Collapse
Affiliation(s)
- Jianyu Lv
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jinguo Liu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hanghou, China.
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
22
|
Chu TY, Zheng-Gérard C, Huang KY, Chang YC, Chen YW, I KY, Lo YL, Chiang NY, Chen HY, Stacey M, Gordon S, Tseng WY, Sun CY, Wu YM, Pan YS, Huang CH, Lin CY, Chen TC, El Omari K, Antonelou M, Henderson SR, Salama A, Seiradake E, Lin HH. GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation. Nat Commun 2022; 13:6385. [PMID: 36302784 PMCID: PMC9613636 DOI: 10.1038/s41467-022-34083-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Neutrophils play essential anti-microbial and inflammatory roles in host defense, however, their activities require tight regulation as dysfunction often leads to detrimental inflammatory and autoimmune diseases. Here we show that the adhesion molecule GPR97 allosterically activates CD177-associated membrane proteinase 3 (mPR3), and in conjugation with several protein interaction partners leads to neutrophil activation in humans. Crystallographic and deletion analysis of the GPR97 extracellular region identified two independent mPR3-binding domains. Mechanistically, the efficient binding and activation of mPR3 by GPR97 requires the macromolecular CD177/GPR97/PAR2/CD16b complex and induces the activation of PAR2, a G protein-coupled receptor known for its function in inflammation. Triggering PAR2 by the upstream complex leads to strong inflammatory activation, prompting anti-microbial activities and endothelial dysfunction. The role of the complex in pathologic inflammation is underscored by the finding that both GPR97 and mPR3 are upregulated on the surface of disease-associated neutrophils. In summary, we identify a PAR2 activation mechanism that directs neutrophil activation, and thus inflammation. The PR3/CD177/GPR97/PAR2/CD16b protein complex, therefore, represents a potential therapeutic target for neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Tai-Ying Chu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chi Chang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ling Lo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nien-Yi Chiang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yi Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Mu Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yi-Shin Pan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Chien-Hao Huang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Kamel El Omari
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, UK
| | | | | | - Alan Salama
- Department of Renal Medicine, Royal Free Campus, UCL, London, UK
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan.
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Feng Y, Liu S, Zha R, Sun X, Li K, Wu D, Aryal UK, Koch M, Li BY, Yokota H. Prostate cancer-associated urinary proteomes differ before and after prostatectomy. Ther Adv Med Oncol 2022; 14:17588359221131532. [PMID: 36324734 PMCID: PMC9618752 DOI: 10.1177/17588359221131532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A wide range of disorders can be detected in the urine. Tumor-modifying proteins in the urine may serve as a diagnostic tool for cancer patients and the alterations in their profiles may indicate efficacies of chemotherapy, radiotherapy, and surgery. METHODS We focused on urinary proteomes of patients with prostate cancer and identified tumor-modifying proteins in the samples before and after prostatectomy. Protein array analysis was conducted to evaluate a differential profile of tumor-promoting cytokines, while mass spectrometry-based global proteomics was conducted to identify tumor-suppressing proteins. RESULTS The result revealed striking differences by prostatectomy. Notably, the urine from the post-prostatectomy significantly decreased the tumorigenic behaviors of prostate tumor cells as well as breast cancer cells. We observed that angiogenin, a stimulator of blood vessel formation, was reduced in the post-prostatectomy urine. By contrast, the levels of three cell-membrane proteins such as prostasin (PRSS8), nectin 2 (PVRL2), and nidogen 1 (NID1) were elevated and they acted as extracellular tumor-suppressing proteins. These three proteins, given extracellularly, downregulated tumorigenic genes such as Runx2, Snail, and transforming growth factor beta and induced apoptosis of tumor cells. However, the role of NID1 differed depending on the location, and intracellular NID1 was tumorigenic and reduced the percent survival. CONCLUSIONS This study demonstrated that prostatectomy remarkably altered the profile of urinary proteomes, and the post-prostatectomy urine provided tumor-suppressive proteomes. The result sheds novel light on the dynamic nature of the urinary proteomes and a unique strategy for predicting tumor suppressors.
