1
|
Jordan E, Arriaga MA, Obregon H, Villalobos V, Duarte MA, Garcia K, Levy A, Chew SA. Dual delivery of metformin and Y15 from a PLGA scaffold for the treatment of platinum-resistant ovarian cancer. Future Med Chem 2025; 17:301-312. [PMID: 39887289 PMCID: PMC11792864 DOI: 10.1080/17568919.2025.2458457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
AIMS Drug-loaded poly(lactic-co-glycolic acid) (PLGA) scaffolds were fabricated using a mold-less technique to investigate whether the combined delivery of both Y15 (FAK inhibitor) and metformin would result in enhanced effects on cell viability compared to the release of each drug alone for the treatment of platinum-resistant ovarian cancer (PROC). MATERIALS & METHODS Scaffolds were fabricated using an easy and economical mold-less technique that combined PLGA and the drugs (i.e. metformin and/or Y15) in tetraglycol and injected in PBS, to form a globular morphology. RESULTS The exposure of cells to metformin and Y15 resulted in a significantly enhanced cytotoxic efficacy compared to single-drug treatment with either metformin or Y15. When the drugs were delivered using the PLGA scaffolds, the combination of the two drugs was significantly more cytotoxic compared to scaffolds containing metformin only and Y15 only. CONCLUSIONS The combination of metformin and Y15 can result in an increase in antitumor activity in PROC cells through apoptosis. The delivery of both drugs from the PLGA biomaterial scaffold allowed for a more enhanced combinational effect compared to the utilization of free drugs (without a scaffold) and should be further explored as a promising treatment of PROC.
Collapse
Affiliation(s)
- Emily Jordan
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Hannah Obregon
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Viviana Villalobos
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Manuel A. Duarte
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Kristal Garcia
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
2
|
Kim G, Jang SK, Ahn SH, Kim S, Park CS, Seong MK, Kim HA, Bae S, Lee JH, Kim H, Jin HO, Park IC. Proapoptotic role of CDK1 in overcoming paclitaxel resistance in ovarian cancer cells in response to combined treatment with paclitaxel and duloxetine. Cancer Cell Int 2024; 24:409. [PMID: 39702300 DOI: 10.1186/s12935-024-03607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Paclitaxel resistance and recurrence are major obstacles in ovarian cancer, which is the leading cause of death among gynecologic cancers. During cancer cell progression, cyclin-dependent kinase 1 (CDK1) drives cells through the G2 phase and into mitosis. In this study, we demonstrated that CDK1 played a crucial role in switching paclitaxel-resistant ovarian cancer cells from mitotic arrest to apoptosis following combined treatment with paclitaxel and duloxetine, an antidepressant known as a serotonin-norepinephrine reuptake inhibitor (SNRI). METHODS Cell viability was assessed by MTT assay. Apoptotic cell death and mitochondrial membrane potential (MMP) were detected by flow cytometry. Protein expression levels were explored using western blotting. Mitochondrial and cytosolic fractionation were performed to determine the mitochondrial localization of proteins. Immunofluorescence was used to detect protein expression levels and localization. RESULTS Combined treatment with paclitaxel and duloxetine induced apoptotic cell death in paclitaxel-resistant ovarian cancer cells. We suggested that combined treatment of these drugs induced CDK1 activation and increased mitochondrial localization of activated CDK1, which caused phosphorylation of the antiapoptotic Bcl-2 and Bcl-xL proteins. Selective CDK1 inhibitors blocked Bcl-2 and Bcl-xL phosphorylation induced by paclitaxel and duloxetine, and strongly suppressed apoptotic cell death. Furthermore, we demonstrated that S6K is a potential upstream mediator of the proapoptotic activation of CDK1. CONCLUSION Taken together, switching CDK1 to a proapoptotic role through the combination of paclitaxel and duloxetine could overcome paclitaxel resistance in ovarian cancer cells, providing promising therapeutic strategies for treating paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Se Hee Ahn
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Selim Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Chan Sub Park
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea.
| |
Collapse
|
3
|
Gao J, Cheng J, Xie W, Zhang P, Liu X, Wang Z, Zhang B. Prospects of focal adhesion kinase inhibitors as a cancer therapy in preclinical and early phase study. Expert Opin Investig Drugs 2024; 33:639-651. [PMID: 38676368 DOI: 10.1080/13543784.2024.2348068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION FAK, a nonreceptor cytoplasmic tyrosine kinase, plays a crucial role in tumor metastasis, drug resistance, tumor stem cell maintenance, and regulation of the tumor microenvironment. FAK has emerged as a promising target for tumor therapy based on both preclinical and clinical data. AREAS COVERED This paper aims to summarize the molecular mechanisms underlying FAK's involvement in tumorigenesis and progression. Encouraging results have emerged from ongoing clinical trials of FAK inhibitors. Additionally, we present an overview of clinical trials for FAK inhibitors, examining their potential as promising treatments. The pertinent studies gathered from databases including PubMed, ClinicalTrials.gov. EXPERT OPINION Since the first finding in 1990s, targeting FAK has became the focus of interests in many pharmaceutical companies. Through 30 years' discovery, the industry and academy gradually realized the features of FAK target which may not be a driver gene but a solid defense system for the cancer initiation and development. Currently, the ongoing clinical regimens involving FAK inhibition are all the combination strategies in which FAK inhibitors can further strengthen the cancer cell killing effects of other testing agents. The emerging positive signal in clinical trials foresee targeting FAK as class will be an effective mean to fight against cancers.
