1
|
Liu S, Cai J, Qian X, Zhang J, Zhang Y, Meng X, Wang M, Gao P, Zhong X. TPX2 lactylation is required for the cell cycle regulation and hepatocellular carcinoma progression. Life Sci Alliance 2025; 8:e202402978. [PMID: 40107714 PMCID: PMC11924114 DOI: 10.26508/lsa.202402978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
Targeting protein for Xklp2 (TPX2) is critical for mitosis and spindle assembly because of its control of Aurora kinase A (AURKA). However, the regulation of TPX2 activity and its subsequent effects on mitosis and cancer progression remain unclear. Here, we show that TPX2 is lactylated at K249 in hepatocellular carcinoma (HCC) tumour tissues and that this process is regulated by the lactylase CBP and the delactylase HDAC1. Lactate reduction via either shRNAs targeting lactate dehydrogenase A or the lactate dehydrogenase A inhibitor GSK2837808A decreases the level of TPX2 lactylation. Importantly, TPX2 lactylation is required for the cell cycle regulation and tumour growth. Mechanistically, TPX2 lactylation disrupts protein phosphatase 1 (PP1) binding to AURKA, enhances AURKA T288 phosphorylation, and facilitates the cell cycle progression. Overall, our study reveals a previously unappreciated role of TPX2 lactylation in regulating cell cycle progression and HCC tumorigenesis, exposing an important correlation between metabolic reprogramming and cell cycle regulation in HCC.
Collapse
Affiliation(s)
- Shengzhi Liu
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Cai
- https://ror.org/045kpgw45 Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyu Qian
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
- https://ror.org/045kpgw45 Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjiao Zhang
- https://ror.org/0530pts50 School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Yi Zhang
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiang Meng
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
| | - Mingjie Wang
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
| | - Ping Gao
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
- https://ror.org/045kpgw45 Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- https://ror.org/0530pts50 School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Xiuying Zhong
- https://ror.org/0530pts50 School of Medicine, South China University of Technology, Guangzhou, China
- https://ror.org/045kpgw45 Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Gu XY, Yang JL, Lai R, Zhou ZJ, Tang D, Hu L, Zhao LJ. Impact of lactate on immune cell function in the tumor microenvironment: mechanisms and therapeutic perspectives. Front Immunol 2025; 16:1563303. [PMID: 40207222 PMCID: PMC11979165 DOI: 10.3389/fimmu.2025.1563303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Lactate has emerged as a key regulator in the tumor microenvironment (TME), influencing both tumor progression and immune dynamics. As a byproduct of aerobic glycolysis, lactate satisfies the metabolic needs of proliferating tumor cells while reshaping the TME to facilitate immune evasion. Elevated lactate levels inhibit effector immune cells such as CD8+ T and natural killer cells, while supporting immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells, thus fostering an immunosuppressive environment. Lactate promotes epigenetic reprogramming, stabilizes hypoxia-inducible factor-1α, and activates nuclear factor kappa B, leading to further immunological dysfunction. In this review, we examined the role of lactate in metabolic reprogramming, immune suppression, and treatment resistance. We also discuss promising therapeutic strategies targeting lactate metabolism, including lactate dehydrogenase inhibitors, monocarboxylate transporter inhibitors, and TME neutralization methods, all of which can restore immune function and enhance immunotherapy outcomes. By highlighting recent advances, this review provides a theoretical foundation for integrating lactate-targeted therapies into clinical practice. We also highlight the potential synergy between these therapies and current immunotherapeutic strategies, providing new avenues for addressing TME-related challenges and improving outcomes for patients with cancer.
Collapse
Affiliation(s)
- Xuan-Yu Gu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia-Li Yang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rui Lai
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng-Jun Zhou
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Tang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Hepatobiliary and Pancreatic Surgery, Suzhou Medical College of Soochow University, Suzhou, China
| | - Long Hu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Li-Jin Zhao
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Zhang W, Wang J, Li H, Zhang X, Yao D, Zhang H, Zhou X, Nie J, Lai T, Zhu H, Gong Y, Tanaka Y, Li X, Liao X, Su L. TAF7 directly targets SAA1 to enhance triple-negative breast cancer metastasis via phosphorylating E-cadherin and N-cadherin. iScience 2025; 28:111989. [PMID: 40083715 PMCID: PMC11903838 DOI: 10.1016/j.isci.2025.111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Identification of metastasis drivers of triple-negative breast cancer (TNBC) is a multifaceted challenge. Here, we identified TATA-box binding protein associated factor 7 (TAF7) as a candidate to modulate TNBC metastasis. TAF7 exhibited high expression in metastatic TNBC patients, and its elevated expression showed a negative correlation with overall survival in TNBC patients. The knockdown of TAF7 suppressed the migration and invasion of TNBC, suggesting TAF7 plays a role in the metastatic processes. Further, TAF7 was enhancing serum amyloid A1 (SAA1) transcription by binding to a specific motif in the SAA1 gene promoter. The elevated SAA1 in TNBC cells directly increased E-cadherin and N-cadherin phosphorylation thereby regulating cell adhesion. Mechanistically, TAF7 modulated cell invasion, migration, and lung metastasis through an SAA1-dependent manner in vitro and in vivo experiments. Taken together, it is likely that TAF7 could directly act on the SAA1 gene promoter, upregulating SAA1 and consequently promoting TNBC metastasis.
Collapse
Affiliation(s)
- Wanjun Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Dunjie Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huimin Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xinhong Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Nie
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tongxing Lai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yoshimasa Tanaka
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinghua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Kowalewski KM, Adair SJ, Talkington A, Wieder JJ, Pitarresi JR, Perez-Vale K, Chu B, Dolatshahi S, Sears R, Stanger BZ, Bauer TW, Lazzara MJ. Hypoxia-induced histone methylation and NF-κB activation in pancreas cancer fibroblasts promote EMT-supportive growth factor secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635486. [PMID: 39974981 PMCID: PMC11838405 DOI: 10.1101/2025.01.30.635486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment contains hypoxic tissue subdomains and cancer-associated fibroblasts (CAFs) of multiple subtypes that play tumor-promoting and -restraining roles. Here, we demonstrate that hypoxia promotes an inflammatory-like CAF phenotype and that hypoxic CAFs selectively promote epithelial-mesenchymal transition (EMT) in PDAC cancer cells through growth factor-mediated cell crosstalk. By analyzing patient tumor single-cell transcriptomics and conducting an inhibitor screen, we identified IGF-2 and HGF as specific EMT-inducing growth factors produced by hypoxic CAFs. We further found that reactive oxygen species-activated NF-κB cooperates with hypoxia-dependent histone methylation to promote IGF-2 and HGF expression in hypoxic CAFs. In lineage-traced autochthonous PDAC mouse tumors, hypoxic CAFs resided preferentially near hypoxic, mesenchymal cancer cells. However, in subcutaneous tumors engineered with hypoxia fate-mapped CAFs, once-hypoxic re-oxygenated CAFs lacked a spatial correlation with mesenchymal cancer cells. Thus, hypoxia promotes reversible CAF-malignant cell interactions that drive EMT through druggable signaling pathways. One-sentence summary We show that hypoxic fibroblasts in pancreas cancer leverage histone methylation and ROS-mediated NF-κB activation to produce growth factors that drive epithelial-mesenchymal transition in malignant cells, demonstrating how tumor stromal features cooperate to initiate a signaling process for disease progression.
