1
|
Begh MZA, Zehravi M, Reza F, Sweilam SH, Shanmugarajan TS, Arjun UVNV, Devi K, Ethiraj S, Kumar VS, Thilagam E, Fahaid Al Fahaid AA, Rab SO, Khan SL, Emran TB. Therapeutic potential of phytocompounds in rheumatoid arthritis: Molecular insights and clinical applications. Pathol Res Pract 2025; 269:155945. [PMID: 40174276 DOI: 10.1016/j.prp.2025.155945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic involvement, inflammation, and the destruction of synovial joints. RA can be categorized as anti-citrullinated protein antibodies-positive or negative based on genetic risk factors and autoantibodies. This review systematically sourced articles related to RA, phytocompounds, signaling pathways, and clinical insights from primary medical databases, including Scopus, PubMed, and Web of Science. This review explores the therapeutic potential of phytocompounds in treating RA by targeting key inflammation and immunological response signaling pathways. Phytocompounds such as curcumin, resveratrol, and flavonoids alter essential molecular pathways in RA pathophysiology, including nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, janus kinase-signal transducer and activator of transcription, and the inflammasome. These substances possess pro-resolving, anti-apoptotic, and antioxidant properties, which enhance their therapeutic efficacy. Alternative medicine, including dietary, herbal, and nutritional supplements, may help reduce RA symptoms. In vitro, in vivo, and clinical studies have demonstrated the effectiveness of these treatments. Phytocompounds have potential as a treatment for RA by altering signaling pathways, reducing oxidative stress, and protecting cartilage and bone. However, few clinical trials confirm its long-term safety, bioavailability, and effectiveness. Further clinical trials and translational research are needed to validate the effectiveness, safety, and pharmacokinetics of phytocompounds, while identifying novel plant-derived bioactive chemicals could improve patient outcomes.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Faruk Reza
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Kadirivel Devi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Susithra Ethiraj
- College of Pharmacy, Sri Venkateswara University, SV University, Prakasam Rd, Sri Padmavati Mahila Visvavidyalayam, Tirupati , Andhra Pradesh, 517502, India
| | - V Santhosh Kumar
- Department of Pharmacology, Faculty of Pharmacy, ACS Medical College Campus, Dr. MGR. Educational and Research Institute, Poonamallee High Rd, Velappanchavadi, Chennai, Tamil Nadu 600077, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra 413520, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, USA.
| |
Collapse
|
2
|
Fahey JW, Liu H, Batt H, Panjwani AA, Tsuji P. Sulforaphane and Brain Health: From Pathways of Action to Effects on Specific Disorders. Nutrients 2025; 17:1353. [PMID: 40284217 PMCID: PMC12030691 DOI: 10.3390/nu17081353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The brain accounts for about 2% of the body's weight, but it consumes about 20% of the body's energy at rest, primarily derived from ATP produced in mitochondria. The brain thus has a high mitochondrial density in its neurons because of its extensive energy demands for maintaining ion gradients, neurotransmission, and synaptic activity. The brain is also extremely susceptible to damage and dysregulation caused by inflammation (neuroinflammation) and oxidative stress. Many systemic challenges to the brain can be mitigated by the phytochemical sulforaphane (SF), which is particularly important in supporting mitochondrial function. SF or its biogenic precursor glucoraphanin, from broccoli seeds or sprouts, can confer neuroprotective and cognitive benefits via diverse physiological and biochemical mechanisms. SF is able to cross the blood-brain barrier as well as to protect it, and it mitigates the consequences of destructive neuroinflammation. It also protects against the neurotoxic effects of environmental pollutants, combats the tissue and cell damage wrought by advanced glycation end products (detoxication), and supports healthy glucose metabolism. These effects are applicable to individuals of all ages, from the developing brains in periconception and infancy, to cognitively, developmentally, and traumatically challenged brains, to those in later life as well as those who are suffering with multiple chronic conditions including Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Jed W. Fahey
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- iMIND Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute of Medicine, University of Maine, Orono, ME 04469, USA
| | - Hua Liu
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Holly Batt
- Anti-AGEs Foundation, Depew, NY 14043, USA;
| | - Anita A. Panjwani
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN 47907, USA
| | - Petra Tsuji
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA;
| |
Collapse
|
3
|
Merchant HJ, Forteath C, Gallagher JR, Dinkova-Kostova AT, Ashford MLJ, McCrimmon RJ, McNeilly AD. Activation of the Nrf2 Pathway by Sulforaphane Improves Hypoglycaemia-Induced Cognitive Impairment in a Rodent Model of Type 1 Diabetes. Antioxidants (Basel) 2025; 14:308. [PMID: 40227271 PMCID: PMC11939732 DOI: 10.3390/antiox14030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
In diabetes, chronic hyperglycaemia leads to cognitive impairment, neurodegeneration and dementia. In a rodent model of streptozotocin (STZ)-induced type 1 diabetes (STZ-T1D), we previously demonstrated that recurrent hypoglycaemia (RH) further exacerbates this process through a mechanism involving increased oxidative and inflammatory stress that overwhelms the compensatory activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant system, which was insufficient to prevent cognitive impairment. The current study investigated whether the induction of the antioxidant response through pre-treatment with sulforaphane (SFN), a potent Nrf2 inducer, would ameliorate these cognitive deficits. A mouse model of chronic insulin-treated T1D was achieved using STZ (125 mg/kg i.p.) and insulin implants (Linbit®). Diabetic and Control (C57BL6/J) mice were randomly allocated to one of the following seven groups: (i) Control, (ii) STZ-T1D, (iii) Control + RH, (iv) STZ-T1D + RH, (v) Control + RH + SFN, (vi) STZ-T1D + RH + SFN or (vii) STZ-T1D + SFN, and subjected to insulin-induced hypoglycaemia (three episodes per week for four weeks). SFN (50 mg/kg i.p.) or a vehicle (0.1% DMSO/PBS i.p.) were administered 24 h before each hypoglycaemic episode. Cognition was assessed with the Novel Object Recognition (NOR) and spontaneous alternation (SA) tasks. SFN significantly improved the cognitive performance in the 24-h NOR and SA tasks in the STZ-T1D + RH groups. These improvements were absent in the Control or Nrf2-null mice receiving SFN. These studies show, for the first time, that the pharmacological activation of the Nrf2 antioxidant pathway may provide a novel therapeutic target for treating cognitive impairment associated with RH in T1D.
Collapse
Affiliation(s)
- Heather J. Merchant
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| | - Calum Forteath
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| | | | | | - Michael L. J. Ashford
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| | - Rory J. McCrimmon
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| | - Alison D. McNeilly
- Division of Diabetes, Endocrinology and Reproductive Biology, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (H.J.M.); (C.F.); (M.L.J.A.); (R.J.M.)
