1
|
Xu MX, Liu X, Zhang HL, Xu H, Ma X, Yang Y, Duan C, Tang S, Liu Y, Li C, Pei M, Xia J, Yang Y, Guo Y, Wang Y, Luo S, Ma J, Yang Z, Zhu XF, Xu CP. A novel synthesised STAT3 inhibitor exerts potent anti-tumour activity by inducing lysosome-dependent cell death. Br J Pharmacol 2025. [PMID: 40356419 DOI: 10.1111/bph.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND AND PURPOSE Signal transducer and activator of transcription 3 (STAT3) has emerged as a promising therapeutic target for triple-negative breast cancer (TNBC) and multiple myeloma (MM), yet no STAT3-selective drugs have been approved for clinical use. EXPERIMENTAL APPROACH Newly synthesized compounds were screened by docking, surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA) to measure the binding activity with STAT3. RNA-Seq, luciferase assays, western blot and immunofluorescence assays were conducted to detect the impact of RDp002 on STAT3 signalling. CCK-8, cell cycle, apoptosis assays and transwell were utilised to evaluate the anti-tumour activity of RDp002 in vitro. Xenograft models were used to assess the effectiveness of RDp002 in vivo. Various inhibitors were utilised to investigate how RDp002 causes tumour cell death. The human ether-à-go-go-related gene (hERG/Kv11.1) assays, blood biochemistry and acute toxicity experiments were conducted to explore the toxicity of RDp002. KEY RESULTS RDp002 exhibited had strong affinity for STAT3 and impaired the phosphorylation of STAT3 at tyrosine 705 and serine 727 residues. RDp002 suppressed the proliferation, survival, migration, growth and metastasis of TNBC and MM cells. RDp002 inhibited tumour cell viability primarily via lysosome-dependent cell death, which can be weakened by overexpression of STAT3. The toxicity of RDp002 in vivo was minimal based on results from hERG assays, blood biochemistry analysis and acute toxicity tests. CONCLUSION AND IMPLICATIONS RDp002 is a novel STAT3 inhibitor that exerts potent anti-tumour effects mainly by inducing lysosome-dependent cell death. RDp002 represents a promising therapeutic lead for TNBC and MM.
Collapse
Affiliation(s)
- Marvin Xuejun Xu
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
- Department of Hematology, Zhengzhou University Affiliated Luoyang Central Hospital, Luoyang, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Xu
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Xiangyu Ma
- Department of Hematology, Zhengzhou University Affiliated Luoyang Central Hospital, Luoyang, China
| | - Yupo Yang
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Chaoqun Duan
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Shanshun Tang
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Yaqing Liu
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Cen Li
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Mengfu Pei
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Junkai Xia
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Yali Yang
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Yanmin Guo
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Yang Wang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | | | - Jianguo Ma
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| | - Zhengyan Yang
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chun-Ping Xu
- Henan Key Laboratory of Small Molecular Anti-cancer Novel Drug, Henan International Joint Lab of Target Anti-cancer Drug, Henan Engineering Research Center of Target Anti-cancer Drug, Henan Ruida Bio-tech Medicine Co. Ltd, Kaifeng, China
| |
Collapse
|
2
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
3
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Atalay P, Ozpolat B. PIM3 Kinase: A Promising Novel Target in Solid Cancers. Cancers (Basel) 2024; 16:535. [PMID: 38339286 PMCID: PMC10854964 DOI: 10.3390/cancers16030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
PIM3 (provirus-integrating Moloney site 3) is a serine/threonine kinase and belongs to the PIM family (PIM1, PIM2, and PIM3). PIM3 is a proto-oncogene that is frequently overexpressed in cancers originating from endoderm-derived tissues, such as the liver, pancreas, colon, stomach, prostate, and breast cancer. PIM3 plays a critical role in activating multiple oncogenic signaling pathways promoting cancer cell proliferation, survival, invasion, tumor growth, metastasis, and progression, as well as chemo- and radiation therapy resistance and immunosuppressive microenvironment. Genetic inhibition of PIM3 expression suppresses in vitro cell proliferation and in vivo tumor growth and metastasis in mice with solid cancers, indicating that PIM3 is a potential therapeutic target. Although several pan-PIM inhibitors entered phase I clinical trials in hematological cancers, there are currently no FDA-approved inhibitors for the treatment of patients. This review provides an overview of recent developments and insights into the role of PIM3 in various cancers and its potential as a novel molecular target for cancer therapy. We also discuss the current status of PIM-targeted therapies in clinical trials.
Collapse
Affiliation(s)
- Pinar Atalay
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
- Methodist Neil Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
6
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
7
|
Yu C, He S, Zhu W, Ru P, Ge X, Govindasamy K. Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential. Front Cell Infect Microbiol 2023; 13:1202138. [PMID: 37424781 PMCID: PMC10327488 DOI: 10.3389/fcimb.2023.1202138] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Suna He
- Department of Pharmaceutical Sciences, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Penghui Ru
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kavitha Govindasamy
- School of Arts and Science, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
8
|
Chen YH, Hsu JY, Chu CT, Chang YW, Fan JR, Yang MH, Chen HC. Loss of cell-cell adhesion triggers cell migration through Rac1-dependent ROS generation. Life Sci Alliance 2023; 6:6/2/e202201529. [PMID: 36446524 PMCID: PMC9711860 DOI: 10.26508/lsa.202201529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial cells usually trigger their "migratory machinery" upon loss of adhesion to their neighbors. This default is important for both physiological (e.g., wound healing) and pathological (e.g., tumor metastasis) processes. However, the underlying mechanism for such a default remains unclear. In this study, we used the human head and neck squamous cell carcinoma (HNSCC) SAS cells as a model and found that loss of cell-cell adhesion induced reactive oxygen species (ROS) generation and vimentin expression, both of which were required for SAS cell migration upon loss of cell-cell adhesion. We demonstrated that Tiam1-mediated Rac1 activation was responsible for the ROS generation through NADPH-dependent oxidases. Moreover, the ROS-Src-STAT3 signaling pathway that led to vimentin expression was important for SAS cell migration. The activation of ROS, Src, and STAT3 was also detected in tumor biopsies from HNSCC patients. Notably, activated STAT3 was more abundant at the tumor invasive front and correlated with metastatic progression of HNSCC. Together, our results unveil a mechanism of how cells trigger their migration upon loss of cell-cell adhesion and highlight an important role of the ROS-Src-STAT3 signaling pathway in the progression of HNSCC.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jinn-Yuan Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Tung Chu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Wen Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Rong Fan
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Xiang W, Qi W, Li H, Sun J, Dong C, Ou H, Liu B. Palbociclib Induces the Apoptosis of Lung Squamous Cell Carcinoma Cells via RB-Independent STAT3 Phosphorylation. Curr Oncol 2022; 29:5855-5868. [PMID: 36005200 PMCID: PMC9406926 DOI: 10.3390/curroncol29080462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) treatment response is poor and treatment alternatives are limited. Palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, has recently been approved for hormone receptor-positive breast cancer patients and applied in multiple preclinical models, but its use for LUSC therapy remains elusive. Here, we investigated whether palbociclib induced cell apoptosis and dissected the underlying mechanism in LUSC. We found that palbociclib induced LUSC cell apoptosis through inhibition of Src tyrosine kinase/signal transducers and activators of transcription 3 (STAT3). Interestingly, palbociclib reduced STAT3 signaling in LUSC cells interfered by retinoblastoma tumor-suppressor gene (RB), suggesting that pro-apoptosis effect of palbociclib was independent of classic CDK4/6-RB signaling. Furthermore, palbociclib could suppress IL-1β and IL-6 expression, and therefore blocked Src/STAT3 signaling, which were rescued by either recombinant human IL-1β or IL-6. Moreover, Myc mediated the sensitivity of LUSC cells to palbociclib. Our discoveries demonstrated that palbociclib induces apoptosis of LUSC cells through the Src/STAT3 axis in an RB-independent manner, and provided a reliable experimental basis of clinical studies in LUSC patients.
Collapse
Affiliation(s)
- Wenjing Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanchen Qi
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Huayu Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chao Dong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haojie Ou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
10
|
|
11
|
The novel STAT3 inhibitor WZ-2-033 causes regression of human triple-negative breast cancer and gastric cancer xenografts. Acta Pharmacol Sin 2022; 43:1013-1023. [PMID: 34267347 PMCID: PMC8976066 DOI: 10.1038/s41401-021-00718-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Hyperactive signal transducer and activator of transcription 3 (STAT3) signaling is frequently detected in human triple-negative breast cancer (TNBC) and gastric cancer, leading to uncontrolled tumor growth, resistance to chemotherapy, and poor prognosis. Thus, inhibition of STAT3 signaling is a promising therapeutic approach for both TNBC and gastric cancer, which have high incidences and mortality and limited effective therapeutic approaches. Here, we report a small molecule, WZ-2-033, capable of inhibiting STAT3 activation and dimerization and STAT3-related malignant transformation. We present in vitro evidence from surface plasmon resonance analysis that WZ-2-033 interacts with the STAT3 protein and from confocal imaging that WZ-2-033 disrupts HA-STAT3 and Flag-STAT3 dimerization in intact cells. WZ-2-033 suppresses STAT3-DNA-binding activity but has no effect on STAT5-DNA binding. WZ-2-033 inhibits the phosphorylation and nuclear accumulation of pY705-STAT3 and consequently suppresses STAT3-dependent transcriptional activity and the expression of STAT3 downstream genes. Moreover, WZ-2-033 significantly inhibited the proliferation, colony survival, migration, and invasion of TNBC cells and gastric cancer cells with aberrant STAT3 activation. Furthermore, administration of WZ-2-033 in vivo induced a significant antitumor response in mouse models of TNBC and gastric cancer that correlated with the inhibition of constitutively active STAT3 and the suppression of known STAT3 downstream genes. Thus, our study provides a novel STAT3 inhibitor with significant antitumor activity in human TNBC and gastric cancer harboring persistently active STAT3.