Collapse
Affiliation(s)
| | | | - Wanyu Xie
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Ping Zhang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Xuebin Liu
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | | |
Collapse
|
4
|
An In Vitro Analysis of TKI-Based Sequence Therapy in Renal Cell Carcinoma Cell Lines. Int J Mol Sci 2023; 24:ijms24065648. [PMID: 36982721 PMCID: PMC10058472 DOI: 10.3390/ijms24065648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The tyrosine kinase inhibitor (TKI) cabozantinib might impede the growth of the sunitinib-resistant cell lines by targeting MET and AXL overexpression in metastatic renal cell carcinoma (mRCC). We studied the role of MET and AXL in the response to cabozantinib, particularly following long-term administration with sunitinib. Two sunitinib-resistant cell lines, 786-O/S and Caki-2/S, and the matching 786-O/WT and Caki-2/WT cells were exposed to cabozantinib. The drug response was cell-line-specific. The 786-O/S cells were less growth-inhibited by cabozantinib than 786-O/WT cells (p-value = 0.02). In 786-O/S cells, the high level of phosphorylation of MET and AXL was not affected by cabozantinib. Despite cabozantinib hampering the high constitutive phosphorylation of MET, the Caki-2 cells showed low sensitivity to cabozantinib, and this was independent of sunitinib pretreatment. In both sunitinib-resistant cell lines, cabozantinib increased Src-FAK activation and impeded mTOR expression. The modulation of ERK and AKT was cell-line-specific, mirroring the heterogeneity among the patients. Overall, the MET- and AXL-driven status did not affect cell responsiveness to cabozantinib in the second-line treatment. The activation of Src-FAK might counteract cabozantinib activity and contribute to tumor survival and may be considered an early indicator of therapy response.
Collapse
|
5
|
Lin Z, Zou J, Sui X, Yao S, Lin L, Wang J, Zhao J. Necroptosis-related lncRNA signature predicts prognosis and immune response for cervical squamous cell carcinoma and endocervical adenocarcinomas. Sci Rep 2022; 12:16285. [PMID: 36175606 PMCID: PMC9523019 DOI: 10.1038/s41598-022-20858-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Necroptosis, a programmed form of necrotic cell death, plays critical regulatory roles in the progression and metastatic spread of cancers such as cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, there are few articles systematically analyzing the necroptosis-related long non-coding RNAs (NRlncRNAs) correlated with CESC patients. Both RNA-sequencing and clinical data of CESC patients are downloaded from TCGA database in this study. Pearson correlation analysis, least absolute shrinkage, operator algorithm selection and Cox regression model are employed to screen and create a risk score model of eleven-NRlncRNAs (MIR100HG, LINC00996, SNHG30, LINC02688, HCG15, TUBA3FP, MIAT, DBH-AS1, ERICH6-AS1SCAT1, LINC01702) prognostic. Thereafter, a series of tests are carried out in sequence to evaluate the model for independent prognostic value. Gene set enrichment analytic paper, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analytic paper make it clear that immune-related signaling pathways are very rich in the high-risk subgroup. Additionally, the prognostic risk score model is correlated to immune cell infiltration, potential immune checkpoint, immune function, immune micro-environmental and m6A-related gene. Mutation frequency in mutated genes and survival probability trend are higher in the low-risk subgroup in most of test cases when compared to the high-risk subgroup. This study constructs a renewed prognostic model of eleven-NRlncRNAs, which may make some contribution to accurately predicting the prognosis and the immune response from CESC patients, and improve the recognition of CESC patients and optimize customized treatment regimens to some extent.
Collapse
Affiliation(s)
- Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China.
| | - Jiani Zou
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Xiaohui Sui
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Shujuan Yao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Lidong Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Jiuling Wang
- Office of Medical Insurance Management, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Junde Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China.
| |
Collapse
|
6
|
Jurj A, Ionescu C, Berindan-Neagoe I, Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J Exp Clin Cancer Res 2022; 41:276. [PMID: 36114508 PMCID: PMC9479349 DOI: 10.1186/s13046-022-02484-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment (TME), having several important roles related to the hallmarks of cancer. In cancer, multiple components of the ECM have been shown to be altered. Although most of these alterations are represented by the increased or decreased quantity of the ECM components, changes regarding the functional alteration of a particular ECM component or of the ECM as a whole have been described. These alterations can be induced by the cancer cells directly or by the TME cells, with cancer-associated fibroblasts being of particular interest in this regard. Because the ECM has this wide array of functions in the tumor, preclinical and clinical studies have assessed the possibility of targeting the ECM, with some of them showing encouraging results. In the present review, we will highlight the most relevant ECM components presenting a comprehensive description of their physical, cellular and molecular properties which can alter the therapy response of the tumor cells. Lastly, some evidences regarding important biological processes were discussed, offering a more detailed understanding of how to modulate altered signalling pathways and to counteract drug resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Calin Ionescu
- 7Th Surgical Department, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
- Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania.
