1
|
Dai J, Rozenblit M, Li X, Shan NL, Wang Y, Mane S, Marczyk M, Pusztai L. Genomic alterations in normal breast tissues preceding breast cancer diagnosis. Breast Cancer Res 2025; 27:60. [PMID: 40264151 DOI: 10.1186/s13058-025-02018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Normal breast tissues adjacent to cancer often harbor many of the same genomic alterations as the cancer itself. However, it remains unclear whether histologically normal breast tissues carry genomic changes related to cancer development years before a cancer diagnosis. METHODS Whole exome sequencing was performed to examine germline and somatic alterations in histologically normal breast tissues from women who subsequently developed breast cancer (n = 79, pre-diagnosis tissues) and compared these with results from breast tissues of women who did not (n = 81). No patient had germline mutations in cancer predisposition genes. RESULTS The pre-diagnosis tissues had significantly more high functional impact germline variants per sample than the healthy controls (P = 0.034), 36.5% of affected genes were cancer hallmark genes, among these 62.4% were involved with evading growth suppressors and 5.7% with genome instability. The average number of somatic mutations were similar between the two cohorts. Mutation signature analysis revealed COSMIC signatures 3 (associated with impaired homologous recombination) as a dominant signature more frequent in pre-diagnosis tissues. At gene and variant level, nine common germline polymorphisms in two immune regulatory genes, FCGBP and TPSBP2, and along with three somatic mutations in F13A1, FRY and TMLHE, were significantly more frequently mutated in the pre-diagnosis samples. CONCLUSIONS Individuals who develop breast cancer have a higher germline variant burden in normal breast tissues leading to subtle deficiencies in DNA repair that in the context of other germline and somatic mutations could facilitate malignant transformation.
Collapse
Affiliation(s)
- Jiawei Dai
- Yale Cancer Center, Yale School of Medicine, Suite 120, Rm 133, 300 George Street, New Haven, CT, 06511, USA
| | - Mariya Rozenblit
- Yale Cancer Center, Yale School of Medicine, Suite 120, Rm 133, 300 George Street, New Haven, CT, 06511, USA
| | - Xiaoyue Li
- Yale Cancer Center, Yale School of Medicine, Suite 120, Rm 133, 300 George Street, New Haven, CT, 06511, USA
| | - Naing Lin Shan
- Yale Cancer Center, Yale School of Medicine, Suite 120, Rm 133, 300 George Street, New Haven, CT, 06511, USA
| | - Yueyue Wang
- Yale Cancer Center, Yale School of Medicine, Suite 120, Rm 133, 300 George Street, New Haven, CT, 06511, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, West Haven, CT, USA
| | - Michal Marczyk
- Department of Data Mining and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, Suite 120, Rm 133, 300 George Street, New Haven, CT, 06511, USA.
| |
Collapse
|
2
|
Jia Y, Peng Z, Tian X, Guan Y, Han Y, Ji D, Lan B, Xu B, Fan Y. Single-cell sequencing exposes mast cell-derived CD52's anti-tumor action in breast cancer through the IL-6/JAK/STAT3 axis. Int J Biol Macromol 2025:142879. [PMID: 40194575 DOI: 10.1016/j.ijbiomac.2025.142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The aggressive nature and rapid progression of triple-negative breast cancer (TNBC), coupled with a high likelihood of recurrence and mortality, underscore the critical need for effective treatments. While immunotherapy presents promising advantages for those with triple-negative breast cancer (TNBC), its efficacy is not universal. This disparity highlights the importance of investigating survival outcomes and prognostic factors for those TNBC patients who don't respond well to immunotherapy. Our study leverages both bulk and single-cell RNA sequencing data to conduct an in-depth analysis, revealing that genes associated with mast cells (PCMT1, VDAC1, YWHAB, BRD4, BTG1, and CD52) are pivotal in prognostication for TNBC patients. Laboratory experiments have further substantiated our findings, demonstrating that the overexpression of CD52 in mast cells impedes the proliferation, invasion, and metastasis of breast cancer cells. Further anti-CD52 treatment inhibiting breast tumor growth in vivo. Additionally, we have discovered that CD52 elicits its antitumor effects by meditating the IL-6/JAK/STAT3 signaling pathway. These insights not only enhance the prognostic significance of mast cells in TNBC but also pave the way for the development of novel targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Yueran Jia
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zexi Peng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinzhu Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuhang Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dangyang Ji
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
3
|
Benimam MM, Meas-Yedid V, Mukherjee S, Frafjord A, Corthay A, Lagache T, Olivo-Marin JC. Statistical analysis of spatial patterns in tumor microenvironment images. Nat Commun 2025; 16:3090. [PMID: 40164621 PMCID: PMC11958726 DOI: 10.1038/s41467-025-57943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Advances in tissue labeling, imaging, and automated cell identification now enable the visualization of immune cell types in human tumors. However, a framework for analyzing spatial patterns within the tumor microenvironment (TME) is still lacking. To address this, we develop Spatiopath, a null-hypothesis framework that distinguishes statistically significant immune cell associations from random distributions. Using embedding functions to map cell contours and tumor regions, Spatiopath extends Ripley's K function to analyze both cell-cell and cell-tumor interactions. We validate the method with synthetic simulations and apply it to multi-color images of lung tumor sections, revealing significant spatial patterns such as mast cells accumulating near T cells and the tumor epithelium. These patterns highlight differences in spatial organization, with mast cells clustering near the epithelium and T cells positioned farther away. Spatiopath enables a better understanding of immune responses and may help identify biomarkers for patient outcomes.
Collapse
Affiliation(s)
- Mohamed M Benimam
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3691, BioImage Analysis Unit, Paris, France
| | - Vannary Meas-Yedid
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3691, BioImage Analysis Unit, Paris, France
| | - Suvadip Mukherjee
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3691, BioImage Analysis Unit, Paris, France
- KLA Corporation, Ann Arbor, MI, USA
| | - Astri Frafjord
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thibault Lagache
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3691, BioImage Analysis Unit, Paris, France.
| | | |
Collapse
|
4
|
Chen A, Kroehling L, Ennis CS, Denis GV, Monti S. A highly resolved integrated transcriptomic atlas of human breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643025. [PMID: 40161579 PMCID: PMC11952505 DOI: 10.1101/2025.03.13.643025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In this study, we developed an integrated single cell transcriptomic (scRNAseq) atlas of human breast cancer (BC), the largest resource of its kind, totaling > 600,000 cells across 138 patients. Rigorous integration and annotation of publicly available scRNAseq data enabled a highly resolved characterization of epithelial, immune, and stromal heterogeneity within the tumor microenvironment (TME). Within the immune compartment we were able to characterize heterogeneity of CD4, CD8 T cells and macrophage subpopulations. Within the stromal compartment, subpopulations of endothelial cells (ECs) and cancer associated fibroblasts (CAFs) were resolved. Within the cancer epithelial compartment, we characterized the functional heterogeneity of cells across the axes of stemness, epithelial-mesenchymal plasticity, and canonical cancer pathways. Across all subpopulations observed in the TME, we performed a multi-resolution survival analysis to identify epithelial cell states and immune cell types which conferred a survival advantage in both The Cancer Genome Atlas (TCGA) and METABRIC. We also identified robust associations between TME composition and clinical phenotypes such as tumor subtype and grade that were not discernible when the analysis was limited to individual datasets, highlighting the need for atlas-based analyses. This atlas represents a valuable resource for further high-resolution analyses of TME heterogeneity within BC.