Collapse
|
12
|
Haidar Ahmad S, Pasquereau S, El Baba R, Nehme Z, Lewandowski C, Herbein G. Distinct Oncogenic Transcriptomes in Human Mammary Epithelial Cells Infected With Cytomegalovirus. Front Immunol 2022; 12:772160. [PMID: 35003089 PMCID: PMC8727587 DOI: 10.3389/fimmu.2021.772160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus is being recognized as a potential oncovirus beside its oncomodulation role. We previously isolated two clinical isolates, HCMV-DB (KT959235) and HCMV-BL (MW980585), which in primary human mammary epithelial cells promoted oncogenic molecular pathways, established anchorage-independent growth in vitro, and produced tumorigenicity in mice models, therefore named high-risk oncogenic strains. In contrast, other clinical HCMV strains such as HCMV-FS, KM, and SC did not trigger such traits, therefore named low-risk oncogenic strains. In this study, we compared high-risk oncogenic HCMV-DB and BL strains (high-risk) with low-risk oncogenic strains HCMV-FS, KM, and SC (low-risk) additionally to the prototypic HCMV-TB40/E, knowing that all strains infect HMECs in vitro. Numerous pro-oncogenic features including enhanced expression of oncogenes, cell survival, proliferation, and epithelial-mesenchymal transition genes were observed with HCMV-BL. In vitro, mammosphere formation was observed only in high-risk strains. HCMV-TB40/E showed an intermediate transcriptome landscape with limited mammosphere formation. Since we observed that Ki67 gene expression allows us to discriminate between high and low-risk HCMV strains in vitro, we further tested its expression in vivo. Among HCMV-positive breast cancer biopsies, we only detected high expression of the Ki67 gene in basal tumors which may correspond to the presence of high-risk HCMV strains within tumors. Altogether, the transcriptome of HMECs infected with HCMV clinical isolates displays an “oncogenic gradient” where high-risk strains specifically induce a prooncogenic environment which might participate in breast cancer development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Clara Lewandowski
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, Centre Hospitalier Universitaire (CHU) Besançon, Besançon, France
| |
Collapse
|
13
|
Zhou R, Hu Z, Pan J, Wang J, Pei Y. Current research status of alkaloids against breast cancer. CHINESE J PHYSIOL 2022; 65:12-20. [DOI: 10.4103/cjp.cjp_89_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
14
|
Fu Y, Hu N, Cao M, Li WF, Yang XR, Gao JL, Zhao J, Jiang M, Ma MH, Sun ZJ, Dong DL. Anthelmintic niclosamide attenuates pressure-overload induced heart failure in mice. Eur J Pharmacol 2021; 912:174614. [PMID: 34736968 DOI: 10.1016/j.ejphar.2021.174614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/03/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
The heart is a high energy demand organ and enhancing mitochondrial function is proposed as the next-generation therapeutics for heart failure. Our previous study found that anthelmintic drug niclosamide enhanced mitochondrial respiration and increased adenosine triphosphate (ATP) production in cardiomyocytes, therefore, this study aimed to determine the effect of niclosamide on heart failure in mice and the potential molecular mechanisms. The heart failure model was induced by transverse aortic constriction (TAC) in mice. Oral administration of niclosamide improved TAC-induced cardiac hypertrophy, cardiac fibrosis, and cardiac dysfunction in mice. Oral administration of niclosamide reduced TAC-induced increase of serum IL-6 in heart failure mice. In vitro, niclosamide within 0.1 μM increased mitochondrial respiration and ATP production in mice heart tissues. At the concentrations more than 0.1 μM, niclosamide reduced the increased interleukin- 6 (IL-6) mRNA expression in lipopolysaccharide (LPS)-stimulated RAW264.7 and THP-1 derived macrophages. In cultured primary cardiomyocytes and cardiac fibroblasts, niclosamide (more than 0.1 μM) suppressed IL-6- and phenylephrine-induced cardiomyocyte hypertrophy, and inhibited collagen secretion from cardiac fibroblasts. In conclusion, niclosamide attenuates heart failure in mice and the underlying mechanisms include enhancing mitochondrial respiration of cardiomyocytes, inhibiting collagen secretion from cardiac fibroblasts, and reducing the elevated serum inflammatory mediator IL-6. The present study suggests that niclosamide might be therapeutic for heart failure.
Collapse
Affiliation(s)
- Yao Fu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Nan Hu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Ming Cao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Wen-Feng Li
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Xin-Rui Yang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Jin-Lai Gao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Jing Zhao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Man Jiang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Ming-Hui Ma
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - De-Li Dong
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150086, PR China.
| |
Collapse
|
15
|
Chen X, Gao W, Yin G, Guo W, Huang J, Huang Z, Zhang Y. Phospho-EGFRTyr992 is synergistically repressed by co-inhibition of histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K), which attenuates resistance to erlotinib in head and neck cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1455. [PMID: 34734007 PMCID: PMC8506790 DOI: 10.21037/atm-21-4335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022]
Abstract
Background Erlotinib is a commonly used epidermal growth factor receptor (EGFR)-targeted therapeutic choice for head and neck squamous cell carcinoma; however, its efficacy is largely compromised by cancer cell resistance. Understanding and targeting the erlotinib adaptive mechanisms of squamous cell carcinoma of the head and neck (HNSCC) cancer cells are still pressing challenges. This study aimed to elucidate the cooperative erlotinib-sensitizing mechanisms of histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K) co-inhibition, which will be helpful in gaining a better understanding of the mechanism of EGFR-tyrosine kinase inhibitor (TKI) resistance in head and neck cancer cells. Methods High-content screening (HCS) was performed to analyze the cell counts of different treatment groups and their drug-sensitizing effect phenotype. Western blotting and immunofluorescence staining assays were used to measure and locate the expression of proteins in the FaDu and TU212 cells. Annexin V/PI and DAPI staining were also used to determine the ratio of apoptotic cells and different cell cycle phases. Results The expression of phosphor-EGFRTyr992 was significantly increased in erlotinib-treated FaDu cells compared with dimethyl sulfoxide (DMSO)-treated FaDu cells. Meanwhile, erlotinib + vorinostat + copanlisib jointly attenuated the expression of phosphor-EGFRTyr1068 and phosphor-EGFRTyr992, but stimulated the expression of E-cadherin. Moreover, we found that the tri-drug group also impaired the expression of phosphor-STAT3Ser727 and its relevant activators, including phosphor-SrcTyr416. Conclusions These findings indicate that HDACs and PI3K co-inhibition sensitizes erlotinib via inactivation of the phosphor-EGFRTyr1068-induced RTK-STAT3 axis. However, PI3K inhibition was sufficient to sensitize TU212 cells to erlotinib, providing new perspectives for the further clinical study of erlotinib + vorinostat + copanlisib as a potential combination therapeutic solution for EGFR responsive reactivation-induced resistance to erlotinib.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junwei Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Liu C, Nakano-Tateno T, Satou M, Chik C, Tateno T. Emerging role of signal transducer and activator of transcription 3 (STAT3) in pituitary adenomas. Endocr J 2021; 68:1143-1153. [PMID: 34248112 DOI: 10.1507/endocrj.ej21-0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pituitary adenomas are benign tumours that can cause an individual various clinical manifestations including tumour mass effects and/or the diverse effects of abnormal pituitary hormone secretion. Given the morbidity and limited treatment options for pituitary adenomas, there is a need for better biomarkers and treatment options. One molecule that is of specific interest is the signal transducer and activator of transcription 3 (STAT3), a transcription factor that plays a critical role in mediating cytokine-induced changes in gene expression. In addition, STAT3 controls cell proliferation by regulating mitochondrial activity. Not only does activation of STAT3 play a crucial role in tumorigenesis, including pituitary tumorigenesis, but a number of studies also demonstrate pharmacological STAT3 inhibition as a promising treatment approach for many types of tumours, including pituitary tumours. This review will focus on the role of STAT3 in different pituitary adenomas, in particular, growth hormone-producing adenomas and null cell adenomas. Furthermore, how STAT3 is involved in the cell proliferation and hormone regulation in pituitary adenomas and its potential role as a molecular therapeutic target in pituitary adenomas will be summarized.