| |
Collapse
|
4
|
Xu R, Wu Y, Xiang X, Lv X, He M, Xu C, Lai G, Xiang T. Sulforaphane effectively inhibits HBV by altering Treg/Th17 immune balance and the MIF-macrophages polarizing axis in vitro and in vivo. Virus Res 2024; 341:199316. [PMID: 38215982 PMCID: PMC10825640 DOI: 10.1016/j.virusres.2024.199316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a major public health problem. After HBV infection, viral antigens shift the immune balance in favor of viral escape. Sulforaphane (SFN) is a traditional Chinese medicine.It regulates multi-biological activities, including anti-inflammation, anticancer, and antiviral. However, few studies reported that SFN can inhibit HBV infection before. METHODS An immunocompetent HBV CBA/CaJ mouse model and a co-culture model were used to explore the effect of SFN on HBV and whether SFN altered the immune balance after HBV infection. RESULTS We found that SFN was able to reduce HBV DNA, cccDNA, HBsAg, HBeAg, and HBcAg levels in serum and liver tissues of HBV-infected mice. In vitro and in vivo experiments showed that SFN could significantly increase the expression of Cd86 and iNOS and inhibit the expression of Arg1 on macrophages after HBV infection. After SFN administration, Th17 markers in liver tissue and serum were significantly increased. There was no significant changes in the proportion of Treg cells in peripheral blood, but a significant increase in the proportion of Th17 cells and decrease of the Treg/Th17 ratio. Using a network pharmacology approach, we predicted macrophage migration inhibitory factor (MIF) as a potential target of SFN and further validated that MIF expression was significantly increased after HBV infection and SFN significantly inhibited MIF expression both in vitro and in vivo. There was an upward trend in HBV markers (p>0.05) after MIF overexpression. Overexpression of MIF combined with the use of SFN resulted in a significant reversion in the expression of HBV markers and polarization of macrophages towards the M1 phenotype. CONCLUSION Our results indicated that immunocompetent HBV CBA/CaJ mouse model is a good model to evaluate HBV infection. SFN could inhibit the expression of HBV markers, promote polarization of macrophages towards the M1 phenotype after HBV infection, change the proportion of Treg and Th17 cells. Our findings demonstrate that SFN inhibit HBV infection by inhibiting the expression of MIF and promoting the polarization of macrophages towards the M1 phenotype, which illustrates a promising therapeutic approach in HBV infection.
Collapse
Affiliation(s)
- Ruqing Xu
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Xiang
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Xiaoqin Lv
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Miao He
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Chang Xu
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Guoqi Lai
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China.
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China; Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Jarmula J, Lee J, Lauko A, Rajappa P, Grabowski MM, Dhawan A, Chen P, Bucala R, Vogelbaum MA, Lathia JD. Macrophage migration inhibitory factor as a therapeutic target in neuro-oncology: A review. Neurooncol Adv 2024; 6:vdae142. [PMID: 39233830 PMCID: PMC11372298 DOI: 10.1093/noajnl/vdae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Primary central nervous system (CNS) tumors affect tens of thousands of patients each year, and there is a significant need for new treatments. Macrophage migration inhibitory factor (MIF) is a cytokine implicated in multiple tumorigenic processes such as cell proliferation, vascularization, and immune evasion and is therefore a promising therapeutic target in primary CNS tumors. There are several MIF-directed treatments available, including small-molecule inhibitors, peptide drugs, and monoclonal antibodies. However, only a small number of these drugs have been tested in preclinical models of primary CNS tumors, and even fewer have been studied in patients. Moreover, the brain has unique therapeutic requirements that further make effective targeting challenging. In this review, we summarize the latest functions of MIF in primary CNS tumor initiation and progression. We also discuss advances in MIF therapeutic development and ongoing preclinical studies and clinical trials. Finally, we discuss potential future MIF therapies and the strategies required for successful clinical translation.
Collapse
Affiliation(s)
- Jakub Jarmula
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Lauko
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Matthew M Grabowski
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Dhawan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peiwen Chen
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy, and Immunology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Justin D Lathia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Treasure K, Harris J, Williamson G. Exploring the anti-inflammatory activity of sulforaphane. Immunol Cell Biol 2023; 101:805-828. [PMID: 37650498 DOI: 10.1111/imcb.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Dysregulation of innate immune responses can result in chronic inflammatory conditions. Glucocorticoids, the current frontline therapy, are effective immunosuppressive drugs but come with a trade-off of cumulative and serious side effects. Therefore, alternative drug options with improved safety profiles are urgently needed. Sulforaphane, a phytochemical derived from plants of the brassica family, is a potent inducer of phase II detoxification enzymes via nuclear factor-erythroid factor 2-related factor 2 (NRF2) signaling. Moreover, a growing body of evidence suggests additional diverse anti-inflammatory properties of sulforaphane through interactions with mediators of key signaling pathways and inflammatory cytokines. Multiple studies support a role for sulforaphane as a negative regulator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and subsequent cytokine release, inflammasome activation and direct regulation of the activity of macrophage migration inhibitory factor. Significantly, studies have also highlighted potential steroid-sparing activity for sulforaphane, suggesting that it may have potential as an adjunctive therapy for some inflammatory conditions. This review discusses published research on sulforaphane, including proposed mechanisms of action, and poses questions for future studies that might help progress our understanding of the potential clinical applications of this intriguing molecule.
Collapse
Affiliation(s)
- Katie Treasure
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Chen J, Guo W, Du P, Cui T, Yang Y, Wang Y, Kang P, Zhang Z, Wang Q, Ye Z, Liu L, Jian Z, Gao T, Bian H, Li S, Li C. MIF inhibition alleviates vitiligo progression by suppressing CD8 + T cell activation and proliferation. J Pathol 2023; 260:84-96. [PMID: 36852981 DOI: 10.1002/path.6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
In vitiligo, autoreactive CD8+ T cells have been established as the main culprit considering its pathogenic role in mediating epidermal melanocyte-specific destruction. Macrophage migration inhibitory factor (MIF) is a pleiotropic molecule that plays a central role in various immune processes including the activation and proliferation of T cells; but whether MIF is intertwined in vitiligo development and progression and its involvement in aberrantly activated CD8+ T cells remains ill-defined. In this study, we found that MIF was overabundant in vitiligo patients and a mouse model for human vitiligo. Additionally, inhibiting MIF ameliorated the disease progression in vitiligo mice, which manifested as less infiltration of CD8+ T cells and more retention of epidermal melanocytes in the tail skin. More importantly, in vitro experiments indicated that MIF-inhibition suppressed the activation and proliferation of CD8+ T cells from the lymph nodes of vitiligo mice, and the effect extended to CD8+ T cells in peripheral blood mononuclear cells of vitiligo patients. Finally, CD8+ T cells derived from MIF-inhibited vitiligo mice also exhibited an impaired capacity for activation and proliferation. Taken together, our results show that MIF might be clinically targetable in vitiligo treatment, and its inhibition might ameliorate vitiligo progression by suppressing autoreactive CD8+ T cell activation and proliferation. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Pengran Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhe Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhubiao Ye
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, PR China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
8
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
9
|
Kopacz A, Rojo AI, Patibandla C, Lastra-Martínez D, Piechota-Polanczyk A, Kloska D, Jozkowicz A, Sutherland C, Cuadrado A, Grochot-Przeczek A. Overlooked and valuable facts to know in the NRF2/KEAP1 field. Free Radic Biol Med 2022; 192:37-49. [PMID: 36100148 DOI: 10.1016/j.freeradbiomed.2022.08.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Chinmai Patibandla
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arrott Drive, Dundee, United Kingdom
| | - Diego Lastra-Martínez
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Calum Sutherland
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arrott Drive, Dundee, United Kingdom
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
10
|
Wu YH, Hsieh HL. Roles of Heme Oxygenase-1 in Neuroinflammation and Brain Disorders. Antioxidants (Basel) 2022; 11:antiox11050923. [PMID: 35624787 PMCID: PMC9137505 DOI: 10.3390/antiox11050923] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
