1
|
Zhao X, Jakobsson V, Tao Y, Zhao T, Wang J, Khong PL, Chen X, Zhang J. Targeted Radionuclide Therapy in Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042829 DOI: 10.1021/acsami.4c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the development of various novel therapies, glioblastoma (GBM) remains a devastating disease, with a median survival of less than 15 months. Recently, targeted radionuclide therapy has shown significant progress in treating solid tumors, with the approval of Lutathera for neuroendocrine tumors and Pluvicto for prostate cancer by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This achievement has shed light on the potential of targeted radionuclide therapy for other solid tumors, including GBM. This review presents the current status of targeted radionuclide therapy in GBM, highlighting the commonly used therapeutic radionuclides emitting alpha, beta particles, and Auger electrons that could induce potent molecular and cellular damage to treat GBM. We then explore a range of targeting vectors, including small molecules, peptides, and antibodies, which selectively target antigen-expressing tumor cells with minimal or no binding to healthy tissues. Considering that radiopharmaceuticals for GBM are often administered locoregionally to bypass the blood-brain barrier (BBB), we review prominent delivery methods such as convection-enhanced delivery, local implantation, and stereotactic injections. Finally, we address the challenges of this therapeutic approach for GBM and propose potential solutions.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yucen Tao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingyan Wang
- Xiamen University, School of Public Health, Xiang'an South Road, Xiamen 361102, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
2
|
Cheal SM, Chung SK, Vaughn BA, Cheung NKV, Larson SM. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med 2022; 63:1302-1315. [PMID: 36215514 PMCID: PMC12079710 DOI: 10.2967/jnumed.121.262186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to efficiently combine antitumor antibodies and medicinal radioisotopes for high-contrast imaging and high-therapeutic-index (TI) tumor targeting, respectively. As opposed to conventional radioimmunoconjugates, pretargeted approaches separate the tumor-targeting step from the payload step, thereby amplifying tumor uptake while reducing normal-tissue exposure. Alongside contrast and TI, critical parameters include antibody immunogenicity and specificity, availability of radioisotopes, and ease of use in the clinic. Each of the steps can be optimized separately; as modular systems, they can find broad applications irrespective of tumor target, tumor type, or radioisotopes. Although this versatility presents enormous opportunity, pretargeting is complex and presents unique challenges for clinical translation and optimal use in patients. The purpose of this article is to provide a brief historical perspective on the origins and development of pretargeting strategies in nuclear medicine, emphasizing 2 protein delivery systems that have been extensively evaluated (i.e., biotin-streptavidin and hapten-bispecific monoclonal antibodies), as well as radiohaptens and radioisotopes. We also highlight recent innovations, including pretargeting with bioorthogonal chemistry and novel protein vectors (such as self-assembling and disassembling proteins and Affibody molecules). We caution the reader that this is by no means a comprehensive review of the past 3 decades of pretargeted radioimmunodiagnosis and pretargeted radioimmunotherapy. But we do aim to highlight major developmental milestones and to identify benchmarks for success with regard to TI and toxicity in preclinical models and clinically. We believe this approach will lead to the identification of key obstacles to clinical success, revive interest in the utility of radiotheranostics applications, and guide development of the next generation of pretargeted theranostics.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Sebastian K Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett A Vaughn
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Radiobiology of Targeted Alpha Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Eychenne R, Chérel M, Haddad F, Guérard F, Gestin JF. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight". Pharmaceutics 2021; 13:pharmaceutics13060906. [PMID: 34207408 PMCID: PMC8234975 DOI: 10.3390/pharmaceutics13060906] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). From this selection, actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, they all have their own physical characteristics that make them singular and so promising for TAT. These radionuclides were largely studied over the last two decades, leading to a better knowledge of their production process and chemical behavior, allowing for an increasing number of biological evaluations. The aim of this review is to summarize the main properties of these eight chosen radionuclides. An overview from their availability to the resulting clinical studies, by way of chemical design and preclinical studies is discussed.
Collapse
Affiliation(s)
- Romain Eychenne
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| | - Michel Chérel
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Férid Haddad
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Laboratoire Subatech, UMR 6457, Université de Nantes, IMT Atlantique, CNRS, Subatech, F-44000 Nantes, France
| | - François Guérard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Jean-François Gestin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| |
Collapse
|
5
|
Therapeutic Applications of Pretargeting. Pharmaceutics 2019; 11:pharmaceutics11090434. [PMID: 31480515 PMCID: PMC6781323 DOI: 10.3390/pharmaceutics11090434] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Targeted therapies, such as radioimmunotherapy (RIT), present a promising treatment option for the eradication of tumor lesions. RIT has shown promising results especially for hematologic malignancies, but the therapeutic efficacy is limited by unfavorable tumor-to-background ratios resulting in high radiotoxicity. Pretargeting strategies can play an important role in addressing the high toxicity profile of RIT. Key to pretargeting is the concept of decoupling the targeting vehicle from the cytotoxic agent and administrating them separately. Studies have shown that this approach has the ability to enhance the therapeutic index as it can reduce side effects caused by off-target irradiation and thereby increase curative effects due to higher tolerated doses. Pretargeted RIT (PRIT) has been explored for imaging and treatment of different cancer types over the years. This review will give an overview of the various targeted therapies in which pretargeting has been applied, discussing PRIT with alpha- and beta-emitters and as part of combination therapy, plus its use in drug delivery systems.