Collapse
Affiliation(s)
- Andrew Chen
- Section of Computational Biomedicine, Boston University Chobanian and Avesidian School of Medicine, Boston, MA 02118, USA
- Bioinformatics Program, Center for Computing & Data Sciences, Boston University, Boston, MA 022158, USA
| | - Lina Kroehling
- Section of Computational Biomedicine, Boston University Chobanian and Avesidian School of Medicine, Boston, MA 02118, USA
- Bioinformatics Program, Center for Computing & Data Sciences, Boston University, Boston, MA 022158, USA
| | - Christina S. Ennis
- Boston University-Boston Medical Center Cancer Center, Boston University Chobanian and Avesidian School of Medicine, Boston, MA, 02118, USA
| | - Gerald V. Denis
- Boston University-Boston Medical Center Cancer Center, Boston University Chobanian and Avesidian School of Medicine, Boston, MA, 02118, USA
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University Chobanian and Avesidian School of Medicine and Boston Medical Center, Boston, MA, 02118, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian and Avesidian School of Medicine, Boston, MA, 02118, USA
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University Chobanian and Avesidian School of Medicine, Boston, MA 02118, USA
- Bioinformatics Program, Center for Computing & Data Sciences, Boston University, Boston, MA 022158, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
5
|
Li J, Jiang Y, Ma M, Wang L, Jing M, Yang Z, Zhang M, Chen K, Fan J. Epithelial cell diversity and immune remodeling in bladder cancer progression: insights from single-cell transcriptomics. J Transl Med 2025; 23:135. [PMID: 39885578 PMCID: PMC11783851 DOI: 10.1186/s12967-025-06138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored. METHODS We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues. Bulk RNA-seq data were used to validate the clinical features of characteristic cells, and protein levels of these cells were further confirmed through immunohistochemistry (IHC) and multiplex immunofluorescence. RESULTS Bladder cancer progression was associated with distinct transcriptomic features in the TME. Tumor cells in MIBC displayed enhanced glycolytic activity and downregulation of chemokines and MHC-II molecules, reducing immune cell recruitment and facilitating immune evasion. This highlights glycolysis as a potential therapeutic target for disrupting tumor progression. We identified a T cell exhaustion pathway from naive CD8 + T cells (CD8 + TCF7) to terminally exhausted CD8 + STMN1 cells, with progressively declining immune surveillance. Targeting intermediate exhaustion states may restore T cell function and improve anti-tumor immunity. Macrophages polarized toward a pro-tumorigenic phenotype, while VEGFA + mast cells promoted angiogenesis in early-stage BC, suggesting their role as potential targets for therapeutic intervention in NMIBC. Furthermore, conventional dendritic cells (DCs) transformed into LAMP3 + DCs, contributing to an immunosuppressive microenvironment and enabling immune evasion. CONCLUSION This study reveals dynamic changes in the TME during BC progression, including enhanced glycolysis, T cell exhaustion, and immune cell remodeling, which contribute to immune evasion and tumor progression. These findings identify critical pathways and cell populations as potential therapeutic targets, offering new strategies to improve treatment outcomes in BC patients.
Collapse
Affiliation(s)
- Jianpeng Li
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yunzhong Jiang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Minghai Ma
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lu Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Minxuan Jing
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zezhong Yang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Jinhai Fan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
6
|
Panda VK, Mishra B, Mahapatra S, Swain B, Malhotra D, Saha S, Khanra S, Mishra P, Majhi S, Kumari K, Nath AN, Saha S, Jena S, Kundu GC. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:234. [PMID: 39858015 PMCID: PMC11763662 DOI: 10.3390/cancers17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure. These receptors mediate various downstream signaling pathways such as MAPK, including MEK/ERK signaling pathways that promote common pro-oncogenic signaling, whereas dysregulation of PI3K/Akt, Wnt/β-catenin, and JAK/STAT activates key oncogenic events such as drug resistance, CSC enrichment, and metabolic reprogramming. Additionally, these cascades orchestrate an intricate interplay between stromal cells, immune cells, and tumor cells. Metabolic reprogramming and adaptations contribute to aggressive breast cancer and are unresponsive to therapy. Herein, recent insights into the novel signaling pathways operating within the breast TME that aid in their advancement are emphasized and current developments in practices targeting the breast TME to enhance treatment efficacy are reviewed.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Swarnali Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sarmistha Jena
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
7
|
Silva LS, Cavallini E, da Silva RA, Sant’Ana M, Yoshikawa AH, Salomão T, Huang B, Craice P, de Souza Ferreira LP, Della Matta HP, Gil CD, Pereira MDLG, Girol AP. Garcinia brasiliensis Leaves Extracts Inhibit the Development of Ascitic and Solid Ehrlich Tumors. Pharmaceuticals (Basel) 2024; 18:24. [PMID: 39861087 PMCID: PMC11768557 DOI: 10.3390/ph18010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Background:Garcinia brasiliensis is traditionally known for its medicinal properties. Objectives: Here, we investigated the effects of crude extract (CE) and ethyl acetate fraction (EAF) obtained from G. brasiliensis leaves on the ascitic (EA) and solid (ES) forms of Ehrlich tumors. Methods: Induced and uninduced BALB/c mice were treated intramuscularly, for 7 or 14 days, with saline solution or CE and EAF, both at a 10% concentration, based on in vitro cytotoxicity assessment. Biochemical analyses were also performed to evaluate in vivo cytotoxicity. In relation to tumor-induced animals, morphological changes, plasma enzymes, inflammatory mediators and the induction of apoptosis were analyzed, in addition to histopathological studies, to evaluate the inhibition of tumor growth. Results: Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were regulated by CE and EAF administration. Furthermore, both treatments were effective in inhibiting tumor growth in EA and ES by modulating the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α, decreasing mast cells numbers and inducing apoptosis. Conclusions: This research indicates that both CE and EAF from G. brasiliensis leaves have potential antitumor effects with low cytotoxicity.
Collapse
Affiliation(s)
- Lucas Sylvestre Silva
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Eduardo Cavallini
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Rafael André da Silva
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Monielle Sant’Ana
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Ariane Harumi Yoshikawa
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Thiago Salomão
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Bianca Huang
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Paula Craice
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Luiz Philipe de Souza Ferreira
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Heitor Pedro Della Matta
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Cristiane Damas Gil
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | | | - Ana Paula Girol
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| |
Collapse
|
8
|
Massa D, Vernieri C, Nicolè L, Criscitiello C, Boissière-Michot F, Guiu S, Bobrie A, Griguolo G, Miglietta F, Vingiani A, Lobefaro R, Taurelli Salimbeni B, Pinato C, Schiavi F, Brich S, Pescia C, Fusco N, Pruneri G, Fassan M, Curigliano G, Guarneri V, Jacot W, Dieci MV. Immune and gene-expression profiling in estrogen receptor low and negative early breast cancer. J Natl Cancer Inst 2024; 116:1914-1927. [PMID: 39083015 PMCID: PMC11630536 DOI: 10.1093/jnci/djae178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The cutoff of <1% positive cells to define estrogen receptor (ER) negativity by immunohistochemistry (IHC) in breast cancer (BC) is debated. We explored the tumor immune microenvironment and gene-expression profile of patients with early-stage HER2-negative ER-low (ER 1%-9%) BC, comparing them to ER-negative (ER <1%) and ER-intermediate (ER 10%-50%) tumors. METHODS Among 921 patients with early-stage I-III, ER ≤50%, HER2-negative BCs, tumors were classified as ER-negative (n = 712), ER-low (n = 128), or ER-intermediate (n = 81). Tumor-infiltrating lymphocytes (TILs) were evaluated. CD8+, FOXP3+ cells, and PD-L1 status were assessed by IHC and quantified by digital pathology. We analyzed 776 BC-related genes in 116 samples. All tests were 2-sided at a <.05 significance level. RESULTS ER-low and ER-negative tumors exhibited similar median TILs, statistically significantly higher than ER-intermediate tumors. CD8/FOXP3 ratio and PD-L1 positivity rates were comparable between ER-low and ER-negative groups. These groups showed similar enrichment in basal-like intrinsic subtypes and comparable expression of immune-related genes. ER-low and ER-intermediate tumors showed significant transcriptomic differences. High TILs (≥30%) were associated with improved relapse-free survival (RFS) in ER-low (5-year RFS 78.6% vs 66.2%, log-rank P = .033, hazard ratio [HR] 0.37 [95% CI = 0.15 to 0.96]) and ER-negative patients (5-year RFS 85.2% vs 69.8%, log-rank P < .001, HR 0.41 [95% CI = 0.27 to 0.60]). CONCLUSIONS ER-low and ER-negative tumors are similar biological and molecular entities, supporting their comparable clinical outcomes and treatment responses, including to immunotherapy. Our findings contribute to the growing evidence calling for a reevaluation of ER-positive BC classification and management, aligning ER-low and ER-negative tumors more closely.