The heme oxygenase (HO) system is believed to be a crucial mechanism for the nervous system under stress conditions. HO degrades heme to carbon monoxide, iron, and biliverdin. These heme degradation products are involved in modulating cellular redox homeostasis. The first identified isoform of the HO system, HO-1, is an inducible protein that is highly expressed in peripheral organs and barely detectable in the brain under normal conditions, whereas HO-2 is a constitutive protein that is highly expressed in the brain. Several lines of evidence indicate that HO-1 dysregulation is associated with brain inflammation and neurodegeneration, including Parkinson’s and Alzheimer’s diseases. In this review, we summarize the essential roles that the HO system plays in ensuring brain health and the molecular mechanism through which HO-1 dysfunction leads to neurodegenerative diseases and disruption of nervous system homeostasis. We also provide a summary of the herbal medicines involved in the regulation of HO-1 expression and explore the current situation regarding herbal remedies and brain disorders.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-211-8999 (ext. 5421)
| |
Collapse
|
11
|
Hei G, Smith RC, Li R, Ou J, Song X, Zheng Y, He Y, Arriaza J, Fahey JW, Cornblatt B, Kang D, Yang Y, Huang J, Wang X, Cadenhead K, Zhang M, Davis JM, Zhao J, Jin H, Wu R. Sulforaphane Effects on Cognition and Symptoms in First and Early Episode Schizophrenia: A Randomized Double-Blind Trial. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac024. [PMID: 39144775 PMCID: PMC11205988 DOI: 10.1093/schizbullopen/sgac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Objective Cognitive symptoms are associated with significant dysfunction in schizophrenia. Oxidative stress and inflammation involving histone deacetylase (HDAC) have been implicated in the pathophysiology of schizophrenia. Sulforaphane has antioxidant properties and is an HDAC inhibitor. The objective of this study was to determine the efficacy of sulforaphane on cognition dysfunction for patients with schizophrenia. Methods This double-blind randomized 22-week trial of patients with first-episode schizophrenia was conducted in four psychiatric institutions in China. Patients were randomized to three groups (two doses of sulforaphane vs. placebo) and symptomatic and cognitive assessments were completed at multiple times. The primary outcome measure was change in the MATRICS Composite score. The secondary outcomes were change in MATRICS Domain scores, PANSS Total Scores and change in side-effects. Results A total of 172 patients were randomized and 151 patients had at least one follow up evaluation. There were no significant effects of sulforaphane, on the primary outcome, MATRICS overall composite score. However, on secondary outcomes, sulforaphane did significantly improve performance scores on MATRICS battery Domains of spatial working memory (F = 5.68, P = 0.004), reasoning-problem solving (F = 2.82, P = 0.063), and verbal learning (F = 3.56, P = 0.031). There were no effects on PANSS symptom scores. Sulforaphane was well tolerated. Conclusion Although the primary outcome was not significant, improvement in three domains of the MATRICS battery, suggests a positive cognitive effect on some cognitive functions, which warrants further clinical trials to further assess whether sulforaphane may be a useful adjunct for treating some types of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Gangrui Hei
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Robert C Smith
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Ranran Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Jianjun Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Xueqing Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Yiqun He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jen Arriaza
- School of Professional Studies, New York University, New York, NY, USA
| | - Jed W Fahey
- Center for Human Nutrition, International Health. School of Medicine, John Hopkins University, Baltimore, Maryland, USA
| | | | - Dongyu Kang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Ye Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Jing Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Xiaoyi Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego and Psychiatric Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mimei Zhang
- Columbia University Mailman School of Public Health, New York City, NY, USA
| | - John M Davis
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
| | - Jingping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Hua Jin
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
- Department of Psychiatry, University of California San Diego and Psychiatric Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Renrong Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders,the Second Xiangya Hospital of Central South University; China National Clinical Research Center on Mental Disorders; Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| |
Collapse
|
12
|
Han Y, Wang J, Li S, Li Y, Zhang Y, Zhang R, Zhang Y, Fan H, Shi H, Pan J, Song G, Ge L, Wang L. Isopsoralen ameliorates rheumatoid arthritis by targeting MIF. Arthritis Res Ther 2021; 23:243. [PMID: 34535196 PMCID: PMC8447788 DOI: 10.1186/s13075-021-02619-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/27/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Isopsoralen (IPRN), one of the active ingredients of Psoralea corylifolia Linn, has anti-inflammatory properties. We attempted to investigate the inhibitory effects of IPRN on rheumatoid arthritis (RA) and characterize its potential mechanism. METHODS RA fibroblast-like synoviocytes (FLSs) and mice with collagen-induced arthritis (CIA) were used as in vitro and in vivo models to analyze the antiarthritic effect of IPRN. Histological analysis of the inflamed joints from mice with CIA was performed using microcomputed tomography (micro-CT) and hematoxylin-eosin (HE) staining. RNA sequencing (RNA-Seq), network pharmacology analysis, molecular docking, drug affinity responsive target stability (DARTS) assay, and cellular thermal shift assay (CETSA) were performed to evaluate the targets of IPRN. RESULTS IPRN ameliorated the inflammatory phenotype of RA FLSs by inhibiting their cytokine production, migration, invasion, and proangiogenic ability. IPRN also significantly reduced the severity of CIA in mice by decreasing paw thickness, arthritis score, bone damage, and serum inflammatory cytokine levels. A mechanistic study demonstrated that macrophage migration inhibitory factor (MIF), a key protein in the inflammatory process, was the specific target by which IPRN exerted its anti-inflammatory effects in RA FLSs. CONCLUSION Our study demonstrates the antiarthritic effect of IPRN, which suggests the therapeutic potential of IPRN in RA.
Collapse
Affiliation(s)
- Yi Han
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Jinguang Wang
- Department of Orthopedics, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yongli Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ruojia Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, #18877, Jingshi Road, Jinan, 250062, China
| | - Huancai Fan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haojun Shi
- The Second Clinical Medical College, Henan University of Chinese Medicine, Jinan, China
| | - Jihong Pan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, #18877, Jingshi Road, Jinan, 250062, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Luna Ge
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, #18877, Jingshi Road, Jinan, 250062, China.
| | - Lin Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Key lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, #18877, Jingshi Road, Jinan, 250062, China.
| |
Collapse
|
13
|
Fahey JW, Kensler TW. The Challenges of Designing and Implementing Clinical Trials With Broccoli Sprouts… and Turning Evidence Into Public Health Action. Front Nutr 2021; 8:648788. [PMID: 33996874 PMCID: PMC8116591 DOI: 10.3389/fnut.2021.648788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Broccoli sprouts are a convenient and rich source of the glucosinolate glucoraphanin, which can generate the chemopreventive agent sulforaphane through the catalytic actions of plant myrosinase or β-thioglucosidases in the gut microflora. Sulforaphane, in turn, is an inducer of cytoprotective enzymes through activation of Nrf2 signaling, and a potent inhibitor of carcinogenesis in multiple murine models. Sulforaphane is also protective in models of diabetes, neurodegenerative disease, and other inflammatory processes, likely reflecting additional actions of Nrf2 and interactions with other signaling pathways. Translating this efficacy into the design and implementation of clinical chemoprevention trials, especially food-based trials, faces numerous challenges including the selection of the source, placebo, and dose as well as standardization of the formulation of the intervention material. Unlike in animals, purified sulforaphane has had very limited use in clinical studies. We have conducted a series of clinical studies and randomized clinical trials to evaluate the effects of composition (glucoraphanin-rich [± myrosinase] vs. sulforaphane-rich or mixture beverages), formulation (beverage vs. tablet) and dose, on the efficacy of these broccoli sprout-based preparations to evaluate safety, pharmacokinetics, pharmacodynamic action, and clinical benefit. While the challenges for the evaluation of broccoli sprouts in clinical trials are themselves formidable, further hurdles must be overcome to bring this science to public health action.