Collapse
Affiliation(s)
| | | | - Rongrong Zha
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Xun Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Di Wu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Michael Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, #157 Baojian Road, Harbin, Heilongjiang 150081, China
| | | |
Collapse
|
24
|
Li X, Lu D, Zhang Z, Zhang Y, Wang J, Hu Y. Prognostic value of plasma D-dimer levels in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors: a retrospective study. J Thorac Dis 2022; 14:4125-4135. [PMID: 36389301 PMCID: PMC9641356 DOI: 10.21037/jtd-22-1363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Plasma D-dimer is of great significance for the clinical exclusion of tumor-related thrombosis. Previous studies have shown its predictive role in non-small cell lung cancer (NSCLC) treated with chemotherapy. However, whether pretreatment D-dimer could predict the efficacy and prognosis in NSCLC patients treated with immune checkpoint inhibitors (ICIs) remains unclear. METHODS Advanced NSCLC patients treated with ICIs at the Chinese PLA General Hospital between January 2015 and March 2019 were enrolled. Patients were divided into a pretreatment normal D-dimer group (≤0.5 µg/mL) and high D-dimer group (>0.5 µg/mL). Optimization-based approach was applied to balance baseline covariates between the 2 groups, including age, sex, histological type, smoking history, stage, Eastern Cooperative Oncology Group Performance Status (ECOG PS), lines of treatment, ICI drugs, brain metastasis, treatment type, and D-dimer levels. Kaplan-Meier analysis and Cox proportional hazards model were used for analyzing survival data, including progression-free survival (PFS, the time from initial ICI treatment to PD or death), overall survival (OS, the time between initial ICI treatment and death), and hazard ratio (HR). Follow-up of all patients was performed by searching electronic medical records and counseling telephone. The follow-up cut-off date was July 6, 2020. RESULTS This study included 277 advanced NSCLC patients. Among the enrolled patients, 23.1% were female, 64.6% had non-squamous cell lung cancer, and 79.4% were stage IV. Univariate and multivariate analysis showed that pretreatment high D-dimer levels were independently associated with shortened PFS and OS (P<0.01). Subgroup analysis confirmed that pretreatment high D-dimer levels were associated with poor prognosis in most subsets. After balancing baseline covariates between the high D-dimer group and normal D-dimer group, the results indicated that patients with pretreatment high D-dimer levels had significantly shorter PFS [median: 6.4 vs. 11.5 months; HR, 1.70; 95% confidence ratio (CI): 1.25-2.37; P<0.001] and OS (median: 12.7 vs. 30.4 months; HR, 2.29; 95% CI: 1.54-3.41; P<0.001) than those with pretreatment normal D-dimer levels. CONCLUSIONS Pretreatment plasma D-dimer could serve as a convenient prognostic biomarker for advanced NSCLC patients receiving ICI treatment. Patients with pretreatment high D-dimer levels may have poor PFS and OS.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China;,Medical School of Chinese PLA, Beijing, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China;,Medical School of Chinese PLA, Beijing, China
| | - Zhibo Zhang
- Department of Cardiothoracic Surgery, The 78th Group Army Hospital of Chinese PLA, Mudanjiang, China
| | - Yuning Zhang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China;,Medical School of Chinese PLA, Beijing, China
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Ferguson TEG, Reihill JA, Martin SL, Walker B. Novel inhibitors and activity-based probes targeting serine proteases. Front Chem 2022; 10:1006618. [PMID: 36247662 PMCID: PMC9555310 DOI: 10.3389/fchem.2022.1006618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serine proteases play varied and manifold roles in important biological, physiological, and pathological processes. These include viral, bacterial, and parasitic infection, allergic sensitization, tumor invasion, and metastasis. The use of activity-based profiling has been foundational in pinpointing the precise roles of serine proteases across this myriad of processes. A broad range of serine protease-targeted activity-based probe (ABP) chemotypes have been developed and we have recently introduced biotinylated and "clickable" peptides containing P1 N-alkyl glycine arginine N-hydroxy succinimidyl (NHS) carbamates as ABPs for detection/profiling of trypsin-like serine proteases. This present study provides synthetic details for the preparation of additional examples of this ABP chemotype, which function as potent irreversible inhibitors of their respective target serine protease. We describe their use for the activity-based profiling of a broad range of serine proteases including trypsin, the trypsin-like protease plasmin, chymotrypsin, cathepsin G, and neutrophil elastase (NE), including the profiling of the latter protease in clinical samples obtained from patients with cystic fibrosis.
Collapse
Affiliation(s)
| | | | | | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
26
|
Treatment of ovarian cancer with modified anthrax toxin. Proc Natl Acad Sci U S A 2022; 119:e2210179119. [PMID: 35917343 PMCID: PMC9371659 DOI: 10.1073/pnas.2210179119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
27
|
Duru N, Pawar NR, Martin EW, Buzza MS, Conway GD, Lapidus RG, Liu S, Reader J, Rao GG, Roque DM, Leppla SH, Antalis TM. Selective targeting of metastatic ovarian cancer using an engineered anthrax prodrug activated by membrane-anchored serine proteases. Proc Natl Acad Sci U S A 2022; 119:e2201423119. [PMID: 35867758 PMCID: PMC9282395 DOI: 10.1073/pnas.2201423119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 01/19/2023] Open
Abstract
Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.
Collapse
Affiliation(s)
- Nadire Duru
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Erik W. Martin
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gregory D. Conway
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rena G. Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shihui Liu
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jocelyn Reader
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gautam G. Rao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dana M. Roque
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Stephen H. Leppla
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201
| |
Collapse
|
28
|
Zhuo X, Wu Y, Fu X, Liang X, Xiang Y, Li J, Mao C, Jiang Y. The Yin‐Yang roles of protease‐activated receptors in inflammatory signalling and diseases. FEBS J 2022; 289:4000-4020. [DOI: 10.1111/febs.16406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhuo
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yue Wu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiujuan Fu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiaoyu Liang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuxin Xiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Jianbin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Canquan Mao
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuhong Jiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
29
|
Ferguson TEG, Reihill JA, Martin SL, Walker B. Novel Inhibitors and Activity-Based Probes Targeting Trypsin-Like Serine Proteases. Front Chem 2022; 10:782608. [PMID: 35529696 PMCID: PMC9068901 DOI: 10.3389/fchem.2022.782608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The trypsin-like proteases (TLPs) play widespread and diverse roles, in a host of physiological and pathological processes including clot dissolution, extracellular matrix remodelling, infection, angiogenesis, wound healing and tumour invasion/metastasis. Moreover, these enzymes are involved in the disruption of normal lung function in a range of respiratory diseases including allergic asthma where several allergenic proteases have been identified. Here, we report the synthesis of a series of peptide derivatives containing an N-alkyl glycine analogue of arginine, bearing differing electrophilic leaving groups (carbamate and triazole urea), and demonstrate their function as potent, irreversible inhibitors of trypsin and TLPs, to include activities from cockroach extract. As such, these inhibitors are suitable for use as activity probes (APs) in activity-based profiling (ABP) applications.