Collapse
|
6
|
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J Nucl Med 2018; 59:878-884. [PMID: 29545378 DOI: 10.2967/jnumed.116.186338] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
With a short particle range and high linear energy transfer, α-emitting radionuclides demonstrate high cell-killing efficiencies. Even with the existence of numerous radionuclides that decay by α-particle emission, only a few of these can reasonably be exploited for therapeutic purposes. Factors including radioisotope availability and physical characteristics (e.g., half-life) can limit their widespread dissemination. The first part of this review will explore the diversity, basic radiochemistry, restrictions, and hurdles of α-emitters.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College, New York, New York.,Graduate Center of City University of New York, New York, New York
| | - Michael R McDevitt
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
7
|
Bailly C, Bodet-Milin C, Rousseau C, Faivre-Chauvet A, Kraeber-Bodéré F, Barbet J. Pretargeting for imaging and therapy in oncological nuclear medicine. EJNMMI Radiopharm Chem 2017; 2:6. [PMID: 29503847 PMCID: PMC5824696 DOI: 10.1186/s41181-017-0026-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
Background Oncological pretargeting has been implemented and tested in several different ways in preclinical models and clinical trials over more than 30 years. Despite highly promising results, pretargeting has not achieved market approval even though it could be considered the ultimate theranostic, combining PET imaging with short-lived positron emitters and therapy with radionuclides emitting beta or alpha particles. Results We have reviewed the pretargeting approaches proposed over the years, discussing their suitability for imaging, particularly PET imaging, and therapy, as well as their limitations. The reviewed pretargeting modalities are the avidin-biotin system, bispecific anti-tumour x anti-hapten antibodies and bivalent haptens, antibody-oligonucleotide conjugates and radiolabelled complementary oligonucleotides, and approaches using click chemistry. Finally, we discuss recent developments, such as the use of small binding proteins for pretargeting that may offer new perspectives to cancer pretargeting. Conclusions While pretargeting has shown promise and demonstrated preclinical and clinical proof of principle, full-scale clinical development programs are needed to translate pretargeting into a clinical reality that could ideally fit into current theranostic and precision medicine perspectives.
Collapse
Affiliation(s)
- Clément Bailly
- 1Service de Médecine Nucléaire, CHU de Nantes, Nantes, France.,3Centre de Recherche en Cancérologie Nantes/Angers (CRCNA), Nantes, France.,6299 CNRS, Nantes, France.,UMR892 Inserm, Nantes, France.,6Université de Nantes, Nantes, France
| | - Caroline Bodet-Milin
- 1Service de Médecine Nucléaire, CHU de Nantes, Nantes, France.,3Centre de Recherche en Cancérologie Nantes/Angers (CRCNA), Nantes, France.,6299 CNRS, Nantes, France.,UMR892 Inserm, Nantes, France.,6Université de Nantes, Nantes, France
| | - Caroline Rousseau
- 2Service de Médecine Nucléaire, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,3Centre de Recherche en Cancérologie Nantes/Angers (CRCNA), Nantes, France.,6299 CNRS, Nantes, France.,UMR892 Inserm, Nantes, France.,6Université de Nantes, Nantes, France
| | - Alain Faivre-Chauvet
- 1Service de Médecine Nucléaire, CHU de Nantes, Nantes, France.,3Centre de Recherche en Cancérologie Nantes/Angers (CRCNA), Nantes, France.,6299 CNRS, Nantes, France.,UMR892 Inserm, Nantes, France.,6Université de Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- 1Service de Médecine Nucléaire, CHU de Nantes, Nantes, France.,2Service de Médecine Nucléaire, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,3Centre de Recherche en Cancérologie Nantes/Angers (CRCNA), Nantes, France.,6299 CNRS, Nantes, France.,UMR892 Inserm, Nantes, France.,6Université de Nantes, Nantes, France
| | - Jacques Barbet
- 6Université de Nantes, Nantes, France.,GIP Arronax, 1, rue Arronax, 44187 Saint-Herblain cedex, France
| |
Collapse
|
8
|
Heskamp S, Hernandez R, Molkenboer-Kuenen JDM, Essler M, Bruchertseifer F, Morgenstern A, Steenbergen EJ, Cai W, Seidl C, McBride WJ, Goldenberg DM, Boerman OC. α- Versus β-Emitting Radionuclides for Pretargeted Radioimmunotherapy of Carcinoembryonic Antigen-Expressing Human Colon Cancer Xenografts. J Nucl Med 2017; 58:926-933. [PMID: 28232604 DOI: 10.2967/jnumed.116.187021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
Pretargeted radioimmunotherapy (PRIT) with the β-emitting radionuclide 177Lu is an attractive approach to treat carcinoembryonic antigen (CEA)-expressing tumors. The therapeutic efficacy of PRIT might be improved using α-emitting radionuclides such as 213Bi. Herein, we report and compare the tumor-targeting properties and therapeutic efficacy of 213Bi and 177Lu for PRIT of CEA-expressing xenografts, using the bispecific monoclonal antibody TF2 (anti-CEA × anti-histamine-succinyl-glycine [HSG]) and the di-HSG-DOTA peptide IMP288. Methods: The in vitro binding characteristics of 213Bi-IMP288 were compared with those of 177Lu-IMP288. Tumor targeting of 213Bi-IMP288 and 177Lu-IMP288 was studied in mice bearing subcutaneous LS174T tumors that were pretargeted with TF2. Finally, the effect of 213Bi-IMP288 (6, 12, or 17 MBq) and 177Lu-IMP288 (60 MBq) on tumor growth and survival was assessed. Toxicity was determined by monitoring body weight, analyzing blood samples for hematologic and renal toxicity (hemoglobin, leukocytes, platelets, creatinine), and immunohistochemical analysis of the kidneys. Results: The in vitro binding characteristics of 213Bi-IMP288 (dissociation constant, 0.45 ± 0.20 nM) to TF2-pretargeted LS174T cells were similar to those of 177Lu-IMP288 (dissociation constant, 0.53 ± 0.12 nM). In vivo accumulation of 213Bi-IMP288 in LS174T tumors was observed as early as 15 min after injection (9.2 ± 2.0 percentage injected dose [%ID]/g). 