Collapse
Affiliation(s)
- Jed W. Fahey
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Fairfax, VA, United States
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
14
|
Deligiannidou GE, Gougoula V, Bezirtzoglou E, Kontogiorgis C, Constantinides TK. The Role of Natural Products in Rheumatoid Arthritis: Current Knowledge of Basic In Vitro and In Vivo Research. Antioxidants (Basel) 2021; 10:antiox10040599. [PMID: 33924632 PMCID: PMC8070014 DOI: 10.3390/antiox10040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder affecting a vast variety of the population. The onset of RA as well as the development of systematic immunization is affected by both genetic and environmental risk factors. This review aims to point out the role of natural products in the management of RA, focusing on the reports of basic research (in vitro and animal studies) emphasizing the antioxidant and anti-inflammatory properties considered in the field of RA. A systematic screening of the relevant literature was carried out on PubMed, Google Scholar, and Scopus with the following criteria: publication date, 2015-2020; language, English; study design, in vitro or animal models; and the investigation of one or several natural products in the context of RA, including, when available, the molecular mechanisms implicated. A total of 211 papers were initially obtained and screened. In vitro and animal studies referring to 20 natural products and 15 pure compounds were ultimately included in this review. The outcomes of this work provide an overview of the methods employed in basic research over the past five years, with emphasis on the limitations presented, while demonstrating the potential benefits of utilizing natural products in the management of RA as supported by in vitro and animal studies.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
| | - Vasiliki Gougoula
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, GR-71410 Heraklion, Greece
- Correspondence:
| | - Theodoros K. Constantinides
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
| |
Collapse
|
15
|
Caltabiano R, De Pasquale R, Piombino E, Campo G, Nicoletti F, Cavalli E, Mangano K, Fagone P. Macrophage Migration Inhibitory Factor (MIF) and Its Homologue d-Dopachrome Tautomerase (DDT) Inversely Correlate with Inflammation in Discoid Lupus Erythematosus. Molecules 2021; 26:molecules26010184. [PMID: 33401503 PMCID: PMC7795694 DOI: 10.3390/molecules26010184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/25/2020] [Accepted: 12/29/2020] [Indexed: 01/12/2023] Open
Abstract
Discoid Lupus Erythematosus (DLE) is a chronic cutaneous disease of unknown etiology and of immunoinflammatory origin that is characterized by inflammatory plaques and may lead to disfiguring scarring and skin atrophy. Current treatments are limited, with a large proportion of patients either poorly or not responsive, which makes DLE an unmet medical need. Macrophage migration inhibitory factor (MIF) is the prototype of a pleiotropic family of cytokine that also includes the recently discovered homologue D-dopachrome tautomerase (DDT) or MIF2. MIF and DDT/MIF-2 exert several biological properties, primarily, but not exclusively of a proinflammatory nature. MIF and DDT have been suggested to play a key role in the pathogenesis of several autoimmune diseases, such as multiple sclerosis and type 1 diabetes, as well as in the development and progression of certain forms of cancers. In the present study, we have performed an immunohistochemistry analysis for the evaluation of MIF in DLE lesions and normal skin. We found high levels of MIF in the basal layer of the epidermis as well as in the cutaneous appendage (eccrine glands and sebocytes) of normal skin. In DLE lesions, we observed a significant negative correlation between the expression of MIF and the severity of inflammation. In addition, we performed an analysis of MIF and DDT expression levels in the skin of DLE patients in a publicly available microarray dataset. Interestingly, while these in silico data only evidenced a trend toward reduced levels of MIF, they demonstrated a significant pattern of expression and correlation of DDT with inflammatory infiltrates in DLE skins. Overall, our data support a protective role for endogenous MIF and possibly DDT in the regulation of homeostasis and inflammation in the skin and open up novel avenues for the treatment of DLE.
Collapse
Affiliation(s)
- Rosario Caltabiano
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia, 87, 95123 Catania, Italy; (R.C.); (E.P.)
| | - Rocco De Pasquale
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Eliana Piombino
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia, 87, 95123 Catania, Italy; (R.C.); (E.P.)
| | - Giorgia Campo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (E.C.); (K.M.); (P.F.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (E.C.); (K.M.); (P.F.)
- Correspondence:
| | - Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (E.C.); (K.M.); (P.F.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (E.C.); (K.M.); (P.F.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (E.C.); (K.M.); (P.F.)
| |
Collapse
|
16
|
Yagishita Y, Gatbonton-Schwager TN, McCallum ML, Kensler TW. Current Landscape of NRF2 Biomarkers in Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9080716. [PMID: 32784785 PMCID: PMC7464243 DOI: 10.3390/antiox9080716] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) plays a critical role in the maintenance of cellular redox and metabolic homeostasis, as well as the regulation of inflammation and cellular detoxication pathways. The contribution of the NRF2 pathway to organismal homeostasis is seen in many studies using cell lines and animal models, raising intense attention towards targeting its clinical promise. Over the last three decades, an expanding number of clinical studies have examined NRF2 inducers targeting an ever-widening range of diseases. Full understanding of the pharmacokinetic and pharmacodynamic properties of drug candidates rely partly on the identification, validation, and use of biomarkers to optimize clinical applications. This review focuses on results from clinical trials with four agents known to target NRF2 signaling in preclinical studies (dimethyl fumarate, bardoxolone methyl, oltipraz, and sulforaphane), and evaluates the successes and limitations of biomarkers focused on expression of NRF2 target genes and others, inflammation and oxidative stress biomarkers, carcinogen metabolism and adduct biomarkers in unavoidably exposed populations, and targeted and untargeted metabolomics. While no biomarkers excel at defining pharmacodynamic actions in this setting, it is clear that these four lead clinical compounds do touch the NRF2 pathway in humans.
Collapse
|
17
|
Michaličková D, Hrnčíř T, Canová NK, Slanař O. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol 2020; 873:172973. [DOI: 10.1016/j.ejphar.2020.172973] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
|
18
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
19
|
Zhang W, Kong J, Chen H, Zhao H, You T, Guo Y, Guo Q, Yin P, Xia A. Insights into plasmon induced keto-enol isomerization. NANOSCALE 2020; 12:4334-4340. [PMID: 32044913 DOI: 10.1039/c9nr09882h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical reactions that are driven by plasmon-induced hot carriers are a timely topic of interest to chemists and material scientists as they provide catalytic alternatives that may reduce cost and/or waste. Herein, we monitored the localized surface plasmon resonance-induced keto-enol isomerization process of 2-mercapto-4(3H)-quinazolinone (MQ) by time-dependent surface enhanced Raman scattering (SERS), where the MQ molecules are adsorbed on gold nanoparticles (GNP) surface by Au-S bonds. The mechanism of keto-enol isomerization has been successfully investigated, and it is found that the isomerization is induced by hot hole transfer from GNPs to the adsorbed molecules. The present investigation could provide significant insights into hot hole catalyzed chemical reactions via SERS spectra and theoretical calculations.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huaxiang Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Tingting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Yuanyuan Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules 2019; 24:E3593. [PMID: 31590459 PMCID: PMC6804255 DOI: 10.3390/molecules24193593] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
There is robust epidemiological evidence for the beneficial effects of broccoli consumption on health, many of them clearly mediated by the isothiocyanate sulforaphane. Present in the plant as its precursor, glucoraphanin, sulforaphane is formed through the actions of myrosinase, a β-thioglucosidase present in either the plant tissue or the mammalian microbiome. Since first isolated from broccoli and demonstrated to have cancer chemoprotective properties in rats in the early 1990s, over 3000 publications have described its efficacy in rodent disease models, underlying mechanisms of action or, to date, over 50 clinical trials examining pharmacokinetics, pharmacodynamics and disease mitigation. This review evaluates the current state of knowledge regarding the relationships between formulation (e.g., plants, sprouts, beverages, supplements), bioavailability and efficacy, and the doses of glucoraphanin and/or sulforaphane that have been used in pre-clinical and clinical studies. We pay special attention to the challenges for better integration of animal model and clinical studies, particularly with regard to selection of dose and route of administration. More effort is required to elucidate underlying mechanisms of action and to develop and validate biomarkers of pharmacodynamic action in humans. A sobering lesson is that changes in approach will be required to implement a public health paradigm for dispensing benefit across all spectrums of the global population.
Collapse
Affiliation(s)
- Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Jed W Fahey
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Albena T Dinkova-Kostova
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland DD1 9SY, UK.