Collapse
Affiliation(s)
- Davide Massa
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology
| | | | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Séverine Guiu
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Angélique Bobrie
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Gaia Griguolo
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Federica Miglietta
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Pinato
- UOSD Hereditary Tumors, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Francesca Schiavi
- UOSD Hereditary Tumors, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Silvia Brich
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Pescia
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padova, Italy
- Veneto Institute of Oncology IOV—IRCCS, Padova, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Guarneri
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - William Jacot
- Translational Research Unit, Institut du Cancer de Montpellier, Montpellier, France
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Maria Vittoria Dieci
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| |
Collapse
|
9
|
Eren E, Das J, Tollefsbol TO. Polyphenols as Immunomodulators and Epigenetic Modulators: An Analysis of Their Role in the Treatment and Prevention of Breast Cancer. Nutrients 2024; 16:4143. [PMID: 39683540 PMCID: PMC11644657 DOI: 10.3390/nu16234143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer poses a substantial health challenge for women globally. Recently, there has been a notable increase in scholarly attention regarding polyphenols, primarily attributed to not only the adverse effects associated with conventional treatments but also their immune-preventive impacts. Polyphenols, nature-derived substances present in vegetation, including fruits and vegetables, have received considerable attention in various fields of science due to their probable wellness merits, particularly in the treatment and hindrance of cancer. This review focuses on the immunomodulatory effects of polyphenols in breast cancer, emphasizing their capacity to influence the reaction of adaptive and innate immune cells within the tumor-associated environment. Polyphenols are implicated in the modulation of inflammation, the enhancement of antioxidant defenses, the promotion of epigenetic modifications, and the support of immune functions. Additionally, these compounds have been shown to influence the activity of critical immune cells, including macrophages and T cells. By targeting pathways involved in immune evasion, polyphenols may augment the capacity of the defensive system to detect and eliminate tumors. The findings suggest that incorporating polyphenol-rich foods into the diet could offer a promising, collaborative (integrative) approach to classical breast cancer remedial procedures by regulating how the defense mechanism interacts with the disease.
Collapse
Affiliation(s)
- Esmanur Eren
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Jyotirmoyee Das
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Lin S, Zhang H, Zhao R, Wu Z, Zhang W, Yu M, Zhang B, Ma L, Li D, Peng L, Luo W. Single-cell multiomics reveals simvastatin inhibits pan-cancer epithelial-mesenchymal transition via the MEK/ERK pathway in XBP1+ mast cells. Sci Rep 2024; 14:29545. [PMID: 39604504 PMCID: PMC11603196 DOI: 10.1038/s41598-024-80858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Distant metastasis is the leading cause of cancer-related mortality, and achieving survival benefits through advancements in systemic therapy remains challenging. Mast cells play a dual role in shaping the tumor microenvironment (TME) and influencing distant metastasis, underscoring the significant research value of targeting mast cells for systemic therapy in advanced cancer. We investigated variations in mast cell infiltration levels in primary and metastatic malignancies using immunocyte infiltration analysis. Mast cell subsets were identified from pan-cancer distant metastasis single-cell sequencing data through dimensionality reduction clustering and cell type annotation, combined with cell trajectory and communication network analyses. A prognostic model was established using WGCNA and 12 machine learning algorithms to identify potential mast cell targets. Drug sensitivity and Mendelian randomization analyses were conducted to select potential drugs targeting mast cells, and their effects on epithelial-mesenchymal transition (EMT) were validated through in vitro experiments, including wound healing, transwell, and western blot assays. Results revealed that activated mast cells show increased infiltration in metastatic tumors, correlating with poor survival duration. XBP1+ mast cells were identified as key components of the inhibitory TME, potentially involved in EMT activation. Simvastatin was identified as a potential drug, reversing EMT induced by XBP1+ mast cells in pan-cancer. Aberrant activation of MEK/ERK signaling in XBP1+ mast cells can stimulate cancer cell EMT by modulating degranulation, while Simvastatin can inhibit EMT by suppressing degranulation.
Collapse
Affiliation(s)
- Sen Lin
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huimin Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Zhao
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhulin Wu
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Weiqing Zhang
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Mengjiao Yu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bei Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanyue Ma
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danfei Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lisheng Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Weijun Luo
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China.
| |
Collapse
|
11
|
Arreza L, Thanasupawat T, Krishnan SN, Kraljevic M, Klonisch T, Hombach-Klonisch S. C1QTNF Related protein 8 (CTRP8) is a marker of myeloid derived innate immune cell populations in the human breast cancer microenvironment. Biochem Pharmacol 2024; 230:116624. [PMID: 39542181 DOI: 10.1016/j.bcp.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Innate immune cells in the tumor microenvironment (TME) play an important role in breast cancer (BC) metastatic spread and influence patient survival. Macrophages differentiate along a proinflammatory M1 to protumorigenic M2 phenotype spectrum which affects distinct functions, like angiogenesis and cytokine production, and modulates BC aggressiveness and affects patient survival. Mast cells (MCs) are myeloid derived cells that serve as the first line of innate immune defense but their role in the TME of BC is not well understood. In this study, we have identified a subpopulation of innate immune cells that shows strong immunopositivity for the least studied adipokine CTRP8. Using a new and highly specific polyclonal antiserum on patient BC tissues, we identify a subset of tryptase + MCs and CD68 + macrophages co-expressing immunoreactive CTRP8. In M1 polarized THP-1 myeloid cells, this adipokine stimulated increased secretion of pro-inflammatory cytokines and elevated expression of the relaxin/ CTRP8 receptor RXFP1. Comparative analysis of secreted cytokine profiles in THP-1 M1 macrophages exposed to either CTRP8, relaxin-2 (RLN2), or the small molecule RXFP1 agonist ML-290 revealed ligand-specific cytokine signatures. Our study identified novel subsets of CTRP8 + myeloid derived innate immune cells and links this adipokine to pro-inflammatory events in the TME of BC.