213Bi-IMP288 cleared rapidly from the circulation; at 30 min after injection, the blood levels were 0.44 ± 0.28 %ID/g. Uptake in normal tissues was low, except for the kidneys, where uptake was 1.8 ± 1.1 %ID/g at 30 min after injection. The biodistribution of 213Bi-IMP288 was comparable to that of 177Lu-IMP288. Mice treated with a single dose of 213Bi-IMP288 or 177Lu-IMP288 showed significant inhibition of tumor growth. Median survival for the groups treated with phosphate-buffered saline, 6 MBq 213Bi-IMP288, 12 MBq 213Bi-IMP288, and 60 MBq 177Lu-IMP288 was 22, 31, 45, and 42 d, respectively. Mice receiving 17 MBq 213Bi-IMP288 showed significant weight loss, resulting in a median survival of only 24 d. No changes in hemoglobin, platelets, or leukocytes were observed in the treatment groups. However, immunohistochemical analysis of the kidneys of mice treated with 17 or 12 MBq 213Bi-IMP288 showed signs of tubular damage, indicating nephrotoxicity. Conclusion: To our knowledge, this study shows for the first time that PRIT with TF2 and 213Bi-IMP288 is feasible and at least as effective as 177Lu-IMP288. However, at higher doses, kidney toxicity was observed. Future studies are warranted to determine the optimal dosing schedule to improve therapeutic efficacy while reducing renal toxicity.
Collapse
Affiliation(s)
- Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinier Hernandez
- Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Markus Essler
- Klinik und Poliklinik fur Nuklearmedizin, University of Bonn, Bonn, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre-Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre-Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Erik J Steenbergen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Weibo Cai
- Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Christof Seidl
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany.,Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany; and
| | | | | | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Ali AM, Dehdashti F, DiPersio JF, Cashen AF. Radioimmunotherapy-based conditioning for hematopoietic stem cell transplantation: Another step forward. Blood Rev 2016; 30:389-99. [PMID: 27174151 DOI: 10.1016/j.blre.2016.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Alaa M Ali
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Campus 8058, St. Louis, MO 63110, USA.
| | - Farrokh Dehdashti
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA.
| | - John F DiPersio
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Campus 8058, St. Louis, MO 63110, USA.
| | - Amanda F Cashen
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Campus 8058, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Dorso L, Bigot-Corbel E, Abadie J, Diab M, Gouard S, Bruchertseifer F, Morgenstern A, Maurel C, Chérel M, Davodeau F. Long-Term Toxicity of 213Bi-Labelled BSA in Mice. PLoS One 2016; 11:e0151330. [PMID: 26982495 PMCID: PMC4794211 DOI: 10.1371/journal.pone.0151330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/27/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Short-term toxicological evaluations of alpha-radioimmunotherapy have been reported in preclinical assays, particularly using bismuth-213 (213Bi). Toxicity is greatly influenced not only by the pharmacokinetics and binding specificity of the vector but also by non-specific irradiation due to the circulating radiopharmaceutical in the blood. To assess this, an acute and chronic toxicity study was carried out in mice injected with 213Bi-labelled Bovine Serum Albumin (213Bi-BSA) as an example of a long-term circulating vector. METHOD Biodistribution of 213Bi-BSA and 125I-BSA were compared in order to evaluate 213Bi uptake by healthy organs. The doses to organs for injected 213Bi-BSA were calculated. Groups of nude mice were injected with 3.7, 7.4 and 11.1 MBq of 213Bi-BSA and monitored for 385 days. Plasma parameters, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine, were measured and blood cell counts (white blood cells, platelets and red blood cells) were performed. Mouse organs were examined histologically at different time points. RESULTS Haematological toxicity was transient and non-limiting for all evaluated injected activities. At the highest injected activity (11.1 MBq), mice died from liver and kidney failure (median survival of 189 days). This liver toxicity was identified by an increase in both ALT and AST and by histological examination. Mice injected with 7.4 MBq of 213Bi-BSA (median survival of 324 days) had an increase in plasma BUN and creatinine due to impaired kidney function, confirmed by histological examination. Injection of 3.7 MBq of 213Bi-BSA was safe, with no plasma enzyme modifications or histological abnormalities. CONCLUSION Haematological toxicity was not limiting in this study. Liver failure was observed at the highest injected activity (11.1 MBq), consistent with liver damage observed in human clinical trials. Intermediate injected activity (7.4 MBq) should be used with caution because of the risk of long-term toxicity to kidneys.