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Shen D, Lang Y, Chu F, Wu X, Wang Y, Zheng X, Zhang HL, Zhu J, Liu K. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful? Expert Opin Ther Targets 2018; 22:567-577. [PMID: 29856236 DOI: 10.1080/14728222.2018.1484109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) plays an important role in the pathogenesis of Guillain-Barré syndrome (GBS) and its animal model experimental autoimmune neuritis (EAN), which may offer an opportunity for the development of the novel therapeutic strategies for GBS. Areas covered: 'macrophage migration inhibitory factor' and 'Guillain-Barré syndrome' were used as keywords to search for related publications on Pub-Med, National Center for Biotechnology Information (NCBI), USA. MIF is involved in the etiology of various inflammatory and autoimmune disorders. However, the roles of MIF in GBS and EAN have not been summarized in the publications we identified. Therefore, in this review, we described and analyzed the major roles of MIF in GBS/EAN. Primarily, this molecule aggravates the inflammatory responses in this disorder. However, multiple studies indicated a protective role of MIF in GBS. The potential of MIF as a therapeutic target in GBS has been recently demonstrated in experimental and clinical studies, although clinical trials have been unavailable to date. Expert opinion: MIF plays a critical role in the initiation and progression of GBS and EAN, and it may represent a potential therapeutic target for GBS.
Collapse
Affiliation(s)
- Donghui Shen
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Yue Lang
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Fengna Chu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Xiujuan Wu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Ying Wang
- b Department of Neurobiology, Care Sciences and Society , Division of Neurodegeneration, Karolinska Institute, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Xiangyu Zheng
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Hong-Liang Zhang
- c Department of Life Sciences , the National Natural Science Foundation of China , Beijing , China
| | - Jie Zhu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China.,b Department of Neurobiology, Care Sciences and Society , Division of Neurodegeneration, Karolinska Institute, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Kangding Liu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| |
Collapse
|
22
|
Karsten E, Hill CJ, Herbert BR. Red blood cells: The primary reservoir of macrophage migration inhibitory factor in whole blood. Cytokine 2017; 102:34-40. [PMID: 29275011 DOI: 10.1016/j.cyto.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Red blood cells are widely accepted to be inert carriers of oxygen and haemoglobin, but there is growing evidence that they play a much more critical role in immune function. Macrophage migration inhibitory factor (MIF) is a key cytokine in disease with additional oxido-reductase activity, which aids in managing oxidative stress. Although two studies have reported the presence of MIF in red blood cells, no study has quantified the levels of this protein. In this study, freshly isolated plasma, platelets, leukocytes, and red blood cells from healthy individuals were collected and the concentration of MIF was determined using an enzyme linked immunosorbent assay. This analysis demonstrated that MIF in red blood cells was present at 25 µg per millilitre of whole blood, which is greater than99% of the total MIF and 1000-fold higher concentration than plasma. This result was supported by electrophoresis and Western blot analysis, which identified MIF in its monomer structural form following sample processing. Furthermore, by assessing the level of tautomerase activity in red blood cell fractions in the presence of a MIF inhibitor, it was determined that the red blood cell-derived MIF was also functionally active. Together, these findings have implications on the effect of haemolysis during sample preparation and provide some clue into the inflammatory processes that occur following haemolysis in vivo. These results support the hypothesis that red blood cells are a major reservoir of this inflammatory protein and may play a role in inflammation.
Collapse
Affiliation(s)
- Elisabeth Karsten
- Translational Regenerative Medicine Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; Sydney Medical School, Northern Clinical School, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Sangui Bio Pty Ltd, St Leonards, NSW 2065, Australia.
| | - Cameron J Hill
- Translational Regenerative Medicine Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; Sangui Bio Pty Ltd, St Leonards, NSW 2065, Australia.
| | - Benjamin R Herbert
- Translational Regenerative Medicine Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; Sydney Medical School, Northern Clinical School, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Sangui Bio Pty Ltd, St Leonards, NSW 2065, Australia.
| |
Collapse
|
23
|
Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. KEAP1 and Done? Targeting the NRF2 Pathway with Sulforaphane. Trends Food Sci Technol 2017; 69:257-269. [PMID: 29242678 PMCID: PMC5725197 DOI: 10.1016/j.tifs.2017.02.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/12/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Since the re-discovery of sulforaphane in 1992 and the recognition of the bioactivity of this phytochemical, many studies have examined its mode of action in cells, animals and humans. Broccoli, especially as young sprouts, is a rich source of sulforaphane and broccoli-based preparations are now used in clinical studies probing efficacy in health preservation and disease mitigation. Many putative cellular targets are affected by sulforaphane although only one, KEAP1-NRF2 signaling, can be considered a validated target at this time. The transcription factor NRF2 is a master regulator of cell survival responses to endogenous and exogenous stressors. SCOPE AND APPROACH This review summarizes the chemical biology of sulforaphane as an inducer of NRF2 signaling and efficacy as an inhibitor of carcinogenesis. It also provides a summary of the current findings from clinical trials using a suite of broccoli sprout preparations on a series of short-term endpoints reflecting a diversity of molecular actions. KEY FINDINGS AND CONCLUSIONS Sulforaphane, as a pure chemical, protects against chemical-induced skin, oral, stomach, colon, lung and bladder carcinogenesis and in genetic models of colon and prostate carcinogenesis. In many of these settings the antitumorigenic efficacy of sulforaphane is dampened in Nrf2-disrupted animals. Broccoli preparations rich in glucoraphanin or sulforaphane exert demonstrable pharmacodynamic action in over a score of clinical trials. Measures of NRF2 pathway response and function are serving as guideposts for the optimization of dose, schedule and formulation as clinical trials with broccoli-based preparations become more commonplace and more rigorous in design and implementation.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jed W. Fahey
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rumen V. Kostov
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Thomas W. Kensler
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
Electric field stimulation protects injured spinal cord from secondary inflammatory response in rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1958-1961. [PMID: 29060277 DOI: 10.1109/embc.2017.8037233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES To investigate acute beneficial effects of electrical field stimulation (EFS) on secondary inflammatory response in spinal cord injury (SCI) rats. METHODS Sprague-Dawley (SD) rats were divided into three groups,sham group rats received laminectomy only, control group rats were subjected to SCI only, and EFS group rats received EFS immediately after the injury. During the 30-min-stimulation, the injury potential modulated to 0 ± 0.5 mV by EFS. At 12h, 24h and 48h after the surgery, the rats in each group were sacrificed. Immunofluorescence staining for macrophage marker (ED-1), the tautomerase activity of macrophage inhibitory factor (MIF) assay and real-time PCR analysis for interleukin-1β (IL-1β) and matrix metalloproteinase-9 (MMP-9) were performed. RESULTS Compared to the rats in control group, the rats treated with EFS presented less ED-1 positive cells 12h (P <; 0.05), 24h (P <; 0.01) and 48h (P <; 0.05) after the surgery and showed a lower MIF tautomerase activity 12h (P <; 0.01), 24h (P <; 0.01) and 48h (P <; 0.01) after the surgery. Moreover, EFS significantly decreased the mRNA levels of IL-β (P <; 0.05) and MMP-9 at 48h (P <; 0.01) after the injury. CONCLUSIONS EFS could attenuate secondary inflammatory response of injured spinal cord shortly after SCI, and EFS treatment could be a candidate for SCI therapy.
Collapse
|
25
|
Sturm C, Wagner AE. Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways. Int J Mol Sci 2017; 18:E1890. [PMID: 28862664 PMCID: PMC5618539 DOI: 10.3390/ijms18091890] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
A high consumption of vegetables belonging to the Brassicaceae family has been related to a lower incidence of chronic diseases including different kinds of cancer. These beneficial effects of, e.g., broccoli, cabbage or rocket (arugula) intake have been mainly dedicated to the sulfur-containing glucosinolates (GLSs)-secondary plant compounds nearly exclusively present in Brassicaceae-and in particular to their bioactive breakdown products including isothiocyanates (ITCs). Overall, the current literature indicate that selected Brassica-derived ITCs exhibit health-promoting effects in vitro, as well as in laboratory mice in vivo. Some studies suggest anti-carcinogenic and anti-inflammatory properties for ITCs which may be communicated through an activation of the redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) that controls the expression of antioxidant and phase II enzymes. Furthermore, it has been shown that ITCs are able to significantly ameliorate a severe inflammatory phenotype in colitic mice in vivo. As there are studies available suggesting an epigenetic mode of action for Brassica-derived phytochemicals, the conduction of further studies would be recommendable to investigate if the beneficial effects of these compounds also persist during an irregular consumption pattern.