Collapse
|
5
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
8
|
Herrera-Quintana L, Vázquez-Lorente H, Silva RCMC, Olivares-Arancibia J, Reyes-Amigo T, Pires BRB, Plaza-Diaz J. The Role of the Microbiome and of Radiotherapy-Derived Metabolites in Breast Cancer. Cancers (Basel) 2024; 16:3671. [PMID: 39518108 PMCID: PMC11545256 DOI: 10.3390/cancers16213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome has emerged as a crucial player in modulating cancer therapies, including radiotherapy. In the case of breast cancer, the interplay between the microbiome and radiotherapy-derived metabolites may enhance therapeutic outcomes and minimize adverse effects. In this review, we explore the bidirectional relationship between the gut microbiome and breast cancer. We explain how gut microbiome composition influences cancer progression and treatment response, and how breast cancer and its treatments influence microbiome composition. A dual role for radiotherapy-derived metabolites is explored in this article, highlighting both their therapeutic benefits and potential hazards. By integrating genomics, metabolomics, and bioinformatics tools, we present a comprehensive overview of these interactions. The study provides real-world insight through case studies and clinical trials, while therapeutic innovations such as probiotics, and dietary interventions are examined for their potential to modulate the microbiome and enhance treatment effectiveness. Moreover, ethical considerations and patient perspectives are discussed, ensuring a comprehensive understanding of the subject. Towards revolutionizing treatment strategies and improving patient outcomes, the review concludes with future research directions. It also envisions integrating microbiome and metabolite research into personalized breast cancer therapy.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | | | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Tomás Reyes-Amigo
- Physical Activity Sciences Observatory (OCAF), Department of Physical Activity Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile;
| | - Bruno Ricardo Barreto Pires
- Biometry and Biophysics Department, Institute of Biology Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil;
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| |
Collapse
|
9
|
Wang R, Liu J, Jiang B, Gao B, Luo H, Yang F, Ye Y, Chen Z, Liu H, Cui C, Xu K, Li B, Yang X. A single-cell perspective on immunotherapy for pancreatic cancer: from microenvironment analysis to therapeutic strategy innovation. Front Immunol 2024; 15:1454833. [PMID: 39539544 PMCID: PMC11557317 DOI: 10.3389/fimmu.2024.1454833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with conventional treatment options providing limited efficacy. Recent advancements in immunotherapy have offered new hope, yet the unique tumor microenvironment (TME) of pancreatic cancer poses significant challenges to its successful application. This review explores the transformative impact of single-cell technology on the understanding and treatment of pancreatic cancer. By enabling high-resolution analysis of cellular heterogeneity within the TME, single-cell approaches have elucidated the complex interplay between various immune and tumor cell populations. These insights have led to the identification of predictive biomarkers and the development of innovative, personalized immunotherapeutic strategies. The review discusses the role of single-cell technology in dissecting the intricate immune landscape of pancreatic cancer, highlighting the discovery of T cell exhaustion profiles and macrophage polarization states that influence treatment response. Moreover, it outlines the potential of single-cell data in guiding the selection of immunotherapy drugs and optimizing treatment plans. The review also addresses the challenges and prospects of translating these single-cell-based innovations into clinical practice, emphasizing the need for interdisciplinary research and the integration of artificial intelligence to overcome current limitations. Ultimately, the review underscores the promise of single-cell technology in driving therapeutic strategy innovation and improving patient outcomes in the battle against pancreatic cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Jiang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Benjian Gao
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Honghao Luo
- Department of Radiology, Xichong People’s Hospital, Nanchong, China
| | - Fengyi Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuntao Ye
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Cui
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Cappellesso F, Mazzone M, Virga F. Acid affairs in anti-tumour immunity. Cancer Cell Int 2024; 24:354. [PMID: 39465367 PMCID: PMC11514911 DOI: 10.1186/s12935-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic rewiring of cancer cells is one of the hallmarks of cancer. As a consequence, the metabolic landscape of the tumour microenvironment (TME) differs compared to correspondent healthy tissues. Indeed, due to the accumulation of acid metabolites, such as lactate, the pH of the TME is generally acidic with a pH drop that can be as low as 5.6. Disruptions in the acid-base balance and elevated lactate levels can drive malignant progression not only through cell-intrinsic mechanisms but also by impacting the immune response. Generally, acidity and lactate dampen the anti-tumour response of both innate and adaptive immune cells favouring tumour progression and reducing the response to immunotherapy. In this review, we summarize the current knowledge on the functional, metabolic and epigenetic effects of acidity and lactate on the cells of the immune system. In particular, we focus on the role of monocarboxylate transporters (MCTs) and other solute carrier transporters (SLCs) that, by mediating the exchange of lactate (among other metabolites) and bicarbonate, participate in pH regulation and lactate transport in the cancer context. Finally, we discuss advanced approaches to target pH or lactate in the TME to enhance the anti-tumour immune response.
Collapse
Affiliation(s)
- Federica Cappellesso
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, Inflammation Research Center, VIB, Brussels, Belgium.
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Federico Virga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
| |
Collapse
|
11
|
Lin H, Yin W. Telomere-related prognostic signature for survival assessments in lung adenocarcinoma. Transl Cancer Res 2024; 13:4520-4533. [PMID: 39430816 PMCID: PMC11483338 DOI: 10.21037/tcr-24-767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/16/2024] [Indexed: 10/22/2024]
Abstract
Background Telomere-related genes (TRGs) are important in many different types of cancers. However, there is a lack of research on the relationship between their expression and prognosis in lung adenocarcinoma (LUAD) patients. This study is to investigate the prognostic value of TRGs in LUAD and to develop a TRG signature that can predict patient survival. Methods A total of 2,086 TRGs were obtained from a database of genes involved in telomere maintenance (TelNet), while the clinical information and tumor RNA expression profiles of 513 LUAD patients were acquired from The Cancer Genome Atlas (TCGA) database. Statistical methodologies, such as least absolute shrinkage and selection operator (LASSO)-Cox, were employed to construct a prognostic model with predictive capabilities. Results We analyzed 1,339 telomere-associated differentially expressed genes and identified a ten-gene predictive signature for LUAD. This signature exhibited effective prognostic classification capabilities across multiple datasets, including GSE3141 (58 samples), GSE8894 (63 samples), GSE50081 (127 samples), and GSE72094 (398 samples). Furthermore, we screened tumor-sensitive drugs targeting this signature. High telomere levels were associated with reduced survival in lung cancer patients who underwent surgery. Compared to the traditional TNM (tumor node metastasis classification) grading method, our telomere-associated gene panel demonstrated superior prediction accuracy. Notably, patients in the high-risk group, defined by the telomere-associated signature, exhibited improved responses to immunotherapy, suggesting potential benefits for this subgroup of patients. Conclusions This study presents a comprehensive molecular signature comprising TRGs, which holds potential for functional and therapeutic investigations. Additionally, it serves as an integrated tool to identify crucial molecules for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Hong Lin
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Weiguo Yin
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
12
|
Jiang R, Ren WJ, Wang LY, Zhang W, Jiang ZH, Zhu GY. Targeting Lactate: An Emerging Strategy for Macrophage Regulation in Chronic Inflammation and Cancer. Biomolecules 2024; 14:1202. [PMID: 39456135 PMCID: PMC11505598 DOI: 10.3390/biom14101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Lactate accumulation and macrophage infiltration are pivotal features of both chronic inflammation and cancer. Lactate, once regarded merely as an aftereffect of glucose metabolism, is now gaining recognition for its burgeoning spectrum of biological roles and immunomodulatory significance. Recent studies have evidenced that macrophages display divergent immunophenotypes in different diseases, which play a pivotal role in disease management by modulating macrophage polarization within the disease microenvironment. The specific polarization patterns of macrophages in a high-lactate environment and their contribution to the progression of chronic inflammation and cancer remain contentious. This review presents current evidence on the crosstalk of lactate and macrophage in chronic inflammation and cancer. Additionally, we provide an in-depth exploration of the pivotal yet enigmatic mechanisms through which lactate orchestrates disease pathogenesis, thereby offering novel perspectives to the development of targeted therapeutic interventions for chronic inflammation and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (R.J.); (W.-J.R.); (L.-Y.W.); (W.Z.)
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (R.J.); (W.-J.R.); (L.-Y.W.); (W.Z.)
| |
Collapse
|
13
|
Kang Z, Hou S, Gao K, Liu Y, Zhang N, Fang Z, Zhang W, Xu X, Xu R, Lü C, Ma C, Xu P, Gao C. An Ultrasensitive Biosensor for Probing Subcellular Distribution and Mitochondrial Transport of l-2-Hydroxyglutarate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404119. [PMID: 39005231 PMCID: PMC11425224 DOI: 10.1002/advs.202404119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
l-2-Hydroxyglutarate (l-2-HG) is a functionally compartmentalized metabolite involved in various physiological processes. However, its subcellular distribution and mitochondrial transport remain unclear owing to technical limitations. In the present study, an ultrasensitive l-2-HG biosensor, sfLHGFRH, composed of circularly permuted yellow fluorescent protein and l-2-HG-specific transcriptional regulator, is developed. The ability of sfLHGFRH to be used for analyzing l-2-HG metabolism is first determined in human embryonic kidney cells (HEK293FT) and macrophages. Then, the subcellular distribution of l-2-HG in HEK293FT cells and the lower abundance of mitochondrial l-2-HG are identified by the sfLHGFRH-supported spatiotemporal l-2-HG monitoring. Finally, the role of the l-glutamate transporter SLC1A1 in mitochondrial l-2-HG uptake is elucidated using sfLHGFRH. Based on the design of sfLHGFRH, another highly sensitive biosensor with a low limit of detection, sfLHGFRL, is developed for the point-of-care diagnosis of l-2-HG-related diseases. The accumulation of l-2-HG in the urine of patients with kidney cancer is determined using the sfLHGFRL biosensor.