Collapse
Affiliation(s)
- Cyndy Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Motoyasu Satou
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Luo K, Gao Y, Yin S, Yao Y, Yu H, Wang G, Li J. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomater 2021; 134:649-663. [PMID: 34289420 DOI: 10.1016/j.actbio.2021.07.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. Herein, a multifunctional nanocomplex was developed to simultaneously deliver paclitaxel (PTX) and STAT3 siRNA (siSTAT3) to inhibit tumor growth and prevent metastasis of breast cancer cells. PTX was encapsulated into the synthesized polyethyleneimine-polylactic acid-lipoic acid (PPL) micelle through hydrophobic interaction, while siSTAT3 was condensed onto polyethyleneimine through electrostatic interaction. The surface charge of the drug-loaded nanocomplex (siSTAT3PPLPTX) was then converted to negative by coating with hyaluronic acid (HA). The multifunctional nanocomplex (HA/siSTAT3PPLPTX) effectively entered CD44-overexpressed 4T1 cells via an active targeting mechanism. HA shell was degraded by the concentrated hyaluronidase in the endo/lysosome and the rapid drug release was triggered by the redox micro-environment of cytoplasm. Moreover, HA/siSTAT3PPLPTX showed enhanced cytotoxicity against tumor cells due to a synergistic effect of PTX and siSTAT3. The effective inhibition of tumor metastasis was confirmed by in vitro cell migration and invasion in 4T1 cells. More importantly, a superior antitumor efficacy was observed in orthotopic 4T1 tumor-bearing mice, with no side effects in major organs, and the lung metastasis was strongly inhibited in 4T1 metastasis model. In conclusion, the multifunctional nanocomplex provides a versatile platform for efficient treatment of metastatic cancer through tumor-targeted chemo-gene combined therapy. STATEMENT OF SIGNIFICANCE: Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. In this study, a multifunctional nanocomplex co-loaded with paclitaxel (PTX) and STAT3 siRNA was constructed and characterized. The co-delivery system exhibited active tumor targeting, effective endo/lysosomal escape, and rapid intracellular drug release. Both in vitro and in vivo studies indicated that the nanocomplex could lead to superior tumor growth inhibition, as well as metastasis suppression by silencing expression of STAT3 and p-STAT3. This present study implies that the nanocomplex could be a potential platform for targeted treatment of metastatic cancer through chemo-gene combined therapy.
Collapse
Affiliation(s)
- Kaipei Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Gao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Shaoping Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yawen Yao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
| | - Guangji Wang
- Center of Pharmacokinetics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Coker-Gurkan A, Can E, Sahin S, Obakan-Yerlikaya P, Arisan ED. Atiprimod triggered apoptotic cell death via acting on PERK/eIF2α/ATF4/CHOP and STAT3/NF-ΚB axis in MDA-MB-231 and MDA-MB-468 breast cancer cells. Mol Biol Rep 2021; 48:5233-5247. [PMID: 34244887 DOI: 10.1007/s11033-021-06528-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The constitutive activation of STAT3 through receptor tyrosine kinases triggered breast cancer cell growth and invasion-metastasis. Atiprimod impacts anti-proliferative, anti-carcinogenic effects in hepatocellular carcinoma, lymphoma, multiple myeloma via hindering the biological activity of STAT3. Dose-dependent atiprimod evokes first autophagy as a survival mechanism and then apoptosis due to prolonged ER stress in pituitary adenoma cells. The therapeutic efficiency and mechanistic action of atiprimod in breast cancer cells have not been investigated yet. Thus, we aimed to modulate the pivotal role of ER stress in atiprimod-triggered apoptosis in MDA-MB-231 and MDA-MB-468 breast cancer cells. RESULTS Dose- and time-dependent atiprimod treatment inhibits cell viability and colony formation in MDA-MB-468 and MDA-MB-231 breast cancer cells. A moderate dose of atiprimod (2 μM) inhibited STAT3 phosphorylation at Tyr705 residue and also suppressed the total expression level of p65. In addition, nuclear localization of STAT1, 3, and NF-κB was prevented by atiprimod exposure in MDA-MB-231 and MDA-MB-468 cells. Atiprimod evokes PERK, BiP, ATF-4, CHOP upregulation, and PERK (Thr980), eIF2α (Ser51) phosphorylation's. However, atiprimod suppressed IRE1α-mediated Atg-3, 5, 7, 12 protein expressions and no alteration was observed on Beclin-1, p62 expression levels. PERK/eIF2α/ATF4/CHOP axis pivotal role in atiprimod-mediated G1/S arrest and apoptosis via Bak, Bax, Bim, and PUMA upregulation in MDA-MB-468 cells. Moreover, atiprimod renders MDA-MB-231 more vulnerable to type I programmed cell death by plasmid-mediated increased STAT3 expression. CONCLUSION Atiprimod induced prolonged ER stress-mediated apoptosis via both activating PERK/eIF2α/ATF4/CHOP axis and suppressing STAT3/NF-κB transcription factors nuclear migration in TBNC cells.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Topkapı Campus, 34010, Istanbul, Turkey.
| | - Esin Can
- Department of Molecular Biology and Genetics, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Semanur Sahin
- Department of Molecular Biology and Genetics, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Biruni University, Topkapı Campus, 34010, Istanbul, Turkey
| | - Elif-Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
19
|
Farghadani R, Naidu R. Curcumin: Modulator of Key Molecular Signaling Pathways in Hormone-Independent Breast Cancer. Cancers (Basel) 2021; 13:cancers13143427. [PMID: 34298639 PMCID: PMC8307022 DOI: 10.3390/cancers13143427] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer remains the most commonly diagnosed cancer and the leading cause of cancer death among females worldwide. It is a highly heterogeneous disease, classified according to hormone and growth factor receptor expression. Patients with triple negative breast cancer (TNBC) (estrogen receptor-negative/progesterone receptor-negative/human epidermal growth factor receptor (HER2)-negative) and hormone-independent HER2 overexpressing subtypes still represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Thus, new alternative anticancer agents based on the use of natural products have been receiving enormous attention. In this regard, curcumin is a promising lead in cancer drug discovery due its ability to modulate a diverse range of molecular targets and signaling pathways. The current review has emphasized the underlying mechanism of curcumin anticancer action mediated through the modulation of PI3K/Akt/mTOR, JAK/STAT, MAPK, NF-ĸB, p53, Wnt/β-catenin, apoptosis, and cell cycle pathways in hormone-independent breast cancer, providing frameworks for future studies and insights to improve its efficiency in clinical practice. Abstract Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among women worldwide. Despite the overall successes in breast cancer therapy, hormone-independent HER2 negative breast cancer, also known as triple negative breast cancer (TNBC), lacking estrogens and progesterone receptors and with an excessive expression of human epidermal growth factor receptor 2 (HER2), along with the hormone-independent HER2 positive subtype, still remain major challenges in breast cancer treatment. Due to their poor prognoses, aggressive phenotype, and highly metastasis features, new alternative therapies have become an urgent clinical need. One of the most noteworthy phytochemicals, curcumin, has attracted enormous attention as a promising drug candidate in breast cancer prevention and treatment due to its multi-targeting effect. Curcumin interrupts major stages of tumorigenesis including cell proliferation, survival, angiogenesis, and metastasis in hormone-independent breast cancer through the modulation of multiple signaling pathways. The current review has highlighted the anticancer activity of curcumin in hormone-independent breast cancer via focusing on its impact on key signaling pathways including the PI3K/Akt/mTOR pathway, JAK/STAT pathway, MAPK pathway, NF-ĸB pathway, p53 pathway, and Wnt/β-catenin, as well as apoptotic and cell cycle pathways. Besides, its therapeutic implications in clinical trials are here presented.
Collapse
|
20
|
Li D, Lai W, Wang Q, Xiang Z, Nan X, Yang X, Fang Q. CD151 enrichment in exosomes of luminal androgen receptor breast cancer cell line contributes to cell invasion. Biochimie 2021; 189:65-75. [PMID: 34157361 DOI: 10.1016/j.biochi.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 02/03/2023]
Abstract
Breast cancer is the most common and highly heterogeneous disease in women worldwide. Given the challenges in the treatment of advanced metastatic breast cancer, it is necessary to understand the molecular mechanisms related to disease progression. Exosomes play various roles in the progression of tumors, including promoting the invasion and advancing the distant metastasis. To study the molecular mechanisms related to the progression of luminal androgen receptor (LAR) breast cancer, we first isolated exosomes of MDA-MB-453 cells, a representative cell line of LAR. Through quantitative proteomic analysis, we identified 180 proteins specifically enriched in exosomes after comparing with those in cells, microvesicles, and the 150K supernatant. Among these, CD151, a protein involved in the regulation of cell motility was the most enriched one. CD151-knockdown exosomes reduced the invasion ability of the recipient breast cancer cell and lowered the phosphorylation level of tyrosine-protein kinase Lck, indicating that the invasion of LAR breast cancer may be due to CD151-enriched exosomes. Our work reports for the first time that CD151 was highly abundant in the exosomes of MDA-MB-453 cells and expands the understanding of the development process of LAR subtype, suggesting CD151 may be a potential candidate for the treatment of LAR breast cancer.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenjia Lai
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Zhichu Xiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaohui Nan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoliang Yang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
21
|
Kreps LM, Addison CL. Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth. Int J Mol Sci 2021; 22:ijms22062911. [PMID: 33805598 PMCID: PMC7998601 DOI: 10.3390/ijms22062911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.
Collapse
Affiliation(s)
- Lauren M. Kreps
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-7700
| |
Collapse
|
22
|
Flores-Fernández R, Aponte-López A, Suárez-Arriaga MC, Gorocica-Rosete P, Pizaña-Venegas A, Chávez-Sanchéz L, Blanco-Favela F, Fuentes-Pananá EM, Chávez-Rueda AK. Prolactin Rescues Immature B Cells from Apoptosis-Induced BCR-Aggregation through STAT3, Bcl2a1a, Bcl2l2, and Birc5 in Lupus-Prone MRL/lpr Mice. Cells 2021; 10:cells10020316. [PMID: 33557010 PMCID: PMC7913714 DOI: 10.3390/cells10020316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022] Open
Abstract
Self-reactive immature B cells are eliminated through apoptosis by tolerance mechanisms, failing to eliminate these cells results in autoimmune diseases. Prolactin is known to rescue immature B cells from B cell receptor engagement-induced apoptosis in lupus-prone mice. The objective of this study was to characterize in vitro prolactin signaling in immature B cells, using sorting, PCR array, RT-PCR, flow cytometry, and chromatin immunoprecipitation. We found that all B cell maturation stages in bone marrow express the prolactin receptor long isoform, in both wild-type and MRL/lpr mice, but its expression increased only in the immature B cells of the latter, particularly at the onset of lupus. In these cells, activation of the prolactin receptor promoted STAT3 phosphorylation and upregulation of the antiapoptotic Bcl2a1a, Bcl2l2, and Birc5 genes. STAT3 binding to the promoter region of these genes was confirmed through chromatin immunoprecipitation. Furthermore, inhibitors of prolactin signaling and STAT3 activation abolished the prolactin rescue of self-engaged MRL/lpr immature B cells. These results support a mechanism in which prolactin participates in the emergence of lupus through the rescue of self-reactive immature B cell clones from central tolerance clonal deletion through the activation of STAT3 and transcriptional regulation of a complex network of genes related to apoptosis resistance.