Collapse
Affiliation(s)
- Christine Sturm
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
26
|
Kumar R, de Mooij T, Peterson TE, Kaptzan T, Johnson AJ, Daniels DJ, Parney IF. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane. PLoS One 2017; 12:e0179012. [PMID: 28666020 PMCID: PMC5493295 DOI: 10.1371/journal.pone.0179012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tristan de Mooij
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Timothy E. Peterson
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tatiana Kaptzan
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David J. Daniels
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ian F. Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
27
|
Kassaar O, Pereira Morais M, Xu S, Adam EL, Chamberlain RC, Jenkins B, James TD, Francis PT, Ward S, Williams RJ, van den Elsen J. Macrophage Migration Inhibitory Factor is subjected to glucose modification and oxidation in Alzheimer's Disease. Sci Rep 2017; 7:42874. [PMID: 28230058 PMCID: PMC5322340 DOI: 10.1038/srep42874] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/16/2017] [Indexed: 01/04/2023] Open
Abstract
Glucose and glucose metabolites are able to adversely modify proteins through a non-enzymatic reaction called glycation, which is associated with the pathology of Alzheimer's Disease (AD) and is a characteristic of the hyperglycaemia induced by diabetes. However, the precise protein glycation profile that characterises AD is poorly defined and the molecular link between hyperglycaemia and AD is unknown. In this study, we define an early glycation profile of human brain using fluorescent phenylboronate gel electrophoresis and identify early glycation and oxidation of macrophage migration inhibitory factor (MIF) in AD brain. This modification inhibits MIF enzyme activity and ability to stimulate glial cells. MIF is involved in immune response and insulin regulation, hyperglycaemia, oxidative stress and glycation are all implicated in AD. Our study indicates that glucose modified and oxidised MIF could be a molecular link between hyperglycaemia and the dysregulation of the innate immune system in AD.
Collapse
Affiliation(s)
- Omar Kassaar
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | | | - Suying Xu
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Emily L Adam
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | | | - Bryony Jenkins
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Paul T Francis
- Institute of Psychiatry, Psychology &Neuroscience, Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, U.K
| | - Stephen Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, U.K
| | - Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| |
Collapse
|
28
|
Damle SR, Martin RK, Cross JV, Conrad DH. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol 2017; 10:205-214. [PMID: 27049059 PMCID: PMC5053838 DOI: 10.1038/mi.2016.29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/19/2016] [Indexed: 02/04/2023]
Abstract
Infections with helminth parasites are endemic in the developing world and are a target for intervention with new therapies. Macrophage migration inhibitory factor (MIF) is a cytokine with pleiotropic effects in inflammation and immune responses. We investigated the role of MIF in a naturally cleared model of helminth infection in rodents, Nippostrongylus brasiliensis. At day 7 postinfection, MIF-deficient (MIF-/-) mice had reduced parasite burden and mounted an enhanced type 2 immune response (Th2), including increased Gata3 expression and interleukin-13 (IL-13) production in the mesenteric lymph nodes (MLNs). Bone marrow reconstitution demonstrated that MIF produced from hematopoietic cells was crucial and Rag1-/- reconstitution provided direct evidence that MIF-/- CD4+ T cells were responsible for the augmented parasite clearance. MIF-/- CD4+ T cells produced less IL-6 postinfection, which correlated with enhanced Th2 responses. MIF-/- CD4+ T cells exhibited lower nuclear factor-κB activation, potentially explaining the reduction in IL-6. Finally, we demonstrated enhanced clearance of the parasite and Th2 response in wild-type mice treated with the MIF tautomerase inhibitor, sulforaphane, a compound found naturally found in cruciferous vegetables. These results are the first to describe the importance of the tautomerase enzyme activity in MIF function in N. brasiliensis infection.
Collapse
Affiliation(s)
- Sheela R. Damle
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Rebecca K. Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Janet V. Cross
- Department of Pathology, University of Virginia, Charlottesville, VA 22904
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
29
|
Johler SM, Fuchs J, Seitz G, Armeanu-Ebinger S. Macrophage migration inhibitory factor (MIF) is induced by cytotoxic drugs and is involved in immune escape and migration in childhood rhabdomyosarcoma. Cancer Immunol Immunother 2016; 65:1465-1476. [PMID: 27629595 PMCID: PMC11029580 DOI: 10.1007/s00262-016-1896-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is known to be involved in oncogenic transformation, tumour progression, and immunosuppression and is overexpressed in many solid tumours, including paediatric rhabdomyosarcoma (RMS). We investigated the function of MIF in RMS during treatment with cytotoxic drugs. RMS cell lines were analysed by flow cytometry, immunofluorescence staining, and ELISA. We demonstrated the overexpression of MIF in RMS cells and the enhanced expression and secretion after treatment with cytotoxic agents. Migration assays of RMS cells revealed that inhibitors of MIF (ISO-1, Ant.III 4-IPP, Ant.V, sulforaphane (SF)) and blocking antibodies caused reduced migration, indicating a role for MIF in metastatic invasion. Additionally, we investigated the function of MIF in immune escape. The development of a population containing immunosuppressive myeloid-derived suppressor cells was promoted by incubation in conditioned medium of RMS cells comprising MIF and was reversed by MIF inhibitors but not by antibodies. Although most inhibitors may restore immune activity, Ant.III and 10 µM SF disturbed T cell proliferation in a CFSE assay, whereas T cell proliferation was not reduced by 3 µM SF, ISO-1 or antibodies. However, the inhibition of MIF by blocking antibodies did not increase the killing activity of allogenic PBMCs co-cultured with RMS cells. Our results reveal that MIF may be involved in an immune escape mechanism and demonstrate the involvement of MIF in immunogenic cell death during treatment with cytotoxic drugs. Targeting MIF may contribute to the restoration of immune sensitivity and the control of migration and metastatic invasion.
Collapse
Affiliation(s)
- Sarah Maria Johler
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
30
|
Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 2016; 20:1463-1475. [PMID: 27762152 DOI: 10.1080/14728222.2016.1251582] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) has emerged as a promising drug target in diseases including sepsis, rheumatoid arthritis, and cancer. MIF has multiple properties that favor development of specific, targeted therapies: it is expressed broadly among human cells, has noted roles in diverse inflammatory and oncological processes, and has intrinsic enzymatic activity amenable to high-throughput screening. Despite these advantages, anti-MIF therapy remains well behind other cytokine-targeted therapeutics, with no small molecules in the pipeline for clinical development and anti-MIF antibodies only recently beginning clinical trials. Areas covered: In this review we summarize current literature regarding MIF structure and function-including challenges and controversies that have arisen in studies of anti-MIF therapeutics-and propose a strategy for development of clinically relevant anti-MIF drugs. Expert opinion: We believe that the field of anti-MIF therapeutics would benefit from capitalizing on the protein's multiple assets while acknowledging their flaws. The tautomerase enzymatic site of MIF may not be active biologically, but can nonetheless offer a high-throughput method to highlight molecules of interest that can affect its other, frequently intertwined bioactivities. Future work should also focus on developing more robust assays for MIF bioactivity that can be used for second-pass screening and specificity studies.