Collapse
Affiliation(s)
- Laëtitia Dorso
- Nuclear Oncology, Nantes-Angers Cancer Research Center (CRCNA) UMR 892 Inserm, Nantes, France
- University of Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- L'UNAM University, Oniris, AMaROC Unit, Nantes, France
| | - Edith Bigot-Corbel
- Nuclear Oncology, Nantes-Angers Cancer Research Center (CRCNA) UMR 892 Inserm, Nantes, France
- University of Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- Biochemistry Department, Laënnec Hospital, Nantes, France
| | - Jérôme Abadie
- L'UNAM University, Oniris, AMaROC Unit, Nantes, France
| | - Maya Diab
- Nuclear Oncology, Nantes-Angers Cancer Research Center (CRCNA) UMR 892 Inserm, Nantes, France
- University of Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Sébastien Gouard
- Nuclear Oncology, Nantes-Angers Cancer Research Center (CRCNA) UMR 892 Inserm, Nantes, France
- University of Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Catherine Maurel
- Nuclear Oncology, Nantes-Angers Cancer Research Center (CRCNA) UMR 892 Inserm, Nantes, France
- University of Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Michel Chérel
- Nuclear Oncology, Nantes-Angers Cancer Research Center (CRCNA) UMR 892 Inserm, Nantes, France
- University of Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- Nuclear Medicine, ICO institut de Cancerologie de l'Ouest - Centre René Gauducheau, Nantes, France
| | - François Davodeau
- Nuclear Oncology, Nantes-Angers Cancer Research Center (CRCNA) UMR 892 Inserm, Nantes, France
- University of Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- Nuclear Medicine, University Hospital, Nantes, France
- * E-mail:
| |
Collapse
|
11
|
Abstract
α-particle-emitting radionuclides are highly cytotoxic and are thus promising candidates for use in targeted radioimmunotherapy of cancer. Due to their high linear energy transfer (LET) combined with a short path length in tissue, α-particles cause severe DNA double-strand breaks that are repaired inaccurately and finally trigger cell death. For radioimmunotherapy, α-emitters such as 225Ac, 211At, 212Bi/212Pb, 213Bi and 227Th are coupled to antibodies via appropriate chelating agents. The α-emitter immunoconjugates preferably target proteins that are overexpressed or exclusively expressed on cancer cells. Application of α-emitter immunoconjugates seems particularly promising in treatment of disseminated cancer cells and small tumor cell clusters that are released during the resection of a primary tumor. α-emitter immunoconjugates have been successfully administered in numerous experimental studies for therapy of ovarian, colon, gastric, blood, breast and bladder cancer. Initial clinical trials evaluating α-emitter immunoconjugates in terms of toxicity and therapeutic efficacy have also shown positive results in patients with melanoma, ovarian cancer, acute myeloid lymphoma and glioma. The present problems in terms of availability of therapeutically effiective α-emitters will presumably be solved by use of alternative production routes and installation of additional production facilities in the near future. Therefore, clinical establishment of targeted α-emitter radioimmunotherapy as one part of a multimodal concept for therapy of cancer is a promising, middle-term concept.
Collapse
Affiliation(s)
- Christof Seidl
- Technische Universität München, Department of Nuclear Medicine, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
12
|
Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for Combined Imaging and Therapy. Chem Rev 2012. [DOI: 10.1021/cr3003104] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cathy S. Cutler
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
| | - Heather M. Hennkens
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
| | - Nebiat Sisay
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United
States
| | - Sandrine Huclier-Markai
- Laboratoire Subatech,
UMR 6457, Ecole des Mines de Nantes/Université de Nantes/CNRS-IN2P3, 4 Rue A. Kastler, BP 20722, F-44307
Nantes Cedex 3, France
| | - Silvia S. Jurisson
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United
States
| |
Collapse
|
13
|
Abstract
Targeting of radionuclides with antibodies, or radioimmunotherapy, has been an active field of research spanning nearly 50 years, evolving with advancing technologies in molecular biology and chemistry, and with many important preclinical and clinical studies illustrating the benefits, but also the challenges, which all forms of targeted therapies face. There are currently two radiolabeled antibodies approved for the treatment of non-Hodgkin lymphoma, but radioimmunotherapy of solid tumors remains a challenge. Novel antibody constructs, focusing on treatment of localized and minimal disease, and pretargeting are all promising new approaches that are currently under investigation.
Collapse
|
14
|
Abstract
Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.