Collapse
Affiliation(s)
- Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Shuang Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Kaiyu Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Xianzhi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Rong Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
14
|
Wu D, Wang S, Wang F, Zhang Q, Zhang Z, Li X. Lactate dehydrogenase A (LDHA)-mediated lactate generation promotes pulmonary vascular remodeling in pulmonary hypertension. J Transl Med 2024; 22:738. [PMID: 39103838 PMCID: PMC11302077 DOI: 10.1186/s12967-024-05543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND High levels of lactate are positively associated with prognosis and mortality in pulmonary hypertension (PH). Lactate dehydrogenase A (LDHA) is a key enzyme for the production of lactate. This study is undertaken to investigate the role and molecular mechanisms of lactate and LDHA in PH. METHODS Lactate levels were measured by a lactate assay kit. LDHA expression and localization were detected by western blot and Immunofluorescence. Proliferation and migration were determined by CCK8, western blot, EdU assay and scratch-wound assay. The right heart catheterization and right heart ultrasound were measured to evaluate cardiopulmonary function. RESULTS In vitro, we found that lactate promoted proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) in an LDHA-dependent manner. In vivo, we found that LDHA knockdown reduced lactate overaccumulation in the lungs of mice exposed to hypoxia. Furthermore, LDHA knockdown ameliorated hypoxia-induced vascular remodeling and right ventricular dysfunction. In addition, the activation of Akt signaling by hypoxia was suppressed by LDHA knockdown both in vivo and in vitro. The overexpression of Akt reversed the inhibitory effect of LDHA knockdown on proliferation in PASMCs under hypoxia. Finally, LDHA inhibitor attenuated vascular remodeling and right ventricular dysfunction in Sugen/hypoxia mouse PH model, Monocrotaline (MCT)-induced rat PH model and chronic hypoxia-induced mouse PH model. CONCLUSIONS Thus, LDHA-mediated lactate production promotes pulmonary vascular remodeling in PH by activating Akt signaling pathway, suggesting the potential role of LDHA in regulating the metabolic reprogramming and vascular remodeling in PH.
Collapse
Affiliation(s)
- Daiqian Wu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu Cardiovascular Disease Research Institute, Chengdu, 610014, PR China
| | - Shuo Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, PR China
| | - Fengxian Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, PR China
| | - Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu Cardiovascular Disease Research Institute, Chengdu, 610014, PR China.
| | - Xingbing Li
- Department of Cardiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China.
| |
Collapse
|
15
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
16
|
Wu Q, Mao H, Jiang Z, Tang D. Tumour-associated neutrophils: Potential therapeutic targets in pancreatic cancer immunotherapy. Immunology 2024; 172:343-361. [PMID: 38402904 DOI: 10.1111/imm.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.
Collapse
Affiliation(s)
- Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Han Mao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
17
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
18
|
Wang M, Xue W, Yuan H, Wang Z, Yu L. Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer. Int J Nanomedicine 2024; 19:2823-2849. [PMID: 38525013 PMCID: PMC10959015 DOI: 10.2147/ijn.s451151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Currently, pancreatic cancer (PC) is one of the most lethal malignant tumors. PC is typically diagnosed at a late stage, exhibits a poor response to conventional treatment, and has a bleak prognosis. Unfortunately, PC's survival rate has not significantly improved since the 1960s. Cancer-associated fibroblasts (CAFs) are a key component of the pancreatic tumor microenvironment (TME). They play a vital role in maintaining the extracellular matrix and facilitating the intricate communication between cancer cells and infiltrated immune cells. Exploring therapeutic approaches targeting CAFs may reverse the current landscape of PC therapy. In recent years, nano-drug delivery systems have evolved rapidly and have been able to accurately target and precisely release drugs with little or no toxicity to the whole body. In this review, we will comprehensively discuss the origin, heterogeneity, potential targets, and recent advances in the nano-drug delivery system of CAFs in PC. We will also propose a novel integrated treatment regimen that utilizes a nano-drug delivery system to target CAFs in PC, combined with radiotherapy and immunotherapy. Additionally, we will address the challenges that this regimen currently faces.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Wenxiang Xue
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
19
|
Gampala S, Moon HR, Wireman R, Peil J, Kiran S, Mitchell DK, Brewster K, Mang H, Masters A, Bach C, Smith-Kinnamen W, Doud EH, Rai R, Mosley AL, Quinney SK, Clapp DW, Hamdouchi C, Wikel J, Zhang C, Han B, Georgiadis MM, Kelley MR, Fishel ML. New Ref-1/APE1 targeted inhibitors demonstrating improved potency for clinical applications in multiple cancer types. Pharmacol Res 2024; 201:107092. [PMID: 38311014 PMCID: PMC10962275 DOI: 10.1016/j.phrs.2024.107092] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
AP endonuclease-1/Redox factor-1 (APE1/Ref-1 or Ref-1) is a multifunctional protein that is overexpressed in most aggressive cancers and impacts various cancer cell signaling pathways. Ref-1's redox activity plays a significant role in activating transcription factors (TFs) such as NFκB, HIF1α, STAT3 and AP-1, which are crucial contributors to the development of tumors and metastatic growth. Therefore, development of potent, selective inhibitors to target Ref-1 redox function is an appealing approach for therapeutic intervention. A first-generation compound, APX3330 successfully completed phase I clinical trial in adults with progressing solid tumors with favorable response rate, pharmacokinetics (PK), and minimal toxicity. These positive results prompted us to develop more potent analogs of APX3330 to effectively target Ref-1 in solid tumors. In this study, we present structure-activity relationship (SAR) identification and validation of lead compounds that exhibit a greater potency and a similar or better safety profile to APX3330. In order to triage and characterize the most potent and on-target second-generation Ref-1 redox inhibitors, we assayed for PK, mouse and human S9 fraction metabolic stability, in silico ADMET properties, ligand-based WaterLOGSY NMR measurements, pharmacodynamic markers, cell viability in multiple cancer cell types, and two distinct 3-dimensional (3D) cell killing assays (Tumor-Microenvironment on a Chip and 3D spheroid). To characterize the effects of Ref-1 inhibition in vivo, global proteomics was used following treatment with the top four analogs. This study identified and characterized more potent inhibitors of Ref-1 redox function (that outperformed APX3330 by 5-10-fold) with PK studies demonstrating efficacious doses for translation to clinic.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Randall Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jacqueline Peil
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sonia Kiran
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dana K Mitchell
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kylee Brewster
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Henry Mang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andi Masters
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christine Bach
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Whitney Smith-Kinnamen
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H Doud
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ratan Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L Mosley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sara K Quinney
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - D Wade Clapp
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chafiq Hamdouchi
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James Wikel
- Apexian Pharmaceuticals, Indianapolis, IN, USA
| | - Chi Zhang
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biohealth Informatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
Peng X, Li H, Zhu L, Zhao S, Li Z, Li S, DongtingWu, Chen J, Zheng S, Su W. Single-cell sequencing of the retina shows that LDHA regulates pathogenesis of autoimmune uveitis. J Autoimmun 2024; 143:103160. [PMID: 38160538 DOI: 10.1016/j.jaut.2023.103160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Autoimmune uveitis (AU) is a severe disorder causing poor vision and blindness. However, the cellular dynamics and pathogenic mechanisms underlying retinal injury in uveitis remain unclear. In this study, single-cell RNA sequencing of the retina and cervical draining lymph nodes in experimental autoimmune uveitis mice was conducted to identify the cellular spatiotemporal dynamics and upregulation of the glycolysis-related gene LDHA. Suppression of LDHA can rescue the imbalance of T effector (Teff) cells/T regulator (Treg) cells under inflammation via downregulation of the glycolysis-PI3K signaling circuit and inhibition of the migration of CXCR4+ Teff cells towards retinal tissue. Furthermore, LDHA and CXCR4 are upregulated in the peripheral blood mononuclear cells of Vogt-Koyanagi-Harada patients. The LDHA inhibitor suppresses CD4+ T cell proliferation in humans. Therefore, our data indicate that the autoimmune environment of uveitis regulates Teff cell accumulation in the retina via glycolysis-associated LDHA. Modulation of this target may provide a novel therapeutic strategy for treating AU.