Collapse
Affiliation(s)
- Joshua Bloom
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| |
Collapse
|
31
|
Bloom J, Metz C, Nalawade S, Casabar J, Cheng KF, He M, Sherry B, Coleman T, Forsthuber T, Al-Abed Y. Identification of Iguratimod as an Inhibitor of Macrophage Migration Inhibitory Factor (MIF) with Steroid-sparing Potential. J Biol Chem 2016; 291:26502-26514. [PMID: 27793992 DOI: 10.1074/jbc.m116.743328] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in a broad range of inflammatory and oncologic diseases. MIF is unique among cytokines in terms of its release profile and inflammatory role, notably as an endogenous counter-regulator of the anti-inflammatory effects of glucocorticoids. In addition, it exhibits a catalytic tautomerase activity amenable to the design of high affinity small molecule inhibitors. Although several classes of these compounds have been identified, biologic characterization of these molecules remains a topic of active investigation. In this study, we used in vitro LPS-driven assays to characterize representative molecules from several classes of MIF inhibitors. We determined that MIF inhibitors exhibit distinct profiles of anti-inflammatory activity, especially with regard to TNFα. We further investigated a molecule with relatively low anti-inflammatory activity, compound T-614 (also known as the anti-rheumatic drug iguratimod), and found that, in addition to exhibiting selective MIF inhibition in vitro and in vivo, iguratimod also has additive effects with glucocorticoids. Furthermore, we found that iguratimod synergizes with glucocorticoids in attenuating experimental autoimmune encephalitis, a model of multiple sclerosis. Our work identifies iguratimod as a valuable new candidate for drug repurposing to MIF-relevant diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Joshua Bloom
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549, .,the Centers for Molecular Innovation
| | - Christine Metz
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549.,Biomedical Sciences, and
| | - Saisha Nalawade
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Julian Casabar
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | | | | | - Barbara Sherry
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549.,Immunology and Inflammation, and
| | - Thomas Coleman
- the Office of Technology Transfer, The Feinstein Institute for Medical Research, Manhasset, New York 11030, and
| | - Thomas Forsthuber
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Yousef Al-Abed
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549, .,the Centers for Molecular Innovation
| |
Collapse
|
32
|
Altadill T, Campoy I, Lanau L, Gill K, Rigau M, Gil-Moreno A, Reventos J, Byers S, Colas E, Cheema AK. Enabling Metabolomics Based Biomarker Discovery Studies Using Molecular Phenotyping of Exosome-Like Vesicles. PLoS One 2016; 11:e0151339. [PMID: 26974972 PMCID: PMC4790956 DOI: 10.1371/journal.pone.0151339] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/26/2016] [Indexed: 12/21/2022] Open
Abstract
Identification of sensitive and specific biomarkers with clinical and translational utility will require smart experimental strategies that would augment expanding the breadth and depth of molecular measurements within the constraints of currently available technologies. Exosomes represent an information rich matrix to discern novel disease mechanisms that are thought to contribute to pathologies such as dementia and cancer. Although proteomics and transcriptomic studies have been reported using Exosomes-Like Vesicles (ELVs) from different sources, exosomal metabolome characterization and its modulation in health and disease remains to be elucidated. Here we describe methodologies for UPLC-ESI-MS based small molecule profiling of ELVs from human plasma and cell culture media. In this study, we present evidence that indeed ELVs carry a rich metabolome that could not only augment the discovery of low abundance biomarkers but may also help explain the molecular basis of disease progression. This approach could be easily translated to other studies seeking to develop predictive biomarkers that can subsequently be used with simplified targeted approaches.
Collapse
Affiliation(s)
- Tatiana Altadill
- Biomedical Research Group in Ginecology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Campoy
- Biomedical Research Group in Ginecology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lucia Lanau
- Biomedical Research Group in Ginecology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kirandeep Gill
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, D.C., United States of America
| | - Marina Rigau
- Institut d’Investigació Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Antonio Gil-Moreno
- Gynecological Department, Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Reventos
- Institut d’Investigació Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Stephen Byers
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, D.C., United States of America
| | - Eva Colas
- Biomedical Research Group in Ginecology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Amrita K. Cheema
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, D.C., United States of America
| |
Collapse
|
33
|
O'Reilly C, Doroudian M, Mawhinney L, Donnelly SC. Targeting MIF in Cancer: Therapeutic Strategies, Current Developments, and Future Opportunities. Med Res Rev 2016; 36:440-60. [PMID: 26777977 DOI: 10.1002/med.21385] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Seamas C Donnelly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.,Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
34
|
Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumour Biol 2015; 36:4005-16. [DOI: 10.1007/s13277-015-3391-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
|
35
|
Liu MW, Su MX, Zhang W, Wang L, Qian CY. Atorvastatin increases lipopolysaccharide-induced expression of tumour necrosis factor-α-induced protein 8-like 2 in RAW264.7 cells. Exp Ther Med 2014; 8:219-228. [PMID: 24944625 PMCID: PMC4061217 DOI: 10.3892/etm.2014.1722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/02/2014] [Indexed: 01/18/2023] Open
Abstract
RAW264.7 cells are one of the major sources of productive inflammatory biomediators, including tumour necrosis factor-α (TNF-α) and interleukin (IL)-6. TNF-α-induced protein 8-like 2 (TIPE2) is an essential negative regulator of Toll-like and T-cell receptors, and the selective expression in the immune system prevents hyper-responsiveness and maintains immune homeostasis. The aim of the present study was to investigate whether atorvastatin upregulates the expression of TIPE2 and further regulates the inflammatory response and oxidation emergency response in RAW264.7 cells. RAW264.7 cells were incubated in Dulbecco’s modified Eagle’s medium containing lipopolysaccharide (LPS) in the presence or absence of atorvastatin. Following incubation, the medium was collected and the levels of TNF-α and IL-6 were measured using an enzyme-linked immunosorbent assay. The cells were harvested, and the mRNA and protein expression levels of TIPE2, macrophage migration inhibitory factor (MIF), IκB and nuclear factor (NF-κB)-κB were analysed using quantitative polymerase chain reaction and western blotting analysis, respectively, the expression of NOS, COX-2 and HO-1 protein were essayed by western blotting analysis, NO and ROS activities were determined. The results revealed that LPS increased the mRNA and protein expression levels of TIPE2, MIF and NF-κB, as well as the production of IL-6 and TNF-α, in a dose and time dependent manner in RAW264.7 cells. Meanwhile, LPS enhanced the expression of NOS and COX-2 protein, blocked HO-1 protein expression, increased NO and PGE2 production and ROS activity in a dose dependent manner in RAW264.7 cells. Atorvastatin significantly increased LPS induced expression of TIPE2, downregulated the expression of NOS, COX-2, MIF and NF-κB and the production of PGE2, NO, IL-6 and TNF-α in a time and dose dependent manner, and increased HO-1 protein expression, reduced ROS production in a dose dependent manner. The observations indicated that atorvastatin upregulated LPS induced expression of TIPE2 and consequently inhibited MIF, NF-κB, NOS and COX-2 expression and the production of NO, PGE2, TNF-α and IL-6, increased HO-1 expression, and inhibited ROS activity in cultured RAW264.7 cells.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mei-Xian Su
- Surgical Intensive Care Unit, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, P.R. China
| | - Wei Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Li Wang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chuan-Yun Qian
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
36
|
Ushida Y, Talalay P. Sulforaphane Accelerates Acetaldehyde Metabolism by Inducing Aldehyde Dehydrogenases: Relevance to Ethanol Intolerance. Alcohol Alcohol 2013; 48:526-34. [DOI: 10.1093/alcalc/agt063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
37
|
Melchini A, Needs PW, Mithen RF, Traka MH. Enhanced in vitro biological activity of synthetic 2-(2-pyridyl) ethyl isothiocyanate compared to natural 4-(methylsulfinyl) butyl isothiocyanate. J Med Chem 2012; 55:9682-92. [PMID: 22998472 DOI: 10.1021/jm300929v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dietary isothiocyanates (ITC) derived from cruciferous vegetables have been shown to have numerous biological effects consistent with chemoprotective activity. In this study we synthesized a novel ITC, 2-(2-pyridyl) ethyl ITC (PY-ITC), and assessed its chemopreventive ability in comparison to sulforaphane (SF), the ITC derived from broccoli. PY-ITC suppressed cancerous cell growth and proliferation at lower concentrations than SF and was more potent at inducing p21 protein. Through the use of whole genome arrays we demonstrate that prostate cells exposed to PY-ITC or SF have similar biological response, albeit PY-ITC alters a greater number of genes, and to a greater extent. In the presence of a phosphatidylinositol-3-kinase (PI3K) inhibitor PY-ITC had a more pronounced effect on gene expression, emphasizing the important role of PI3K/AKT signaling in mediating the chemopreventive effects of ITCs. These results highlight the importance of the ITC side chain in bioactivity.
