1
|
Li J, Gao K, Liu Y, Ning Z, Yang X, Chen W, Shen L. Actinidia eriantha polysaccharide prevents gastric cancer invasion and metastasis via inhibition of PD-1/PD-L1 regulation of macrophage polarization. Int J Biol Macromol 2025; 304:140763. [PMID: 39922338 DOI: 10.1016/j.ijbiomac.2025.140763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Actinidia eriantha polysaccharide (AEPS), an active component of the Chinese herbal medicine Radix Actinidia chinensis, has anticancer effects. Here, we investigated the therapeutic potential of AEPS in gastric cancer through in vivo, in vitro, and in silico analyses. In our gastric cancer xenograft mouse model, AEPS effectively reduced tumor volume and weight. In the human gastric adenocarcinoma cell line AGS, AEPS inhibited migration and invasion without affecting proliferation; this result was validated in a fluorescent-labeled lung metastasis mouse model. Mass cytometry revealed that AEPS enhanced macrophage proportions in gastric cancer tissues. Bioinformatics analysis revealed a strong increase in PD-1-regulated M2 macrophage proportions in patients with gastric cancer, shortening their survival time and worsening their prognosis. In the coculture system of interleukin-4-induced human monocytic leukemia cells and AGS cells, AEPS treatment downregulated PD-1/PD-L1 and M2 macrophage-related marker expression but promoted TAM polarization toward the M1 phenotype. These findings facilitated the elucidation of the mechanism underlying the treatment effects of AEPS against gastric cancer. Finally, AEPS-PD-1 antibody combination therapy further enhanced the anticancer effects of AEPS in vivo, suggesting its potential as a basis to develop novel therapeutics for gastric cancer.
Collapse
Affiliation(s)
- Jinxia Li
- Hunan University of Chinese Medicine, Changsha 410208, China; Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kun Gao
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zixin Ning
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyu Yang
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory for Accurate Diagnosis and Treatment of Abdominal Infection in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Li Shen
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Escalona G, Ocadiz‐Ruiz R, Ma JA, Schrack IA, Ross BC, Morrison AK, Jeruss JS, Shea LD. Design Principles of an Engineered Metastatic Niche for Monitoring of Cancer Progression. Biotechnol Bioeng 2025; 122:631-641. [PMID: 39628034 PMCID: PMC11808458 DOI: 10.1002/bit.28895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 02/11/2025]
Abstract
Across many types of cancer, metastatic disease is associated with a substantial decrease in 5-year survival rates relative to only a localized primary tumor. Many patients self-report metastatic disease due to disruption of normal organ or tissue function, and earlier detection could enable treatment with a lower burden of disease. We have previously reported a subcutaneous biomaterial implant for early detection by serving as an engineered metastatic niche, which has been reported to recruit tumor cells before colonization of solid organs. In this report, we investigated the design principles of the scaffold and defined the conditions for use in disease detection. Using the metastatic 4T1 triple-negative breast cancer model, we identified that a porous structure was essential to capture tumor and immune cells. Scaffolds of multiple diameters were investigated for their ability to serve as a metastatic niche, with a porous scaffold with a diameter as small as 2 mm identifying disease accurately. Additionally, scaffolds that had been in vivo for 1-5 weeks were able to identify disease accurately. Finally, the sensitivity of the scaffold relative to liquid biopsies was analyzed, with scaffolds accurately detecting disease at earlier time points than liquid biopsy. Collectively, these studies inform the design principles and use conditions for porous scaffolds to detect metastatic disease.
Collapse
Affiliation(s)
- Guillermo Escalona
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Ramon Ocadiz‐Ruiz
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Jeffrey A. Ma
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Ian A. Schrack
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Brian C. Ross
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Alexis K. Morrison
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline S. Jeruss
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Lonnie D. Shea
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of SurgeryUniversity of MichiganAnn ArborMichiganUSA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Rad LM, Hughes KR, Wheeler SN, Decker JT, Orbach SM, Galvan A, Thornhill J, Griffin KV, Turkistani H, Urie RR, Irani DN, Shea LD, Morris AH. Engineered immunological niche directs therapeutic development in models of progressive multiple sclerosis. Proc Natl Acad Sci U S A 2025; 122:e2409852122. [PMID: 39937858 PMCID: PMC11848328 DOI: 10.1073/pnas.2409852122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/24/2024] [Indexed: 02/14/2025] Open
Abstract
Primary progressive multiple sclerosis (MS) is a demyelinating autoimmune disease with only a single class of FDA-approved treatment, B cell depletion. Novel treatments could emerge from a deeper understanding of the interplay between multiple cell types within diseased tissue throughout progression. We initially describe an engineered biomaterial-based immunological niche (IN) as a surrogate for diseased tissue to investigate immune cell function and phenotype dynamics throughout a chronic progressive mouse model of MS. Using these niches, we identify an array of dysregulated CC chemokine signaling as potential targets. We then develop antigen-loaded nanoparticles that reduce CC chemokine signaling, while delivering antigen. These nanoparticles serve as an antigen-specific treatment, and a single injection reduces disease burden, even if administered after symptomatic disease onset. This report demonstrates proof of principle of a biomaterial scaffold as a diseased tissue surrogate that can monitor immune function, identify potential drug targets, and guide the development of a therapeutic.