| |
Collapse
|
7
|
Ding H, Zhang J, Zhang F, Xu Y, Yu Y, Liang W, Li Q. Role of Cancer-Associated fibroblast in the pathogenesis of ovarian Cancer: Focus on the latest therapeutic approaches. Int Immunopharmacol 2022; 110:109052. [DOI: 10.1016/j.intimp.2022.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
|
8
|
Rix LLR, Sumi NJ, Hu Q, Desai B, Bryant AT, Li X, Welsh EA, Fang B, Kinose F, Kuenzi BM, Chen YA, Antonia SJ, Lovly CM, Koomen JM, Haura EB, Marusyk A, Rix U. IGF-binding proteins secreted by cancer-associated fibroblasts induce context-dependent drug sensitization of lung cancer cells. Sci Signal 2022; 15:eabj5879. [PMID: 35973030 PMCID: PMC9528501 DOI: 10.1126/scisignal.abj5879] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are often linked to drug resistance. Here, we found that coculture with CAFs or culture in CAF-conditioned medium unexpectedly induced drug sensitivity in certain lung cancer cell lines. Gene expression and secretome analyses of CAFs and normal lung-associated fibroblasts (NAFs) revealed differential abundance of insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), which promoted or inhibited, respectively, signaling by the receptor IGF1R and the kinase FAK. Similar drug sensitization was seen in gefitinib-resistant, EGFR-mutant PC9GR lung cancer cells treated with recombinant IGFBPs. Conversely, drug sensitivity was decreased by recombinant IGFs or conditioned medium from CAFs in which IGFBP5 or IGFBP6 was silenced. Phosphoproteomics and receptor tyrosine kinase (RTK) array analyses indicated that exposure of PC9GR cells to CAF-conditioned medium also inhibited compensatory IGF1R and FAK signaling induced by the EGFR inhibitor osimertinib. Combined small-molecule inhibition of IGF1R and FAK phenocopied the CAF-mediated effects in culture and increased the antitumor effect of osimertinib in mice. Cells that were osimertinib resistant and had MET amplification or showed epithelial-to-mesenchymal transition also displayed residual sensitivity to IGFBPs. Thus, CAFs promote or reduce drug resistance in a context-dependent manner, and deciphering the relationship between the differential content of CAF secretomes and the signaling dependencies of the tumor may reveal effective combination treatment strategies.
Collapse
Affiliation(s)
- Lily L. Remsing Rix
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Natalia J. Sumi
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Qianqian Hu
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Bina Desai
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Annamarie T. Bryant
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Xueli Li
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Brent M. Kuenzi
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Y. Ann Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Scott J. Antonia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Christine M. Lovly
- Department of Medicine, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - John M. Koomen
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andriy Marusyk
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Corresponding author.
| |
Collapse
|
9
|
Kim G, Jang SK, Kim YJ, Jin HO, Bae S, Hong J, Park IC, Lee JH. Inhibition of Glutamine Uptake Resensitizes Paclitaxel Resistance in SKOV3-TR Ovarian Cancer Cell via mTORC1/S6K Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158761. [PMID: 35955892 PMCID: PMC9369036 DOI: 10.3390/ijms23158761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is a carcinoma that affects women and that has a high mortality rate. Overcoming paclitaxel resistance is important for clinical application. However, the effect of amino acid metabolism regulation on paclitaxel-resistant ovarian cancer is still unknown. In this study, the effect of an amino acid-deprived condition on paclitaxel resistance in paclitaxel-resistant SKOV3-TR cells was analyzed. We analyzed the cell viability of SKOV3-TR in culture conditions in which each of the 20 amino acids were deprived. As a result, the cell viability of the SKOV3-TR was significantly reduced in cultures deprived of arginine, glutamine, and lysine. Furthermore, we showed that the glutamine-deprived condition inhibited mTORC1/S6K signaling. The decreased cell viability and mTORC1/S6K signaling under glutamine-deprived conditions could be restored by glutamine and α-KG supplementation. Treatment with PF-4708671, a selective S6K inhibitor, and the selective glutamine transporter ASCT2 inhibitor V-9302 downregulated mTOR/S6K signaling and resensitized SKOV3-TR to paclitaxel. Immunoblotting showed the upregulation of Bcl-2 phosphorylation and a decrease in Mcl-1 expression in SKOV3-TR via the cotreatment of paclitaxel with PF-4708671 and V-9302. Collectively, this study demonstrates that the inhibition of glutamine uptake can resensitize SKOV3-TR to paclitaxel and represents a promising therapeutic target for overcoming paclitaxel resistance in ovarian cancer.
Collapse
Affiliation(s)
- Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Food and Microbial Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul 01797, Korea
| | - Yu Jin Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Jungil Hong
- Department of Food and Microbial Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul 01797, Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Correspondence: (I.-C.P.); (J.H.L.)