Collapse
Affiliation(s)
- Leanne Arreza
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thatchawan Thanasupawat
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sai Nivedita Krishnan
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew Kraljevic
- Children's Hospital Research Institute of Manitoba (CHRIM), Research Institute CancerCare Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Departments of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Departments of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Research Institute CancerCare Manitoba, Winnipeg, Canada; Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Departments of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Research Institute CancerCare Manitoba, Winnipeg, Canada.
| |
Collapse
|
12
|
Xia C, Chen Y, Zhu Y, Chen D, Sun H, Shen T, Shelat VG, Mavroeidis VK, Levi Sandri GB, Wang Z, Zhu H. Identification of DLAT as a potential therapeutic target via a novel cuproptosis-related gene signature for the prediction of liver cancer prognosis. J Gastrointest Oncol 2024; 15:2230-2251. [PMID: 39554575 PMCID: PMC11565118 DOI: 10.21037/jgo-24-609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Background The prognosis for liver cancer (LC) is dismal. Researchers recently discovered cuproptosis, a novel form of controlled cell death whose expression in LC and prognosis are unclear. This study reveals a gene signature to predict LC prognosis. Methods RNA and clinical data for 371 LC patients were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) were identified by comparing cancerous and normal samples. Genes linked to overall survival (OS) were found using univariate Cox regression and least absolute shrinkage and selection operator (LASSO). The gene signature was validated across all patients. Gene expression and clinical traits were analyzed, and Kaplan-Meier (KM) curves were generated for high- and low-risk groups. DEGs were used for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), immune infiltration, and drug prediction analyses. DLAT's functions were assessed using real-time polymerase chain reaction (RT-PCR), transwell invasion, Cell Counting Kit-8 (CCK-8), colony formation, and drug resistance assays. Results A total of 12 cuproptosis regulators were discovered in LC and normal liver tissues. A 3-gene signature based on LASSO Cox regression was utilized to categorize TCGA LC patients into low- and high-risk categories. Low-risk patients exhibited better survival than high-risk patients (P<0.05). Tumor grade, stage, and T stage differed between high- and low-risk groups. Long-term prognosis was well predicted by male subgroup survival studies. We predicted LC patient survival using sex, tumor grade, tumor stage, and risk score. Functional enrichment showed that extracellular matrix (ECM) architecture, channel function, and tumor-associated pathways were enriched in LC, suggesting that cancer related functions were collected. Immune microenvironment inhibition was found in the high-risk group suggesting that immunosuppression was closely related. We also discovered five small molecules that could be potentially useful for LC treatment. DLAT was discovered to promote the migration and proliferation of LC cells and is connected to drug resistance as a prognostic marker. Conclusions Cuproptosis-related genes contribute to tumor development and can aid the prediction of LC patient prognosis. DLAT is a potential LC prognostic and therapeutic target.
Collapse
Affiliation(s)
- Cunbing Xia
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- National Famous TCM expert ZHU Yongkang's Inherited Treatment Room, Nanjing, China
| | - Yang Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongkang Zhu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- National Famous TCM expert ZHU Yongkang's Inherited Treatment Room, Nanjing, China
| | - Dexuan Chen
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- National Famous TCM expert ZHU Yongkang's Inherited Treatment Room, Nanjing, China
| | - Haijian Sun
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- National Famous TCM expert ZHU Yongkang's Inherited Treatment Room, Nanjing, China
| | - Tong Shen
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- National Famous TCM expert ZHU Yongkang's Inherited Treatment Room, Nanjing, China
| | - Vishal G Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Vasileios K Mavroeidis
- Department of HPB Surgery, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol Royal Infirmary, Bristol, UK
- Department of Transplant Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | | | - Zhan Wang
- Department of General Surgery, Zibo Municipal Hospital, Zibo, China
| | - Hong Zhu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- National Famous TCM expert ZHU Yongkang's Inherited Treatment Room, Nanjing, China
| |
Collapse
|
13
|
Han Y, Shi L, Jiang N, Huang J, Jia X, Zhu B. Dissecting the Single-Cell Diversity and Heterogeneity Underlying Cervical Precancerous Lesions and Cancer Tissues. Reprod Sci 2024:10.1007/s43032-024-01695-5. [PMID: 39354287 DOI: 10.1007/s43032-024-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024]
Abstract
The underlying cellular diversity and heterogeneity from cervix precancerous lesions to cervical squamous cell carcinoma (CSCC) is investigated. Four single-cell datasets including normal tissues, normal adjacent tissues, precancerous lesions, and cervical tumors were integrated to perform disease stage analysis. Single-cell compositional data analysis (scCODA) was utilized to reveal the compositional changes of each cell type. Differentially expressed genes (DEGs) among cell types were annotated using BioCarta. An assay for transposase-accessible chromatin sequencing (ATAC-seq) analysis was performed to correlate epigenetic alterations with gene expression profiles. Lastly, a logistic regression model was used to assess the similarity between the original and new cohort data (HRA001742). After global annotation, seven distinct cell types were categorized. Eight consensus-upregulated DEGs were identified in B cells among different disease statuses, which could be utilized to predict the overall survival of CSCC patients. Inferred copy number variation (CNV) analysis of epithelial cells guided disease progression classification. Trajectory and ATAC-seq integration analysis identified 95 key transcription factors (TF) and one immunohistochemistry (IHC) testified key-node TF (YY1) involved in epithelial cells from CSCC initiation to progression. The consistency of epithelial cell subpopulation markers was revealed with single-cell sequencing, bulk sequencing, and RT-qPCR detection. KRT8 and KRT15, markers of Epi6, showed progressively higher expression with disease progression as revealed by IHC detection. The logistic regression model testified the robustness of the resemblance of clusters among the various datasets utilized in this study. Valuable insights into CSCC cellular diversity and heterogeneity provide a foundation for future targeted therapy.
Collapse
Affiliation(s)
- Yanling Han
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Lu Shi
- CRE Life Institute, Beijing, 100000, China
| | - Nan Jiang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jiamin Huang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiuzhi Jia
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, 323000, China.
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
14
|
Bongiorno R, Lecchi M, Botti L, Bosco O, Ratti C, Fontanella E, Mercurio N, Pratesi P, Chiodoni C, Verderio P, Colombo MP, Lecis D. Mast cell heparanase promotes breast cancer stem-like features via MUC1/estrogen receptor axis. Cell Death Dis 2024; 15:709. [PMID: 39349458 PMCID: PMC11442964 DOI: 10.1038/s41419-024-07092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Breast cancer is the most frequent type of tumor in women and is characterized by variable outcomes due to its heterogeneity and the presence of many cancer cell-autonomous and -non-autonomous factors. A major determinant of breast cancer aggressiveness is represented by immune infiltration, which can support tumor development. In our work, we studied the role of mast cells in breast cancer and identified a novel activity in promoting the tumor-initiating properties of cancer cells. Mast cells are known to affect breast cancer prognosis, but show different effects according to the diverse subtypes. Starting from the observation that co-injection of mast cells with limiting concentrations of cancer cells increased their in vivo engraftment rate, we characterized the molecular mechanisms by which mast cells promote the tumor stem-like features. We provide evidence that mast cell heparanase plays a pivotal role since both its activity and the stimulation of mast cells with heparan sulfate, the product of heparanase activity, are crucial for this process. Moreover, the pharmacological inhibition of heparanase prevents the function of mast cells. Our data show that soluble factors released by mast cells favor the expression of estrogen receptor in a MUC1-dependent manner. The MUC1/estrogen receptor axis is eventually essential for cancer stem-like features, specifically in HER2-negative cells, and promotes the capability of cancer cells to form mammospheres and express stem-related genes, also reducing their sensitivity to tamoxifen administration. Altogether our findings describe a novel mechanism by which mast cells could increase the aggressiveness of breast cancer uncovering a molecular mechanism displaying differences based on the specific breast cancer subtype.