Collapse
Affiliation(s)
- Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kevin R. Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Sydney N. Wheeler
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Sophia M. Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Angelica Galvan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Jasmine Thornhill
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kate V. Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Hamza Turkistani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - David N. Irani
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Aaron H. Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
4
|
King JL, Urie RR, Morris AH, Rad L, Bealer E, Kasputis T, Shea LD. Polymer scaffolds delineate healthy from diseased states at sites distal from the pancreas in two models of type 1 diabetes. Biotechnol Bioeng 2024; 121:3600-3613. [PMID: 39082734 PMCID: PMC11839227 DOI: 10.1002/bit.28824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 10/17/2024]
Abstract
Type 1 diabetes (T1D) prevention is currently limited by the lack of diagnostic tools able to identify disease before autoimmune destruction of the pancreatic β cells. Autoantibody tests are used to predict risk and, in combination with glucose dysregulation indicative of β cell loss, to determine administration of immunotherapies. Our objective was to remotely identify immune changes associated with the disease, and we have employed a subcutaneously implanted microporous poly(e-caprolactone) (PCL) scaffold to function as an immunological niche (IN) in two models of T1D. Biopsy and analysis of the IN enables disease monitoring using transcriptomic changes at a distal site from autoimmune destruction of the pancreas, thereby gaining cellular level information about disease without the need for a biopsy of the native organ. Using this approach, we identified gene signatures that stratify healthy and diseased mice in both an adoptive transfer model and a spontaneous onset model of T1D. The gene signatures identified herein demonstrate the ability of the IN to identify immune activation associated with diabetes across models.
Collapse
Affiliation(s)
- Jessica L. King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron H. Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Laila Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Bealer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Tadas Kasputis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Raghani RM, Urie RR, Ma JA, Escalona G, Schrack IA, DiLillo KM, Kandagatla P, Decker JT, Morris AH, Arnold KB, Jeruss JS, Shea LD. Engineered Immunologic Niche Monitors Checkpoint Blockade Response and Probes Mechanisms of Resistance. IMMUNOMEDICINE 2024; 4:e1052. [PMID: 39246390 PMCID: PMC11376346 DOI: 10.1002/imed.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 09/10/2024]
Abstract
Antibodies to programmed cell death protein1 (anti-PD-1) have become a promising immunotherapy for triple negative breast cancer (TNBC), blocking PD-L1 signaling from pro-tumor cells through T cell PD-1 receptor binding. Nevertheless, only 10-20% of PD-L1+ metastatic TNBC patients who meet criteria benefit from ICB, and biomarkers to predict patient response have been elusive. We have previously developed an immunological niche, consisting of a microporous implant in the subcutaneous space, that supports tissue formation whose immune composition is consistent with that within vital organs. Herein, we investigated dynamic gene expression within this immunological niche to provide biomarkers of response to anti-PD-1. In a 4T1 model of metastatic TNBC, we observed sensitivity and resistance to anti-PD-1 based on primary tumor growth and survival. The niche was biopsied before, during, and after anti-PD-1 therapy, and analyzed for cell types and gene expression indicative of treatment refractivity. Myeloid cell-to-lymphocyte ratios were altered between ICB-sensitivity and resistance. Longitudinal analysis of gene expression implicated dynamic myeloid cell function that stratified sensitivity from resistance. A niche-derived gene signature predicted sensitivity or resistance prior to therapy. Analysis of the niche to monitor immunotherapy response presents a new opportunity to personalize care and investigate mechanisms underlying treatment resistance.
Collapse
Affiliation(s)
- Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Russell R Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey A Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Guillermo Escalona
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ian A Schrack
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan
| | - Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Urie RR, Morris A, Farris D, Hughes E, Xiao C, Chen J, Lombard E, Feng J, Li JZ, Goldstein DR, Shea LD. Biomarkers from subcutaneous engineered tissues predict acute rejection of organ allografts. SCIENCE ADVANCES 2024; 10:eadk6178. [PMID: 38748794 PMCID: PMC11095459 DOI: 10.1126/sciadv.adk6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Invasive graft biopsies assess the efficacy of immunosuppression through lagging indicators of transplant rejection. We report on a microporous scaffold implant as a minimally invasive immunological niche to assay rejection before graft injury. Adoptive transfer of T cells into Rag2-/- mice with mismatched allografts induced acute cellular allograft rejection (ACAR), with subsequent validation in wild-type animals. Following murine heart or skin transplantation, scaffold implants accumulate predominantly innate immune cells. The scaffold enables frequent biopsy, and gene expression analyses identified biomarkers of ACAR before clinical signs of graft injury. This gene signature distinguishes ACAR and immunodeficient respiratory infection before injury onset, indicating the specificity of the biomarkers to differentiate ACAR from other inflammatory insult. Overall, this implantable scaffold enables remote evaluation of the early risk of rejection, which could potentially be used to reduce the frequency of routine graft biopsy, reduce toxicities by personalizing immunosuppression, and prolong transplant life.