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: (I.-C.P.); (J.H.L.)
| |
Collapse
|
10
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Network Pharmacology Study to Uncover the Mechanism of FDY003 for Ovarian Cancer Treatment. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological tumors responsible for 0.21 million deaths per year worldwide. Despite the increasing interest in the use of herbal drugs for cancer treatment, their pharmacological effects in OC treatment are not understood from a systems perspective. Using network pharmacology, we determined the anti-OC potential of FDY003 from a comprehensive systems view. We observed that FDY003 suppressed the viability of human OC cells and further chemosensitized them to cytotoxic chemotherapy. Through network pharmacological and pharmacokinetic approaches, we identified 16 active ingredients in FDY003 and their 108 targets associated with OC mechanisms. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation. Furthermore, the FDY003 targets are important constituents of diverse signaling pathways implicated in OC mechanisms (eg, phosphoinositide 3-kinase [PI3K]-Akt, mitogen-activated protein kinase [MAPK], focal adhesion, hypoxia-inducible factor [HIF]-1, estrogen, tumor necrosis factor [TNF], erythroblastic leukemia viral oncogene homolog [ErbB], Janus kinase [JAK]-signal transducer and activator of transcription [STAT], and p53 signaling). In summary, our data present a comprehensive understanding of the anti-OC effects and mechanisms of action of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospitalo, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
11
|
Hsa_circ_0006404 and hsa_circ_0000735 Regulated Ovarian Cancer Response to Docetaxel Treatment via Regulating p-GP Expression. Biochem Genet 2021; 60:395-414. [PMID: 34255218 DOI: 10.1007/s10528-021-10080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/15/2021] [Indexed: 11/27/2022]
Abstract
Several microRNAs (miRNAs) and circular RNAs (circRNAs) were reported to be involved in the Docetaxel (DTX) chemoresistance of cancer treatment, but the underlying mechanisms remain to be explored. In this study, we established cellular and animal models respectively to study the effect and underlying molecular mechanisms of the dysregulation of circRNA_0006404 and circRNA_0000735 in tumor response to DTX treatment. Quantitative real-time PCR was performed to measure the expression of circRNA_0006404, miR-346, circRNA_0000735, miR-526b, Dickkopf-related protein 3 (DKK3), and Dickkopf-related protein 4 (DKK4) mRNA. The expression of circRNA_0006404 and circRNA_0000735 was remarkably suppressed and activated in DTX-treated SKOV3-R cell lines, respectively. As revealed by luciferase assays, circRNA_0006404 and circRNA_0000735 was found to be respectively targeted by miR-346 and miR-526b, while DKK3 and DKK4 were respectively targeted by miR-346 and miR-526b. Moreover, the expression of DKK3 and DKK4, which were targets of miR-346 and miR-526b, respectively, was significantly altered along with the expression of p-GP. Furthermore, circ_0006404 shRNA and circRNA_0000735 shRNA showed remarkable efficiency in stimulating the expression of circRNA_0006404, miR-346, DKK3, circRNA_0000735, miR-526b, DKK4, and p-GP in cellular and animal models. Accordingly, the cell apoptosis and proliferation were apparently changed by circ_0006404 shRNA and circRNA_0000735 shRNA in both cellular and animal models. In summary, our study found the involvement of the circRNA_0006404/miR-346/DKK3/p-GP and circRNA_0000735/miR-546b/DKK4/p-GP axis in the tumor response to DTX. Both the up-regulation of circRNA_0006404 and down-regulation of circRNA_0000735 could inhibit the expression of p-GP in vivo and ex vivo, leading to the suppressed tumor response to DTX treatment.
Collapse
|
12
|
Pang XJ, Liu XJ, Liu Y, Liu WB, Li YR, Yu GX, Tian XY, Zhang YB, Song J, Jin CY, Zhang SY. Drug Discovery Targeting Focal Adhesion Kinase (FAK) as a Promising Cancer Therapy. Molecules 2021; 26:molecules26144250. [PMID: 34299525 PMCID: PMC8308130 DOI: 10.3390/molecules26144250] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
FAK is a nonreceptor intracellular tyrosine kinase which plays an important biological function. Many studies have found that FAK is overexpressed in many human cancer cell lines, which promotes tumor cell growth by controlling cell adhesion, migration, proliferation, and survival. Therefore, targeting FAK is considered to be a promising cancer therapy with small molecules. Many FAK inhibitors have been reported as anticancer agents with various mechanisms. Currently, six FAK inhibitors, including GSK-2256098 (Phase I), VS-6063 (Phase II), CEP-37440 (Phase I), VS-6062 (Phase I), VS-4718 (Phase I), and BI-853520 (Phase I) are undergoing clinical trials in different phases. Up to now, there have been many novel FAK inhibitors with anticancer activity reported by different research groups. In addition, FAK degraders have been successfully developed through “proteolysis targeting chimera” (PROTAC) technology, opening up a new way for FAK-targeted therapy. In this paper, the structure and biological function of FAK are reviewed, and we summarize the design, chemical types, and activity of FAK inhibitors according to the development of FAK drugs, which provided the reference for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Xiao-Jing Pang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Xiu-Juan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Yuan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Wen-Bo Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Yan-Bing Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Jian Song
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| | - Sai-Yang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| |
Collapse
|
13
|
Chai H, Wu J, Liu J, Liu T, Ren Q, Zheng X. δ-Tocopherol Enhances Docetaxel-Induced Growth Inhibition and Apoptosis in Ovarian Cancer SKOV3 Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211002298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Docetaxel is the first-line chemotherapeutic drug for ovarian cancer. However, its clinical use is limited owing to its serious side effects. Therefore, it is of great clinical significance to enhance the efficacy of docetaxel at lower doses in a less-toxic manner. In this study, we investigated whether δ-tocopherol could enhance the anti-tumor effects of docetaxel on ovarian cancer SKOV3 cells in vitro. For docetaxel and δ-tocopherol, IC50 values of 1.89 nM and 11.41 µM, respectively, were obtained, in SKOV3 cells. The combination of δ-tocopherol and docetaxel had a synergistic cell growth inhibition effect, with lower cell viability and more cell arrest at the S phase compared to either δ-tocopherol or docetaxel alone. In addition, the combination of δ-tocopherol and docetaxel had a synergistic cell apoptosis induction effect, with more apoptotic cells and reduced anti-apoptotic protein expression compared to either δ-tocopherol or docetaxel alone. Furthermore, we identified 3 hoursub genes (CAT, EP300, CREBBP), which predicted the prognosis of ovarian cancer, which correlated with δ-tocopherol and docetaxel. In conclusion, the combination of δ-tocopherol and docetaxel presented synergistic cell growth inhibition and cell apoptosis induction effects in SKOV3 cells at a low dose, which suggesting that δ-tocopherol could improve the serious side effects of docetaxel.