Collapse
Affiliation(s)
- Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Si Li
- Sun Yat-sen University, Guangzhou 510060, China
| | - DongtingWu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | | | - Songguo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Jiaotong University School of Medicine, 201600, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
21
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
22
|
Hou S, Kang Z, Liu Y, Lü C, Wang X, Wang Q, Ma C, Xu P, Gao C. An enzymic l-2-hydroxyglutarate biosensor based on l-2-hydroxyglutarate dehydrogenase from Azoarcus olearius. Biosens Bioelectron 2024; 243:115740. [PMID: 37862756 DOI: 10.1016/j.bios.2023.115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
l-2-Hydroxyglutarate (l-2-HG) is a critical signaling and immune metabolite but its excessive accumulation can lead to l-2-hydroxyglutaric aciduria, renal cancer, and other diseases. Development of efficient and high-throughput methods for selective l-2-HG detection is urgently required. In this study, l-2-HG dehydrogenase in Azoarcus olearius BH72 (AoL2HGDH) was screened from ten homologs and identified as an enzyme with high specificity and activity toward l-2-HG dehydrogenation. Then, an enzymatic assay-based l-2-HG-sensing fluorescent reporter, EaLHGFR which consists of AoL2HGDH and resazurin, was developed for the detection of l-2-HG. The response magnitude and limit of detection of EaLHGFR were systematically optimized using a single-factor screening strategy. The optimal biosensor EaLHGFR-2 exhibited a response magnitude of 2189.25 ± 26.89% and a limit of detection of 0.042 μM. It can accurately detect the concentration of l-2-HG in bacterial and cellular samples as well as human body fluids. Considering its desirable properties, EaLHGFR-2 may be a promising alternative for quantitation of l-2-HG in biological samples.
Collapse
Affiliation(s)
- Shuang Hou
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China.
| |
Collapse
|
23
|
Yang J, Chen X, Jin S, Ding J. Structure and biochemical characterization of l-2-hydroxyglutarate dehydrogenase and its role in the pathogenesis of l-2-hydroxyglutaric aciduria. J Biol Chem 2024; 300:105491. [PMID: 37995940 PMCID: PMC10726252 DOI: 10.1016/j.jbc.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingchen Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shan Jin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
24
|
Abstract
Lactic acid is one of the most abundant products of cellular metabolism and has historically been considered a cell-damaging metabolic product. However, as research has deepened, the beneficial effects of lactic acid on tumor cells and the tumor microenvironment have received increasing attention from the oncology community. Lactic acid can not only provide tumor cells with energy but also act as a messenger molecule that promotes tumor growth and progression and protects tumor cells from immune cells and killing by radiation and chemotherapy. Thus, the inhibition of tumor cell lactic acid metabolism has emerged as a novel antitumor treatment strategy that can also effectively enhance the efficacy of conventional antitumor therapies. In this review, we classify the currently available therapies targeting lactic acid metabolism and examine their prospects for clinical application.
Collapse
Affiliation(s)
- Zhi Li
- Cancer Center, First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
25
|
Cai Y, Wang Z, Guo S, Lin C, Yao H, Yang Q, Wang Y, Yu X, He X, Sun W, Qiu S, Guo Y, Tang S, Xie Y, Zhang A. Detection, mechanisms, and therapeutic implications of oncometabolites. Trends Endocrinol Metab 2023; 34:849-861. [PMID: 37739878 DOI: 10.1016/j.tem.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Metabolic abnormalities are a hallmark of cancer cells and are essential to tumor progression. Oncometabolites have pleiotropic effects on cancer biology and affect a plethora of processes, from oncogenesis and metabolism to therapeutic resistance. Targeting oncometabolites, therefore, could offer promising therapeutic avenues against tumor growth and resistance to treatments. Recent advances in characterizing the metabolic profiles of cancer cells are shedding light on the underlying mechanisms and associated metabolic networks. This review summarizes the diverse detection methods, molecular mechanisms, and therapeutic targets of oncometabolites, which may lead to targeting oncometabolism for cancer therapy.
Collapse
Affiliation(s)
- Ying Cai
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhibo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yan Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiaodan Yu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiaowen He
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Wanying Sun
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yu Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
26
|
Gao R, Li Y, Xu Z, Zhang F, Xu J, Hu Y, Yin J, Yang K, Sun L, Wang Q, He X, Huang K. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology 2023; 78:1800-1815. [PMID: 36651176 DOI: 10.1097/hep.0000000000000279] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS NAFLD has become a major metabolic disease worldwide. A few studies have reported the potential relationship between mitochondrial pyruvate carrier 1 (MPC1) and inflammation, fibrosis, and insulin sensitivity in obese or NASH mouse models. However, the impact of MPC1 on NAFLD-related liver lipid metabolism and its role in the NAFLD progression require further investigation. APPROACH AND RESULTS MPC1 expression was measured in liver tissues from normal controls and patients with NAFLD. We characterized the metabolic phenotypes and expression of genes involved in hepatic lipid accumulation in MPC1 systemic heterozygous knockout (MPC1 +/- ) mice. Hepatic protein lactylation was detected using Tandem Mass Tags proteomics and verified by the overexpression of lactylation mutants in cells. Finally, the effect of MPC1 inhibition on liver inflammation was examined in mice and AML-12 cells. Here, we found that MPC1 expression was positively correlated to liver lipid deposition in patients with NAFLD. MPC1 +/- mice fed with high-fat diet had reduced hepatic lipid accumulation but no change in the expression of lipid synthesis-related genes. MPC1 knockout affected the lactylation of several proteins, especially fatty acid synthase, through the regulation of lactate levels in hepatocytes. Lactylation at the K673 site of fatty acid synthase inhibited fatty acid synthase activity, which mediated the downregulation of liver lipid accumulation by MPC1. Moreover, although MPC1 knockout caused lactate accumulation, inflammation level was controlled because of mitochondrial protection and macrophage polarization. CONCLUSIONS In NAFLD, MPC1 levels are positively correlated with hepatic lipid deposition; the enhanced lactylation at fatty acid synthase K673 site may be a downstream mechanism.
Collapse
Affiliation(s)
- Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhimeng Xu
- MOE Key Laboratory of Bioinformatics, Department of Automation, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Jingya Yin
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| |
Collapse
|
27
|
Venneti S, Kawakibi AR, Ji S, Waszak SM, Sweha SR, Mota M, Pun M, Deogharkar A, Chung C, Tarapore RS, Ramage S, Chi A, Wen PY, Arrillaga-Romany I, Batchelor TT, Butowski NA, Sumrall A, Shonka N, Harrison RA, de Groot J, Mehta M, Hall MD, Daghistani D, Cloughesy TF, Ellingson BM, Beccaria K, Varlet P, Kim MM, Umemura Y, Garton H, Franson A, Schwartz J, Jain R, Kachman M, Baum H, Burant CF, Mottl SL, Cartaxo RT, John V, Messinger D, Qin T, Peterson E, Sajjakulnukit P, Ravi K, Waugh A, Walling D, Ding Y, Xia Z, Schwendeman A, Hawes D, Yang F, Judkins AR, Wahl D, Lyssiotis CA, de la Nava D, Alonso MM, Eze A, Spitzer J, Schmidt SV, Duchatel RJ, Dun MD, Cain JE, Jiang L, Stopka SA, Baquer G, Regan MS, Filbin MG, Agar NY, Zhao L, Kumar-Sinha C, Mody R, Chinnaiyan A, Kurokawa R, Pratt D, Yadav VN, Grill J, Kline C, Mueller S, Resnick A, Nazarian J, Allen JE, Odia Y, Gardner SL, Koschmann C. Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways. Cancer Discov 2023; 13:2370-2393. [PMID: 37584601 PMCID: PMC10618742 DOI: 10.1158/2159-8290.cd-23-0131] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
| | | | - Sunjong Ji
- University of Michigan, Ann Arbor, Michigan
| | - Sebastian M. Waszak
- University of California, San Francisco, San Francisco, California
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefan R. Sweha
- University of Michigan, Ann Arbor, Michigan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Chan Chung
- University of Michigan, Ann Arbor, Michigan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | | | | | | | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | | | | | | | | | | | | | - John de Groot
- University of California, San Francisco, San Francisco, California
| | | | | | | | | | | | - Kevin Beccaria
- Department of Neurosurgery, Necker Sick Children's University Hospital and Paris Descartes University, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital and Paris Descartes University, Paris, France
| | | | | | | | | | | | | | | | - Heidi Baum
- University of Michigan, Ann Arbor, Michigan
| | | | - Sophie L. Mottl
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | - Yujie Ding
- University of Michigan, Ann Arbor, Michigan
| | - Ziyun Xia
- University of Michigan, Ann Arbor, Michigan
| | | | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alexander R. Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | - Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Solid Tumor Program, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Solid Tumor Program, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Augustine Eze
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Jasper Spitzer
- Institute of Innate Immunity, AG Immunogenomics, University Hospital Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, AG Immunmonitoring and Genomics, University Hospital Bonn, Bonn, Germany
| | - Susanne V. Schmidt
- Institute of Innate Immunity, AG Immunogenomics, University Hospital Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, AG Immunmonitoring and Genomics, University Hospital Bonn, Bonn, Germany
| | - Ryan J. Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia
| | - Jason E. Cain
- Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mariella G. Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nathalie Y.R. Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lili Zhao
- University of Michigan, Ann Arbor, Michigan
| | | | - Rajen Mody
- University of Michigan, Ann Arbor, Michigan
| | | | - Ryo Kurokawa
- University of Michigan, Ann Arbor, Michigan
- The University of Tokyo, Tokyo, Japan
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Viveka N. Yadav
- Department of Pediatrics at Children's Mercy Research Institute, Kansas City, Missouri
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit 981, Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Cassie Kline
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sabine Mueller