Collapse
|
15
|
Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood 2010; 116:4231-9. [PMID: 20702781 DOI: 10.1182/blood-2010-05-282327] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Radioimmunotherapy (RIT) with α-emitting radionuclides is an attractive approach for the treatment of minimal residual disease because the short path lengths and high energies of α-particles produce optimal cytotoxicity at small target sites while minimizing damage to surrounding normal tissues. Pretargeted RIT (PRIT) using antibody-streptavidin (Ab-SA) constructs and radiolabeled biotin allows rapid, specific localization of radioactivity at tumor sites, making it an optimal method to target α-emitters with short half-lives, such as bismuth-213 (²¹³Bi). Athymic mice bearing Ramos lymphoma xenografts received anti-CD20 1F5(scFv)(4)SA fusion protein (FP), followed by a dendrimeric clearing agent and [²¹³Bi]DOTA-biotin. After 90 minutes, tumor uptake for 1F5(scFv)₄SA was 16.5% ± 7.0% injected dose per gram compared with 2.3% ± .9% injected dose per gram for the control FP. Mice treated with anti-CD20 PRIT and 600 μ Ci [²¹³Bi]DOTA-biotin exhibited marked tumor growth delays compared with controls (mean tumor volume .01 ± .02 vs. 203.38 ± 83.03 mm³ after 19 days, respectively). The median survival for the 1F5(scFv)₄SA group was 90 days compared with 23 days for the control FP (P < .0001). Treatment was well tolerated, with no treatment-related mortalities. This study demonstrates the favorable biodistribution profile and excellent therapeutic efficacy attainable with ²¹³Bi-labeled anti-CD20 PRIT.
Collapse
|
16
|
Walter RB, Press OW, Pagel JM. Pretargeted radioimmunotherapy for hematologic and other malignancies. Cancer Biother Radiopharm 2010; 25:125-42. [PMID: 20423225 DOI: 10.1089/cbr.2010.0759] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Radioimmunotherapy (RIT) has emerged as one of the most promising treatment options, particularly for hematologic malignancies. However, this approach has generally been limited by a suboptimal therapeutic index (target-to-nontarget ratio) and an inability to deliver sufficient radiation doses to tumors selectively. Pretargeted RIT (PRIT) circumvents these limitations by separating the targeting vehicle from the subsequently administered therapeutic radioisotope, which binds to the tumor-localized antibody or is quickly excreted if unbound. A growing number of preclinical proof-of-principle studies demonstrate that PRIT is feasible and safe and provides improved directed radionuclide delivery to malignant cells compared with conventional RIT while sparing normal cells from nonspecific radiotoxicity. Early phase clinical studies corroborate these preclinical findings and suggest better efficacy and lesser toxicities in patients with hematologic and other malignancies. With continued research, PRIT-based treatment strategies promise to become cornerstones to improved outcomes for cancer patients despite their complexities.
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
17
|
Pagel JM, Matthews DC, Kenoyer A, Hamlin DK, Wilbur DS, Fisher DR, Gopal AK, Lin Y, Saganic L, Appelbaum FR, Press OW. Pretargeted radioimmunotherapy using anti-CD45 monoclonal antibodies to deliver radiation to murine hematolymphoid tissues and human myeloid leukemia. Cancer Res 2009; 69:185-92. [PMID: 19118002 PMCID: PMC2613544 DOI: 10.1158/0008-5472.can-08-2513] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radioimmunotherapy (RIT) for treatment of hematologic malignancies frequently fails because of disease recurrence. We therefore conducted pretargeted (P)RIT studies to augment the efficacy in mice of therapy using a pretargeted anti-human (h)CD45 antibody (Ab)-streptavidin (SA) conjugate followed by a biotinylated clearing agent and radiolabeled 1,4,7,10-tetraazacylodode cane N,N',N",N'''-tetraacetic (DOTA)-biotin. Tumor-to-blood ratios at 24 hours were 20:1 using pretargeted anti-hCD45 RIT and <1:1 with conventional RIT. In vivo imaging studies confirmed that the PRIT approach provided high-contrast tumor images with minimal blood-pool activity, whereas directly labeled anti-hCD45 Ab produced distinct tumor images but the blood pool retained a large amount of labeled Ab for a prolonged time. Therapy experiments showed that (90)Y-DOTA-biotin significantly prolonged survival of mice treated with pretargeted anti-hCD45 Ab-SA compared with mice treated with conventional RIT using (90)Y-labeled anti-hCD45 Ab at 200 muCi. Because human CD45 antigens are confined to xenograft tumor cells in this model, and all murine tissues are devoid of hCD45 and will not bind anti-hCD45 Ab, we also compared one-step and PRIT using an anti-murine (m)CD45 Ab where the target antigen is present on normal hematopoietic tissues. After 24 h, 27.3% +/- 2.8% of the injected dose of activity was delivered per gram (% ID/g) of lymph node using (131)I-A20-Ab compared with 40.0 +/- 5.4% ID/g for pretargeted (111)In-DOTA-biotin. These data suggest that pretargeted methods for delivering RIT may be superior to conventional RIT when targeting CD45 for the treatment of leukemia and may allow for the intensification of therapy, while minimizing toxicities.