Collapse
Affiliation(s)
- Roberta Bongiorno
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Oriana Bosco
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Chiara Ratti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Enrico Fontanella
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Nicolò Mercurio
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Pietro Pratesi
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy.
| |
Collapse
|
15
|
Lim RMH, Lee JY, Kannan B, Ko TK, Chan JY. Molecular and immune pathobiology of human angiosarcoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189159. [PMID: 39032539 DOI: 10.1016/j.bbcan.2024.189159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Angiosarcoma is a rare endothelial-derived malignancy that is extremely diverse in anatomy, aetiology, molecular and immune characteristics. While novel therapeutic approaches incorporating targeted agents and immunotherapy have yielded significant improvements in patient outcomes across several cancers, their impact on angiosarcoma remains modest. Contributed by its heterogeneous nature, there is currently a lack of novel drug targets in this disease entity and no reliable biomarkers that predict response to conventional treatment. This review aims to examine the molecular and immune landscape of angiosarcoma in association with its aetiology, anatomical sites, prognosis and therapeutic options. We summarise current efforts to characterise angiosarcoma subtypes based on molecular and immune profiling. Finally, we highlight promising technologies such as single-cell spatial "omics" that may further our understanding of angiosarcoma and propose strategies that can be similarly applied for the study of other rare cancers.
Collapse
Affiliation(s)
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
16
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Tzorakoleftheraki SE, Koletsa T. The Complex Role of Mast Cells in Head and Neck Squamous Cell Carcinoma: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1173. [PMID: 39064602 PMCID: PMC11279237 DOI: 10.3390/medicina60071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy influenced by various genetic and environmental factors. Mast cells (MCs), typically associated with allergic responses, have recently emerged as key regulators of the HNSCC tumor microenvironment (TME). This systematic review explores the role of MCs in HNSCC pathogenesis and their potential as prognostic markers and therapeutic targets. Materials and Methods: A systematic search was conducted in the PubMed, Scopus and ClinicalTrials.gov databases until 31 December 2023, using "Mast cells" AND "Head and neck squamous cell carcinoma" as search terms. Studies in English which reported on MCs and HNSCC were included. Screening, data extraction and analysis followed PRISMA guidelines. No new experiments were conducted. Results: Out of 201 articles, 52 studies met the inclusion criteria, 43 of which were published between 2020 and 2023. A total of 28821 HNSCC and 9570 non-cancerous tissue samples had been examined. MC density and activation varied among normal tissues and HNSCC. Genetic alterations associated with MCs were identified, with specific gene expressions correlating with prognosis. Prognostic gene signatures associated with MC density were established. Conclusions: MCs have arisen as multifaceted TME modulators, impacting various aspects of HNSCC development and progression. Possible site-specific or HPV-related differences in MC density and activation should be further elucidated. Despite conflicting findings on their prognostic role, MCs represent promising targets for novel therapeutic strategies, necessitating further research and clinical validation for personalized HNSCC treatment.
Collapse
Affiliation(s)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
18
|
Guan R, Li C, Gu F, Li W, Wei D, Cao S, Chang F, Lei D. Single-cell transcriptomic landscape and the microenvironment of normal adjacent tissues in hypopharyngeal carcinoma. BMC Genomics 2024; 25:489. [PMID: 38760729 PMCID: PMC11100249 DOI: 10.1186/s12864-024-10321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The cellular origin of hypopharyngeal diseases is crucial for further diagnosis and treatment, and the microenvironment in tissues may also be associated with specific cell types at the same time. Normal adjacent tissues (NATs) of hypopharyngeal carcinoma differ from non-tumor-bearing tissues, and can influenced by the tumor. However, the heterogeneity in kinds of disease samples remains little known, and the transcriptomic profile about biological information associated with disease occurrence and clinical outcome contained in it has yet to be fully evaluated. For these reasons, we should quickly investigate the taxonomic and transcriptomic information of NATs in human hypopharynx. RESULTS Single-cell suspensions of normal adjacent tissues (NATs) of hypopharyngeal carcinoma were obtained and single-cell RNA sequencing (scRNA-seq) was performed. We present scRNA-seq data from 39,315 high-quality cells in the hypopharyngeal from five human donors, nine clusters of normal adjacent human hypopharyngeal cells were presented, including epithelial cells, endothelial cells (ECs), mononuclear phagocyte system cells (MPs), fibroblasts, T cells, plasma cells, B cells, mural cells and mast cells. Nonimmune components in the microenvironment, including epithelial cells, endothelial cells, fibroblasts and the subpopulations of them were performed. CONCLUSIONS Our data provide a solid basis for the study of single-cell landscape in human normal adjacent hypopharyngeal tissues biology and related diseases.
Collapse
Affiliation(s)
- Rui Guan
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan , Shandong, 250012, China
| | - Ce Li
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Fangmeng Gu
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Wenming Li
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Shengda Cao
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Fen Chang
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China.
- Cheeloo College of Medicine, Shandong University, Jinan , Shandong, 250012, China.
| |
Collapse
|
19
|
Yang Z, Chen H, Yin S, Mo H, Chai F, Luo P, Li Y, Ma L, Yi Z, Sun Y, Chen Y, Wu J, Wang W, Yin T, Zhu J, Shi C, Zhang F. PGR-KITLG signaling drives a tumor-mast cell regulatory feedback to modulate apoptosis of breast cancer cells. Cancer Lett 2024; 589:216795. [PMID: 38556106 DOI: 10.1016/j.canlet.2024.216795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The immune microenvironment constructed by tumor-infiltrating immune cells and the molecular phenotype defined by hormone receptors (HRs) have been implicated as decisive factors in the regulation of breast cancer (BC) progression. Here, we found that the infiltration of mast cells (MCs) informed impaired prognoses in HR(+) BC but predicted improved prognoses in HR(-) BC. However, molecular features of MCs in different BC remain unclear. We next discovered that HR(-) BC cells were prone to apoptosis under the stimulation of MCs, whereas HR(+) BC cells exerted anti-apoptotic effects. Mechanistically, in HR(+) BC, the KIT ligand (KITLG), a major mast cell growth factor in recruiting and activating MCs, could be transcriptionally upregulated by the progesterone receptor (PGR), and elevate the production of MC-derived granulin (GRN). GRN attenuates TNFα-induced apoptosis in BC cells by competitively binding to TNFR1. Furthermore, disruption of PGR-KITLG signaling by knocking down PGR or using the specific KITLG-cKIT inhibitor iSCK03 potently enhanced the sensitivity of HR(+) BC cells to MC-induced apoptosis and exerted anti-tumor activity. Collectively, these results demonstrate that PGR-KITLG signaling in BC cells preferentially induces GRN expression in MCs to exert anti-apoptotic effects, with potential value in developing precision medicine approaches for diagnosis and treatment.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China; Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Hongbiao Mo
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Fan Chai
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yao Li
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziying Yi
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Yizeng Sun
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weihua Wang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Tingjie Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Junping Zhu
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China; Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
21
|
Yu H, Liu J. Identification of breast cancer subgroups and immune characterization based on glutamine metabolism-related genes. BMC Med Genomics 2024; 17:17. [PMID: 38200578 PMCID: PMC10782609 DOI: 10.1186/s12920-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Immunotherapy is a promising treatment for breast cancer (BC). However, due to individual differences and tumor heterogeneity, immunotherapy is only applicable to some BC patients. Glutamine metabolism plays a role in inhibiting immunotherapy, but its role in BC is limitedly studied. Therefore, we aimed to identify different BC subgroups based on glutamine metabolism and characterize the features of different subgroups to provide guidance for personalized immunotherapy for BC patients. Using unsupervised clustering analysis, we classified BC patients in The Cancer Genome Atlas (TCGA) with glutamine metabolism-related genes and obtained low-risk (LR) and high-risk (HR) subgroups. Survival analysis revealed that prognosis of LR subgroup was notably better than HR subgroup. Through ssGSEA and CIBERSORT methods, we disclosed that infiltration levels of B cells, Mast cells, T helper cells, and Th2 cells, and Type II IFN Response immune function were notably higher in LR subgroup than in HR subgroup. The Wilcox algorithm comparison denoted that DEPTH of LR subgroup was significantly lower than HR subgroup. The TIDE of LR subgroup was significantly higher than HR subgroup. Functional annotation of differentially expressed genes revealed that channel activity and the Estrogen signaling pathway may be related to BC prognosis. Ten hub genes were selected between the subgroups through the STRING database and Cytoscape, and their correlation with drugs was predicted on the CellMiner website. This study analyzed the immune characteristics of BC subgroups based on glutamine metabolism and provided reference for prognosis prediction and personalized immunotherapy.