- University of California, San Francisco, San Francisco, California
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Adam Resnick
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Javad Nazarian
- Department of Pediatrics, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Research Center for Genetic Medicine, Children's National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | |
Collapse
|
28
|
Foskolou IP, Bunse L, Van den Bossche J. 2-hydroxyglutarate rides the cancer-immunity cycle. Curr Opin Biotechnol 2023; 83:102976. [PMID: 37515937 DOI: 10.1016/j.copbio.2023.102976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 07/31/2023]
Abstract
2-hydroxyglutarate (2HG) is a biproduct of the Krebs cycle, which exists in a D- and L- enantiomer and is structurally similar to α-ketoglutarate. Both 2HG enantiomers have been described to accumulate in diverse cancer and immune cells and can influence cell fate and function. While D-2HG was originally considered as an 'oncometabolite' that aberrantly builds up in certain cancers, it is becoming clear that it also physiologically accumulates in immune cells and regulates immune function. Conversely, L-2HG is considered as an 'immunometabolite' due to its induction and regulatory function in T cells, but it can also be induced in certain cancers. Here, the authors review the effects of both 2HG enantiomers on immune cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Iosifina P Foskolou
- Department of Hematopoiesis, Sanquin Research and Department of Hematology University Medical Center, University of Amsterdam, the Netherlands
| | - Lukas Bunse
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim Germany
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Foskolou IP, Cunha PP, Sánchez-López E, Minogue EA, Nicolet BP, Guislain A, Jorgensen C, Kostidis S, Zandhuis ND, Barbieri L, Bargiela D, Nathanael D, Tyrakis PA, Palazon A, Giera M, Wolkers MC, Johnson RS. The two enantiomers of 2-hydroxyglutarate differentially regulate cytotoxic T cell function. Cell Rep 2023; 42:113013. [PMID: 37632752 DOI: 10.1016/j.celrep.2023.113013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023] Open
Abstract
2-Hydroxyglutarate (2HG) is a byproduct of the tricarboxylic acid (TCA) cycle and is readily detected in the tissues of healthy individuals. 2HG is found in two enantiomeric forms: S-2HG and R-2HG. Here, we investigate the differential roles of these two enantiomers in cluster of differentiation (CD)8+ T cell biology, where we find they have highly divergent effects on proliferation, differentiation, and T cell function. We show here an analysis of structural determinants that likely underlie these differential effects on specific α-ketoglutarate (αKG)-dependent enzymes. Treatment of CD8+ T cells with exogenous S-2HG, but not R-2HG, increased CD8+ T cell fitness in vivo and enhanced anti-tumor activity. These data show that S-2HG and R-2HG should be considered as two distinct and important actors in the regulation of T cell function.
Collapse
Affiliation(s)
- Iosifina P Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| | - Pedro P Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Elena Sánchez-López
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Eleanor A Minogue
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
| | - Benoît P Nicolet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Aurélie Guislain
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Christian Jorgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Sarantos Kostidis
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Nordin D Zandhuis
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Laura Barbieri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
| | - David Bargiela
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
| | - Demitris Nathanael
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
| | - Petros A Tyrakis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
| | - Asis Palazon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.
| |
Collapse
|
30
|
Li X, Du G, Li L, Peng K. Cellular specificity of lactate metabolism and a novel lactate-related gene pair index for frontline treatment in clear cell renal cell carcinoma. Front Oncol 2023; 13:1253783. [PMID: 37795453 PMCID: PMC10546032 DOI: 10.3389/fonc.2023.1253783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Although lactate metabolism-related genes (LMRGs) have attracted attention for their effects on cancer immunity, little is known about their function in clear cell renal cell carcinoma (ccRCC). The aim of this study was to examine the cellular specificity of lactate metabolism and how it affected the first-line treatment outcomes in ccRCC. METHODS GSE159115 was used to examine the features of lactate metabolism at the single-cell level. Utilizing the transcriptome, methylation profile, and genomic data from TCGA-KIRC, a multi-omics study of LMRG expression characteristics was performed. A prognostic index based on a gene-pair algorithm was created to assess how LMRGs affected patients' clinical outcomes. To simulate the relationship between the prognostic index and the frontline treatment, pRRophetic and Subclass Mapping were used. E-MTAB-1980, E-MTAB-3267, Checkmate, and Javelin-101 were used for external validation. RESULTS The variable expression of some LMRGs in ccRCC can be linked to variations in DNA copy number or promoter methylation levels. Lactate metabolism was active in tumor cells and vSMCs, and LDHA, MCT1, and MCT4 were substantially expressed in tumor cells, according to single-cell analysis. The high-risk patients would benefit from immune checkpoint blockade monotherapy (ICB) and ICB plus tyrosine kinase inhibitors (TKI) therapy, whereas the low-risk individuals responded to mTOR-targeted therapy. CONCLUSIONS At the single-cell level, our investigation demonstrated the cellular specificity of lactate metabolism in ccRCC. We proposed that the lactate-related gene pair index might be utilized to identify frontline therapy responders in ccRCC patients as well as predict prognosis.
Collapse
Affiliation(s)
| | | | | | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
31
|
Irajizad E, Kenney A, Tang T, Vykoukal J, Wu R, Murage E, Dennison JB, Sans M, Long JP, Loftus M, Chabot JA, Kluger MD, Kastrinos F, Brais L, Babic A, Jajoo K, Lee LS, Clancy TE, Ng K, Bullock A, Genkinger JM, Maitra A, Do KA, Yu B, Wolpin BM, Hanash S, Fahrmann JF. A blood-based metabolomic signature predictive of risk for pancreatic cancer. Cell Rep Med 2023; 4:101194. [PMID: 37729870 PMCID: PMC10518621 DOI: 10.1016/j.xcrm.2023.101194] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Emerging evidence implicates microbiome involvement in the development of pancreatic cancer (PaCa). Here, we investigate whether increases in circulating microbial-related metabolites associate with PaCa risk by applying metabolomics profiling to 172 sera collected within 5 years prior to PaCa diagnosis and 863 matched non-subject sera from participants in the Prostate, Lung, Colorectal, and Ovarian (PLCO) cohort. We develop a three-marker microbial-related metabolite panel to assess 5-year risk of PaCa. The addition of five non-microbial metabolites further improves 5-year risk prediction of PaCa. The combined metabolite panel complements CA19-9, and individuals with a combined metabolite panel + CA19-9 score in the top 2.5th percentile have absolute 5-year risk estimates of >13%. The risk prediction model based on circulating microbial and non-microbial metabolites provides a potential tool to identify individuals at high risk of PaCa that would benefit from surveillance and/or from potential cancer interception strategies.
Collapse
Affiliation(s)
- Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Kenney
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Tiffany Tang
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Sans
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maureen Loftus
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John A Chabot
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael D Kluger
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren Brais
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ana Babic
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kunal Jajoo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda S Lee
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas E Clancy
- Dana-Farber Brigham and Women's Cancer Center, Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - Kimmie Ng
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrea Bullock
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jeanine M Genkinger
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Columbia Mailman School of Public Health, New York, NY, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yu
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Brian M Wolpin
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
33
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
34
|
Chen S, Hu S, Zhou B, Cheng B, Tong H, Su D, Li X, Chen Y, Zhang G. Telomere-related prognostic biomarkers for survival assessments in pancreatic cancer. Sci Rep 2023; 13:10586. [PMID: 37391503 PMCID: PMC10313686 DOI: 10.1038/s41598-023-37836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023] Open
Abstract
Human telomeres are linked to genetic instability and a higher risk of developing cancer. Therefore, to improve the dismal prognosis of pancreatic cancer patients, a thorough investigation of the association between telomere-related genes and pancreatic cancer is required. Combat from the R package "SVA" was performed to correct the batch effects between the TCGA-PAAD and GTEx datasets. After differentially expressed genes (DEGs) were assessed, we constructed a prognostic risk model through univariate Cox regression, LASSO-Cox regression, and multivariate Cox regression analysis. Data from the ICGC, GSE62452, GSE71729, and GSE78229 cohorts were used as test cohorts for validating the prognostic signature. The major impact of the signature on the tumor microenvironment and its response to immune checkpoint drugs was also evaluated. Finally, PAAD tissue microarrays were fabricated and immunohistochemistry was performed to explore the expression of this signature in clinical samples. After calculating 502 telomere-associated DEGs, we constructed a three-gene prognostic signature (DSG2, LDHA, and RACGAP1) that can be effectively applied to the prognostic classification of pancreatic cancer patients in multiple datasets, including TCGA, ICGC, GSE62452, GSE71729, and GSE78229 cohorts. In addition, we have screened a variety of tumor-sensitive drugs targeting this signature. Finally, we also found that protein levels of DSG2, LDHA, and RACGAP1 were upregulated in pancreatic cancer tissues compared to normal tissues by immunohistochemistry analysis. We established and validated a telomere gene-related prognostic signature for pancreatic cancer and confirmed the upregulation of DSG2, LDHA, and RACGAP1 expression in clinical samples, which may provide new ideas for individualized immunotherapy.