Collapse
Affiliation(s)
- Rocio Flores-Fernández
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Angélica Aponte-López
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Mayra C. Suárez-Arriaga
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Patricia Gorocica-Rosete
- Departamento de Investigación en Bioquímica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosió Villegas”, Mexico City 14080, Mexico;
| | - Alberto Pizaña-Venegas
- Unidad de Investigación y Bioterio, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosió Villegas”, Mexico City 14080, Mexico;
| | - Luis Chávez-Sanchéz
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Francico Blanco-Favela
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Correspondence: or (E.M.F.-P.); or (A.K.C.-R.); Tel.: +52-5544349663 (E.M.F.-P.); +52-555627694 (A.K.C.-R.)
| | - Adriana K. Chávez-Rueda
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
- Correspondence: or (E.M.F.-P.); or (A.K.C.-R.); Tel.: +52-5544349663 (E.M.F.-P.); +52-555627694 (A.K.C.-R.)
| |
Collapse
|
23
|
Garg M, Shanmugam MK, Bhardwaj V, Goel A, Gupta R, Sharma A, Baligar P, Kumar AP, Goh BC, Wang L, Sethi G. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Med Res Rev 2020; 41:1291-1336. [PMID: 33289118 DOI: 10.1002/med.21761] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors, responsible for regulating cellular proliferation, cellular differentiation, migration, programmed cell death, inflammatory response, angiogenesis, and immune activation. In this review, we have discussed the classical regulation of STAT3 via diverse growth factors, cytokines, G-protein-coupled receptors, as well as toll-like receptors. We have also highlighted the potential role of noncoding RNAs in regulating STAT3 signaling. However, the deregulation of STAT3 signaling has been found to be associated with the initiation and progression of both solid and hematological malignancies. Additionally, hyperactivation of STAT3 signaling can maintain the cancer stem cell phenotype by modulating the tumor microenvironment, cellular metabolism, and immune responses to favor drug resistance and metastasis. Finally, we have also discussed several plausible ways to target oncogenic STAT3 signaling using various small molecules derived from natural products.
Collapse
Affiliation(s)
- Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vipul Bhardwaj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Akul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Arundhiti Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Health System, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
van Pul KM, Vuylsteke RJCLM, de Beijer MTA, van de Ven R, van den Tol MP, Stockmann HBAC, de Gruijl TD. Breast cancer-induced immune suppression in the sentinel lymph node is effectively countered by CpG-B in conjunction with inhibition of the JAK2/STAT3 pathway. J Immunother Cancer 2020; 8:jitc-2020-000761. [PMID: 33046620 PMCID: PMC7552844 DOI: 10.1136/jitc-2020-000761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We previously showed selectively hampered activation of lymph node-resident (LNR) dendritic cell (DC) subsets in the breast cancer (BrC) sentinel lymph node (SLN) to precede a state of profound T cell anergy. Reactivating these DC subsets by intratumoral delivery of the Toll-like receptor-9 (TLR9) agonist CpG-B could potentially offer a promising immune therapeutic strategy to combat this immune suppression and prevent disease spread. Unfortunately, CpG-B can limit its own immune stimulatory activity through direct TLR9-mediated activation of signal transducer and activator of transcription 3 (STAT3), pinpointed as a key regulator of immune suppression in the tumor microenvironment. Here, we have investigated whether in vitro exposure to CpG-B, with or without simultaneous inhibition of STAT3 signaling, could overcome immune suppression in BrC SLN. METHODS Immune modulatory effects of CpG-B (CPG7909) with or without the JAK2/STAT3 inhibitor (STAT3i) AG490 were assessed in ex vivo cultured BrC SLN-derived single-cell suspensions (N=29). Multiparameter flow cytometric analyses were conducted for DC and T cell subset characterization and assessment of (intracellular) cytokine profiles. T cell reactivity against the BrC-associated antigen Mammaglobin-A was determined by means of interferon-γ ELISPOT assay. RESULTS Although CpG-B alone induced activation of all DC subsets, combined inhibition of the JAK2/STAT3 pathway resulted in superior DC maturation (ie, increased CD83 expression), with most profound activation and maturation of LNR DC subsets. Furthermore, combined CpG-B and JAK2/STAT3 inhibition promoted Th1 skewing by counterbalancing the CpG-induced Th2/regulatory T cell response and significantly enhanced Mammaglobin-A specific T cell reactivity. CONCLUSION Ex vivo immune modulation of the SLN by CpG-B and simultaneous JAK2/STAT3 inhibition can effectively overcome BrC-induced immune suppression by preferential activation of LNR DC, ultimately restoring type 1-mediated antitumor immunity, thereby securing a BrC-specific T cell response. These findings provide a clear rationale for clinical exploration of SLN-immune potentiation through local CpG/STAT3i administration in patients with BrC.
Collapse
Affiliation(s)
- Kim M van Pul
- Medical Oncology-Cancer Center Amsterdam, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands.,Surgical Oncology, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands
| | | | - Monique T A de Beijer
- Medical Oncology-Cancer Center Amsterdam, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Medical Oncology and Otolaryngology-Head and Neck Surgery-Cancer Center Amsterdam, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands
| | | | | | - Tanja D de Gruijl
- Medical Oncology-Cancer Center Amsterdam, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Nilsson L, Sandén E, Khazaei S, Tryggvadottir H, Nodin B, Jirström K, Borgquist S, Isaksson K, Jernström H. Patient Characteristics Influence Activated Signal Transducer and Activator of Transcription 3 (STAT3) Levels in Primary Breast Cancer-Impact on Prognosis. Front Oncol 2020; 10:1278. [PMID: 32850390 PMCID: PMC7403202 DOI: 10.3389/fonc.2020.01278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Activated signal transducer and activator of transcription 3 (pSTAT3) is often present in breast cancer, but its prognostic impact is still unclear. We investigated how breast tumor-specific pSTAT3Y705 levels are associated with patient and tumor characteristics and risk of recurrence. Materials and Methods: Primary breast cancer patients without preoperative treatment were included preoperatively. The patients were treated in Lund, Sweden, in 2002–2012 and followed until 2016. Levels of pSTAT3Y705 were evaluated in 867 tumors using tissue microarrays with immunohistochemistry and categorized according to the H-score as negative (0–9; 24.2%), intermediate (10–150; 69.9%), and high (160–300; 5.9%). Results: Patients were followed for up to 13 years, and 137 recurrences (88 distant) were recorded. Higher pSTAT3Y705 levels were associated with patient characteristics including younger age, any alcohol consumption, higher age at first child birth, and smaller body size, as well as tumor characteristics including smaller tumor size, lower histological grade, lymph node negativity, progesterone receptor positivity, and HER2 negativity (all Ptrends ≤ 0.04). Higher pSTAT3Y705 levels were associated with lower risk of early recurrences (LogRank Ptrend = 0.10; 5-year LogRank Ptrend = 0.004) and distant metastases (LogRank Ptrend = 0.045; 5-year LogRank Ptrend = 0.0007), but this was not significant in the multivariable models. There was significant effect modification between tamoxifen treatment and pSTAT3Y705 negativity on the recurrence risk in chemonaïve patients with estrogen receptor positive tumors [adjusted hazard ratio (HR) 0.38; Pinteraction = 0.046]. Conclusion: Higher pSTAT3Y705 levels were associated with several patient and tumor characteristics that are mainly associated with good prognosis and a tendency toward lower risk for early recurrences. In the future, these results may help guide the selection of patients for trials with drugs targeting the STAT3 pathway.
Collapse
Affiliation(s)
- Linn Nilsson
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden.,Department of Medical Physics and Engineering, Växjö Central Hospital, Växjö, Sweden.,Department of Research and Development, Region Kronoberg, Växjö, Sweden
| | - Emma Sandén
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Somayeh Khazaei
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Helga Tryggvadottir
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden.,Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Karolin Isaksson
- Department of Clinical Sciences in Lund, Surgery, Lund University, Lund, Sweden.,Department of Surgery, Central Hospital Kristianstad, Kristianstad, Sweden
| | - Helena Jernström
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
26
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
27
|
Kim BH, Lee H, Park CG, Jeong AJ, Lee SH, Noh KH, Park JB, Lee CG, Paek SH, Kim H, Ye SK. STAT3 Inhibitor ODZ10117 Suppresses Glioblastoma Malignancy and Prolongs Survival in a Glioblastoma Xenograft Model. Cells 2020; 9:cells9030722. [PMID: 32183406 PMCID: PMC7140655 DOI: 10.3390/cells9030722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Constitutively activated STAT3 plays an essential role in the initiation, progression, maintenance, malignancy, and drug resistance of cancer, including glioblastoma, suggesting that STAT3 is a potential therapeutic target for cancer therapy. We recently identified ODZ10117 as a small molecule inhibitor of STAT3 and suggested that it may have an effective therapeutic utility for the STAT3-targeted cancer therapy. Here, we demonstrated the therapeutic efficacy of ODZ10117 in glioblastoma by targeting STAT3. ODZ10117 inhibited migration and invasion and induced apoptotic cell death by targeting STAT3 in glioblastoma cells and patient-derived primary glioblastoma cells. In addition, ODZ10117 suppressed stem cell properties in glioma stem cells (GSCs). Finally, the administration of ODZ10117 showed significant therapeutic efficacy in mouse xenograft models of GSCs and glioblastoma cells. Collectively, ODZ10117 is a promising therapeutic candidate for glioblastoma by targeting STAT3.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
- CYTUS H&B Corporation, Cheongju 28159, Korea;
| | - Haeri Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Cheol Gyu Park
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (H.K.)
| | - Ae Jin Jeong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Song-Hee Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kum Hee Noh
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
| | | | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (H.K.)