Collapse
Affiliation(s)
- Hongjing Yu
- Department of Oncology, Jiande Branch, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Junchen Liu
- Department of Pharmacy, Jiande Branch, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Donati B, Reggiani F, Torricelli F, Santandrea G, Rossi T, Bisagni A, Gasparini E, Neri A, Cortesi L, Ferrari G, Bisagni G, Ragazzi M, Ciarrocchi A. Spatial Distribution of Immune Cells Drives Resistance to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancer Immunol Res 2024; 12:120-134. [PMID: 37856875 DOI: 10.1158/2326-6066.cir-23-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/22/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Neoadjuvant chemotherapy (NAC) alone or combined with target therapies represents the standard of care for localized triple-negative breast cancer (TNBC). However, only a fraction of patients have a response, necessitating better understanding of the complex elements in the TNBC ecosystem that establish continuous and multidimensional interactions. Resolving such complexity requires new spatially-defined approaches. Here, we used spatial transcriptomics to investigate the multidimensional organization of TNBC at diagnosis and explore the contribution of each cell component to response to NAC. Starting from a consecutive retrospective series of TNBC cases, we designed a case-control study including 24 patients with TNBC of which 12 experienced a pathologic complete response (pCR) and 12 no-response or progression (pNR) after NAC. Over 200 regions of interest (ROI) were profiled. Our computational approaches described a model that recapitulates clinical response to therapy. The data were validated in an independent cohort of patients. Differences in the transcriptional program were detected in the tumor, stroma, and immune infiltrate comparing patients with a pCR with those with pNR. In pCR, spatial contamination between the tumor mass and the infiltrating lymphocytes was observed, sustained by a massive activation of IFN-signaling. Conversely, pNR lesions displayed increased pro-angiogenetic signaling and oxygen-based metabolism. Only modest differences were observed in the stroma, revealing a topology-based functional heterogeneity of the immune infiltrate. Thus, spatial transcriptomics provides fundamental information on the multidimensionality of TNBC and allows an effective prediction of tumor behavior. These results open new perspectives for the improvement and personalization of therapeutic approaches to TNBCs.
Collapse
Affiliation(s)
- Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giacomo Santandrea
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Teresa Rossi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Gasparini
- Oncology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Laura Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliera Policlinico di Modena, Modena, Italy
| | - Guglielmo Ferrari
- Breast Surgery Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giancarlo Bisagni
- Oncology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
23
|
Chen X, Hu G, Yu Q. Impact of disulfidptosis-associated clusters on breast cancer survival rates and guiding personalized treatment. Front Endocrinol (Lausanne) 2023; 14:1256132. [PMID: 38116315 PMCID: PMC10728640 DOI: 10.3389/fendo.2023.1256132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Background Breast cancer (BC) poses a serious threat to human health. Disulfidptosis is a recently discovered form of cell death associated with cancer prognosis and progression. However, the relationship between BC and disulfidptosis remains unclear. Methods We integrated single-cell sequencing and transcriptome sequencing in BC to assess the abundance and mutation status of disulfidptosis-associated genes (DAGs). Subsequently, we clustered the samples based on DAGs and constructed a prognostic model associated with disulfidptosis. Additionally, we performed pathway enrichment, immune response, and drug sensitivity analyses on the model. Finally, we validated the prognostic genes through Immunohistochemistry (IHC). Results The single-cell analysis identified 21 cell clusters and 8 cell types. By evaluating the abundance of DAGs in different cell types, we found specific expression of the disulfidoptosis core gene SLC7A11 in mesenchymal stem cells (MSCs). Through unsupervised clustering of DAGs, we identified two clusters. Utilizing differentially expressed genes from these clusters, we selected 7 genes (AFF4, SLC7A11, IGKC, IL6ST, LIMD2, MAT2B, and SCAND1) through Cox and Lasso regression to construct a prognostic model. External validation demonstrated good prognostic prediction of our model. BC patients were stratified into two groups based on riskscore, with the high-risk group corresponding to a worse prognosis. Immune response analysis revealed higher TMB and lower TIDE scores in the high-risk group, while the low-risk group exhibited higher CTLA4/PD-1 expression. This suggests that both groups may respond to immunotherapy, necessitating further research to elucidate potential mechanisms. Drug sensitivity analysis indicated that dasatinib, docetaxel, lapatinib, methotrexate, paclitaxel, and sunitinib may have better efficacy in the low-risk group. Finally, Immunohistochemistry (IHC) validated the expression of prognostic genes, demonstrating higher levels in tumor tissue compared to normal tissue. Conclusion Our study has developed an effective disulfidptosis-related prognostic prediction tool for BC and provides personalized guidance for the clinical management and immunotherapy selection of BC patients.
Collapse
Affiliation(s)
| | - Guohuang Hu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, Changsha, China
| | - Qianle Yu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
24
|
Wang Q, Yang H, Liu Y, Zhou Z, Zhang X, Sang M, Xu F, Song L, Xia T, Zhang Y, Wei J, Zhang X, Ding Q. Awakening Allies for Breaking Microenvironment Barriers: NIR-II Guided Orthogonal Activation of Tumor-Infiltrating Mast Cells for Efficient Nano-Drug Delivery. Adv Healthc Mater 2023; 12:e2300420. [PMID: 37141500 DOI: 10.1002/adhm.202300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Indexed: 05/06/2023]
Abstract
Mast cells (MCs), powerful immune cells that heavily infiltrate cancer cells, play a crucial role in tumor formation. Activated MCs can release histamine and a family of proteases through degranulation effects, concurrently achieving endothelial junction weakening and stromal degradation of the tumor microenvironment, thereby clearing the obstacles for nano-drug infiltration. To achieve precise activation of tumor-infiltrating MCs, orthogonally excited rare earth nanoparticles (ORENP), with two channels, are introduced for the controllable stimulating drugs release wrapped in "photocut tape". The ORENP can emit near-infrared II (NIR-II) for image tracing for tumor localization in Channel 1 (808/NIR-II) and allows energy upconversion to emit ultraviolet (UV) light for releasing drugs for MCs stimulation in Channel 2 (980/UV). Finally, the combined use of chemical and cellular tools enables clinical nano-drugs to achieve a significant increase in tumor infiltration, thereby enhancing the efficacy of nano-chemotherapy.