Collapse
Affiliation(s)
- Shengyang Chen
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China.
| | - Shuiquan Hu
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Baizhong Zhou
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Bingbing Cheng
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Hao Tong
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Dongchao Su
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Xiaoyong Li
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Yanjun Chen
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Genhao Zhang
- Department of Blood Transfusion, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| |
Collapse
|
35
|
Zhu L, Tu D, Li R, Li L, Zhang W, Jin W, Li T, Zhu H. The diagnostic significance of the ZNF gene family in pancreatic cancer: a bioinformatics and experimental study. Front Genet 2023; 14:1089023. [PMID: 37396042 PMCID: PMC10311482 DOI: 10.3389/fgene.2023.1089023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is among the most devastating of all cancers with a poor survival rate. Therefore, we established a zinc finger (ZNF) protein-based prognostic prediction model for PAAD patients. Methods: The RNA-seq data for PAAD were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Differentially expressed ZNF protein genes (DE-ZNFs) in PAAD and normal control tissues were screened using the "lemma" package in R. An optimal risk model and an independent prognostic value were established by univariate and multivariate Cox regression analyses. Survival analyses were performed to assess the prognostic ability of the model. Results: We constructed a ZNF family genes-related risk score model that is based on the 10 DE-ZNFs (ZNF185, PRKCI, RTP4, SERTAD2, DEF8, ZMAT1, SP110, U2AF1L4, CXXC1, and RMND5B). The risk score was found to be a significant independent prognostic factor for PAAD patients. Seven significantly differentially expressed immune cells were identified between the high- and low-risk patients. Then, based on the prognostic genes, we constructed a ceRNA regulatory network that includes 5 prognostic genes, 7 miRNAs and 35 lncRNAs. Expression analysis showed ZNF185, PRKCI and RTP4 were significantly upregulated, while ZMAT1 and CXXC1 were significantly downregulated in the PAAD samples in all TCGA - PAAD, GSE28735 and GSE15471 datasets. Moreover, the upregulation of RTP4, SERTAD2, and SP110 were verified by the cell experiments. Conclusion: We established and validated a novel, Zinc finger protein family - related prognostic risk model for patients with PAAD, that has the potential to inform patient management.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dong Tu
- Department of Cardiothoracic Surgery, No. 920 Hospital of the PLA Joint Logistics Support Force, Kunming, China
| | - Ruixue Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenxiang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tiehan Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
36
|
Torres AJF, Duryea J, McDonald OG. Pancreatic cancer epigenetics: adaptive metabolism reprograms starving primary tumors for widespread metastatic outgrowth. Cancer Metastasis Rev 2023; 42:389-407. [PMID: 37316634 PMCID: PMC10591521 DOI: 10.1007/s10555-023-10116-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Pancreatic cancer is a paradigm for adaptation to extreme stress. That is because genetic drivers are selected during tissue injury with epigenetic imprints encoding wound healing responses. Ironically, epigenetic memories of trauma that facilitate neoplasia can also recreate past stresses to restrain malignant progression through symbiotic tumor:stroma crosstalk. This is best exemplified by positive feedback between neoplastic chromatin outputs and fibroinflammatory stromal cues that encase malignant glands within a nutrient-deprived desmoplastic stroma. Because epigenetic imprints are chemically encoded by nutrient-derived metabolites bonded to chromatin, primary tumor metabolism adapts to preserve malignant epigenetic fidelity during starvation. Despite these adaptations, stromal stresses inevitably awaken primordial drives to seek more hospitable climates. The invasive migrations that ensue facilitate entry into the metastatic cascade. Metastatic routes present nutrient-replete reservoirs that accelerate malignant progression through adaptive metaboloepigenetics. This is best exemplified by positive feedback between biosynthetic enzymes and nutrient transporters that saturate malignant chromatin with pro-metastatic metabolite byproducts. Here we present a contemporary view of pancreatic cancer epigenetics: selection of neoplastic chromatin under fibroinflammatory pressures, preservation of malignant chromatin during starvation stresses, and saturation of metastatic chromatin by nutritional excesses that fuel lethal metastasis.
Collapse
Affiliation(s)
- Arnaldo J Franco Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Rosenstiel Medical Sciences Building Room 4086A, Miami, FL, USA
| | - Jeffrey Duryea
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Rosenstiel Medical Sciences Building Room 4086A, Miami, FL, USA
| | - Oliver G McDonald
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Rosenstiel Medical Sciences Building Room 4086A, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
37
|
Nadhan R, Kashyap S, Ha JH, Jayaraman M, Song YS, Isidoro C, Dhanasekaran DN. Targeting Oncometabolites in Peritoneal Cancers: Preclinical Insights and Therapeutic Strategies. Metabolites 2023; 13:618. [PMID: 37233659 PMCID: PMC10222714 DOI: 10.3390/metabo13050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Peritoneal cancers present significant clinical challenges with poor prognosis. Understanding the role of cancer cell metabolism and cancer-promoting metabolites in peritoneal cancers can provide new insights into the mechanisms that drive tumor progression and can identify novel therapeutic targets and biomarkers for early detection, prognosis, and treatment response. Cancer cells dynamically reprogram their metabolism to facilitate tumor growth and overcome metabolic stress, with cancer-promoting metabolites such as kynurenines, lactate, and sphingosine-1-phosphate promoting cell proliferation, angiogenesis, and immune evasion. Targeting cancer-promoting metabolites could also lead to the development of effective combinatorial and adjuvant therapies involving metabolic inhibitors for the treatment of peritoneal cancers. With the observed metabolomic heterogeneity in cancer patients, defining peritoneal cancer metabolome and cancer-promoting metabolites holds great promise for improving outcomes for patients with peritoneal tumors and advancing the field of precision cancer medicine. This review provides an overview of the metabolic signatures of peritoneal cancer cells, explores the role of cancer-promoting metabolites as potential therapeutic targets, and discusses the implications for advancing precision cancer medicine in peritoneal cancers.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
| | - Srishti Kashyap
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
| | - Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
38
|
Cao X, Geng Q, Fan D, Wang Q, Wang X, Zhang M, Zhao L, Jiao Y, Deng T, Liu H, Zhou J, Jia L, Xiao C. m 6A methylation: a process reshaping the tumour immune microenvironment and regulating immune evasion. Mol Cancer 2023; 22:42. [PMID: 36859310 PMCID: PMC9976403 DOI: 10.1186/s12943-022-01704-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is the most universal internal modification in eukaryotic mRNA. With elaborate functions executed by m6A writers, erasers, and readers, m6A modulation is involved in myriad physiological and pathological processes. Extensive studies have demonstrated m6A modulation in diverse tumours, with effects on tumorigenesis, metastasis, and resistance. Recent evidence has revealed an emerging role of m6A modulation in tumour immunoregulation, and divergent m6A methylation patterns have been revealed in the tumour microenvironment. To depict the regulatory role of m6A methylation in the tumour immune microenvironment (TIME) and its effect on immune evasion, this review focuses on the TIME, which is characterized by hypoxia, metabolic reprogramming, acidity, and immunosuppression, and outlines the m6A-regulated TIME and immune evasion under divergent stimuli. Furthermore, m6A modulation patterns in anti-tumour immune cells are summarized.