Collapse
Affiliation(s)
- Timothy E G Ferguson
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - James A Reihill
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - S Lorraine Martin
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
30
|
Expression of Proteinase-activated Receptor 2 (PAR2) as a Correlate of Concern in Triple-negative Breast Cancer (TNBC). Appl Immunohistochem Mol Morphol 2022; 30:446-452. [DOI: 10.1097/pai.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/18/2022] [Indexed: 01/18/2023]
|
31
|
Rivas CM, Schiff H, Moutal A, Khanna R, Kiela PR, Dussor G, Price TJ, Vagner J, DeFea KA, Boitano S. Alternaria alternata-induced airway epithelial signaling and inflammatory responses via protease-activated receptor-2 expression. Biochem Biophys Res Commun 2022; 591:13-19. [PMID: 34990903 PMCID: PMC8792334 DOI: 10.1016/j.bbrc.2021.12.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Inhalation of the fungus Alternaria alternata is associated with an increased risk of allergic asthma development and exacerbations. Recent work in acute exposure animal models suggests that A. alternata-induced asthma symptoms, which include inflammation, mucus overproduction and airway hyperresponsiveness, are due to A. alternata proteases that act via protease-activated receptor-2 (PAR2). However, because other active components present in A. alternata may be contributing to asthma pathophysiology through alternative signaling, the specific role PAR2 plays in asthma initiation and maintenance remains undefined. Airway epithelial cells provide the first encounter with A. alternata and are thought to play an important role in initiating the physiologic response. To better understand the role for PAR2 airway epithelial signaling we created a PAR2-deficient human bronchial epithelial cell line (16HBEPAR-/-) from a model bronchial parental line (16HBE14o-). Comparison of in vitro physiologic responses in these cell lines demonstrated a complete loss of PAR2 agonist (2at-LIGRL-NH2) response and significantly attenuated protease (trypsin and elastase) and A. alternata responses in the 16HBEPAR-/- line. Apical application of A. alternata to 16HBE14o- and 16HBEPAR2-/- grown at air-liquid interface demonstrated rapid, PAR2-dependent and independent, inflammatory cytokine, chemokine and growth factor basolateral release. In conclusion, the novel human PAR2-deficient cell line allows for direct in vitro examination of the role(s) for PAR2 in allergen challenge with polarized human airway epithelial cells.
Collapse
Affiliation(s)
- Candy M. Rivas
- Department of Physiology, University of Arizona, Tucson, AZ;,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ
| | - Hillary Schiff
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ;,Department of Biochemistry, University of Arizona, Tucson AZ
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ
| | - Gregory Dussor
- Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Theodore J Price
- Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Josef Vagner
- Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ
| | - Kathryn A. DeFea
- University of California Riverside, Biomedical Sciences and PARMedics, Incorporated
| | - Scott Boitano
- Department of Physiology, University of Arizona, Tucson, AZ;,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ;,Corresponding Author: Scott Boitano, Ph.D., Professor, Physiology, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, Arizona. 85724-5030, , +1 (520) 626-2105
| |
Collapse
|
32
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|
33
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Huang YY, Liu X, Liang SH, Hu Y, Ma GW. The Prognostic Value of Preoperative Serum D-dimer Levels After Surgical Resection of Thymic Epithelial Tumors. Cancer Control 2022; 29:10732748221129108. [DOI: 10.1177/10732748221129108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Thymic epithelial tumors are the most common mediastinal tumors. Despite the high survival rate after surgery, some patients still require postoperative adjuvant therapy and closer follow-up. Hematological indicators such as biochemical routines and coagulation indicators have been reported to be independently associated with the prognosis of various malignancies. Therefore, we included hematological indicators in the analysis. Methods The data of 105 patients with thymic epithelial tumors were retrospectively collected from Sun Yat-sen University Cancer Center, and the patients with missing preoperative hematological indicators were excluded. X-tile software was used to obtain the best cutoff value of each preoperative hematological indicator, and COX regression analysis and Kaplan-Meier survival curves were used to demonstrate statistically significant results. Results COX univariate regression analysis of all patients showed that Masaoka stage, T stage, WHO histologic types, D-dimer, albumin-fibrinogen ratio (AFR), Fibrinogen (Fbg) were associated with postoperative overall survival ( P < .05). T stage, WHO histologic types, D-dimer, and AFR were associated with postoperative recurrence-free survival ( P < .05). Finally, multivariate regression analysis showed that T stage, D-dimer levels were independently associated with postoperative overall survival (OS) and recurrence-free survival (RFS) in patients with thymic epithelial tumors. Conclusions For thymic epithelial tumors, higher preoperative D-dimer levels predict poorer survival and shorter recurrence-free survival. This may help guide postoperative adjuvant therapy and follow-up patterns in patients with thymic epithelial tumors.
Collapse
Affiliation(s)
- Yang-Yu Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shen-Hua Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Wei Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
35
|
Isaacs LL. Pancreatic Proteolytic Enzymes and Cancer: New Support for an Old Theory. Integr Cancer Ther 2022; 21:15347354221096077. [PMID: 35514109 PMCID: PMC9083047 DOI: 10.1177/15347354221096077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 1905, the embryologist John Beard first proposed that pancreatic proteolytic enzymes had potential as a treatment for cancer. His theories were dismissed by the medical world a decade later, but various practitioners have kept the concept alive through the publication of case reports of cancer patients treated with pancreatic proteolytic enzymes. In the last 2 decades, studies of the role of proteases in physiology have made it clear that they do more than digest food. This article reviews the history of the clinical use of pancreatic proteolytic enzymes in cancer treatment, and recent research on protease activated receptors and their role in cancer.