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea; (B.-H.K.); (H.L.); (A.J.J.); (S.-H.L.); (K.H.N.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8281; Fax: +82-2-745-7996
| |
Collapse
|
28
|
Qin J, Shen X, Zhang J, Jia D. Allosteric inhibitors of the STAT3 signaling pathway. Eur J Med Chem 2020; 190:112122. [DOI: 10.1016/j.ejmech.2020.112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 01/13/2023]
|
29
|
Hahm ER, Lee J, Abella T, Singh SV. Withaferin A inhibits expression of ataxia telangiectasia and Rad3-related kinase and enhances sensitivity of human breast cancer cells to cisplatin. Mol Carcinog 2019; 58:2139-2148. [PMID: 31441116 DOI: 10.1002/mc.23104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) is a serine/threonine-specific kinase that plays an important role in the maintenance of genomic integrity. In this study, we investigated the role of ATR in cell-cycle arrest by withaferin A (WA), a cancer preventative steroidal lactone derived from Withania somnifera plant abundant in India and surrounding countries. The WA treatment decreased the viability of MCF-7, MDA-MB-231, and SUM159 cells. Exposure of breast cancer cells to WA also resulted in suppression of protein level as well as phosphorylation of ATR and its downstream effector kinase (checkpoint kinase 1; CHK1). Both transcriptional and posttranscriptional mechanisms were involved in the WA-mediated downregulation of ATR protein. Downregulation of ATR protein expression resulting from WA exposure was not attenuated by overexpression of manganese superoxide dismutase. In contrast, the overexpression of CHK1 attenuated WA-mediated G2 /M arrest and augmented S10 phosphorylation of histone H3, a marker of mitotic arrest. The protein level of ATR was lowered by about 50% in breast tumors of WA-treated mouse mammary tumor virus-neu mice when compared with vehicle-treated controls but the difference was not significant due to small sample size. WA treatment sensitized MDA-MB-231 and SUM159 cells to growth inhibition and apoptosis induction by cisplatin. Cisplatin treatment resulted in increased autophosphorylation of ATR (T1989) and CHK1 (S345) phosphorylation that was markedly suppressed in the presence of WA. These results indicate that WA is an inhibitor of ATR in human breast cancer cells.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju, South Korea
| | - Terric Abella
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Dovitinib Triggers Apoptosis and Autophagic Cell Death by Targeting SHP-1/ p-STAT3 Signaling in Human Breast Cancers. JOURNAL OF ONCOLOGY 2019; 2019:2024648. [PMID: 31485222 PMCID: PMC6710795 DOI: 10.1155/2019/2024648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/29/2019] [Indexed: 01/13/2023]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. The rising incidence rate and female mortality make it a significant public health concern in recent years. Dovitinib is a novel multitarget receptor tyrosine kinase inhibitor, which has been enrolled in several clinical trials in different cancers. However, its antitumor efficacy has not been well determined in breast cancers. Our results demonstrated that dovitinib showed significant antitumor activity in human breast cancer cell lines with dose- and time-dependent manners. Downregulation of phosphor-(p)-STAT3 and its subsequent effectors Mcl-1 and cyclin D1 was responsible for this drug effect. Ectopic expression of STAT3 rescued the breast cancer cells from cell apoptosis induced by dovitinib. Moreover, SHP-1 inhibitor reversed the downregulation of p-STAT3 induced by dovitinib, indicating that SHP-1 mediated the STAT3 inhibition effect of dovitinib. In addition to apoptosis, we found for the first time that dovitinib also activated autophagy to promote cell death in breast cancer cells. In conclusion, dovitinib induced both apoptosis and autophagy to block the growth of breast cancer cells by regulating the SHP-1-dependent STAT3 inhibition.
Collapse
|
31
|
Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Sci Rep 2019; 9:9474. [PMID: 31263160 PMCID: PMC6603007 DOI: 10.1038/s41598-019-45905-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
C-phycocyanin (C-PC) pigment, as a natural blue dye, has particular applications in various fields. It is a water-soluble protein which has anticancer, antioxidant and anti-inflammatory properties. Here, we introduce an efficient procedure for the purification of C-PC pigment, followed by conducting a comprehensive investigation of its cytotoxic effects on human breast cancer (MCF-7) cells and the underlying mechanisms. A novel four-step purification procedure including the adsorption of impurities with chitosan, activated charcoal, ammonium sulfate precipitation, and ion exchange chromatography was employed, achieving a high purity form of C-PC with purity index (PI) of 5.26. SDS-PAGE analysis showed the purified C-PC with two discrete bands, subunit α (17 kD) and β (20 kD), as confirmed its identity by Native-PAGE. A highly purified C-PC was employed to evaluate its anticancer activity and underlying molecular mechanisms of action. The inhibitory effects of highly purified C-PC on the proliferation of human breast cancer cells (MCF-7) have detected by MTT assay. The IC50 values for 24, 48, and 72 hours of exposure to C-PC were determined to be 5.92, 5.66, and 4.52 μg/μl, respectively. Flow cytometric analysis of cells treated with C-PC, by Annexin V/PI double staining, demonstrated to induce MCF-7 cells apoptosis. Also, the results obtained from propidium iodide (PI) staining showed that MCF-7 cells treated with 5.92 μg/μl C-PC for 24 h would arrest at the G2 phase and 5.66 and 4.52 μg/μl C-PC for 48 and 72 h could induce cell cycle arrest at both G2 and S phases. The oxidative damage and mitochondrial dysfunction were evaluated to determine the possible pathways involved in C-PC-induced apoptosis in MCF-7 cells. Our findings clearly indicated that the treatment of MCF-7 cells with C-PC (IC50 for 24 h) increased the production of reactive oxygen species (ROS). Consequently, an increase in the lipid peroxidation (LPO) level and a reduction in the ATP level, mitochondrial membrane potential (MMP), glutathione (GSH) and its oxidized form (GSSG), occurred over time. The reduced expression levels of anti-apoptotic proteins, Bcl2 and Stat3, plus cell cycle regulator protein, Cyclin D1, using Real-Time PCR confirm that the C-PC-induced death of MCF-7 human breast cancer cells occurred through the mitochondrial pathway of apoptosis. Collectively, the analyses presented here suggest that C-PC has the potential so that to develop it as a chemotherapeutic anticancer drug.
Collapse
|
32
|
Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:195. [PMID: 31088482 PMCID: PMC6518732 DOI: 10.1186/s13046-019-1206-z] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Triple negative breast cancer (TNBC), which is typically lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), represents the most aggressive and mortal subtype of breast cancer. Currently, only a few treatment options are available for TNBC due to the absence of molecular targets, which underscores the need for developing novel therapeutic and preventive approaches for this disease. Recent evidence from clinical trials and preclinical studies has demonstrated a pivotal role of signal transducer and activator of transcription 3 (STAT3) in the initiation, progression, metastasis, and immune evasion of TNBC. STAT3 is overexpressed and constitutively activated in TNBC cells and contributes to cell survival, proliferation, cell cycle progression, anti-apoptosis, migration, invasion, angiogenesis, chemoresistance, immunosuppression, and stem cells self-renewal and differentiation by regulating the expression of its downstream target genes. STAT3 small molecule inhibitors have been developed and shown excellent anticancer activities in in vitro and in vivo models of TNBC. This review discusses the recent advances in the understanding of STAT3, with a focus on STAT3’s oncogenic role in TNBC. The current targeting strategies and representative small molecule inhibitors of STAT3 are highlighted. We also propose potential strategies that can be further examined for developing more specific and effective inhibitors for TNBC prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Li Yan
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia Zhang
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai, 200433, China. .,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
33
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
34
|
Radenkovic S, Konjevic G, Gavrilovic D, Stojanovic-Rundic S, Plesinac-Karapandzic V, Stevanovic P, Jurisic V. pSTAT3 expression associated with survival and mammographic density of breast cancer patients. Pathol Res Pract 2018; 215:366-372. [PMID: 30598340 DOI: 10.1016/j.prp.2018.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/01/2018] [Accepted: 12/24/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Constitutive activation of STAT3 have been shown in several tumor types including breast cancer. We investigate STAT3 expresion as possible molecular marker for breast cancer early detection, as well as prognostic factor for determination of tumor agressiveness. METHODS In this study we measure p(Y705)STAT3 expression in tumor and adjacent tissue of breast cancer patients by Western blot. For relapse-free survival (RFS) and overall survival (OS) we used Log-Rank test. RESULTS We show that average expression of p (Y705) STAT3 in tumor tissue is higher compared to adjacent tissue. Moreover, we found that patients with HER2 positive receptors had significantly higher pSTAT3 expression compared to HER2 negative patients. We showed that patients with high mammographic density had significantly higher tumor expression of pSTAT3 compared to patients with low mammographic density. Also, we show that pSTAT3 expression correlates with longer RFS in the entire group of patients, as well as in the group of ER positive, in lymph node positive and in older group of breast cancer patients (with age over 50). Furthermore, in the entire group of patients, in ER positive, in lymph node positive and in older group of patient, high expression of pSTAT3 showed a better survival than low expression of pSTAT3. CONCLUSION Considering that the expression of pSTAT3 is associated with longer RFS and survival, it can be used as prognostic tools for determination of group of breast cancer patients with low-risk.