Collapse
Affiliation(s)
- Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diana Farris
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chengchuan Xiao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Lombard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiane Feng
- Animal Phenotyping Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Pal S, Chaudhari R, Baurceanu I, Hill BJ, Nagy BA, Wolf MT. Extracellular Matrix Scaffold-Assisted Tumor Vaccines Induce Tumor Regression and Long-Term Immune Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309843. [PMID: 38302823 PMCID: PMC11009079 DOI: 10.1002/adma.202309843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Injectable scaffold delivery is a strategy to enhance the efficacy of cancer vaccine immunotherapy. The choice of scaffold biomaterial is crucial, impacting both vaccine release kinetics and immune stimulation via the host response. Extracellular matrix (ECM) scaffolds prepared from decellularized tissues facilitate a pro-healing inflammatory response that promotes local cancer immune surveillance. Here, an ECM scaffold-assisted therapeutic cancer vaccine that maintains an immune microenvironment consistent with tissue reconstruction is engineered. Several immune-stimulating adjuvants are screened to develop a cancer vaccine formulated with decellularized small intestinal submucosa (SIS) ECM scaffold co-delivery. It is found that the STING pathway agonist cyclic di-AMP most effectively induces cytotoxic immunity in an ECM scaffold vaccine, without compromising key interleukin 4 (IL-4) mediated immune pathways associated with healing. ECM scaffold delivery enhances therapeutic vaccine efficacy, curing 50-75% of established E.G-7OVA lymphoma tumors in mice, while none are cured with soluble vaccine. SIS-ECM scaffold-assisted vaccination prolonged antigen exposure is dependent on CD8+ cytotoxic T cells and generates long-term antigen-specific immune memory for at least 10 months post-vaccination. This study shows that an ECM scaffold is a promising delivery vehicle to enhance cancer vaccine efficacy while being orthogonal to characteristics of pro-healing immune hallmarks.
Collapse
Affiliation(s)
- Sanjay Pal
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| | - Rohan Chaudhari
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
- OHSU School of Medicine, Oregon Health & Science
University, Portland, OR 97239
| | - Iris Baurceanu
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| | - Brenna J. Hill
- AIDS and Cancer Virus Program, Frederick National
Laboratory for Cancer Research, Frederick, MD 21702
| | - Bethany A. Nagy
- Laboratory Animal Sciences Program (LASP), National Cancer
Institute, Frederick, MD 21702
| | - Matthew T. Wolf
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| |
Collapse
|
8
|
Ocadiz-Ruiz R, Decker JT, Griffin K, Tan ZM, Domala NK, Jeruss JS, Shea LD. Human Breast Cancer Cell Lines Differentially Modulate Signaling from Distant Microenvironments, Which Reflects Their Metastatic Potential. Cancers (Basel) 2024; 16:796. [PMID: 38398186 PMCID: PMC10887178 DOI: 10.3390/cancers16040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Metastasis is the stage at which the prognosis substantially decreases for many types of cancer. The ability of tumor cells to metastasize is dependent upon the characteristics of the tumor cells, and the conditioning of distant tissues that support colonization by metastatic cells. In this report, we investigated the systemic alterations in distant tissues caused by multiple human breast cancer cell lines and the impact of these alterations on the tumor cell phenotype. We observed that the niche within the lung, a common metastatic site, was significantly altered by MDA-MB-231, MCF7, and T47 tumors, and that the lung microenvironment stimulated, to differing extents, an epithelial-to-mesenchymal transition (EMT), reducing proliferation, increasing transendothelial migration and senescence, with no significant impact on cell death. We also investigated the ability of an implantable scaffold, which supports the formation of a distant tissue, to serve as a surrogate for the lung to identify systemic alterations. The scaffolds are conditioned by the primary tumor similarly to the lung for each tumor type, evidenced by promoting a pro-EMT profile. Collectively, we demonstrate that metastatic and non-metastatic breast cancers condition distant tissues, with distinct effects on tumor cell responses, and that a surrogate tissue can distinguish the metastatic potential of human breast cancer cell lines in an accessible site that avoids biopsy of a vital organ.
Collapse
Affiliation(s)
- Ramon Ocadiz-Ruiz
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.O.-R.)
| | - Joseph T. Decker
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kate Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.O.-R.)
| | - Zoey M. Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.O.-R.)
| | - Nishant K. Domala
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.O.-R.)
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.O.-R.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.O.-R.)
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Orbach SM, DeVaull CY, Bealer EJ, Ross BC, Jeruss JS, Shea LD. An engineered niche delineates metastatic potential of breast cancer. Bioeng Transl Med 2024; 9:e10606. [PMID: 38193115 PMCID: PMC10771563 DOI: 10.1002/btm2.10606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 01/10/2024] Open
Abstract
Metastatic breast cancer is often not diagnosed until secondary tumors have become macroscopically visible and millions of tumor cells have invaded distant tissues. Yet, metastasis is initiated by a cascade of events leading to formation of the pre-metastatic niche, which can precede tumor formation by a matter of years. We aimed to distinguish the potential for metastatic disease from nonmetastatic disease at early times in triple-negative breast cancer using sister cell lines 4T1 (metastatic), 4T07 (invasive, nonmetastatic), and 67NR (nonmetastatic). We used a porous, polycaprolactone scaffold, that serves as an engineered metastatic niche, to identify metastatic disease through the characteristics of the microenvironment. Analysis of the immune cell composition at the scaffold was able to distinguish noninvasive 67NR tumor-bearing mice from 4T07 and 4T1 tumor-bearing mice but could not delineate metastatic potential between the two invasive cell lines. Gene expression in the scaffolds correlated with the up-regulation of cancer hallmarks (e.g., angiogenesis, hypoxia) in the 4T1 mice relative to 4T07 mice. We developed a 9-gene signature (Dhx9, Dusp12, Fth1, Ifitm1, Ndufs1, Pja2, Slc1a3, Soga1, Spon2) that successfully distinguished 4T1 disease from 67NR or 4T07 disease throughout metastatic progression. Furthermore, this signature proved highly effective at distinguishing diseased lungs in publicly available datasets of mouse models of metastatic breast cancer and in human models of lung cancer. The early and accurate detection of metastatic disease that could lead to early treatment has the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sophia M. Orbach