Collapse
|
36
|
Jiang Y, Zhuo X, Wu Y, Fu X, Mao C. PAR2 blockade reverses osimertinib resistance in non-small-cell lung cancer cells via attenuating ERK-mediated EMT and PD-L1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119144. [PMID: 34599981 DOI: 10.1016/j.bbamcr.2021.119144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
Osimertinib, as the third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), is a first-line molecularly targeted drug for non-small cell lung cancer (NSCLC). However, the emergence of therapeutic resistance to osimertinib markedly impairs its efficiency and efficacy, leading to the failure of clinical applications. Novel molecular targets and drugs are urgently needed for reversing osimertinib resistance in NSCLC. Protease-activated receptor 2 (PAR2) that belongs to a subfamily of G protein-coupled receptors can stimulate the transactivation of EGFR to regulate multiple cellular signalling, actively participating in tumour progression. This study firstly discovered that PAR2 expression was notably enhanced when NSCLC cells became resistant to osimertinib. A PAR2 inhibitor facilitated osimertinib to attenuate EGFR transactivation, ERK phosphorylation, EMT and PD-L1 expression which were associated to osimertinib resistance. The combination of the PAR2 inhibitor and osimertinib also notably blocked cell viability, migration, 3D sphere formation and in vivo tumour growth whereas osimertinib itself lost such inhibitory effects in osimertinib-resistant NSCLC cells. Importantly, this reversal effect of PAR2 blockade was uncovered to depend on ERK-mediated EMT and PD-L1, since inhibition of β-arrestin or ERK, which could be modulated by PAR2, sensitized osimertinib to prevent EMT, PD-L1 expression and consequently overcame osimertinib resistance. Thus, this study demonstrated that PAR2 antagonism could limit ERK-mediated EMT and immune checkpoints, consequently attenuating EGFR transactivation and reactivate osimertinib. It suggested that PAR2 may be a novel drug target for osimertinib resistance, and PAR2 inhibition may be a promising strategy candidate for reversing EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| | - Xin Zhuo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| |
Collapse
|
37
|
Lenga Ma Bonda W, Lavergne M, Vasseur V, Brisson L, Roger S, Legras A, Guillon A, Guyétant S, Hiemstra PS, Si-Tahar M, Iochmann S, Reverdiau P. Kallikrein-related peptidase 5 contributes to the remodeling and repair of bronchial epithelium. FASEB J 2021; 35:e21838. [PMID: 34582061 DOI: 10.1096/fj.202002649r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, oxidative stress, and protease/protease inhibitor imbalance with excessive production of proteases are factors associated with pathogenesis of the chronic obstructive pulmonary disease (COPD). In this study, we report that kallikrein-related peptidase 5 (KLK5) is a crucial protease involved in extracellular matrix (ECM) remodeling and bronchial epithelial repair after injury. First, we showed that KLK5 degrades the basal layer formed by culture of primary bronchial epithelial cells from COPD or non-COPD patients. Also, exogenous KLK5 acted differently on BEAS-2B cells already engaged in epithelial-to-mesenchymal transition (EMT) or on 16HBE 14o- cells harboring epithelial characteristics. Indeed, by inducing EMT, KLK5 reduced BEAS-2B cell adherence to the ECM. This effect, neutralized by tissue factor pathway inhibitor 2, a kunitz-type serine protease inhibitor, was due to a direct proteolytic activity of KLK5 on E-cadherin, β-catenin, fibronectin, and α5β1 integrin. Thus, KLK5 may strengthen EMT mechanisms and promote the migration of cells by activating the mitogen-activated protein kinase signaling pathway required for this function. In contrast, knockdown of endogenous KLK5 in 16HBE14o- cells, accelerated wound healing repair after injury, and exogenous KLK5 addition delayed the closure repair. These data suggest that among proteases, KLK5 could play a critical role in airway remodeling events associated with COPD during exposure of the pulmonary epithelium to inhaled irritants or smoking and the inflammation process.
Collapse
Affiliation(s)
- Woodys Lenga Ma Bonda
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Marion Lavergne
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Virginie Vasseur
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Lucie Brisson
- Université de Tours, Tours, France.,Nutrition, Croissance et Cancer (N2C), INSERM, UMR 1069, Tours, France
| | - Sébastien Roger
- Université de Tours, Tours, France.,EA 4245 "Transplantation, Immunologie, Inflammation", Tours, France.,Institut Universitaire de France, Paris, France
| | - Antoine Legras
- Université de Tours, Tours, France.,Département de chirurgie thoracique, CHRU de Tours, Tours, France
| | - Antoine Guillon
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Service de médecine intensive et réanimation, CHRU de Tours, Tours, France
| | - Serge Guyétant
- Université de Tours, Tours, France.,Département d'anatomie et cytologie pathologiques, CHRU de Tours, Tours, France
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mustapha Si-Tahar
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Sophie Iochmann
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Institut Universitaire de Technologie, Tours, France