Collapse
Affiliation(s)
- Xiaoxue Cao
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Danping Fan
- grid.410318.f0000 0004 0632 3409Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Wang
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Wang
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- grid.24696.3f0000 0004 0369 153XChina-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Jiao
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Deng
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Zhou
- grid.256607.00000 0004 1798 2653Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China. .,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China. .,Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
39
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 379] [Impact Index Per Article: 189.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
40
|
Zhang YT, Xing ML, Fang HH, Li WD, Wu L, Chen ZP. Effects of lactate on metabolism and differentiation of CD4 +T cells. Mol Immunol 2023; 154:96-107. [PMID: 36621062 DOI: 10.1016/j.molimm.2022.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Lactate accumulation caused by abnormal tumor metabolism can induce the formation of an inhibitory immune microenvironment through a variety of pathways, which is characterized by regulatory T cells (Treg) infiltration and effector T cells (Teff) depletion. Studies have found that the key reason why Treg cells can survive in harsh environments lies in their flexible metabolic mode, which can use lactate in tumor microenvironment (TME) as an alternative energy substance to maintain their inhibitory activity. In addition, lactate could also promote the differentiation of CD4+T cells into Treg, but the mechanism was not completely clear. The purpose of this study was to investigate the possible mechanism by which lactate is utilized by CD4+T cells to influence Th17/Treg ratio. METHODS Basal cytokines (anti-CD3, anti-CD28, TGF-β) and 10 mM lactate was added into Naïve CD4+T cells basal medium for 3 days. After TCR stimulation, Naïve CD4+T converted to CD4+T. Flow cytometry was used to detect the proportion of Treg cells; ELISA was used to detect the activity of LDHA, LDHB and NADH and the amount of α -Ketoglutaric Acid (α-KG) and 2-Hydroxyglutaric Acid (2HG) after lactate entered the cells; Western Blot and RT-PCR were used to detect the protein and gene expression of Foxp3, RORγt, LDHA and LDHB. In the validation experiment, lactate uptake inhibitor AZD3965, LDHA inhibitor GSK2837808A and NADH conversion inhibitor Rotenone were added respectively to observe the differentiation ratio of Treg cells and confirm the key points of metabolism; the degradation of Treg cell transcription factor Foxp3 was interfered with ubiquitination inhibitors to observe whether it co-ubiquitinated with HIF-1α; the expression and activity of LDHA, LDHB and NADH in mitochondria and cytoplasm were detected to confirm cell localization. RESULTS When basal cytokines (anti-CD3, anti-CD28, TGF-β) stimulated, lactate was added to the culture medium, and CD4+T cells absorbed a large amount of lactate not only through MCT1 (monocarboxylic acid transporter), but also increased the expression of lactate dehydrogenase and accelerated the intracellular metabolism of lactate. LDHB in cytoplasm mainly catalyzed the dehydrogenation of lactate to pyruvate, accompanied by the transformation reaction between NAD+ and NADH. The latter further entered the mitochondria and participates in the tricarboxylic acid cycle metabolism. In addition, lactate could significantly increase the level of LDHA in mitochondria and promote the transformation of α-KG to 2HG, accompanied by the transformation of NADH to NAD+. These metabolic changes eventually led to an increase in the intracellular 2HG/α-KG ratio. Abnormal 2HG increased the proportion of Treg by inhibiting ATP5B-mediated phosphorylation of mTOR and the synthesis of HIF-1α, causing it not be enough to ubiquitinate and degrade with Foxp3. CONCLUSIONS Lactate plays an important role in regulating the differentiation of Treg cells, inducing the expression and function of LDHA and promoting the transformation of α-KG to 2HG may be an important mechanism.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mu-Lan Xing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui-Hua Fang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
| | - Wei-Dong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhi-Peng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
41
|
Dai M, Wang L, Yang J, Chen J, Dou X, Chen R, Ge Y, Lin Y. LDHA as a regulator of T cell fate and its mechanisms in disease. Biomed Pharmacother 2023; 158:114164. [PMID: 36916398 DOI: 10.1016/j.biopha.2022.114164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
T cells are the main force of anti-infection and antitumor and are also involved in autoimmune diseases. During the development of these diseases, T cells need to rapidly produce large amounts of energy to satisfy their activation, proliferation, and differentiation. In this review, we introduced lactate dehydrogenase A(LDHA), predominantly involved in glycolysis, which provides energy for T cells and plays a dual role in disease by mediating lactate production, non-classical enzyme activity, and oxidative stress. Mechanistically, the signaling molecule can interact with the LDHA promoter or regulate LDHA activity through post-translational modifications. These latest findings suggest that modulation of LDHA may have considerable therapeutic effects in diseases where T-cell activation is an important pathogenesis.
Collapse
Affiliation(s)
- Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| |
Collapse
|
42
|
Pandey S, Gupta VK, Lavania SP. Role of epigenetics in pancreatic ductal adenocarcinoma. Epigenomics 2023; 15:89-110. [PMID: 36647796 DOI: 10.2217/epi-2022-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, associated with poor survival outcomes. Lack of early diagnosis, resistance to conventional therapeutic treatments (including immunotherapy) and recurrence are some of the major hurdles in PDAC and contribute to its poor survival rate. While the risk of genetic predisposition to cancers is widely acknowledged and understood, recent advances in whole-genome and next-generation sequencing techniques have led to the acknowledgment of the role played by epigenetics, especially in PDAC. Epigenetic changes are heritable genetic modifications that influence gene expression without altering the DNA sequence. Epigenetic mechanisms (e.g., DNA methylation, post-translational modification of histone complexes and ncRNA) that result in reversible changes in gene expression are increasingly understood to be responsible for tumor initiation, development and even escape from immune surveillance. Our review seeks to highlight the various components of the epigenetic machinery that are known to be implicated in PDAC initiation and development and the feasibility of targeting these components to identify novel pharmacological strategies that could potentially lead to breakthroughs in PDAC treatment.
Collapse
Affiliation(s)
- Somnath Pandey
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vineet K Gupta
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shweta P Lavania
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
43
|
Akbari B, Hosseini Z, Shahabinejad P, Ghassemi S, Mirzaei HR, O'Connor RS. Metabolic and epigenetic orchestration of (CAR) T cell fate and function. Cancer Lett 2022; 550:215948. [DOI: 10.1016/j.canlet.2022.215948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
44
|
Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, Batra SK. Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Semin Cancer Biol 2022; 86:14-27. [PMID: 36041672 PMCID: PMC9713834 DOI: 10.1016/j.semcancer.2022.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer (PC) has exceptionally high mortality due to ineffective treatment strategies. Immunotherapy, which mobilizes the immune system to fight against cancer, has been proven successful in multiple cancers; however, its application in PC has met with limited success. In this review, we articulated that the pancreatic tumor microenvironment is immuno-suppressive with extensive infiltration by M2-macrophages and myeloid-derived suppressive cells but low numbers of cytotoxic T-cells. In addition, low mutational load and poor antigen processing, presentation, and recognition contribute to the limited response to immunotherapy in PC. Immune checkpoints, the critical targets for immunotherapy, have high expression in PC and stromal cells, regulated by tumor microenvironmental milieu (cytokine and metabolites) and cell-intrinsic mechanisms (epigenetic regulation, oncogenic signaling, and post-translational modifications). Combining immunotherapy with modulators of the tumor microenvironment may facilitate the development of novel therapeutic regimens to manage PC.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alaina C Larson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
45
|
Comandatore A, Franczak M, Smolenski RT, Morelli L, Peters GJ, Giovannetti E. Lactate Dehydrogenase and its clinical significance in pancreatic and thoracic cancers. Semin Cancer Biol 2022; 86:93-100. [PMID: 36096316 DOI: 10.1016/j.semcancer.2022.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
The energy metabolism of tumor cells is considered one of the hallmarks of cancer because it is different from normal cells and mainly consists of aerobic glycolysis, fatty acid oxidation, and glutaminolysis. It is about one hundred years ago since Warburg observed that cancer cells prefer aerobic glycolysis even in normoxic conditions, favoring their high proliferation rate. A pivotal enzyme driving this phenomenon is lactate dehydrogenase (LDH), and this review describes prognostic and therapeutic opportunities associated with this enzyme, focussing on tumors with limited therapeutic strategies and life expectancy (i.e., pancreatic and thoracic cancers). Expression levels of LDH-A in pancreatic cancer tissues correlate with clinicopathological features: LDH-A is overexpressed during pancreatic carcinogenesis and showed significantly higher expression in more aggressive tumors. Similarly, LDH levels are a marker of negative prognosis in patients with both adenocarcinoma or squamous cell lung carcinoma, as well as in malignant pleural mesothelioma. Additionally, serum LDH levels may play a key role in the clinical management of these diseases because they are associated with tissue damage induced by tumor burden. Lastly, we discuss the promising results of strategies targeting LDH as a treatment strategy, reporting recent preclinical and translational studies supporting the use of LDH-inhibitors in combinations with current/novel chemotherapeutics that can synergistically target the oxygenated cells present in the tumor.