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | | | - Elizabeth J. Bealer
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Brian C. Ross
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline S. Jeruss
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
- Department of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Lonnie D. Shea
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Molina-Peña R, Ferreira NH, Roy C, Roncali L, Najberg M, Avril S, Zarur M, Bourgeois W, Ferreirós A, Lucchi C, Cavallieri F, Hindré F, Tosi G, Biagini G, Valzania F, Berger F, Abal M, Rousseau A, Boury F, Alvarez-Lorenzo C, Garcion E. Implantable SDF-1α-loaded silk fibroin hyaluronic acid aerogel sponges as an instructive component of the glioblastoma ecosystem: Between chemoattraction and tumor shaping into resection cavities. Acta Biomater 2024; 173:261-282. [PMID: 37866725 DOI: 10.1016/j.actbio.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges were designed as an implantable scaffold to trap GB cells. They presented shape memory and fit brain cavities. Histological results after implantation in brain immunocompetent Fischer rats revealed that SF-HA-Hep sponges are well tolerated for more than 3 months while moderately and reversibly colonized by immuno-inflammatory cells. The use of human U87MG GB cells overexpressing the CXCR4 receptor (U87MG-CXCR4+) and responding to SDF-1α allowed demonstrating directional GB cell attraction and colonization of the device in vitro and in vivo in orthotopic resection cavities in Nude rats. Not modifying global survival, aerogel sponge implantation strongly shaped U87MG-CXCR4+ tumors in cavities in contrast to random infiltrative growth in controls. Overall, those results support the interest of SF-HA-Hep sponges as modifiers of the GB ecosystem dynamics acting as "cell meeting rooms" and biocompatible niches whose properties deserve to be considered toward the development of new clinical procedures. STATEMENT OF SIGNIFICANCE: Brain tumor glioblastoma (GB) is one of the worst unmet clinical needs. To prevent the relapse in the resection cavity situation, new implantable biopolymer aerogel sponges loaded with a chemoattractant molecule were designed and preclinically tested as a prototype targeting the interaction between the initial tumor location and its attraction by the peritumoral environment. While not modifying global survival, biocompatible SDF1-loaded hyaluronic acid and silk fibroin sponges induce directional GB cell attraction and colonization in vitro and in rats in vivo. Interestingly, they strongly shaped GB tumors in contrast to random infiltrative growth in controls. These results provide original findings on application of exogenous engineered niches that shape tumors and serve as cell meeting rooms for further clinical developments.
Collapse
Affiliation(s)
- Rodolfo Molina-Peña
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | | | - Charlotte Roy
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Loris Roncali
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Mathie Najberg
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Sylvie Avril
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, ID Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William Bourgeois
- Inserm UMR1205, Brain Tech Lab, Grenoble Alpes University Hospital (CHUGA), Grenoble, 38000, France
| | - Alba Ferreirós
- NASASBIOTECH S.L., Cantón Grande nº 9, 15003, A Coruña, Spain
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - François Hindré
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Giovani Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - François Berger
- Inserm UMR1205, Brain Tech Lab, Grenoble Alpes University Hospital (CHUGA), Grenoble, 38000, France
| | - Miguel Abal
- NASASBIOTECH S.L., Cantón Grande nº 9, 15003, A Coruña, Spain
| | - Audrey Rousseau
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Frank Boury
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, ID Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Emmanuel Garcion
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
11
|
Jeruss JS. The Promise of Ongoing Discovery and Growth: 10 Years after Receiving the Jacobson Promising Investigator Award. J Am Coll Surg 2023; 237:788-792. [PMID: 37466266 DOI: 10.1097/xcs.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Jacqueline S Jeruss
- From the Departments of Surgery, Pathology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Wang J, Ocadiz-Ruiz R, Hall MS, Bushnell GG, Orbach SM, Decker JT, Raghani RM, Zhang Y, Morris AH, Jeruss JS, Shea LD. A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs. Nat Commun 2023; 14:4790. [PMID: 37553342 PMCID: PMC10409732 DOI: 10.1038/s41467-023-40478-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Biomaterial scaffolds mimicking the environment in metastatic organs can deconstruct complex signals and facilitate the study of cancer progression and metastasis. Here we report that a subcutaneous scaffold implant in mouse models of metastatic breast cancer in female mice recruits lung-tropic circulating tumor cells yet suppresses their growth through potent in situ antitumor immunity. In contrast, the lung, the endogenous metastatic organ for these models, develops lethal metastases in aggressive breast cancer, with less aggressive tumor models developing dormant lungs suppressing tumor growth. Our study reveals multifaceted roles of neutrophils in regulating metastasis. Breast cancer-educated neutrophils infiltrate the scaffold implants and lungs, secreting the same signal to attract lung-tropic circulating tumor cells. Second, antitumor and pro-tumor neutrophils are selectively recruited to the dormant scaffolds and lungs, respectively, responding to distinct groups of chemoattractants to establish activated or suppressive immune environments that direct different fates of cancer cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Chemical and Biological Engineering Department, Iowa State University, Ames, IA, USA
| | - Ramon Ocadiz-Ruiz
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Jewell CM, Miljković MD, Oakes RS. Transforming bioengineering with unbiased teams and tools. NATURE REVIEWS BIOENGINEERING 2023; 1:1-3. [PMID: 37359775 PMCID: PMC10043841 DOI: 10.1038/s44222-023-00058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Scientific bias originates from both researchers and techniques. Evidence-based strategies to mitigate this bias include the assembly of diverse teams, development of rigorous experimental designs, and use of unbiased analytical techniques. Here, we highlight potential starting points to decrease bias in bioengineering research.