| | - Pascale Reverdiau
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Institut Universitaire de Technologie, Tours, France
| |
Collapse
|
38
|
da Silva EZM, Fraga-Silva TFDC, Yuan Y, Alves MG, Publio GA, da Fonseca CK, Kodama MH, Vieira GV, Candido MF, Innocentini LMAR, Miranda MG, da Silva AR, Alves-Filho JC, Bonato VLD, Iglesias-Bartolome R, Sales KU. Kallikrein 5 Inhibition by the Lympho-Epithelial Kazal-Type Related Inhibitor Hinders Matriptase-Dependent Carcinogenesis. Cancers (Basel) 2021; 13:cancers13174395. [PMID: 34503205 PMCID: PMC8431081 DOI: 10.3390/cancers13174395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma remains challenging to treat with no improvement in survival rates over the past 50 years. Thus, there is an urgent need to discover more reliable therapeutic targets and biomarkers for HNSCC. Matriptase, a type-II transmembrane serine protease, induces malignant transformation in epithelial stem cells through proteolytic activation of pro-HGF and PAR-2, triggering PI3K-AKT-mTOR and NFKB signaling. The serine protease inhibitor lympho-epithelial Kazal-type-related inhibitor (LEKTI) inhibits the matriptase-driven proteolytic pathway, directly blocking kallikreins in epithelial differentiation. Hence, we hypothesized LEKTI could inhibit matriptase-dependent squamous cell carcinogenesis, thus implicating kallikreins in this process. Double-transgenic mice with simultaneous expression of matriptase and LEKTI under the keratin-5 promoter showed a prominent rescue of K5-Matriptase+/0 premalignant phenotype. Notably, in DMBA-induced SCC, heterotopic co-expression of LEKTI and matriptase delayed matriptase-driven tumor incidence and progression. Co-expression of LEKTI reverted altered Kallikrein-5 expression observed in the skin of K5-Matriptase+/0 mice, indicating that matriptase-dependent proteolytic pathway inhibition by LEKTI occurs through kallikreins. Moreover, we showed that Kallikrein-5 is necessary for PAR-2-mediated IL-8 release, YAP1-TAZ/TEAD activation, and matriptase-mediated oral squamous cell carcinoma migration. Collectively, our data identify a third signaling pathway for matriptase-dependent carcinogenesis in vivo. These findings are critical for the identification of more reliable biomarkers and effective therapeutic targets in Head and Neck cancer.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (T.F.d.C.F.-S.); (V.L.D.B.)
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (R.I.-B.)
| | - Márcia Gaião Alves
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Gabriel Azevedo Publio
- Departament of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.A.P.); (J.C.A.-F.)
| | - Carol Kobori da Fonseca
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Márcio Hideki Kodama
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Gabriel Viliod Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Marina Ferreira Candido
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Lara Maria Alencar Ramos Innocentini
- Dentistry and Stomatology Division, Ophthalmology, Otolaryngology, and Head and Neck Surgery Department, Clinical Hospital of Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil;
| | - Mateus Gonçalves Miranda
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Alfredo Ribeiro da Silva
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil;
| | - Jose Carlos Alves-Filho
- Departament of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.A.P.); (J.C.A.-F.)
| | - Vania Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (T.F.d.C.F.-S.); (V.L.D.B.)
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (R.I.-B.)
| | - Katiuchia Uzzun Sales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
- Correspondence: ; Tel.: +55-16-3315-9113
| |
Collapse
|
39
|
Ma Y, He L, Zhao X, Li W, Lv X, Zhang X, Peng J, Yang L, Xu Q, Wang H. Protease activated receptor 2 signaling promotes self-renewal and metastasis in colorectal cancer through β-catenin and periostin. Cancer Lett 2021; 521:130-141. [PMID: 34461179 DOI: 10.1016/j.canlet.2021.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023]
Abstract
The maintenance and expansion of cancer stem-like cells (CSCs) is necessary for metastasis. Although protease-activated receptor 2 (PAR2) is strongly associated with colorectal cancer (CRC) progression, it is unclear how it regulates distal metastasis, and no studies have shown the involvement of CSCs. In this study, we demonstrated that high PAR2 protein expression was correlated with metastatic CRC and poor prognosis in patients with stage III-IV CRC. CSCs from cell lines and patients showed higher levels of PAR2 than that of corresponding non-CSCs, and PAR2 inhibition reduced the CSC properties of the cell lines. Mechanistically, PAR2 inhibition switched the division mode of CSCs from symmetrical to asymmetrical via the ERK/GSK-3β/β-catenin pathway. We also identified periostin as a direct transcriptional target of β-catenin that mediates CSC self-renewal via PAR2 signaling. In a mouse xenograft model, PAR2 knockdown significantly attenuated liver metastasis. Finally, PAR2 expression was positively correlated with β-catenin and periostin in the primary sites of CRC with distant metastasis. Overall, our results indicate that PAR2 activation enhances CSC self-renewal and promotes metastasis through β-catenin and its target gene, periostin, in CRC.