Collapse
Affiliation(s)
- Hongjuan Chai
- Department of Gynecology and Obstetrics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jugang Wu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junlei Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ting Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Qing Ren
- Department of Gynecology and Obstetrics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gynecology and Obstetrics, Hainan West Central Hospital (Shanghai Ninth People’s Hospital, Hainan Branch), Shanghai JiaoTong University School of Medicine, Hainan, China
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Zhao L, Huang L, Zhang J, Fan J, He F, Zhao X, Wang H, Liu Q, Shi D, Ni N, Wagstaff W, Pakvasa M, Fu K, Tucker AB, Chen C, Reid RR, Haydon RC, Luu HH, Shen L, Qi H, He TC. The inhibition of BRAF activity sensitizes chemoresistant human ovarian cancer cells to paclitaxel-induced cytotoxicity and tumor growth inhibition. Am J Transl Res 2020; 12:8084-8098. [PMID: 33437383 PMCID: PMC7791515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Ovarian cancer is one of the most common cancers in women and the second most common cause of gynecologic cancer death in women worldwide. While ovarian cancer is highly heterogeneous in histological subtypes and molecular genetic makeup, epithelial ovarian cancer is the most common subtype. The clinical outcomes of ovarian cancer largely depend on early detection and access to appropriate surgery and systemic therapy. While combination therapy with platinum-based drugs and paclitaxel (PTX) remains the first-line systemic therapy for ovarian cancer, many patients experience recurrence and die of progressive chemoresistance. Thus, there is an unmet clinical need to overcome recurrent disease due to resistance to chemotherapies of ovarian cancer. Here, we investigated whether BRAF inhibitors (BRAFi) could sensitize PTX-resistant ovarian cancer cells to PTX, and thus would overcome the resistance to chemotherapies. We found that BRAF and several members of the RAS/MAPK pathways were upregulated upon PTX treatment in ovarian cancer cells, and that BRAF expression was significantly elevated in the PTX-resistant ovarian cancer cells. While the BRAFi vemurafenib (VEM) alone did not cause any significant cytotoxicity in PTX-resistant ovarian cancer cells, VEM significantly enhanced PTX-induced growth inhibition and apoptosis in a dose-dependent manner. Furthermore, VEM and PTX were shown to synergistically inhibit tumor growth and cell proliferation of PTX-resistant human ovarian cancer cells in vivo. Collectively, these findings strongly suggest that BRAFi may be exploited as synergistic sensitizers of paclitaxel in treating chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Zhao
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Linjuan Huang
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Jing Zhang
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Fang He
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South UniversityChangsha 410011, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430072, China
| | - Andrew B Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Hongbo Qi
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
15
|
Chen Y, Hu X, Yang S. Clinical significance of focal adhesion kinase (FAK) in cervical cancer progression and metastasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2586-2592. [PMID: 33165433 PMCID: PMC7642699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Focal adhesion kinase is a non-receptor, tyrosine kinase of cells whose key functions are cell adhesion, migration, and invasion. Aberrant expression and regulation of FAK-mediated intracellular signaling pathways has been reported in several cancers and they are involved in cancer cell migration and apoptosis resistance. By RT-PCR, we found that cervical cancer cells showed a 4-fold increase of relative mRNA expression of FAK compared to control cells. In parallel, the FAK protein expression level was also elevated in cervical cancer cells. Interestingly, knockdown of FAK in cervical cancer cells showed attenuated cell proliferation and migration. Further, the FAK RNAi cells became more sensitive to chemotherapeutic drugs such as 5-FU and docetaxel and therefore the rate of cell survival is declined. The significant over-expression of FAK in cervical cancer cells might involve in cervical carcinogenesis and prolonged cell survival. This FAK overexpression might be a potential target for anti-cancer drugs to attenuate rapid cell proliferation and invasion by inducing apoptosis.