Collapse
Affiliation(s)
- Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD USA
- Cartesian Therapeutics, Gaithersburg, MD USA
| | | | - Robert S. Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD USA
| |
Collapse
|
14
|
Orbach SM, Brooks MD, Zhang Y, Campit SE, Bushnell GG, Decker JT, Rebernick RJ, Chandrasekaran S, Wicha MS, Jeruss JS, Shea LD. Single-cell RNA-sequencing identifies anti-cancer immune phenotypes in the early lung metastatic niche during breast cancer. Clin Exp Metastasis 2022; 39:865-881. [PMID: 36002598 PMCID: PMC9643644 DOI: 10.1007/s10585-022-10185-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Microenvironmental changes in the early metastatic niche may be exploited to identify therapeutic targets to inhibit secondary tumor formation and improve disease outcomes. We dissected the developing lung metastatic niche in a model of metastatic, triple-negative breast cancer using single-cell RNA-sequencing. Lungs were extracted from mice at 7-, 14-, or 21 days after tumor inoculation corresponding to the pre-metastatic, micro-metastatic, and metastatic niche, respectively. The progression of the metastatic niche was marked by an increase in neutrophil infiltration (5% of cells at day 0 to 81% of cells at day 21) and signaling pathways corresponding to the hallmarks of cancer. Importantly, the pre-metastatic and early metastatic niche were composed of immune cells with an anti-cancer phenotype not traditionally associated with metastatic disease. As expected, the metastatic niche exhibited pro-cancer phenotypes. The transition from anti-cancer to pro-cancer phenotypes was directly associated with neutrophil and monocyte behaviors at these time points. Predicted metabolic, transcription factor, and receptor-ligand signaling suggested that changes in the neutrophils likely induced the transitions in the other immune cells. Conditioned medium generated by cells extracted from the pre-metastatic niche successfully inhibited tumor cell proliferation and migration in vitro and the in vivo depletion of pre-metastatic neutrophils and monocytes worsened survival outcomes, thus validating the anti-cancer phenotype of the developing niche. Genes associated with the early anti-cancer response could act as biomarkers that could serve as targets for the treatment of early metastatic disease. Such therapies have the potential to revolutionize clinical outcomes in metastatic breast cancer.
Collapse
Affiliation(s)
- Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Brooks
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Scott E Campit
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Medical Science Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Xiong Q, Wang M, Liu J, Lin CY. Breast Cancer Cells Metastasize to the Tissue-Engineered Premetastatic Niche by Using an Osteoid-Formed Polycaprolactone/Nanohydroxyapatite Scaffold. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9354202. [PMID: 34938359 PMCID: PMC8687766 DOI: 10.1155/2021/9354202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
It has been deemed that the premetastatic niche (PMN) plays a critical role in facilitating bone metastasis of breast cancer cells. Tissue engineering scaffolds provide an advantageous environment to promote osteogenesis that may mimic the bony premetastatic niches (BPMNs). In this study, human mesenchymal stem cells (hMSCs) were seeded onto designed polycaprolactone/nanohydroxyapatite (PCL-nHA) scaffolds for osteogenic differentiation. Subsequently, a coculture system was used to establish the tissue-engineered BPMNs by culturing breast cancer cells, hMSCs, and osteoid-formed PCL-nHA scaffolds. Afterwards, a migration assay was used to investigate the recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 cells to the BPMNs' supernatants. The cancer stem cell (CSC) properties of these migrated cells were investigated by flow cytometry. Our results showed that the mRNA expression levels of alkaline phosphatase (ALP), Osterix, runt-related transcription factor 2 (Runx2), and collagen type I alpha 1 (COL1A1) on the PCL-nHA scaffolds were dramatically increased compared to the PCL scaffolds on days 11, 18, and 32. The expression of CXCL12 in these BPMNs was increased gradually over coculturing time, and it may be a feasible marker for BPMNs. Furthermore, migration analysis results showed that the higher maturation of BPMNs collectively contributed to the creation of a more favorable niched site for the cancerous invasion. The subpopulation of breast cancer stem cells (BCSCs) was more likely to migrate to fertile BPMNs. The proportion of BCSCs in metastatic MDA-MB-231, MCF-7, and MDA-MB-453 cells were increased by approximately 63.47%, 149.48%, and 127.60%. The current study demonstrated that a designed tissue engineering scaffold can provide a novel method to create a bone-mimicking environment that serves as a useable platform to recapitulate the BPMNs and help interrogate the scheme of bone metastasis by breast cancer.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jinglong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Chia-Ying Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
16
|