Collapse
Affiliation(s)
- Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Longmei He
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weiwei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, Tianjin, 300020, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Peng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lan Yang
- Biobank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Department of Gastroenterology of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Quan Xu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
40
|
Subramaniam S, Ruf W, Bosmann M. Advocacy of targeting protease-activated receptors in severe coronavirus disease 2019. Br J Pharmacol 2021; 179:2086-2099. [PMID: 34235728 PMCID: PMC8794588 DOI: 10.1111/bph.15587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Identifying drug targets mitigating vascular dysfunction, thrombo-inflammation and thromboembolic complications in COVID-19 is essential. COVID-19 coagulopathy differs from sepsis coagulopathy. Factors that drive severe lung pathology and coagulation abnormalities in COVID-19 are not understood. Protein-protein interaction studies indicate that the tagged viral bait protein ORF9c directly interacts with PAR2, which modulates host cell IFN and inflammatory cytokines. In addition to direct interaction of SARS-CoV-2 viral protein with PARs, we speculate that activation of PAR by proteases plays a role in COVID-19-induced hyperinflammation. In COVID-19-associated coagulopathy elevated levels of activated coagulation proteases may cleave PARs in association with TMPRSS2. PARs activation enhances the release of cytokines, chemokines and tissue factor expression to propagate IFN-dependent inflammation, leukocyte-endothelial interaction, vascular permeability and coagulation responses. This hypothesis, corroborated by in vitro findings and emerging clinical evidence, will focus targeted studies of PAR1/2 blockers as adjuvant drugs against cytokine release syndrome and COVID-19-associated coagulopathy.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
41
|
Li W, Ma Y, He L, Li H, Chu Y, Jiang Z, Zhao X, Nie Y, Wang X, Wang H. Protease-activated receptor 2 stabilizes Bcl-xL and regulates EGFR-targeted therapy response in colorectal cancer. Cancer Lett 2021; 517:14-23. [PMID: 34098062 DOI: 10.1016/j.canlet.2021.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
The Bcl-2 homolog Bcl-xL is emerging as a key factor in tumorigenesis due to its prominent pro-survival and cell death-independent functions. However, the regulation of Bcl-xL by microenvironment and its implication in cancer therapy of colorectal carcinoma (CRC) are unclear. Here, we demonstrated that Bcl-xL expression was positively associated with protease-activated receptor 2 (PAR2) in CRC. Activation of PAR2 stabilized Bcl-xL protein in a proteasome-dependent manner, whereas E3 ligase RING finger protein 152 (RNF152) accelerated the ubiquitination and degradation of Bcl-xL. RNF152 silencing by specific siRNAs rescued the expression of Bcl-xL in PAR2-deficient cells. Moreover, RNF152 physically interacted with Bcl-xL, which was disturbed by PAR2 activation. Further studies with serial mutation of Bcl-xL revealed that phosphorylation of Bcl-xL at S145 reduced its binding affinity for RNF152 and stabilized Bcl-xL. Importantly, inhibition of PAR2 signaling by its gene silencing or specific chemical inhibitors increased apoptosis induced by different EGFR-targeted therapies. In patient-derived xenograft model, inhibition of PAR2 increased the response of CRC to different EGFR-targeted therapies. These results indicate that PAR2 stabilizes Bcl-xL by altering RNF152 signaling and that PAR2 inhibition sensitizes CRC to EGFR-targeted therapies in vivo.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Longmei He
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongwei Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Jiang
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xishan Wang
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
42
|
Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol 2021; 18:327-344. [PMID: 33558752 PMCID: PMC8287784 DOI: 10.1038/s41571-021-00470-8] [Citation(s) in RCA: 621] [Impact Index Per Article: 155.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Nine different antibody-drug conjugates (ADCs) are currently approved as cancer treatments, with dozens more in preclinical and clinical development. The primary goal of ADCs is to improve the therapeutic index of antineoplastic agents by restricting their systemic delivery to cells that express the target antigen of interest. Advances in synthetic biochemistry have ushered in a new generation of ADCs, which promise to improve upon the tissue specificity and cytotoxicity of their predecessors. Many of these drugs have impressive activity against treatment-refractory cancers, although hurdles impeding their broader use remain, including systemic toxicity, inadequate biomarkers for patient selection, acquired resistance and unknown benefit in combination with other cancer therapies. Emerging evidence indicates that the efficacy of a given ADC depends on the intricacies of how the antibody, linker and payload components interact with the tumour and its microenvironment, all of which have important clinical implications. In this Review, we discuss the current state of knowledge regarding the design, mechanism of action and clinical efficacy of ADCs as well as the apparent limitations of this treatment class. We then propose a path forward by highlighting several hypotheses and novel strategies to maximize the potential benefit that ADCs can provide to patients with cancer.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weil Cornell Medicine, New York, NY, USA.
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weil Cornell Medicine, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
43
|
Jiang Y, Zhuo X, Fu X, Wu Y, Mao C. Targeting PAR2 Overcomes Gefitinib Resistance in Non-Small-Cell Lung Cancer Cells Through Inhibition of EGFR Transactivation. Front Pharmacol 2021; 12:625289. [PMID: 33967759 PMCID: PMC8100583 DOI: 10.3389/fphar.2021.625289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Drug resistance can notably restrict clinical applications of gefitinib that is a commonly used EGFR-tyrosine kinase inhibitors (EGFR-TKIs) for non-small cell lung cancer (NSCLC). The attempts in exploring novel drug targets and reversal strategies are still needed, since gefitinib resistance has not been fully addressed. Protease-activated receptor 2 (PAR2), a G protein-coupled receptor, possesses a transactivation with EGFR to initiate a variety of intracellular signal transductions, but there is a lack of investigations on the role of PAR2 in gefitinib resistance. This study established that protease-activated receptor 2 (PAR2), actively participated in NSCLC resistant to gefitinib. PAR2 expression was significantly up-regulated when NSCLC cells or tumor tissues became gefitinib resistance. PAR2 inhibition notably enhanced gefitinib to modulate EGFR transactivation, cell viability, migration and apoptosis in gefitinib-sensitive and-resistant NSCLC cells, suggesting its reversal effects in gefitinib resistance. Meanwhile, the combination of a PAR2 inhibitor (P2pal-18S) and gefitinib largely blocked ERK phosphorylation and epithelial-mesenchymal transition (EMT) compared to gefitinib alone. Importantly, we probed its underlying mechanism and uncovered that PAR2 blockade sensitized gefitinib and reversed its resistance mainly via β-arrestin-EGFR-ERK signaling axis. These effects of PAR2 inhibition were further confirmed by the in vivo study which showed that P2pal-18S reactivated gefitinib to inhibit tumor growth via restricting ERK activation. Taken together, this study could not only reveal a new mechanism of receptor-mediated transactivation to modulate drug resistance, but also provide a novel drug target and direction for overcoming gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xin Zhuo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiujuan Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yue Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