Collapse
Affiliation(s)
- John M Pagel
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pagel J. Radioimmunotherapeutic approaches for leukemia: the past, present and future. Cytotherapy 2008; 10:13-20. [DOI: 10.1080/14653240701679881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Kelly MP, Lee FT, Tahtis K, Smyth FE, Brechbiel MW, Scott AM. Radioimmunotherapy with alpha-particle emitting 213Bi-C-functionalized trans-cyclohexyl-diethylenetriaminepentaacetic acid-humanized 3S193 is enhanced by combination with paclitaxel chemotherapy. Clin Cancer Res 2007; 13:5604s-5612s. [PMID: 17875796 DOI: 10.1158/1078-0432.ccr-07-1071] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Previous experience in solid tumor radioimmunotherapy studies has indicated that greatest therapeutic efficacy is achieved in the treatment of small-volume disease. alpha-Particle-emitting radioisotopes possess several physical characteristics ideally suited to the treatment of minimal residual disease. Therefore, we have investigated the efficacy of the alpha-particle-emitting bismuth-213 (213Bi) radioimmunotherapy using the humanized anti-Lewis Y (Ley) monoclonal antibody humanized 3S193 (hu3S193). EXPERIMENTAL DESIGN The intracellular localization of hu3S193 in Ley-positive MCF-7 breast carcinoma cells was assessed by confocal microscopy. Cytotoxicity of 213Bi-hu3S193 and apoptosis was assessed using [3H]thymidine incorporation assay and ELISA, respectively. Immunoblotting for gamma-H2AX assessed DNA strand breaks. In vivo efficacy of 213Bi-hu3S193 was assessed using a minimal residual disease model in BALB/c nude mice, with radioconjugate [15, 30, and 60 microCi (9.2 microg)] injected 2 days after s.c. implantation of MCF-7 cells. Radioimmunotherapy was also combined with a single injection of 300 microg paclitaxel to explore improved efficacy. Further, mice with established tumors received 30, 60, or 120 microCi (14.5 microg) of 213Bi-hu3S193 to assess the effect of tumor volume on treatment efficacy. RESULTS hu3S193 is internalized via an endosomal and lysosomal trafficking pathway. Treatment with 213Bi-hu3S193 results in >90% cytotoxicity in vitro and induces apoptosis and increased gamma-H2AX expression. 213Bi-hu3S193 causes specific and significant retardation of tumor growth even in established tumors, and efficacy was enhanced by paclitaxel to produce defined complete responses. CONCLUSIONS These studies show the potency of alpha-particle radioimmunotherapy and warrant its further exploration in the treatment of micrometastatic disease in Ley-positive malignancies.
Collapse
Affiliation(s)
- Marcus P Kelly
- Tumour Targeting Program, Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Jang BS, Lim E, Hee Park S, Shin IS, Danthi SN, Hwang IS, Le N, Yu S, Xie J, Li KCP, Carrasquillo JA, Paik CH. Radiolabeled high affinity peptidomimetic antagonist selectively targets alpha(v)beta(3) receptor-positive tumor in mice. Nucl Med Biol 2007; 34:363-70. [PMID: 17499725 DOI: 10.1016/j.nucmedbio.2007.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/08/2007] [Accepted: 02/11/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonists that selectively target integrin alpha(v)beta(3) receptor and clear rapidly from the whole body. METHODS Integrin alpha(v)beta(3) antagonists, 4-[2-(3,4,5,6-tetrahydropyrimidine-2-ylamino)ethyloxy]benzoyl-2-(S)-aminoethylsulfonyl-amino-beta-alanine (IA) and 4-[2-(3,4,5,6-tetrahydro-pyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonylamino-beta-alanine hydrochloride (IAC), a hydrophobic carbamate derivative of IA, were conjugated with 2-p-isothiocyanatobenzyl-DOTA at the amino terminus and labeled with (111)In. The (111)In labeled IA and IAC were subjected to in vitro receptor binding, biodistribution and imaging studies using nude mice bearing the receptor-positive M21 human melanoma xenografts. RESULTS The (111)In-labeled IA (40%) and -IAC (72%) specifically bound in vitro to alpha(v)beta(3) (0.8 microM) at a molar excess. This receptor binding was completely blocked by a molar excess of cold IA to alpha(v)beta(3). The higher receptor-binding affinity of the (111)In-labeled IAC was reflected in higher tumor uptake and retention: 5.6+/-1.4 and 4.5+/-0.7 %ID/g vs. 3.8+/-0.9 and 2.0+/-0.3 %ID/g for the (111)In-labeled IA at 0.33 and 2 h. The tumor uptakes were inhibited by the co-injection of 200 microg of IA, indicating that the uptake was receptor mediated. These antagonists were excreted primarily via the renal system. The (111)In activity retained in the whole body was quite comparable between the (111)In-labeled IA (24% ID) and the (111)In-labeled IAC (33% ID) at 2 h. The higher peak tumor uptake and longer retention resulted in higher tumor-to-background ratios for the (111)In-labeled IAC at 2 h with 9.7, 2.3, 0.8, 1.9, 7.1, 2.2, 0.9, 3.7 and 9.9 for blood, liver, kidney, lung, heart, stomach, intestine, bone and muscle, respectively. The imaging studies with the (111)In-labeled IAC also clearly visualized the receptor-positive tumor at 4 h. CONCLUSIONS The (111)In-labeled IAC showed an improve tumor targeting kinetics with rapid accumulation and prolonged retention in the alpha(v)beta(3) receptor-positive tumor. This together with the rapid whole-body clearance pharmacokinetics warrants further studies on this IAC analog for molecular imaging of tumor-induced angiogenic vessels and various malignant human tumors expressing the receptor.