Collapse
Affiliation(s)
- Yanxian Chen
- Department of Obstetrics and Gynecology, Suzhou Hospital of Integrated Traditional Chinese and Western MedicineSuzhou, Jiangsu, China
| | - Xiaofeng Hu
- Department of Obstetrics and Gynecology, Suzhou Hospital of Integrated Traditional Chinese and Western MedicineSuzhou, Jiangsu, China
| | - Shu Yang
- Department of Abdominal Oncology, The Second Affiliated Gospital of Zunyi Medical UniversityZunyi 563000, Guizhou, China
| |
Collapse
|
16
|
Levy A, Alhazzani K, Dondapati P, Alaseem A, Cheema K, Thallapureddy K, Kaur P, Alobid S, Rathinavelu A. Focal Adhesion Kinase in Ovarian Cancer: A Potential Therapeutic Target for Platinum and Taxane-Resistant Tumors. Curr Cancer Drug Targets 2020; 19:179-188. [PMID: 29984656 DOI: 10.2174/1568009618666180706165222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which is an essential player in regulating cell migration, invasion, adhesion, proliferation, and survival. Its overexpression and activation have been identified in sixty-eight percent of epithelial ovarian cancer patients and this is significantly associated with higher tumor stage, metastasis, and shorter overall survival of these patients. Most recently, a new role has emerged for FAK in promoting resistance to taxane and platinum-based therapy in ovarian and other cancers. The development of resistance is a complex network of molecular processes that make the identification of a targetable biomarker in platinum and taxane-resistant ovarian cancer a major challenge. FAK overexpression upregulates ALDH and XIAP activity in platinum-resistant and increases CD44, YB1, and MDR-1 activity in taxaneresistant tumors. FAK is therefore now emerging as a prognostically significant candidate in this regard, with mounting evidence from recent successes in preclinical and clinical trials using small molecule FAK inhibitors. This review will summarize the significance and function of FAK in ovarian cancer, and its emerging role in chemotherapeutic resistance. We will discuss the current status of FAK inhibitors in ovarian cancers, their therapeutic competencies and limitations, and further propose that the combination of FAK inhibitors with platinum and taxane-based therapies could be an efficacious approach in chemotherapeutic resistant disease.
Collapse
Affiliation(s)
- Arkene Levy
- College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khalid Alhazzani
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Priya Dondapati
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Ali Alaseem
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khadijah Cheema
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Keerthi Thallapureddy
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Paramjot Kaur
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Saad Alobid
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Appu Rathinavelu
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
17
|
Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci 2020; 6:160. [PMID: 32118030 PMCID: PMC7025524 DOI: 10.3389/fmolb.2019.00160] [Citation(s) in RCA: 660] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are complex organ-like structures that consist not only of tumor cells but also of vasculature, extracellular matrix (ECM), stromal, and immune cells. Often, this tumor microenvironment (TME) comprises the larger part of the overall tumor mass. Like the other components of the TME, the ECM in solid tumors differs significantly from that in normal organs. Intratumoral signaling, transport mechanisms, metabolisms, oxygenation, and immunogenicity are strongly affected if not controlled by the ECM. Exerting this regulatory control, the ECM does not only influence malignancy and growth of the tumor but also its response toward therapy. Understanding the particularities of the ECM in solid tumor is necessary to develop approaches to interfere with its negative effect. In this review, we will also highlight the current understanding of the physical, cellular, and molecular mechanisms by which the pathological tumor ECM affects the efficiency of radio-, chemo-, and immunotherapy. Finally, we will discuss the various strategies to target and modify the tumor ECM and how they could be utilized to improve response to therapy.
Collapse
Affiliation(s)
- Erik Henke
- Department of Medicine, Institute of Anatomy and Cell Biology, Universität Würzburg, Würzburg, Germany
| | - Rajender Nandigama
- Department of Medicine, Institute of Anatomy and Cell Biology, Universität Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Department of Medicine, Institute of Anatomy and Cell Biology, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Levy A, Leynes C, Baig M, Chew SA. The Application of Biomaterials in the Treatment of Platinum‐Resistant Ovarian Cancer. ChemMedChem 2019; 14:1810-1827. [DOI: 10.1002/cmdc.201900450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Arkene Levy
- Department of Pharmacology, College of Medical Sciences Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Carolina Leynes
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| | - Mirza Baig
- Dr. Kiran C. Patel College of Osteopathic Medicine Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Sue Anne Chew
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| |
Collapse
|
19
|
Stojanović N, Dekanić A, Paradžik M, Majhen D, Ferenčak K, Ruščić J, Bardak I, Supina C, Tomicic MT, Christmann M, Osmak M, Ambriović-Ristov A. Differential Effects of Integrin αv Knockdown and Cilengitide on Sensitization of Triple-Negative Breast Cancer and Melanoma Cells to Microtubule Poisons. Mol Pharmacol 2018; 94:1334-1351. [PMID: 30262596 DOI: 10.1124/mol.118.113027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 02/14/2025] Open
Abstract
Low survival rates of patients with metastatic triple-negative breast cancer (TNBC) and melanoma, in which current therapies are ineffective, emphasize the need for new therapeutic approaches. Integrin β1 appears to be a promising target when combined with chemotherapy, but recent data have shown that its inactivation increases metastatic potential owing to the compensatory upregulation of other integrin subunits. Consequently, we analyzed the potential of integrin subunits αv, α3, or α4 as targets for improved therapy in seven TNBC and melanoma cell lines. Experiments performed in an integrin αvβ1-negative melanoma cell line, MDA-MB-435S, showed that knockdown of integrin subunit αv increased sensitivity to microtubule poisons vincristine or paclitaxel and decreased migration and invasion. In the MDA-MB-435S cell line, we also identified a phenomenon in which change in the expression of one integrin subunit changes the expression of other integrins, leading to an unpredictable influence on sensitivity to anticancer drugs and cell migration, referred to as the integrin switching effect. In a panel of six TNBCs and melanoma cell lines, the contribution of integrins αv versus integrins αvβ3/β5 was assessed by the combined action of αv-specific small interfering RNA or αvβ3/β5 inhibitor cilengitide with paclitaxel. Our results suggest that, for TNBC, knockdown of integrin αv in combination with paclitaxel presents a better therapeutic option than a combination of cilengitide with paclitaxel; however, in melanoma, neither of these combinations is advisable because a decreased sensitivity to paclitaxel was observed.