Collapse
Affiliation(s)
- Sandra Radenkovic
- Institute of Oncology and Radiology of Serbia, Department of Radiation Oncology and Diagnostics, Belgrade, Serbia
| | - Gordana Konjevic
- Institute of Oncology and Radiology of Serbia, Department of Radiation Oncology and Diagnostics, Belgrade, Serbia; Institute of Oncology and Radiology of Serbia, Department of Experimental Oncology, Serbia
| | - Dusica Gavrilovic
- Institute of Oncology and Radiology of Serbia, Department of Radiation Oncology and Diagnostics, Belgrade, Serbia
| | | | | | | | - Vladimir Jurisic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
35
|
El Sayed I, Helmy MW, El-Abhar HS. Inhibition of SRC/FAK cue: A novel pathway for the synergistic effect of rosuvastatin on the anti-cancer effect of dasatinib in hepatocellular carcinoma. Life Sci 2018; 213:248-257. [PMID: 30292831 DOI: 10.1016/j.lfs.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Statins extended their hypocholestremic effect to show a promising anticancer activity. Hepatocellular carcinoma (HCC), the third common cause of cancer-related death, responded positively to statins. Some in-vitro studies reveal the rosuvastatin antitumor effect, but barely in-vivo studies. Hence, we evaluated the antitumor potential of rosuvastatin in a HCC model, the possible signaling cues involved, and whether it augments the dasatinib anticancer effect. METHOD For the in-vitro study, the IC50 and the combination (CI)/dose reduction (DRI) indices were determined for HCC cell line (HepG2) treated with dasatinib and/or rosuvastatin. For the in-vivo study, mice with diethylnitrosamine-induced HCC were treated for 21 days with dasatinib and/or rosuvastatin (10 and 20 mg/kg, respectively). The p-focal adhesion kinase/p-rous sarcoma oncogene cellular homolog (p-FAK/p-Src) cascade and its downstream molecules were assessed. RESULTS The in-vitro study confirmed the synergistic effect of rosuvastatin with dasatinib, which entailed the in-vivo results. The two drugs decreased the p-FAK/p-Src cue along with p-Ras/c-Raf, p-STAT-3, and p-Akt levels to enhance apoptosis by an increase in caspase-3 level and a decline in survivin level. Additionally, they inhibited HGF, VEGF, and the MMP-9. Moreover, the different treatments downregulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. The best effect was mediated by the combination regimen that surpassed the effect of either drug alone. CONCLUSION Our results highlighted some of the signals involved in rosuvastatin antitumor effect and nominate it as an adds-on therapy with dasatinib to yield a better effect in HCC through inhibiting the FAK/Src cascade.
Collapse
Affiliation(s)
- Ibrahim El Sayed
- Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, El-Bahira, Egypt.
| | - Hanan S El-Abhar
- Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
36
|
Down-regulation of cathepsin S and matrix metalloproteinase-9 via Src, a non-receptor tyrosine kinase, suppresses triple-negative breast cancer growth and metastasis. Exp Mol Med 2018; 50:1-14. [PMID: 30185799 PMCID: PMC6123788 DOI: 10.1038/s12276-018-0135-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic breast cancer with poor prognosis. In the present study, we demonstrated that Src, a non-receptor tyrosine kinase, might provide an effective therapeutic strategy to overcome TNBC invasion and metastasis, which are mediated via the synergistic action of the lysosomal enzyme cathepsin S (CTSS) and gelatinase MMP-9. Knock-down of MMP-9 and CTSS using siRNAs resulted in a synergistic suppression of MDA-MB-231 cell invasion, which was similarly observed with pharmacological inhibitors. During the screening of new drug candidates that suppress both CTSS and MMP-9, BJ-2302, a novel 7-azaindolin-2-one derivative, was discovered. Src, an upstream activator of both pathways (PI3K/Akt and Ras/Raf/ERK) responsible for the expression of CTSS and MMP-9, was identified as a high-affinity target of BJ-2302 (IC90: 3.23 µM) through a Src kinase assay and a drug affinity responsive target stability (DARTS) assay. BJ-2302 effectively suppressed MDA-MB-231 cell invasion (Matrigel invasion assay) and metastasis (chorioallantoic membrane assay xenografted with MDA-MB-231-luc2-tdTomato cancer cells). Unlike Z-FL-COCHO (potent CTSS inhibitor), BJ-2302 did not induce any cytotoxicity in MCF-10A normal breast epithelial cells. Additionally, BJ-2302 (1 mg/kg) strongly suppressed TNBC cell proliferation in vitro and tumor growth in a xenograft mouse tumor model. The anti-metastatic and anti-tumor effects of BJ-2302 were superior to those of Z-FL-COCHO (1 mg/kg) or batimastat (30 mg/kg), a pan-MMP inhibitor. In summary, inhibition of Src kinase suppressed TNBC tumor growth and metastasis, and Src inhibitors such as BJ-2302 may constitute a novel therapeutic tool to treat breast cancer that expresses high levels of CTSS and MMP-9.
Collapse
|
37
|
Small-molecule compounds targeting the STAT3 DNA-binding domain suppress survival of cisplatin-resistant human ovarian cancer cells by inducing apoptosis. Eur J Med Chem 2018; 157:887-897. [DOI: 10.1016/j.ejmech.2018.08.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 08/12/2018] [Indexed: 12/24/2022]
|
38
|
The transcriptome of human mammary epithelial cells infected with the HCMV-DB strain displays oncogenic traits. Sci Rep 2018; 8:12574. [PMID: 30135434 PMCID: PMC6105607 DOI: 10.1038/s41598-018-30109-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that human cytomegalovirus (HCMV) populations under the influence of host environment, can either be stable or rapidly differentiating, leading to tissue compartment colonization. We isolated previously from a 30-years old pregnant woman, a clinical isolate of HCMV, that we refered to as the HCMV-DB strain (accession number KT959235). The HCMV-DB clinical isolate demonstrated its ability to infect primary macrophages and to upregulate the proto-oncogene Bcl-3. We observed in this study that the genome of HCMV-DB strain is close to the genomes of other primary clinical isolates including the Toledo and the JP strains with the later having been isolated from a glandular tissue, the prostate. Using a phylogenetic analysis to compare the genes involved in virus entry, we observed that the HCMV-DB strain is close to the HCMV strain Merlin, the prototype HCMV strain. HCMV-DB infects human mammary epithelial cells (HMECs) which in turn display a ER−/PR−/HER2− phenotype, commonly refered to as triple negative. The transcriptome of HCMV-DB-infected HMECs presents the characteristics of a pro-oncogenic cellular environment with upregulated expression of numerous oncogenes, enhanced activation of pro-survival genes, and upregulated markers of cell proliferation, stemcellness and epithelial mesenchymal transition (EMT) that was confirmed by enhanced cellular proliferation and tumorsphere formation in vitro. Taken together our data indicate that some clinical isolates could be well adapted to the mammary tissue environment, as it is the case for the HCMV-DB strain. This could influence the viral fitness, ultimately leading to breast cancer development.
Collapse
|
39
|
Chen G, Wang Y, Wu P, Zhou Y, Yu F, Zhu C, Li Z, Hang Y, Wang K, Li J, Sun M, Oupicky D. Reversibly Stabilized Polycation Nanoparticles for Combination Treatment of Early- and Late-Stage Metastatic Breast Cancer. ACS NANO 2018; 12:6620-6636. [PMID: 29985577 DOI: 10.1021/acsnano.8b01482] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metastatic breast cancer is a major cause of cancer-related female mortality worldwide. The signal transducer and activator of transcription 3 (STAT3) and the chemokine receptor CXCR4 are involved in the metastatic spread of breast cancer. The goal of this study was to develop nanomedicine treatment based on combined inhibition of STAT3 and CXCR4. We synthesized a library of CXCR4-inhibiting polymers with a combination of beneficial features that included PEGylation, fluorination, and bioreducibility to achieve systemic delivery of siRNA to silence STAT3 expression in the tumors. An in vivo structure-activity relationship study in an experimental lung metastasis model revealed superior antimetastatic activity of bioreducible fluorinated polyplexes when compared with nonreducible controls despite similar CXCR4 antagonism and the ability to inhibit in vitro cancer cell invasion. When compared with nonreducible and nonfluorinated polyplexes, improved siRNA delivery was observed with the bioreducible fluorinated polyplexes. The improvement was ascribed to a combination of enhanced physical stability, decreased serum destabilization, and improved intracellular trafficking. Pharmacokinetic analysis showed that fluorination decreased the rate of renal clearance of the polyplexes and contributed to enhanced accumulation in the tumors. Therapeutic efficacy of the polyplexes with STAT3 siRNA was assessed in early stage breast cancer and late-stage metastatic breast cancer with primary tumor resection. Strong inhibition of the primary tumor growth and pronounced antimetastatic effects were observed in both models of metastatic breast cancer. Mechanistic studies revealed multifaceted mechanism of action of the combined STAT3 and CXCR4 inhibition by the developed polyplexes relying both on local and systemic effects.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Yixin Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Pengkai Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Yiwen Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Chenfei Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Zhaoting Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Kaikai Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - David Oupicky
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
40
|
Runx1-Stat3 signaling regulates the epithelial stem cells in continuously growing incisors. Sci Rep 2018; 8:10906. [PMID: 30026553 PMCID: PMC6053438 DOI: 10.1038/s41598-018-29317-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/09/2018] [Indexed: 11/08/2022] Open
Abstract
Rodent incisors grow permanently and the homeostasis of enamel production is maintained by a continuous supply of epithelial progenitors from putative stem cells in the cervical loop. We herein report that Runx1 regulates the Lgr5-expressing epithelial stem cells and their subsequent continuous differentiation into ameloblasts. Mice deficient in epithelial Runx1 demonstrate remarkable shortening of the incisors with underdevelopment of the cervical loop and enamel defects. In this mutant cervical loop, the proliferation of the dental epithelium was significantly disturbed and the expression of Lgr5 and enamel matrix proteins was remarkably downregulated. Interestingly, the expression of Socs3, an inhibitor of Stat3 signaling, was upregulated and Stat3 phosphorylation was suppressed specifically in the mutant cervical loop. The expression of Lgr5 and the enamel matrix protein in the wild-type incisor germs is disturbed by pharmaceutical Stat3 inhibition in vitro., of. Conversely, pharmaceutical activation of Stat3 rescues the defective phenotypes of the Runx1 mutant with upregulated Lgr5 and enamel matrix protein genes. The present results provide the first evidence of the role of Runx1 regulates the Lgr5-expressing epithelial stem cells and differentiation of ameloblast progenitors in the developing incisors. Our study also demonstrates that Stat3 modulates the Runx1-Lgr5 axis in the cervical loop.