Caballero D, Abreu CM, Lima AC, Neves NN, Reis RL, Kundu SC. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2021; 280:121299. [PMID: 34871880 DOI: 10.1016/j.biomaterials.2021.121299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Despite significant achievements in the understanding and treatment of cancer, it remains a major burden. Traditional therapeutic approaches based on the 'one-size-fits-all' paradigm are becoming obsolete, as demonstrated by the increasing number of patients failing to respond to treatments. In contrast, more precise approaches based on individualized genetic profiling of tumors have already demonstrated their potential. However, even more personalized treatments display shortcomings mainly associated with systemic delivery, such as low local drug efficacy or specificity. A large amount of effort is currently being invested in developing precision medicine-based strategies for improving the efficiency of cancer theranostics and modelling, which are envisioned to be more accurate, standardized, localized, and less expensive. To this end, interdisciplinary research fields, such as biomedicine, material sciences, pharmacology, chemistry, tissue engineering, and nanotechnology, must converge for boosting the precision cancer ecosystem. In this regard, precision biomaterials have emerged as a promising strategy to detect, model, and treat cancer more efficiently. These are defined as those biomaterials precisely engineered with specific theranostic functions and bioactive components, with the possibility to be tailored to the cancer patient needs, thus having a vast potential in the increasing demand for more efficient treatments. In this review, we discuss the latest advances in the field of precision biomaterials in cancer research, which are expected to revolutionize disease management, focusing on their uses for cancer modelling, detection, and therapeutic applications. We finally comment on the needed requirements to accelerate their application in the clinic to improve cancer patient prognosis.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno N Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
17
|
Decker JT, Ma JA, Shea LD, Jeruss JS. Implications of TGFβ Signaling and CDK Inhibition for the Treatment of Breast Cancer. Cancers (Basel) 2021; 13:5343. [PMID: 34771508 PMCID: PMC8582459 DOI: 10.3390/cancers13215343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
TGFβ signaling enacts tumor-suppressive functions in normal cells through promotion of several cell regulatory actions including cell-cycle control and apoptosis. Canonical TGFβ signaling proceeds through phosphorylation of the transcription factor, SMAD3, at the C-terminus of the protein. During oncogenic progression, this tumor suppressant phosphorylation of SMAD3 can be inhibited. Overexpression of cyclins D and E, and subsequent hyperactivation of cyclin-dependent kinases 2/4 (CDKs), are often observed in breast cancer, and have been associated with poor prognosis. The noncanonical phosphorylation of SMAD3 by CDKs 2 and 4 leads to the inhibition of tumor-suppressive function of SMAD3. As a result, CDK overactivation drives oncogenic progression, and can be targeted to improve clinical outcomes. This review focuses on breast cancer, and highlights advances in the understanding of CDK-mediated noncanonical SMAD3 phosphorylation. Specifically, the role of aberrant TGFβ signaling in oncogenic progression and treatment response will be examined to illustrate the potential for therapeutic discovery in the context of cyclins/CDKs and SMAD3.
Collapse
Affiliation(s)
- Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5932, USA
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5932, USA
| |
Collapse
|
18
|
Tan ML, Ling L, Fischbach C. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv Drug Deliv Rev 2021; 176:113852. [PMID: 34197895 PMCID: PMC8440401 DOI: 10.1016/j.addr.2021.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Despite decades of research and advancements in diagnostic and treatment modalities, cancer remains a major global healthcare challenge. This is due in part to a lack of model systems that allow investigating the mechanisms underlying tumor development, progression, and therapy resistance under relevant conditions in vitro. Tumor cell interactions with their surroundings influence all stages of tumorigenesis and are shaped by both biological and biophysical cues including cell-cell and cell-extracellular matrix (ECM) interactions, tissue architecture and mechanics, and mass transport. Engineered tumor models provide promising platforms to elucidate the individual and combined contributions of these cues to tumor malignancy under controlled and physiologically relevant conditions. This review will summarize current knowledge of the biological and biophysical microenvironmental cues that influence tumor development and progression, present examples of in vitro model systems that are presently used to study these interactions and highlight advancements in tumor engineering approaches to further improve these technologies.
Collapse
Affiliation(s)
- Matthew L Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Kemp SB, Steele NG, Carpenter ES, Donahue KL, Bushnell GG, Morris AH, The S, Orbach SM, Sirihorachai VR, Nwosu ZC, Espinoza C, Lima F, Brown K, Girgis AA, Gunchick V, Zhang Y, Lyssiotis CA, Frankel TL, Bednar F, Rao A, Sahai V, Shea LD, Crawford HC, Pasca di Magliano M. Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages. Life Sci Alliance 2021; 4:e202000935. [PMID: 33782087 PMCID: PMC8091600 DOI: 10.26508/lsa.202000935] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is accompanied by reprogramming of the local microenvironment, but changes at distal sites are poorly understood. We implanted biomaterial scaffolds, which act as an artificial premetastatic niche, into immunocompetent tumor-bearing and control mice, and identified a unique tumor-specific gene expression signature that includes high expression of C1qa, C1qb, Trem2, and Chil3 Single-cell RNA sequencing mapped these genes to two distinct macrophage populations in the scaffolds, one marked by elevated C1qa, C1qb, and Trem2, the other with high Chil3, Ly6c2 and Plac8 In mice, expression of these genes in the corresponding populations was elevated in tumor-associated macrophages compared with macrophages in the normal pancreas. We then analyzed single-cell RNA sequencing from patient samples, and determined expression of C1QA, C1QB, and TREM2 is elevated in human macrophages in primary tumors and liver metastases. Single-cell sequencing analysis of patient blood revealed a substantial enrichment of the same gene signature in monocytes. Taken together, our study identifies two distinct tumor-associated macrophage and monocyte populations that reflects systemic immune changes in pancreatic ductal adenocarcinoma patients.