Collapse
Affiliation(s)
- Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Ana Dekanić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Krešimir Ferenčak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Jelena Ruščić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Irena Bardak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Christine Supina
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Maja T Tomicic
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Markus Christmann
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Maja Osmak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| |
Collapse
|
20
|
Lin HM, Lee BY, Castillo L, Spielman C, Grogan J, Yeung NK, Kench JG, Stricker PD, Haynes AM, Centenera MM, Butler LM, Shreeve SM, Horvath LG, Daly RJ. Effect of FAK inhibitor VS-6063 (defactinib) on docetaxel efficacy in prostate cancer. Prostate 2018; 78:308-317. [PMID: 29314097 DOI: 10.1002/pros.23476] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Docetaxel, the standard chemotherapy for metastatic castration-resistant prostate cancer (CRPC) also enhances the survival of patients with metastatic castration-sensitive prostate cancer (CSPC) when combined with androgen-deprivation therapy. Focal Adhesion Kinase (FAK) activation is a mediator of docetaxel resistance in prostate cancer cells. The aim of this study was to investigate the effect of the second generation FAK inhibitor VS-6063 on docetaxel efficacy in pre-clinical CRPC and CSPC models. METHODS Docetaxel-resistant CRPC cells, mice with PC3 xenografts, and ex vivo cultures of patient-derived primary prostate tumors were treated with VS-6063 and/or docetaxel, or vehicle control. Cell counting, immunoblotting, and immunohistochemistry techniques were used to evaluate the treatment effects. RESULTS Docetaxel and VS-6063 co-treatment caused a greater decrease in the viability of docetaxel-resistant CRPC cells, and a greater inhibition in PC3 xenograft growth compared to either monotherapy. FAK expression in human primary prostate cancer was positively associated with advanced tumor stage. Patient-derived prostate tumor explants cultured with both docetaxel and VS-6063 displayed a higher percentage of apoptosis in cancer cells, than monotherapy treatment. CONCLUSIONS Our findings suggest that co-administration of the FAK inhibitor, VS-6063, with docetaxel represents a potential therapeutic strategy to overcome docetaxel resistance in prostate cancer.
Collapse
Affiliation(s)
- Hui-Ming Lin
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, The University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Brian Y Lee
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Lesley Castillo
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Calan Spielman
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Judith Grogan
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Nicole K Yeung
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - James G Kench
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Australian Prostate Cancer Research Centre-NSW, Darlinghurst, New South Wales, Australia
| | - Phillip D Stricker
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, The University of New South Wales, Darlinghurst, New South Wales, Australia
- Australian Prostate Cancer Research Centre-NSW, Darlinghurst, New South Wales, Australia
- St Vincent's Prostate Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anne-Maree Haynes
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Australian Prostate Cancer Research Centre-NSW, Darlinghurst, New South Wales, Australia
| | - Margaret M Centenera
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Lisa M Butler
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - S Martin Shreeve
- Janssen Pharmaceutical Companies of Johnson and Johnson, San Diego, California
| | - Lisa G Horvath
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Australian Prostate Cancer Research Centre-NSW, Darlinghurst, New South Wales, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Roger J Daly
- Signalling Network Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Luo ML, Zhou Z, Sun L, Yu L, Sun L, Liu J, Yang Z, Ran Y, Yao Y, Hu H. An ADAM12 and FAK positive feedback loop amplifies the interaction signal of tumor cells with extracellular matrix to promote esophageal cancer metastasis. Cancer Lett 2018; 422:118-128. [PMID: 29476791 DOI: 10.1016/j.canlet.2018.02.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinomas (ESCCs) have a poor prognosis mostly due to early metastasis. To explore the early event of metastasis in ESCC, we established an in vitro selection model to mimic the interaction of tumor cells with extracellular matrix, through which a sub-line of ESCC cells with high invasive ability was generated. By comparing the gene expression profile of the highly invasive sub-line to that of the parental cells, ADAM12-L was identified as a candidate gene promoting ESCC cell invasion. Immunohistochemistry revealed that the ADAM12-L was overexpressed in human ESCC tissues, especially at cancer invasive edge, and ADAM12-L overexpression tightly correlated with increased metastasis and poor outcome of ESCC patients. Indeed, ADAM12-L knockdown reduced the invasion and metastasis of ESCC cells both in vitro and in vivo. Furthermore, we demonstrated that ADAM12-L participated in focal adhesion turnover and promoted the activation of focal adhesion kinase (FAK), which in turn increased ADAM12-L transcription through FAK/JNK/c-Jun axis. Therefore, a loop initiated from the cancer cell upon the engagement with extracellular matrix through FAK and c-Jun to enhance ADAM12-L expression is established, leading to the positive feedback of further FAK activation and prompting metastasis. Our study indicates that overexpression of ADAM12-L can serve as a precision marker to determine the activation of this loop. Targeting ADAM12-L to disrupt this positive feedback loop represents a promising strategy to treat the metastasis of esophageal cancers.