Collapse
Affiliation(s)
- Beom-Su Jang
- Department of Nuclear Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Pagel JM, Pantelias A, Hedin N, Wilbur S, Saganic L, Lin Y, Axworthy D, Hamlin DK, Wilbur DS, Gopal AK, Press OW. Evaluation of CD20, CD22, and HLA-DR Targeting for Radioimmunotherapy of B-Cell Lymphomas. Cancer Res 2007; 67:5921-8. [PMID: 17575162 DOI: 10.1158/0008-5472.can-07-0080] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the promise of radioimmunotherapy using anti-CD20 antibodies (Ab) for the treatment of relapsed patients with indolent non-Hodgkin lymphoma (NHL), most patients treated with conventional doses of (131)I-tositumomab or (90)Y-ibritumomab eventually relapse. We did comparative assessments using conventional radioimmunotherapy targeting CD20, CD22, and HLA-DR on human Ramos, Raji, and FL-18 lymphoma xenografts in athymic mice to assess the potential for improving the efficacy of radioimmunotherapy by targeting other NHL cell surface antigens. Results of biodistribution studies showed significant differences in tumor localization consistent with variable antigenic expression on the different lymphoma cell lines. Interestingly, the radioimmunoconjugate that yielded the best tumor-to-normal organ ratios differed in each tumor model. We also explored administering all three (111)In-1,4,7,10-tetra-azacylododecane N,N',N'',N'''-tetraacetic acid antibodies in combination, but discovered, surprisingly, that this approach did not augment the localization of radioactivity to tumors compared with the administration of the best single radiolabeled Ab alone. These data suggest that conventional radioimmunotherapy using anti-CD20, anti-HLA-DR, or anti-CD22 Abs is effective when used singly and provides targeted uptake of radiolabel into the tumor that is dependent on the levels of antigen expression. Improvements in tumor-to-normal organ ratios of radioactivity cannot be achieved using directly labeled Abs in combination but may be afforded by novel pretargeting methods.
Collapse
Affiliation(s)
- John M Pagel
- Fred Hutchinson Cancer Research Center, University of Washington, and Aletheon Pharmaceuticals, Inc., Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang WWS, Das D, McQuarrie SA, Suresh MR. Design of a bifunctional fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 core-streptavidin fusion protein. Eur J Pharm Biopharm 2006; 65:398-405. [PMID: 17257818 DOI: 10.1016/j.ejpb.2006.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/07/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
We have developed a universal ovarian cancer cell targeting vehicle that can deliver biotinylated therapeutic drugs. A single-chain antibody variable domain (scFv) that recognizes the CA125 antigen of ovarian cancer cells was fused with a core-streptavidin domain (core-streptavidin-VL-VH and VL-VH-core-streptavidin orientations) using recombinant DNA technology and then expressed in Escherichia coli using the T7 expression system. The bifunctional fusion protein (bfFp) was expressed in a shaker flask culture, extracted from the periplasmic soluble protein, and affinity purified using an IMAC column. The two distinct activities (biotin binding and anti-CA125) of the bfFp were demonstrated using ELISA, Western blot and confocal laser-scanning microscopy (CLSM). The ELISA method utilized human NIH OVCAR-3 cells along with biotinylated bovine serum albumin (B-BSA) or biotinylated liposomes, whereas, the Western blot involved probing with B-BSA. The CLSM study has shown specificity in binding to the OVCAR-3 cell-line. ELISA and Western blot studies have confirmed the bifunctional activity and specificity. In the presence of bfFp, there was enhanced binding of biotinylated antigen and liposome to OVCAR-3 cells. In contrast, the control EMT6 cells, which do not express the CA125 antigen, showed minimal binding of the bfFp. Consequently, bfFp based targeting of biotinylated therapeutic drugs, proteins, liposomes, or nanoparticles could be an alternative, convenient method to deliver effective therapy to ovarian cancer patients. Peritoneal infusion of the bfFp-therapeutic complex could also be effective in locally targeting the most common site of metastatic spread.