Collapse
|
41
|
Tescalcin/c-Src/IGF1Rβ-mediated STAT3 activation enhances cancer stemness and radioresistant properties through ALDH1. Sci Rep 2018; 8:10711. [PMID: 30013043 PMCID: PMC6048049 DOI: 10.1038/s41598-018-29142-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Tescalcin (TESC; also known as calcineurin B homologous protein 3, CHP3) has recently reported as a regulator of cancer progression. Here, we showed that the elevation of TESC in non-small cell lung cancer (NSCLC) intensifies epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties, consequently enhancing the cellular resistance to γ-radiation. TESC expression and the phosphorylation (consequent activation) of signal transducer and activator of transcription 3 (STAT3) were upregulated in CSC-like ALDH1high cells than in ALDH1low cells sorted from A549 NSCLC cells. Knockdown of TESC suppressed CSC-like properties as well as STAT3 activation through inhibition of insulin-like growth factor 1 receptor (IGF1R), a major signaling pathway of lung cancer stem cells. TESC activated IGF1R by the direct recruitment of proto-oncogene tyrosine kinase c-Src (c-Src) to IGF1Rβ complex. Treatment of IGF1R inhibitor, AG1024, also suppressed c-Src activation, implicating that TESC mediates the mutual activation of c-Src and IGF1R. STAT3 activation by TESC/c-Src/IGF1R signaling pathway subsequently upregulated ALDH1 expression, which enhanced EMT-associated CSC-like properties. Chromatin immunoprecipitation and luciferase assay demonstrated that STAT3 is a potential transcription activator of ALDH1 isozymes. Ultimately, targeting TESC can be a potential strategy to overcome therapeutic resistance in NSCLC caused by augmented EMT and self-renewal capacity.
Collapse
|
42
|
Kumar A, Tripathy MK, Pasquereau S, Al Moussawi F, Abbas W, Coquard L, Khan KA, Russo L, Algros MP, Valmary-Degano S, Adotevi O, Morot-Bizot S, Herbein G. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018; 30:167-183. [PMID: 29628341 PMCID: PMC5952350 DOI: 10.1016/j.ebiom.2018.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods The infectivity of primary human mammary epithelial cells (HMECs) was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3) was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs) were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG) mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9) gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma (NSG) mice resulted in the development of tumors. We detected in CTH cells the presence of a HCMV signature corresponding to a sequence of the long noncoding RNA4.9 (lncRNA4.9) gene. We also found the presence of the HCMV lncRNA4.9 sequence in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer using qualitative and quantitative PCR. Conclusions Our data indicate that key molecular pathways involved in oncogenesis are activated in HCMV-DB-infected HMECs that ultimately results in the transformation of HMECs in vitro with the appearance of CMV-transformed HMECs (CTH cells) in culture. CTH cells display a HCMV signature corresponding to a lncRNA4.9 genomic sequence and give rise to fast growing triple-negative tumors in NSG mice. A similar lncRNA4.9 genomic sequence was detected in tumor biopsies of patients with breast cancer. The infection of primary human mammary epithelial cells (HMECs) with the HCMV-DB strain results in a pro-oncogenic cellular environment. HCMV-DB transforms primary HMECs in vitro as measured by a soft agar assay. Prolonged culture of HMECs infected with HCMV-DB results in the appearance of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma mice resulted in the development of breast tumor. The HCMV lncRNA4.9 sequence was detected in CTH cells, in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer.
Research in Context: Worldwide breast cancer is the most common cancer diagnosed among women. Etiological factors involved in breast cancer include genetic and environmental risk factors and among these latter viruses could be involved with close to one-fifth of all cancers in the world caused by infectious agents. We found that the cytomegalovirus strain DB, a member of the herpesvirus family, activates oncogenic pathways in infected mammary epithelial cells, transforms these cells in culture and favors the appearance of tumors in xenografted mice. Our findings might lead to a better understanding of the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Manoj Kumar Tripathy
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France.
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Lebanese University, Beyrouth, Lebanon
| | | | - Laurie Coquard
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Kashif Aziz Khan
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon, F-25030 Besançon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, University of Bourgogne Franche-Comté, Besançon, France; Department of Medical Oncology, CHRU Besancon, F-25030 Besancon, France.
| | | | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Department of Virology, CHRU Besancon, F-25030 Besancon, France.
| |
Collapse
|
43
|
Yen CS, Choy CS, Huang WJ, Huang SW, Lai PY, Yu MC, Shiue C, Hsu YF, Hsu MJ. A Novel Hydroxamate-Based Compound WMJ-J-09 Causes Head and Neck Squamous Cell Carcinoma Cell Death via LKB1-AMPK-p38MAPK-p63-Survivin Cascade. Front Pharmacol 2018; 9:167. [PMID: 29545751 PMCID: PMC5837967 DOI: 10.3389/fphar.2018.00167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/15/2018] [Indexed: 01/04/2023] Open
Abstract
Growing evidence shows that hydroxamate-based compounds exhibit broad-spectrum pharmacological properties including anti-tumor activity. However, the precise mechanisms underlying hydroxamate derivative-induced cancer cell death remain incomplete understood. In this study, we explored the anti-tumor mechanisms of a novel aliphatic hydroxamate-based compound, WMJ-J-09, in FaDu head and neck squamous cell carcinoma (HNSCC) cells. WMJ-J-09 induced G2/M cell cycle arrest and apoptosis in FaDu cells. These actions were associated with liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38MAPK) activation, transcription factor p63 phosphorylation, as well as modulation of p21 and survivin. LKB1-AMPK-p38MAPK signaling blockade reduced WMJ-J-09’s enhancing effects in p63 phosphorylation, p21 elevation and survivin reduction. Moreover, WMJ-J-09 caused an increase in α-tubulin acetylation and interfered with microtubule assembly. Furthermore, WMJ-J-09 suppressed the growth of subcutaneous FaDu xenografts in vivo. Taken together, WMJ-J-09-induced FaDu cell death may involve LKB1-AMPK-p38MAPK-p63-survivin signaling cascade. HDACs inhibition and disruption of microtubule assembly may also contribute to WMJ-J-09’s actions in FaDu cells. This study suggests that WMJ-J-09 may be a potential lead compound and warrant the clinical development in the treatment of HNSCC.
Collapse
Affiliation(s)
- Chia-Sheng Yen
- Department of General Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheuk-Sing Choy
- Department of Emergency, Min-Sheng General Hospital, Taoyuan, Taiwan.,Department of Community Medicine, En Chu Kong Hospital, New Taipei, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Wen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pin-Ye Lai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chieh Yu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching Shiue
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
44
|
Leehy KA, Truong TH, Mauro LJ, Lange CA. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 2018; 176:88-93. [PMID: 28442393 PMCID: PMC5653461 DOI: 10.1016/j.jsbmb.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies.
Collapse
Affiliation(s)
- Katherine A Leehy
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Thu H Truong
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Laura J Mauro
- Department of Animal Sciences, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Carol A Lange
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States.
| |
Collapse
|
45
|
Dihydroartemisinin suppresses STAT3 signaling and Mcl-1 and Survivin expression to potentiate ABT-263-induced apoptosis in Non-small Cell Lung Cancer cells harboring EGFR or RAS mutation. Biochem Pharmacol 2018; 150:72-85. [PMID: 29360439 DOI: 10.1016/j.bcp.2018.01.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common malignancy worldwide. A significant fraction of NSCLC carries activating mutations in epidermal growth factor receptor (EGFR) or RAS oncogene. Dihydroartemisinin (DHA) is a semisynthetic derivative of the herbal antimalarial drug artemisinin that has been recently reported to exhibit anti-cancer activity. To develop new therapeutic strategies for NSCLC, we investigated the interactions between DHA and ABT-263 in NSCLC cells harboring EGFR or RAS mutation. Our data indicated that DHA synergized with ABT-263 to trigger Bax-dependent apoptosis in NSCLC cells in culture. DHA treatment antagonized ABT-263-induced Mcl-1 upregulation and sensitized NSCLC cells to ABT-263-triggered apoptosis. Additionally, DHA treatment caused downregulation of Survivin and upregulation of Bim, which also contribute to cotreatment-induced cytotoxicity. Moreover, DHA effectively suppressed STAT3 phosphorylation, and STAT3 inactivation resulted in the downregulation of Mcl-1 and Survivin, functioning to enhance ABT-263-induced cytotoxicity. Finally, cotreatment of DHA and ABT-263 significantly inhibited xenograft growth in nude mice. Together, DHA effectively inhibits STAT3 activity and modulates expression of Mcl-1, Survivin and Bim, thereby synergizing with ABT-263 to trigger apoptosis in NSCLC cells harboring EGFR or RAS mutation. Our data provide a novel therapeutic strategy for EGFR or RAS mutant NSCLC treatment.