Collapse
Affiliation(s)
- Samantha B Kemp
- Departments of Molecular and Cellular Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nina G Steele
- Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eileen S Carpenter
- Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | | | - Grace G Bushnell
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron H Morris
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie The
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Sophia M Orbach
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Zeribe C Nwosu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Fatima Lima
- Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Valerie Gunchick
- Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Yaqing Zhang
- Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Frankel
- Surgery, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Filip Bednar
- Surgery, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Arvind Rao
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Howard C Crawford
- Cancer Biology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cancer Biology, University of Michigan, Ann Arbor, MI, USA
- Surgery, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Oakes RS, Tostanoski LH, Kapnick SM, Froimchuk E, Black SK, Zeng X, Jewell CM. Exploiting Rational Assembly to Map Distinct Roles of Regulatory Cues during Autoimmune Therapy. ACS NANO 2021; 15:4305-4320. [PMID: 33645967 PMCID: PMC8116774 DOI: 10.1021/acsnano.0c07440] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autoimmune diseases like multiple sclerosis (MS), type 1 diabetes, and lupus occur when the immune system attacks host tissue. Immunotherapies that promote selective tolerance without suppressing normal immune function are of tremendous interest. Here, nanotechnology was used for rational assembly of peptides and modulatory immune cues into immune complexes. Complexes containing self-peptides and regulatory nucleic acids reverse established paralysis in a preclinical MS model. Importantly, mice responding to immunotherapy maintain healthy, antigen-specific B and T cell responses during a foreign antigen challenge. A therapeutic library isolating specific components reveals that regulatory nucleic acids suppress inflammatory genes in innate immune cells, while disease-matched peptide sequences control specificity of tolerance. Distinct gene expression profiles in cells and animals are associated with the immune signals administered in particulate and soluble forms, highlighting the impact of biophysical presentation of signals. This work provides insight into the rational manipulation of immune signaling to drive tolerance.
Collapse
Affiliation(s)
- Robert S. Oakes
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10 N Greene St, Baltimore, MD, 21201, USA
| | - Lisa H. Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Senta M. Kapnick
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Eugene Froimchuk
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sheneil K. Black
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Xiangbin Zeng
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10 N Greene St, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, 5102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
21
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
22
|
Filippou PS, Karagiannis GS. Editorial: Revisiting the Metastatic Cascade-Putting Myeloid Cells Into Context. Front Oncol 2021; 10:631278. [PMID: 33425772 PMCID: PMC7786308 DOI: 10.3389/fonc.2020.631278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
23
|
Zhang Y, Hughes KR, Raghani RM, Ma J, Orbach S, Jeruss JS, Shea LD. Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. Biomaterials 2021; 269:120666. [PMID: 33461057 DOI: 10.1016/j.biomaterials.2021.120666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The presence of immunosuppressive innate immune cells such as myeloid derived suppressor cells (MDSCs), Ly6C-high monocytes, and tumor-associated macrophages (TAMs) at a tumor can inhibit effector T cell and NK cell function. Immune checkpoint blockade using anti-PD-1 antibody aims to overcome the immune suppressive environment, yet only a fraction of patients responds. Herein, we test the hypothesis that cargo-free PLG nanoparticles administered intravenously can divert circulating immune cells from the tumor microenvironment to enhance the efficacy of anti-PD-1 immunotherapy in the 4T1 mouse model of metastatic triple-negative breast cancer. In vitro studies demonstrate that these nanoparticles decrease the expression of MCP-1 by 5-fold and increase the expression of TNF-α by more than 2-fold upon uptake by innate immune cells. Intravenous administration of particles results in internalization by MDSCs and monocytes, with particles detected in the liver, lung, spleen, and primary tumor. Nanoparticle delivery decreased the abundance of MDSCs in circulation and in the lung, the latter being the primary metastatic site. Combined with anti-PD-1 antibody, nanoparticles significantly slowed tumor growth and resulted in a survival benefit. Gene expression analysis by GSEA indicated inflammatory myeloid cell pathways were downregulated in the lung and upregulated in the spleen and tumor. Upregulation of extrinsic apoptotic pathways was also observed in the primary tumor. Collectively, these results demonstrate that cargo-free PLG nanoparticles can reprogram immune cell responses and alter the tumor microenvironment in vivo to overcome the local immune suppression attributed to myeloid cells and enhance the efficacy of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
24
|
Bushnell GG, Orbach SM, Ma JA, Crawford HC, Wicha MS, Jeruss JS, Shea LD. Disease-induced immunomodulation at biomaterial scaffolds detects early pancreatic cancer in a spontaneous model. Biomaterials 2020; 269:120632. [PMID: 33418200 DOI: 10.1016/j.biomaterials.2020.120632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/17/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer has the worst prognosis of all cancers due to disease aggressiveness and paucity of early detection platforms. We developed biomaterial scaffolds that recruit metastatic tumor cells and reflect the immune dysregulation of native metastatic sites. While this platform has shown promise in orthotopic breast cancer models, its potential in other models is untested. Herein, we demonstrate that scaffolds recruit disseminated pancreatic cells in the KPCY model of spontaneous pancreatic cancer prior to adenocarcinoma formation (3-fold increase in scaffold YFP + cells). Furthermore, immune cells at the scaffolds differentiate early- and late-stage disease with greater accuracy (0.83) than the natural metastatic site (liver, 0.50). Early disease was identified by an approximately 2-fold increase in monocytes. Late-stage disease was marked by a 1.5-2-fold increase in T cells and natural killer cells. The differential immune response indicated that the scaffolds could distinguish spontaneous pancreatic cancer from spontaneous breast cancer. Collectively, our findings demonstrate the utility of scaffolds to reflect immunomodulation in two spontaneous models of tumorigenesis, and their particular utility for identifying early disease stages in the aggressive KPCY pancreatic cancer model. Such scaffolds may serve as a platform for early detection of pancreatic cancer to improve treatment and prognosis.
Collapse
Affiliation(s)
- Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey A Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Howard C Crawford
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Mertz L. New Tests and Devices for Early Cancer Detection. IEEE Pulse 2020; 11:2-6. [PMID: 32175844 DOI: 10.1109/mpuls.2020.2972706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
"More than 600,000 people will die from cancer in the United States this year, and almost all of them could have been saved by detecting their cancers earlier when they were more amenable to the treatments available today," according to Isaac Kinde (Figure 1), M.D., Ph.D., head of research and innovation and a co-founder of the cancer-screening company Thrive, headquartered in Cambridge, MA [1].