Collapse
|
24
|
Stavila V, Davidovich RL, Gulea A, Whitmire KH. Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure. Coord Chem Rev 2006. [DOI: 10.1016/j.ccr.2006.02.032] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Karacay H, Brard PY, Sharkey RM, Chang CH, Rossi EA, McBride WJ, Ragland DR, Horak ID, Goldenberg DM. Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft. Clin Cancer Res 2006; 11:7879-85. [PMID: 16278412 DOI: 10.1158/1078-0432.ccr-05-1246] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess if pretargeting, using a combination of a recombinant bispecific antibody (bsMAb) that binds divalently to carcinoembryonic antigen (CEA) and monovalently to the hapten histamine-succinyl-glycine and a (90)Y-peptide, improves therapeutic efficacy in a human colon cancer-nude mouse xenograft compared with control animals given (90)Y-humanized anti-CEA immunoglobulin G (IgG). EXPERIMENTAL DESIGN Clearance and biodistribution were monitored by whole-body readings and necropsy. Animals were monitored for 34 weeks with a determination of residual disease and renal pathology in survivors. Hematologic toxicity was assessed separately in non-tumor-bearing NIH Swiss mice. RESULTS Hematologic toxicity was severe at doses of 100 to 200 microCi of (90)Y-IgG, yet mild in the pretargeted animals given 500 or 700 microCi of the (90)Y-peptide. Evidence of end-stage renal disease was found at 900 microCi of the pretargeted (90)Y-peptide whereas animals given 700 microCi showed only mild renal pathology, similar to that seen in control animals given (90)Y-IgG. Biodistribution data indicated that the average amount of tumor radioactivity by a 700-microCi dose of the pretargeted peptide over a 96-hour period was increased 2.5-fold (48 microCi/g) compared with 150 microCi of (90)Y-IgG (18.9 microCi/g). At these doses, survival (i.e., time to progression to 2.5 cm(3)) was significantly improved (P < 0.04) compared with (90)Y-IgG, with ablation of about one third of the tumors, whereas viable tumor was present in all of the (90)Y-IgG-treated animals. CONCLUSION Pretargeting increases the amount of radioactivity delivered to colorectal tumors sufficiently to improve the therapeutic index and responses as compared with conventional radioimmunotherapy.
Collapse
Affiliation(s)
- Habibe Karacay
- Center for Molecular Medicine and Immunology and the Garden State Cancer Center, Belleville, NJ 07109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Halime Z, Lachkar M, Matsouki N, Charalambidis G, di Vaira M, Coutsolelos AG, Boitrel B. Novel crowned-porphyrin ligands. Synthesis and conformational studies. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, Davodeau F, Cherel M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging 2005; 32:601-14. [PMID: 15841373 DOI: 10.1007/s00259-005-1803-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In lymphoid malignancies and in certain solid cancers such as medullary thyroid carcinoma, somewhat mixed success has been achieved when applying radioimmunotherapy (RIT) with beta-emitters for the treatment of refractory cases. The development of novel RIT with alpha-emitters has created new opportunities and theoretical advantages due to the high linear energy transfer (LET) and the short path length in biological tissue of alpha-particles. These physical properties offer the prospect of achieving selective tumoural cell killing. Thus, RIT with alpha-emitters appears particularly suited for the elimination of circulating single cells or cell clusters or for the treatment of micrometastases at an early stage. However, to avoid non-specific irradiation of healthy tissues, it is necessary to identify accessible tumoural targets easily and rapidly. For this purpose, a small number of alpha-emitters have been investigated, among which only a few have been used for in vivo preclinical studies. Another problem is the availability and cost of these radionuclides; for instance, the low cost and the development of a reliable actinium-225/bismuth-213 generator were probably determining elements in the choice of bismuth-213 in the only human trial of RIT with an alpha-emitter. This article reviews the literature concerning monoclonal antibodies radiolabelled with alpha-emitters that have been developed for possible RIT in cancer patients. The principal radio-immunoconjugates are considered, starting with physical and chemical properties of alpha-emitters, their mode of production, the possibilities and difficulties of labelling, in vitro studies and finally, when available, in vivo preclinical and clinical studies.
Collapse
|
28
|
Azhdarinia A, Yang DJ, Yu DF, Mendez R, Oh C, Kohanim S, Bryant J, Kim EE. Regional Radiochemotherapy Using In Situ Hydrogel. Pharm Res 2005; 22:776-83. [PMID: 15906173 DOI: 10.1007/s11095-005-2594-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE To evaluate the feasibility of regional radiochemotherapy of mammary tumors using in situ hydrogel loaded with cisplatin (CDDP) and rhenium-188 ((188)Re). METHODS Sodium alginate (SA) and calcium chloride were used to create a hydrogel for delivery of CDDP and (188)Re. In vitro studies were performed to evaluate cytotoxic effects of (188)Re-hydrogel and sustained-release ability of the CDDP-hydrogel. Tumor-bearing rats were injected with (188)Re-hydrogel (0.5-1 mCi/rat), (188)Re-perrhenate (0.5-1 mCi/rat, intratumoral, I.T.), CDDP-hydrogel (3 mg/kg), and (188)Re-hydrogel loaded with CDDP (3 mg/kg body weight, 0.5-1 mCi/rat), respectively, and groups receiving (188)Re were imaged at 24 and 48 h postinjection. Tumor volume, body weight, imaging, and kidney function were assessed as required for each group. RESULTS Successful formation of the hydrogel was demonstrated by cytotoxic effects of (188)Re-hydrogel and slow release of CDDP-hydrogel in vitro. Tumor volume measurements showed significant delay in tumor growth in treated vs. control groups with minimal variation in normal kidney function for the CDDP-hydrogel group. Scintigraphic images indicated localization of (188)Re-hydrogel in the tumor site up to 48 h postinjection. CONCLUSIONS Our data demonstrate the feasibility of using hydrogel for delivery of chemotherapeutics and radiation locally. This technique may have applications involving other contrast modalities as well as treatment in cases where tumors are inoperable.
Collapse
Affiliation(s)
- Ali Azhdarinia
- Division of Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|