Collapse
Affiliation(s)
- Qingyuan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Haiyan Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhaoxi Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xu Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Mingyi Sang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Feng Xu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lebin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, 211103, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiang Ding
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| |
Collapse
|
25
|
Fan F, Gao J, Zhao Y, Wang J, Meng L, Ma J, Li T, Han H, Lai J, Gao Z, Li X, Guo R, Cao Z, Zhang Y, Zhang X, Chen H. Elevated Mast Cell Abundance Is Associated with Enrichment of CCR2+ Cytotoxic T Cells and Favorable Prognosis in Lung Adenocarcinoma. Cancer Res 2023; 83:2690-2703. [PMID: 37249584 PMCID: PMC10425735 DOI: 10.1158/0008-5472.can-22-3140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Mast cells constitute indispensable immunoregulatory sentinel cells in the tumor microenvironment. A better understanding of the regulation and functions of mast cells in lung adenocarcinoma (LUAD) could uncover therapeutic approaches to reprogram the immunosuppressive tumor microenvironment. Here, we performed flow cytometry and single-cell RNA sequencing (scRNA-seq) of patient LUAD samples to comprehensively characterize LUAD-infiltrating mast cells. Mast cells exhibited functional heterogeneity and were enriched in LUAD with ground-glass opacity features (gLUAD). The mast cells in gLUAD exhibited proinflammatory and chemotactic properties while those in radiologically solid LUAD (sLUAD) were associated with tumor angiogenesis. Mast cells were an important source of CCL2 and correlated with the recruitment of CCR2+ CTL, a specific subcluster of preexhausted T cells with tissue-resident memory phenotype and enhanced cytotoxicity. Increased infiltration of mast cells and CCR2+ CTLs and their colocalization showed a strong association with favorable prognosis after surgery but were not associated with improved survival after chemotherapy. Collectively, these findings reveal a key role of mast cells in LUAD and their potential cross-talk with CTLs, suggesting that targeting mast cells may be an immunotherapeutic strategy for LUAD. SIGNIFICANCE Comprehensive characterization of mast cells in lung adenocarcinoma elucidates their heterogeneity and identifies interplay between mast cells and CCR2+ T cells that is associated with a favorable prognosis.
Collapse
Affiliation(s)
- Fanfan Fan
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Gao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- International Human Phenome Institutes, Shanghai, China
| | - Yue Zhao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Meng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Teng Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Han Han
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinglei Lai
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhendong Gao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiongfei Li
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ran Guo
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Haiquan Chen
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Shen L, Huang H, Li J, Chen W, Yao Y, Hu J, Zhou J, Huang F, Ni C. Exploration of prognosis and immunometabolism landscapes in ER+ breast cancer based on a novel lipid metabolism-related signature. Front Immunol 2023; 14:1199465. [PMID: 37469520 PMCID: PMC10352658 DOI: 10.3389/fimmu.2023.1199465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Lipid metabolic reprogramming is gaining attention as a hallmark of cancers. Recent mounting evidence indicates that the malignant behavior of breast cancer (BC) is closely related to lipid metabolism. Here, we focus on the estrogen receptor-positive (ER+) subtype, the most common subgroup of BC, to explore immunometabolism landscapes and prognostic significance according to lipid metabolism-related genes (LMRGs). Methods Samples from The Cancer Genome Atlas (TCGA) database were used as training cohort, and samples from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), Gene Expression Omnibus (GEO) datasets and our cohort were applied for external validation. The survival-related LMRG molecular pattern and signature were constructed by unsupervised consensus clustering and least absolute shrinkage and selection operator (LASSO) analysis. A lipid metabolism-related clinicopathologic nomogram was established. Gene enrichment and pathway analysis were performed to explore the underlying mechanism. Immune landscapes, immunotherapy and chemotherapy response were further explored. Moreover, the relationship between gene expression and clinicopathological features was assessed by immunohistochemistry. Results Two LMRG molecular patterns were identified and associated with distinct prognoses and immune cell infiltration. Next, a prognostic signature based on nine survival-related LMRGs was established and validated. The signature was confirmed to be an independent prognostic factor and an optimal nomogram incorporating age and T stage (AUC of 5-year overall survival: 0.778). Pathway enrichment analysis revealed differences in immune activities, lipid biosynthesis and drug metabolism by comparing groups with low- and high-risk scores. Further exploration verified different immune microenvironment profiles, immune checkpoint expression, and sensitivity to immunotherapy and chemotherapy between the two groups. Finally, arachidonate 15-lipoxygenase (ALOX15) was selected as the most prominent differentially expressed gene between the two groups. Its expression was positively related to larger tumor size, more advanced tumor stage and vascular invasion in our cohort (n = 149). Discussion This is the first lipid metabolism-based signature with value for prognosis prediction and immunotherapy or chemotherapy guidance for ER+ BC.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiaxin Li
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengbo Huang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Zhang C, Huang G, Yang J, Jiang Y, Huang R, Ye Z, Huang Y, Hu H, Xi X. Overexpression of DBT suppresses the aggressiveness of renal clear cell carcinoma and correlates with immune infiltration. Front Immunol 2023; 14:1197011. [PMID: 37383233 PMCID: PMC10293648 DOI: 10.3389/fimmu.2023.1197011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Conventional therapy for kidney renal clear cell carcinoma (KIRC) is unpromising. The tumor microenvironment (TME) is intimately linked to the invasiveness of a variety of tumor forms, including KIRC. The purpose of this research is to establish the prognostic and immune-related significance of dihydrolipoamide branched chain transacylase E2 (DBT) in individuals with KIRC. In this investigation, we discovered that DBT expression was down-regulated in a range of human malignancies, and low DBT expression in KIRC was linked to higher-level clinicopathological characteristics as well as a poor prognosis for KIRC patients. Based on the findings of univariate and multivariate Cox regression analyses, DBT might be employed as an independent prognostic factor in KIRC patients. Furthermore, we developed a nomogram to better investigate DBT's predictive usefulness. To confirm DBT expression, we examined KIRC cell lines using RT-qPCR and Western blotting. We also examined the role of DBT in KIRC using colony formation, CCK-8, EdU, transwell, and wound healing assays. We discovered that plasmid-mediated overexpression of DBT in KIRC cells slowed cell proliferation and decreased migration and invasion. Multiple enrichment analyses revealed that DBT may be involved in processes and pathways related to immunotherapy and drug metabolism. We computed the immune infiltration score and discovered that the immunological score and the ESTIMATE score were both greater in the DBT low expression group. According to the CIBERSORT algorithm, DBT seems to promote anti-cancer immune responses in KIRC by activating M1 macrophages, mast cells, and dendritic cells while inhibiting regulatory T cells. Finally, in KIRC, DBT expression was found to be highly linked to immunological checkpoints, targeted medicines, and immunotherapeutic agents. Our findings suggest that DBT is a distinct predictive biomarker for KIRC patients, playing a significant role in the TME of KIRC and serving as a reference for the selection of targeted treatment and immunotherapy.
Collapse
Affiliation(s)
- Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaomin Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiale Yang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Jiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfeng Ye
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yawei Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Sulsenti R, Jachetti E. Frenemies in the Microenvironment: Harnessing Mast Cells for Cancer Immunotherapy. Pharmaceutics 2023; 15:1692. [PMID: 37376140 DOI: 10.3390/pharmaceutics15061692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor development, progression, and resistance to therapies are influenced by the interactions between tumor cells and the surrounding microenvironment, comprising fibroblasts, immune cells, and extracellular matrix proteins. In this context, mast cells (MCs) have recently emerged as important players. Yet, their role is still controversial, as MCs can exert pro- or anti-tumor functions in different tumor types depending on their location within or around the tumor mass and their interaction with other components of the tumor microenvironment. In this review, we describe the main aspects of MC biology and the different contribution of MCs in promoting or inhibiting cancer growth. We then discuss possible therapeutic strategies aimed at targeting MCs for cancer immunotherapy, which include: (1) targeting c-Kit signaling; (2) stabilizing MC degranulation; (3) triggering activating/inhibiting receptors; (4) modulating MC recruitment; (5) harnessing MC mediators; (6) adoptive transferring of MCs. Such strategies should aim to either restrain or sustain MC activity according to specific contexts. Further investigation would allow us to better dissect the multifaceted roles of MCs in cancer and tailor novel approaches for an "MC-guided" personalized medicine to be used in combination with conventional anti-cancer therapies.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
29
|
Harris A, Andl T. Precancerous Lesions of the Head and Neck Region and Their Stromal Aberrations: Piecemeal Data. Cancers (Basel) 2023; 15:cancers15082192. [PMID: 37190121 DOI: 10.3390/cancers15082192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) develop through a series of precancerous stages from a pool of potentially malignant disorders (PMDs). Although we understand the genetic changes that lead to HNSCC, our understanding of the role of the stroma in the progression from precancer to cancer is limited. The stroma is the primary battleground between the forces that prevent and promote cancer growth. Targeting the stroma has yielded promising cancer therapies. However, the stroma at the precancerous stage of HNSCCs is poorly defined, and we may miss opportunities for chemopreventive interventions. PMDs already exhibit many features of the HNSCC stroma, such as inflammation, neovascularization, and immune suppression. Still, they do not induce cancer-associated fibroblasts or destroy the basal lamina, the stroma's initial structure. Our review aims to summarize the current understanding of the transition from precancer to cancer stroma and how this knowledge can reveal opportunities and limitations for diagnostic, prognostic, and therapeutic decisions to benefit patients. We will discuss what may be needed to fulfill the promise of the precancerous stroma as a target to prevent progression to cancer.