44
|
Fuentes-Prior P. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. J Biol Chem 2020; 296:100135. [PMID: 33268377 PMCID: PMC7834812 DOI: 10.1074/jbc.rev120.015980] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
45
|
Liu Q, He J, Ning R, Tan L, Zeng A, Zhou S. Pretreatment plasma d-dimer levels as an independent prognostic factor for overall survival among patients with advanced non-small-cell lung cancer. J Int Med Res 2020; 48:300060520962661. [PMID: 33100094 PMCID: PMC7645424 DOI: 10.1177/0300060520962661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To evaluate the prognostic accuracy of d-dimer levels for advanced non-small-cell lung cancer (NSCLC). METHODS This retrospective cohort study included 651 patients initially diagnosed with advanced NSCLC. Patients with d-dimer levels ≥0.5 mg/L were included in the high d-dimer group, whereas patients with lower levels were included in the normal group. Cumulative survival was estimated using Kaplan-Meier curves and compared using the log-rank test. Multivariate analyses were performed using the Cox proportional hazards model. RESULTS The median plasma d-dimer level in the study cohort was 0.61 ± 0.49 mg/L. d-dimer levels were elevated in 60.98% of patients, and 80.1% of such patients had adenocarcinoma. Univariate and multivariate analyses identified d-dimer content as an independent factor for the prognosis of NSCLC (hazard ratio [HR] = 1.54, 95% confidence interval [CI] = 1.19-1.98). Kaplan-Meier analysis revealed that high plasma d-dimer levels were associated with shorter overall survival (HR = 1.48, 95% CI = 1.19-1.84). In addition, the receipt of <2 lines of treatment was associated with a higher risk of death than the receipt of >2 lines. CONCLUSION The present results imply that pretreatment plasma d-dimer levels could represent a prognostic factor for advanced NSCLC.
Collapse
Affiliation(s)
- Qianfei Liu
- Department of Respiratory Oncology, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Jianbo He
- Department of Respiratory Oncology, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Ruiling Ning
- Department of Respiratory Oncology, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Liping Tan
- Department of Respiratory Oncology, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Aiping Zeng
- Department of Respiratory Oncology, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Shaozhang Zhou
- Department of Respiratory Oncology, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning City, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
46
|
PLAG Exerts Anti-Metastatic Effects by Interfering with Neutrophil Elastase/PAR2/EGFR Signaling in A549 Lung Cancer Orthotopic Model. Cancers (Basel) 2020; 12:cancers12030560. [PMID: 32121107 PMCID: PMC7139301 DOI: 10.3390/cancers12030560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
The effectiveness of chemotherapy and radiotherapy to treat lung cancer is limited because of highly metastatic nature. Novel strategies and drugs to attenuate metastatic activity are urgently required. In this study, red fluorescence proteins (RFP)-labeled A549 human lung cancer cells were orthotopically implantation, where they developed primary tumors. Metastasis in brain and intestines were reduced by up to 80% by treatment with 100 mpk 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) compared with that in control mice. PLAG treatment also reduced the migration of the primary tumors. Interestingly, substantial neutrophil infiltration was observed in the tumors in control mice. The neutrophil contribution to A549 cell metastatic activity was examined in in vitro co-culture system. Metastatic activity could be achieved in the A549 cells through epidermal growth factor receptor (EGFR) transactivation mediated by protease activating receptor 2 (PAR2) receptor. Neutrophil elastase secreted from tumor-infiltrating neutrophils stimulated PAR2 and induced EGFR transactivation. However, this transactivation was inhibited by inducing PAR2 degradation following PLAG treatment and metastatic activity was effectively inhibited. PLAG attenuated cancer metastatic activity via modulated PAR2/EGFR transactivation by accelerating PAR2 degradation. These results suggest PLAG as potential therapeutic agent to combat tumor metastasis via regulating the activation signal pathway of PAR2 by tumor infiltrate-neutrophils.
Collapse
|
47
|
Kawaguchi M, Yamamoto K, Kataoka H, Izumi A, Yamashita F, Kiwaki T, Nishida T, Camerer E, Fukushima T. Protease-activated receptor-2 accelerates intestinal tumor formation through activation of nuclear factor-κB signaling and tumor angiogenesis in Apc Min/+ mice. Cancer Sci 2020; 111:1193-1202. [PMID: 31997435 PMCID: PMC7156842 DOI: 10.1111/cas.14335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor‐1 (HAI‐1), encoded by the SPINT1 gene, is a membrane‐bound protease inhibitor expressed on the surface of epithelial cells. Hepatocyte growth factor activator inhibitor‐1 regulates type II transmembrane serine proteases that activate protease‐activated receptor‐2 (PAR‐2). We previously reported that deletion of Spint1 in ApcMin/+ mice resulted in accelerated formation of intestinal tumors, possibly through enhanced nuclear factor‐κB signaling. In this study, we examined the role of PAR‐2 in accelerating tumor formation in the ApcMin/+ model in the presence or absence of Spint1. We observed that knockout of the F2rl1 gene, encoding PAR‐2, not only eliminated the enhanced formation of intestinal tumors caused by Spint1 deletion, but also reduced tumor formation in the presence of Spint1. Exacerbation of anemia and weight loss associated with HAI‐1 deficiency was also normalized by compound deficiency of PAR‐2. Mechanistically, signaling triggered by deregulated protease activities increased nuclear translocation of RelA/p65, vascular endothelial growth factor expression, and vascular density in ApcMin/+‐induced intestinal tumors. These results suggest that serine proteases promote intestinal carcinogenesis through activation of PAR‐2, and that HAI‐1 plays a critical tumor suppressor role as an inhibitor of matriptase, kallikreins, and other PAR‐2 activating proteases.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Aya Izumi
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Fumiki Yamashita
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Takumi Kiwaki
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Nishida
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Eric Camerer
- Inserm U970, Paris Cardiovascular Research Center, Université de Paris, Paris, France
| | | |
Collapse
|
48
|
Mitschke J, Burk UC, Reinheckel T. The role of proteases in epithelial-to-mesenchymal cell transitions in cancer. Cancer Metastasis Rev 2020; 38:431-444. [PMID: 31482486 DOI: 10.1007/s10555-019-09808-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changing the characteristics of cells from epithelial states to mesenchymal properties is a key process involved in developmental and physiological processes as well as in many diseases with cancer as the most prominent example. Nowadays, a great deal of work and literature concerns the understanding of the process of epithelial-to-mesenchymal transition (EMT) in terms of its molecular regulation and its implications for cancer. Similar statements can certainly be made regarding the investigation of the more than 500 proteases typically encoded by a mammalian genome. Specifically, the impact of proteases on tumor biology has been a long-standing topic of interest. However, although EMT actively regulates expression of many proteases and proteolytic enzymes are clearly involved in survival, division, differentiation, and movements of cells, information on the diverse roles of proteases in EMT has been rarely compiled. Here we aim to conceptually connect the scientific areas of "EMT" and "protease" research by describing how several important classes of proteolytic enzymes are regulated by EMT and how they are involved in initiation and execution of the EMT program. To do so, we briefly introduce the evolving key features of EMT and its regulation followed by discussion of protease involvement in this process.