Collapse
Affiliation(s)
- Antonietta Melchini
- Food & Health Programme, Institute of Food Research , Norwich Research Park, NR4 7UA United Kingdom
| | | | | | | |
Collapse
|
38
|
Benedict AL, Mountney A, Hurtado A, Bryan KE, Schnaar RL, Dinkova-Kostova AT, Talalay P. Neuroprotective effects of sulforaphane after contusive spinal cord injury. J Neurotrauma 2012; 29:2576-86. [PMID: 22853439 DOI: 10.1089/neu.2012.2474] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic spinal cord injury (SCI) leads to oxidative stress, calcium mobilization, glutamate toxicity, the release of proinflammatory factors, and depletion of reduced glutathione (GSH) at the site of injury. Induction of the Keap1/Nrf2/ARE pathway can alleviate neurotoxicity by protecting against GSH depletion, oxidation, intracellular calcium overload, mitochondrial dysfunction, and excitotoxicity. Sulforaphane (SF), an isothiocyanate derived from broccoli, is a potent naturally-occurring inducer of the Keap1/Nrf2/ARE pathway, leading to upregulation of genes encoding cytoprotective proteins such as NAD(P)H: quinone oxidoreductase 1, and GSH-regulatory enzymes. Additionally, SF can attenuate inflammation by inhibiting the nuclear factor-κB (NF-κB) pathway, and the enzymatic activity of the proinflammatory cytokine macrophage inhibitory factor (MIF). Our study examined systemic administration of SF in a rat model of contusion SCI, in an effort to utilize its indirect antioxidant and anti-inflammatory properties to decrease secondary injury. Two doses of SF (10 or 50 mg/kg) were administered at 10 min and 72 h after contusion SCI. SF (50 mg/kg) treatment resulted in both acute and long-term beneficial effects, including upregulation of the phase 2 antioxidant response at the injury site, decreased mRNA levels of inflammatory cytokines (i.e., MMP-9) in the injured spinal cord, inactivation of urinary MIF tautomerase activity, enhanced hindlimb locomotor function, and an increased number of serotonergic axons caudal to the lesion site. These findings demonstrate that SF provides neuroprotective effects in the spinal cord after injury, and could be a candidate for therapy of SCI.
Collapse
Affiliation(s)
- Andrea L Benedict
- Lewis B. and Dorothy Cullman Chemoprotection Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Benedict AL, Knatko EV, Dinkova-Kostova AT. The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress. Carcinogenesis 2012; 33:2457-66. [PMID: 22983983 DOI: 10.1093/carcin/bgs293] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Long-term treatment with thiopurines, such as the widely used anticancer, immunosuppressive and anti-inflammatory agent azathioprine, combined with exposure to ultraviolet (UV) radiation is associated with increased oxidative stress, hyperphotosensitivity and high risk for development of aggressive squamous cell carcinomas of the skin. Sulforaphane, an isothiocyanate derived from broccoli, is a potent inducer of endogenous cellular defenses regulated by transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), including cytoprotective enzymes and glutathione, which in turn act as efficient indirect and direct antioxidants that have long-lasting effects. Treatment with 6-thioguanine, a surrogate for azathioprine, leads to profound sensitization to oxidative stress and glutathione depletion upon exposure to UVA radiation, the damaging effects of which are primarily mediated by generation of reactive oxygen species. The degree of sensitization is greater for irradiation exposures spanning the absorption spectrum of 6-thioguanine, and is dependent on the length of treatment and the level of guanine substitution with 6-thioguanine, suggesting that the 6-thioguanine that is incorporated in genomic DNA is largely responsible for this sensitization. Sulforaphane provides protection against UVA, but not UVB, radiation without affecting the levels of 6-thioguanine incorporation into DNA. The protective effect is lost under conditions of Nrf2 deficiency, implying that it is due to induction of Nrf2-dependent cytoprotective proteins, and that this strategy could provide protection against any potentially photosensitizing drugs that generate electrophilic or reactive oxygen species. Thus, our findings support the development of Nrf2 activators as protectors against drug-mediated photooxidative stress and encourage future clinical trials in populations at high risk for cutaneous photodamage and photocarcinogenesis.
Collapse
Affiliation(s)
- Andrea L Benedict
- Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
40
|
Tyndall JDA, Lue H, Rutledge MT, Bernhagen J, Hampton MB, Wilbanks SM. Macrophage migration inhibitory factor covalently complexed with phenethyl isothiocyanate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:999-1002. [PMID: 22949182 PMCID: PMC3433185 DOI: 10.1107/s1744309112030552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/04/2012] [Indexed: 02/01/2023]
Abstract
Macrophage migration inhibitory factor is irreversibly inhibited via covalent modification by phenethyl isothiocyanate, a naturally occurring compound with anti-inflammatory and anticancer properties. The structure of the modified protein obtained from X-ray diffraction data to 1.64 Å resolution is presented. The inhibitor sits within a deep hydrophobic pocket between subunits of the homotrimer and is highly ordered. The secondary structure of macrophage migratory inhibitory factor is unchanged by this modification, but there are significant rearrangements, including of the side-chain position of Tyr37 and the main chain of residues 31-34. These changes may explain the decreased binding of the modified protein to the receptor CD74. Together with the pocket, the areas of conformational change define specific targets for the design of more selective and potent inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Joel D. A. Tyndall
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hongqi Lue
- Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany
| | - Malcolm T. Rutledge
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jurgen Bernhagen
- Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany
| | - Mark B. Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, PO Box 4345, Christchurch 8140, New Zealand
| | - Sigurd M. Wilbanks
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
41
|
Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 2012; 18:337-47. [PMID: 22578879 DOI: 10.1016/j.molmed.2012.04.003] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/24/2012] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Glucosinolates and isothiocyanates have both been objects of research for more than half a century. Interest in these unique phytochemicals escalated following the discovery that sulforaphane, an isothiocyanate from broccoli, potently induces mammalian cytoprotective proteins through the Keap1-Nrf2-ARE pathway. In parallel with the advances in understanding the molecular regulation of this pathway and its critical role in protection against electrophiles and oxidants, there have been increased efforts toward translating this knowledge to improve human health and combat disease. This review focuses on the animal studies demonstrating the beneficial effects of glucosinolates and isothiocyanates in models of carcinogenesis, and cardiovascular and neurological diseases, as well as on the intervention studies of their safety, pharmacokinetics, and efficacy in humans.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | | |
Collapse
|
42
|
Chemoprotection Against Cancer by Isothiocyanates: A Focus on the Animal Models and the Protective Mechanisms. NATURAL PRODUCTS IN CANCER PREVENTION AND THERAPY 2012; 329:179-201. [DOI: 10.1007/128_2012_337] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2011; 750:107-131. [PMID: 22178957 DOI: 10.1016/j.mrrev.2011.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lorenzo Ferruzzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|