Collapse
|
26
|
Gray M, Meehan J, Turnbull AK, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. The Importance of the Tumor Microenvironment and Hypoxia in Delivering a Precision Medicine Approach to Veterinary Oncology. Front Vet Sci 2020; 7:598338. [PMID: 33282935 PMCID: PMC7688625 DOI: 10.3389/fvets.2020.598338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
Treating individual patients on the basis of specific factors, such as biomarkers, molecular signatures, phenotypes, environment, and lifestyle is what differentiates the precision medicine initiative from standard treatment regimens. Although precision medicine can be applied to almost any branch of medicine, it is perhaps most easily applied to the field of oncology. Cancer is a heterogeneous disease, meaning that even though patients may be histologically diagnosed with the same cancer type, their tumors may have different molecular characteristics, genetic mutations or tumor microenvironments that can influence prognosis or treatment response. In this review, we describe what methods are currently available to clinicians that allow them to monitor key tumor microenvironmental parameters in a way that could be used to achieve precision medicine for cancer patients. We further describe exciting novel research involving the use of implantable medical devices for precision medicine, including those developed for mapping tumor microenvironment parameters (e.g., O2, pH, and cancer biomarkers), delivering local drug treatments, assessing treatment responses, and monitoring for recurrence and metastasis. Although these research studies have predominantly focused on and were tailored to humans, the results and concepts are equally applicable to veterinary patients. While veterinary clinical studies that have adopted a precision medicine approach are still in their infancy, there have been some exciting success stories. These have included the development of a receptor tyrosine kinase inhibitor for canine mast cell tumors and the production of a PCR assay to monitor the chemotherapeutic response of canine high-grade B-cell lymphomas. Although precision medicine is an exciting area of research, it currently has failed to gain significant translation into human and veterinary healthcare practices. In order to begin to address this issue, there is increasing awareness that cross-disciplinary approaches involving human and veterinary clinicians, engineers and chemists may be needed to help advance precision medicine toward its full integration into human and veterinary clinical practices.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Lisa Y. Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - David J. Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
27
|
Morris AH, Orbach SM, Bushnell GG, Oakes RS, Jeruss JS, Shea LD. Engineered Niches to Analyze Mechanisms of Metastasis and Guide Precision Medicine. Cancer Res 2020; 80:3786-3794. [PMID: 32409307 PMCID: PMC7501202 DOI: 10.1158/0008-5472.can-20-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Cancer metastasis poses a challenging problem both clinically and scientifically, as the stochastic nature of metastatic lesion formation introduces complexity for both early detection and the study of metastasis in preclinical models. Engineered metastatic niches represent an emerging approach to address this stochasticity by creating bioengineered sites where cancer can preferentially metastasize. As the engineered niche captures the earliest metastatic cells at a nonvital location, both noninvasive and biopsy-based monitoring of these sites can be performed routinely to detect metastasis early and monitor alterations in the forming metastatic niche. The engineered metastatic niche also provides a new platform technology that serves as a tunable site to molecularly dissect metastatic disease mechanisms. Ultimately, linking the engineered niches with advances in sensor development and synthetic biology can provide enabling tools for preclinical cancer models and fosters the potential to impact the future of clinical cancer care.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Morris AH, Hughes KR, Oakes RS, Cai MM, Miller SD, Irani DN, Shea LD. Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis. Nat Commun 2020; 11:3871. [PMID: 32747712 PMCID: PMC7398910 DOI: 10.1038/s41467-020-17629-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Relapses in multiple sclerosis can result in irreversible nervous system tissue injury. If these events could be detected early, targeted immunotherapy could potentially slow disease progression. We describe the use of engineered biomaterial-based immunological niches amenable to biopsy to provide insights into the phenotype of innate immune cells that control disease activity in a mouse model of multiple sclerosis. Differential gene expression in cells from these niches allow monitoring of disease dynamics and gauging the effectiveness of treatment. A proactive treatment regimen, given in response to signal within the niche but before symptoms appeared, substantially reduced disease. This technology offers a new approach to monitor organ-specific autoimmunity, and represents a platform to analyze immune dysfunction within otherwise inaccessible target tissues.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert S Oakes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michelle M Cai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David N Irani
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Wolf MT, Elisseeff JH. The Canary in the Coal Mine: Biomaterial Implants to Monitor Cancer Recurrence. Cancer Res 2020; 80:377-378. [PMID: 32015156 DOI: 10.1158/0008-5472.can-19-3631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022]
Abstract
Synthetic biomaterials implanted in the body induce a foreign body reaction characterized by chronic inflammation and fibrosis. In this issue of Cancer Research, Oakes and colleagues used biomaterial implants and their associated immunologic activity to develop a "metastasis sensor" for detection of tumor burden at distal sites. A scoring system was developed from computational analysis of gene expression patterns from implant biopsies that could predict the presence of tumor. This unexpected use of biomaterials for early detection of cancer provides a more accurate systemic sampling compared with blood or liquid biopsies and alleviates the need for inefficient imaging and biopsy sampling from potential metastatic target tissues.See related article by Oakes et al., p. 602.
Collapse
Affiliation(s)
- Matthew T Wolf
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.,Translational Tissue Engineering Center, Baltimore, Maryland.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
| | - Jennifer H Elisseeff
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland. .,Translational Tissue Engineering Center, Baltimore, Maryland.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|