Collapse
Affiliation(s)
- Ashlee Harris
- Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Pkwy, Orlando, FL 32826, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Pkwy, Orlando, FL 32826, USA
| |
Collapse
|
30
|
de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023; 41:374-403. [PMID: 36917948 DOI: 10.1016/j.ccell.2023.02.016] [Citation(s) in RCA: 1179] [Impact Index Per Article: 589.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Cancers represent complex ecosystems comprising tumor cells and a multitude of non-cancerous cells, embedded in an altered extracellular matrix. The tumor microenvironment (TME) includes diverse immune cell types, cancer-associated fibroblasts, endothelial cells, pericytes, and various additional tissue-resident cell types. These host cells were once considered bystanders of tumorigenesis but are now known to play critical roles in the pathogenesis of cancer. The cellular composition and functional state of the TME can differ extensively depending on the organ in which the tumor arises, the intrinsic features of cancer cells, the tumor stage, and patient characteristics. Here, we review the importance of the TME in each stage of cancer progression, from tumor initiation, progression, invasion, and intravasation to metastatic dissemination and outgrowth. Understanding the complex interplay between tumor cell-intrinsic, cell-extrinsic, and systemic mediators of disease progression is critical for the rational development of effective anti-cancer treatments.
Collapse
Affiliation(s)
- Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland; Agora Cancer Center Lausanne, and Swiss Cancer Center Léman, 1011 Lausanne, Switzerland.
| |
Collapse
|
31
|
Motawi TK, El-Maraghy SA, Sabry D, Nady OM, Senousy MA. Cromolyn chitosan nanoparticles reverse the DNA methylation of RASSF1A and p16 genes and mitigate DNMT1 and METTL3 expression in breast cancer cell line and tumor xenograft model in mice. Chem Biol Interact 2022; 365:110094. [PMID: 35961540 DOI: 10.1016/j.cbi.2022.110094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Developing epigenetic drugs for breast cancer (BC) remains a novel therapeutic approach. Cromolyn is a mast cell stabilizer emerging as an anticancer drug; its encapsulation in chitosan nanoparticles (CSNPs) improves its effect and bioavailability. However, its effect on DNA and RNA methylation machineries has not been previously tackled. METHODS The possible anticancer effect of cromolyn CSNPs and its potential as an epigenetic drug was investigated in vitro using MCF-7 human BC cell line and in vivo using Ehrlich ascites carcinoma-xenograft model in mice symbolizing murine mammary adenocarcinoma. Mice were injected with a single dose of Ehrlich ascites carcinoma cells subcutaneously for the induction of tumor mass, and then randomized into three groups: control, cromolyn CSNPs (equivalent to 5 mg cromolyn/kg, i.p.) and plain CSNPs twice/week for 2 weeks. RESULTS Cromolyn CSNPs showed prominent anticancer effect in MCF-7 cells by reducing the cell viability percent and enhancing DNA damage in the comet assay demonstrating its apoptotic actions. Mechanistically, cromolyn CSNPs influenced potential epigenetic processes through mitigating DNA methyltransferase 1 (DNMT1) expression, reversing the hypermethylation pattern of the tumor suppressor RASSF1A and p16 genes and attenuating the expression of the RNA N6-methyladenosine writer, methyltransferase-like 3 (METTL3). Cromolyn CSNPs diminished ERK1/2 phosphorylation, a possible arm influencing DNMT1 expression. In vivo, cromolyn CSNPs lessened the tumor volume and halted DNMT1 and METTL3 expression in Ehrlich carcinoma mice. CONCLUSIONS Cromolyn CSNPs have the premise as an epigenetic drug through inhibiting ERK1/2 phosphorylation/DNMT1/DNA methylation and possibly impacting the RNA methylation machinery via mitigating METTL3 expression.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Shohda A El-Maraghy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Omina M Nady
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
32
|
Colciaghi F, Costanza M. Unveiling Leukocyte Extracellular Traps in Inflammatory Responses of the Central Nervous System. Front Immunol 2022; 13:915392. [PMID: 35844591 PMCID: PMC9283689 DOI: 10.3389/fimmu.2022.915392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past nearly two decades, increasing evidence has uncovered how immune cells can actively extrude genetic material to entrap invading pathogens or convey sterile inflammatory signals that contribute to shaping immune responses. Originally identified in neutrophils, the release of decondensed chromatin fibers decorated with antimicrobial proteins, called extracellular traps (ETs), has been recognized as a specific form of programmed inflammatory cell death, which is now known to occur in several other leukocytes. Subsequent reports have shown that self-DNA can be extruded from immune cells even in the absence of cell death phenomena. More recent data suggest that ETs formation could exacerbate neuroinflammation in several disorders of the central nervous system (CNS). This review article provides an overview of the varied types, sources, and potential functions of extracellular DNA released by immune cells. Key evidence suggesting the involvement of ETs in neurodegenerative, traumatic, autoimmune, and oncological disorders of the CNS will be discussed, outlining ongoing challenges and drawing potentially novel lines of investigation.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Massimo Costanza,
| |
Collapse
|
33
|
Floroni E, Ceauşu AR, Cosoroabă RM, Niculescu Talpoş IC, Popovici RA, Gaje NP, Raica M. Mast cell density in the primary tumor predicts lymph node metastases in patients with breast cancer. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:129-135. [PMID: 36074676 PMCID: PMC9593109 DOI: 10.47162/rjme.63.1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer (BrCa) is the most frequent neoplastic disease in female, with high morbidity and mortality. Most of the researches were focused on tumor cells concerning their natural evolution, molecular profile, and potential response to therapy. Few and uncertain data are available about the tumor microenvironment and its impact on the progression of the disease. Mast cells (MCs) associated to BrCa have been reported many years ago, but their real and specific role in the biology of this disease remained elusive. In the current study, we have investigated the predictive role of MCs from the primary tumor on lymph node metastasis on patients stratified based on the molecular classification. We investigated 156 patients with BrCa, stratified as luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) type, basal-like, and unclassified. MCs were identified with anti-MC tryptase antibody in a double immunohistochemical reaction combined with anti-cluster of differentiation 34 (CD34) antibody. Mast cell density (MCD) was calculated based on the hot-spot method, on three fields with maximum density of MCs in each case. The final result was the arithmetic media that was compared with the molecular profile and lymph node metastases. We found no significant correlation between MCD and the molecular profile of the primary tumor, but we noticed a strong correlation between intratumor MCD and lymph node metastases, regardless of the molecular type.
Collapse
Affiliation(s)
- Erwin Floroni
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Amalia Raluca Ceauşu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Raluca Mioara Cosoroabă
- Discipline of Management, Legislation and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Ioana Cristina Niculescu Talpoş
- Discipline of Ergonomics and Oral Diagnosis, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Ramona Amina Popovici
- Discipline of Management, Legislation and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Nela Puşa Gaje
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|