Collapse
|
46
|
Liu X, Chen B, You W, Xue S, Qin H, Jiang H. The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett 2018; 412:194-207. [PMID: 29074425 DOI: 10.1016/j.canlet.2017.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/01/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022]
|
47
|
Capra J, Eskelinen S. Correlation between E-cadherin interactions, survivin expression, and apoptosis in MDCK and ts-Src MDCK cell culture models. J Transl Med 2017; 97:1453-1470. [PMID: 28892098 DOI: 10.1038/labinvest.2017.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Survivin, a member of inhibitor of apoptosis (IAP) protein family, is a multifunctional protein expressed in most cancers. In addition to inhibition of apoptosis, it regulates proliferation and promotes migration. Its presence and function in cells is strongly regulated via transcription factors, intracellular localization, and degradation. We analyzed the presence of survivin at protein level in various culture environments and under activation of Src tyrosine kinase in epithelial canine kidney MDCK cells in order to elucidate factors controlling survivin 'lifespan'. We used untransformed and temperature sensitive ts-Src MDCK cells as a model and forced them to grow in suspension (1D), in 2D on hard and soft surfaces and in soft 3D Matrigel environment with or without EGTA. In addition, we tested the effect of stressful conditions by cultivating the cells in the presence of an anti-cancer drug and a generator of reactive oxygen species (ROS), piperlongumine (PL) with or without an antioxidant, N-acetylcysteine (NAC). We could confirm that inhibition of apoptosis and simultaneous downregulation of survivin in MDCK cells required both intact cell-cell junctions, trans-interactions of E-cadherin and soft 3D matrix environment. In ts-Src-transformed MDCK cells, survivin was upregulated as soon as the cell-cell junctions were disintegrated. ROS generation with PL-induced cell death of ts-Src MDCK cells concomitantly with survivin downregulation. NAC rescued the ts-Src MDCK cells from ROS-induced apoptosis without upregulation of survivin resulting in a situation resembling untransformed MDCK cells in 3D environment and E-cadherin delineating the lateral cell walls.
Collapse
Affiliation(s)
- Janne Capra
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Sinikka Eskelinen
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| |
Collapse
|
48
|
Velloso FJ, Bianco AFR, Farias JO, Torres NEC, Ferruzo PYM, Anschau V, Jesus-Ferreira HC, Chang THT, Sogayar MC, Zerbini LF, Correa RG. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther 2017; 10:5491-5524. [PMID: 29200866 PMCID: PMC5701508 DOI: 10.2147/ott.s142154] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the disease with highest public health impact in developed countries. Particularly, breast cancer has the highest incidence in women worldwide and the fifth highest mortality in the globe, imposing a significant social and economic burden to society. The disease has a complex heterogeneous etiology, being associated with several risk factors that range from lifestyle to age and family history. Breast cancer is usually classified according to the site of tumor occurrence and gene expression profiling. Although mutations in a few key genes, such as BRCA1 and BRCA2, are associated with high breast cancer risk, the large majority of breast cancer cases are related to mutated genes of low penetrance, which are frequently altered in the whole population. Therefore, understanding the molecular basis of breast cancer, including the several deregulated genes and related pathways linked to this pathology, is essential to ensure advances in early tumor detection and prevention. In this review, we outline key cellular pathways whose deregulation has been associated with breast cancer, leading to alterations in cell proliferation, apoptosis, and the delicate hormonal balance of breast tissue cells. Therefore, here we describe some potential breast cancer-related nodes and signaling concepts linked to the disease, which can be positively translated into novel therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Valesca Anschau
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ted Hung-Tse Chang
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | | | - Luiz F Zerbini
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
49
|
Hanna M, Dumas I, Orain M, Jacob S, Têtu B, Diorio C. Association between physical activity and the expression of mediators of inflammation in normal breast tissue among premenopausal and postmenopausal women. Cytokine 2017; 102:151-160. [PMID: 29102166 DOI: 10.1016/j.cyto.2017.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
Abstract
Physical activity is associated with decreased breast cancer risk. The underlying biological mechanisms could include the reduction of the local inflammation in the breast tissue. We conducted a cross-sectional study to assess the association between the physical activity and the protein expression levels of eleven mediators of inflammation in normal breast tissue of 164 women having breast cancer. Information on total physical activity (household, occupational and recreational) performed during a one-year period was collected using a questionnaire. Normal breast tissue was obtained from mastectomy blocks distant from the tumor. The expression of the mediators of inflammation in normal breast tissue was visually evaluated by immunohistochemistry. Multivariate linear regression analyses were used to assess the prevalence ratios (PR) and 95% confidence intervals (CI) for higher protein expression levels of the mediators of inflammation in normal breast tissue across quartiles of physical activity. Higher total physical activity was associated with lower expression levels of the pro-inflammatory mediator TNF-α in normal breast epithelial tissue among all (PR=0.64, 95% CI=0.44-0.93 for the fourth quartile; Ptrend=0.013), premenopausal (PR=0.61, 95% CI=0.41-0.91 for the fourth quartile; Ptrend=0.014) and postmenopausal women (PR=0.45, 95% CI=0.21-0.96 for the fourth quartile; Ptrend=0.022). Conversely, higher total physical activity was associated with higher expression levels of the anti-inflammatory mediator IL-10 in normal breast epithelial tissue among all (PR=1.66, 95% CI=0.97-2.85 for the fourth quartile; Ptrend=0.071) and postmenopausal women (PR=4.69, 95% CI=1.26-17.43 for the fourth quartile; Ptrend=0.010). Our findings suggest a beneficial effect of physical activity on the local inflammatory profile in the breast tissue.
Collapse
Affiliation(s)
- Mirette Hanna
- Oncology Research Unit, CHU de Québec Research Center, Department of Social and Preventive Medicine, Cancer Research Center, Université Laval, 1050 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Isabelle Dumas
- Oncology Research Unit, CHU de Québec Research Center, 1050 Chemin Sainte-Foy, Québec, QC G1S 4L8, Canada
| | - Michèle Orain
- Oncology Research Unit, CHU de Québec Research Center, 1050 Chemin Sainte-Foy, Québec, QC G1S 4L8, Canada
| | - Simon Jacob
- Oncology Research Unit, CHU de Québec Research Center, Service of Molecular Biology, Medical Chemistry and Pathology, Hôpital Saint-Sacrement, CHU de Québec, Centre des Maladies du Sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Department of Molecular Biology, Medical Chemistry and Pathology, Cancer Research Center, Université Laval, 1050 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Bernard Têtu
- Oncology Research Unit, CHU de Québec Research Center, Service of Molecular Biology, Medical Chemistry and Pathology, Hôpital Saint-Sacrement, CHU de Québec, Centre des Maladies du Sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Department of Molecular Biology, Medical Chemistry and Pathology, Cancer Research Center, Université Laval, 1050 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Caroline Diorio
- Oncology Research Unit, CHU de Québec Research Center, Centre des Maladies du Sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Department of Social and Preventive Medicine, Cancer Research Center, Université Laval,1050 Avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
50
|
Wang J, Xu J, Xing G. Lycorine inhibits the growth and metastasis of breast cancer through the blockage of STAT3 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2017; 49:771-779. [PMID: 28910973 DOI: 10.1093/abbs/gmx076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Indexed: 01/10/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is involved in the growth and metastasis of breast cancer, and represents a potential target for developing new anti-tumor drugs. The purpose of this study is to investigate whether Lycorine, a pyrrolo[de]phenanthridine ring-type alkaloid extracted from Amaryllidaceae genera, could inhibit breast cancer by targeting STAT3 signaling pathway. The human breast cancer cell lines were incubated with various concentrations of Lycorine, and cell proliferation, colony formation, cell cycle distribution, apoptosis, migration and invasion were assayed by several in vitro approaches. Results showed that Lycorine significantly suppressed cell proliferation, colony formation, migration and invasion, as well as induced cell apoptosis, but showed no apparent impact on cell cycle. In addition, the effect of Lycorine on tumor growth and metastasis in nude mouse models was investigated, and results showed that Lycorine significantly inhibited tumor growth and metastasis in vivo. Mechanistically, Lycorine significantly inhibited STAT3 phosphorylation and transcriptional activity through upregulating SHP-1 expression. Lycorine also downregulated the expressions of STAT3 target genes, including Mcl-1, Bcl-xL, MMP-2, MMP-9, which are involved in apoptosis and invasion of breast cancer. Taken together, these findings suggest that Lycorine may be a promising candidate for the prevention and treatment of human breast cancer.
Collapse
Affiliation(s)
| | - Jie Xu
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Guoqiang Xing
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| |
Collapse
|