Collapse
Affiliation(s)
- Julia Mitschke
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Ulrike C Burk
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, partner site Freiburg, 79106, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
49
|
Søreide K, Roalsø M, Aunan JR. Is There a Trojan Horse to Aggressive Pancreatic Cancer Biology? A Review of the Trypsin-PAR2 Axis to Proliferation, Early Invasion, and Metastasis. J Pancreat Cancer 2020; 6:12-20. [PMID: 32064449 PMCID: PMC7014313 DOI: 10.1089/pancan.2019.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Pancreatic cancer is one of the most lethal of solid tumors and is associated with aggressive cancer biology. The purpose is to review the role of trypsin and effect on molecular and cellular processes potentially explaining the aggressive biology in pancreatic cancer. Methods: A narrative literature review of studies investigating trypsin and its effect on protease systems in cancer, with special reference to pancreatic cancer biology. Results: Proteases, such as trypsin, provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Trypsin is a digestive enzyme produced by the exocrine pancreas that is also related to mechanisms of proliferation, invasion and metastasis. Several of these mechanisms may be co-regulated or influenced by activation of proteinase-activated receptor 2 (PAR-2). The current role in pancreatic cancer is not clear but emerging data suggest several potential mechanisms. Trypsin may act as a Trojan horse in the pancreatic gland, facilitating several molecular pathways from the onset, which leads to rapid progression of the disease. Pancreatic cancer cell lines containing PAR-2 proliferate upon exposure to trypsin, whereas cancer cell lines not containing PAR-2 fail to proliferate upon trypsin expression. Several mechanisms of action include a proinflammatory environment, signals inducing proliferation and migration, and direct and indirect evidence for mechanisms promoting invasion and metastasis. Novel techniques (such as organoid models) and increased understanding of mechanisms (such as the microbiome) may yield improved understanding into the role of trypsin in pancreatic carcinogenesis. Conclusion: Trypsin is naturally present in the pancreatic gland and may experience pathological activation intracellularly and in the neoplastic environment, which speeds up molecular mechanisms of proliferation, invasion, and metastasis. Further investigation of these processes will provide important insights into how pancreatic cancer evolves, and suggest new ways for treatment.
Collapse
Affiliation(s)
- Kjetil Søreide
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Marcus Roalsø
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Faculty of Health and Medicine, University of Stavanger, Stavanger, Norway
| | - Jan Rune Aunan
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
50
|
Callies LK, Tadeo D, Simper J, Bugge TH, Szabo R. Iterative, multiplexed CRISPR-mediated gene editing for functional analysis of complex protease gene clusters. J Biol Chem 2019; 294:15987-15996. [PMID: 31501243 DOI: 10.1074/jbc.ra119.009773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Elucidation of gene function by reverse genetics in animal models frequently is complicated by the functional redundancy of homologous genes. This obstacle often is compounded by the tight clustering of homologous genes, which precludes the generation of multigene-deficient animals through standard interbreeding of single-deficient animals. Here, we describe an iterative, multiplexed CRISPR-based approach for simultaneous gene editing in the complex seven-member human airway trypsin-like protease/differentially expressed in a squamous cell carcinoma (HAT/DESC) cluster of membrane-anchored serine proteases. Through four cycles of targeting, we generated a library of 18 unique congenic mouse strains lacking combinations of HAT/DESC proteases, including a mouse strain deficient in all seven proteases. Using this library, we demonstrate that HAT/DESC proteases are dispensable for term development, postnatal health, and fertility and that the recently described function of the HAT-like 4 protease in epidermal barrier formation is unique among all HAT/DESC proteases. The study demonstrates the potential of iterative, multiplexed CRISPR-mediated gene editing for functional analysis of multigene clusters, and it provides a large array of new congenic mouse strains for the study of HAT/DESC proteases in physiological and in pathophysiological processes.
Collapse
Affiliation(s)
- LuLu K Callies
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel Tadeo
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Jan Simper
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Roman Szabo
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|