Collapse
Affiliation(s)
- Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers (Amsterdam UMC), Vrije Universiteit Amsterdam, the Netherlands
| | - Marika Franczak
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers (Amsterdam UMC), Vrije Universiteit Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers (Amsterdam UMC), Vrije Universiteit Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers (Amsterdam UMC), Vrije Universiteit Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
46
|
Zhang Z, Zhang H, Shi L, Wang D, Tang D. Heterogeneous cancer-associated fibroblasts: A new perspective for understanding immunosuppression in pancreatic cancer. Immunology 2022; 167:1-14. [PMID: 35569095 DOI: 10.1111/imm.13496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy has shown promising efficacy in the treatment of a wide range of cancers; however, it has had little effect on pancreatic cancer. Cancer-associated fibroblasts (CAFs), the predominant mesenchymal cells present in the pancreatic cancer microenvironment, are powerful supporters of the malignant progression of pancreatic cancer. CAFs can modify the microenvironment, establish a refuge to aid cancer cells in immune escape by secreting large amounts of extracellular matrix, and produce soluble cytokines and exosomal vesicles. Hence, CAFs are important contributors to the failure of immunotherapy. Current in-depth studies of CAFs have shown that CAFs are a heterogeneous population of mesenchymal cells; therefore, the functional complexity of their populations needs in-depth explorations in future studies. This review summarizes how heterogeneous CAFs help cancer cells achieve immune escape and suggests potential directions for using CAFs as targets to address immune escape.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lin Shi
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
47
|
Ren Y, Kumar A, Das JK, Peng HY, Wang L, Balllard D, Xiong X, Ren X, Zhang Y, Yang JM, Song J. Tumorous expression of NAC1 restrains antitumor immunity through the LDHA-mediated immune evasion. J Immunother Cancer 2022; 10:e004856. [PMID: 36150745 PMCID: PMC9511653 DOI: 10.1136/jitc-2022-004856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND T cell-mediated antitumor immunity has a vital role in cancer prevention and treatment; however, the immune-suppressive tumor microenvironment (TME) constitutes a significant contributor to immune evasion that weakens antitumor immunity. Here, we explore the relationship between nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the BTB (broad-complex, Tramtrack, bric a brac)/POZ (Poxvirus, and Zinc finger) gene family, and the TME. METHODS Adoptive cell transfer (ACT) of mouse or human tumor antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) was tested in an immunocompetent or immunodeficient mouse model of melanoma with or without expression of NAC1. The effects of NAC1 expression on immune evasion in tumor cells were assessed in vitro and in vivo. CRISPR/Cas9, glycolysis analysis, retroviral transduction, quantitative real-time PCR, flow cytometric analysis, immunoblotting, database analyses were used to screen the downstream target and underlying mechanism of NAC1 in tumor cells. RESULTS Tumorous expression of NAC1 negatively impacts the CTL-mediated antitumor immunity via lactate dehydrogenase A (LDHA)-mediated suppressive TME. NAC1 positively regulated the expression of LDHA at the transcriptional level, which led to higher accumulation of lactic acid in the TME. This inhibited the cytokine production and induced exhaustion and apoptosis of CTLs, impairing their cell-killing ability. In the immunocompetent and immunodeficient mice, NAC1 depleted melanoma tumors grew significantly slower and had an elevated infiltration of tumor Ag-specific CTLs following ACT, compared with the control groups. CONCLUSIONS Tumor expression of NAC1 contributes substantially to immune evasion through its regulatory role in LDHA expression and lactic acid production. Thus, therapeutic targeting of NAC1 warrants further exploration as a potential strategy to reinforce cancer immunotherapy, such as the ACT of CTLs.
Collapse
Affiliation(s)
- Yijie Ren
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Anil Kumar
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Jugal K Das
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Hao-Yun Peng
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Liqing Wang
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Darby Balllard
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Xiaofang Xiong
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Xingcong Ren
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Yi Zhang
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jin-Ming Yang
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jianxun Song
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| |
Collapse
|
48
|
Liu T, Liu Q, Wang Y, Yang R, Tian F. Cuproptosis scoring model predicts overall survival and assists in immunotherapeutic decision making in pancreatic carcinoma. Front Genet 2022; 13:938488. [PMID: 36118866 PMCID: PMC9472214 DOI: 10.3389/fgene.2022.938488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cuproptosis is a newly identified form of non-apoptotic cell death that is associated with the progression and treatment responses in pancreatic adenocarcinoma (PAAD). However, its impact on oncology and tumor microenvironment (TME) remains unclear. Methods: Hub genes were identified using least absolute shrinkage and selection operator (LASSO) Cox regression for 25 newly reported cuproptosis-related regulators and subjected to stepwise regression to obtain cuproptosis-related score (CuRS). Additionally, the clinical significance, functional status, role on TME, and genomic variation of CuRS were further examined systematically. Results: A CuRS model incorporating TRAF2, TRADD, USP21, FAS, MLKL, TNFRSF10B, MAPK8, TRAF5, and RIPK3 was developed. The stability and accuracy of this risk model as an independent prognostic factor for PAAD were confirmed in the training and external validation cohorts. Patients in the high-CuRS group had “cold” tumors with active tumor proliferation and immunosuppression, whereas those in the low-CuRS group comprised “hot” tumors with active immune function and cell killing capacity. Additionally, patients in the high-CuRS group carried fewer genomic copy number variations (CNVs) and greater somatic mutations. Furthermore, patients in the low- and high-CuRS groups exhibited increased sensitivity to immunotherapy and chemotherapy, respectively. Conclusion: We developed and validated a robust CuRS model based on cuproptosis to assess patients’ prognoses and guide clinical decision-making. Overall, the findings of this study are expected to contribute to the comprehensive understanding of cuproptosis and facilitate precise treatment of PAAD.
Collapse
Affiliation(s)
- Tijun Liu
- Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Qing Liu
- Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yongju Wang
- Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Rong Yang
- Department of Oncology, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Fang Tian
- Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
- *Correspondence: Fang Tian,
| |
Collapse
|
49
|
Luo X, Zou W, Wei Z, Yu S, Zhao Y, Wu Y, Wang A, Lu Y. Inducing vascular normalization: A promising strategy for immunotherapy. Int Immunopharmacol 2022; 112:109167. [PMID: 36037653 DOI: 10.1016/j.intimp.2022.109167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
In solid tumors, the vasculature is highly abnormal in structure and function, resulting in the formation of an immunosuppressive tumor microenvironment by limiting immune cells infiltration into tumors. Vascular normalization is receiving much attention as an alternative strategy to anti-angiogenic therapy, and its potential therapeutic targets include signaling pathways, angiogenesis-related genes, and metabolic pathways. Endothelial cells play an important role in the formation of blood vessel structure and function, and their metabolic processes drive blood vessel sprouting in parallel with the control of genetic signals in cancer. The feedback loop between vascular normalization and immunotherapy has been discussed extensively in many reviews. In this review, we summarize the impact of aberrant tumor vascular structure and function on drug delivery, metastasis, and anti-tumor immune responses. In addition, we present evidences for the mutual regulation of immune vasculature. Based on the importance of endothelial metabolism in controlling angiogenesis, we elucidate the crosstalk between endothelial cells and immune cells from the perspective of metabolic pathways and propose that targeting abnormal endothelial metabolism to achieve vascular normalization can be an alternative strategy for cancer treatment, which provides a new theoretical basis for future research on the combination of vascular normalization and immunotherapy.
Collapse
Affiliation(s)
- Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
50
|
An analysis of the significance of the Tre2/Bub2/CDC 16 (TBC) domain protein family 8 in colorectal cancer. Sci Rep 2022; 12:13245. [PMID: 35918393 PMCID: PMC9345998 DOI: 10.1038/s41598-022-15629-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
The TBC (Tre-2/Bub2/Cdc16, TBC) structural domain is now considered as one of the factors potentially regulating tumor progression. However, to date, studies on the relationship between TBC structural domains and tumors are limited. In this study, we identified the role of TBC1 domain family member 8 (TBC1D8) as an oncogene in colorectal cancer (CRC) by least absolute shrinkage and selection operator (LASSO) and Cox regression analysis, showing that TBC1D8 may independently predict CRC outcome. Functional enrichment and single-cell analysis showed that TBC1D8 levels were associated with hypoxia. TBC1D8 levels were also positively correlated with M2 macrophage infiltration, which may have a complex association with hypoxia. Taken together, these results show that the TBC1D8 gene is involved in colorectal carcinogenesis, and the underlying molecular mechanisms may include hypoxia and immune cell infiltration.
Collapse
|