Collapse
Affiliation(s)
- Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China
| | - Zhuan Zhou
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lixin Sun
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jun Liu
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhihua Yang
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
22
|
Shahzad MMK, Felder M, Ludwig K, Van Galder HR, Anderson ML, Kim J, Cook ME, Kapur AK, Patankar MS. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src. PLoS One 2018; 13:e0189524. [PMID: 29324748 PMCID: PMC5764254 DOI: 10.1371/journal.pone.0189524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA). MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM) inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Mian M. K. Shahzad
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Mildred Felder
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kai Ludwig
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Hannah R. Van Galder
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Matthew L. Anderson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jong Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark E. Cook
- Department of Animal Sciences, University of Wisconsin School-Madison, Madison, Wisconsin, United States of America
| | - Arvinder K. Kapur
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Manish S. Patankar
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
23
|
Gao Y, Shen J, Choy E, Mankin H, Hornicek F, Duan Z. Inhibition of CDK4 sensitizes multidrug resistant ovarian cancer cells to paclitaxel by increasing apoptosiss. Cell Oncol (Dordr) 2017; 40:209-218. [PMID: 28243976 DOI: 10.1007/s13402-017-0316-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Overexpression of cyclin-dependent kinase (CDK) 4 has been observed in a variety of cancers and has been found to contribute to tumor cell growth and proliferation. However, the effect of inhibition of CDK4 in ovarian cancer is unknown. We investigated the therapeutic effect of the CDK4 inhibitor palbociclib in combination with paclitaxel in ovarian cancer cells. METHODS Cell viabilities were determined by MTT assay after exposure to different dosages of palbociclib and/or paclitaxel. Western blot, immunofluorescence, and Calcein AM assays were conducted to determine the mechanisms underlying the cytotoxic effects of palbociclib in combination with paclitaxel. CDK4 siRNA was used to validate the outcome of targeting CDK4 by palbociclib in ovarian cancer cells. RESULTS We found that combinations of palbociclib and paclitaxel significantly enhanced drug sensitivity in both Rb-positive (SKOV3TR) and Rb-negative (OVCAR8TR) ovarian cancer-derived cells. When combined with paclitaxel, palbociclib induced apoptosis in both SKOV3TR and OVCAR8TR cells. We also found that palbociclib inhibited the activity of P-glycoprotein (Pgp), and that siRNA-mediated CDK4 knockdown sensitized multidrug resistant (MDR) SKOV3TR and OVCAR8TR cells to paclitaxel. CONCLUSIONS Inhibition of CDK4 by palbociclib can enhance paclitaxel sensitivity in both Rb-positive and Rb-negative MDR ovarian cancer cells by increasing apoptosis. CDK4 may serve as a promising target in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yan Gao
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Jackson 1115, Boston, MA, 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Jackson 1115, Boston, MA, 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Jackson 1115, Boston, MA, 02114, USA
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Jackson 1115, Boston, MA, 02114, USA
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Jackson 1115, Boston, MA, 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Jackson 1115, Boston, MA, 02114, USA.
| |
Collapse
|
24
|
Xu B, Lefringhouse J, Liu Z, West D, Baldwin LA, Ou C, Chen L, Napier D, Chaiswing L, Brewer LD, St Clair D, Thibault O, van Nagell JR, Zhou BP, Drapkin R, Huang JA, Lu ML, Ueland FR, Yang XH. Inhibition of the integrin/FAK signaling axis and c-Myc synergistically disrupts ovarian cancer malignancy. Oncogenesis 2017; 6:e295. [PMID: 28134933 PMCID: PMC5294249 DOI: 10.1038/oncsis.2016.86] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/23/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
Integrins, a family of heterodimeric receptors for extracellular matrix, are promising therapeutic targets for ovarian cancer, particularly high-grade serous-type (HGSOC), as they drive tumor cell attachment, migration, proliferation and survival by activating focal adhesion kinase (FAK)-dependent signaling. Owing to the potential off-target effects of FAK inhibitors, disruption of the integrin signaling axis remains to be a challenge. Here, we tackled this barrier by screening for inhibitors being functionally cooperative with small-molecule VS-6063, a phase II FAK inhibitor. From this screening, JQ1, a potent inhibitor of Myc oncogenic network, emerged as the most robust collaborator. Treatment with a combination of VS-6063 and JQ1 synergistically caused an arrest of tumor cells at the G2/M phase and a decrease in the XIAP-linked cell survival. Our subsequent mechanistic analyses indicate that this functional cooperation was strongly associated with the concomitant disruption of activation or expression of FAK and c-Myc as well as their downstream signaling through the PI3K/Akt pathway. In line with these observations, we detected a strong co-amplification or upregulation at genomic or protein level for FAK and c-Myc in a large portion of primary tumors in the TCGA or a local HGSOC patient cohort. Taken together, our results suggest that the integrin–FAK signaling axis and c-Myc synergistically drive cell proliferation, survival and oncogenic potential in HGSOC. As such, our study provides key genetic, functional and signaling bases for the small-molecule-based co-targeting of these two distinct oncogenic drivers as a new line of targeted therapy against human ovarian cancer.
Collapse
Affiliation(s)
- B Xu
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - J Lefringhouse
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Z Liu
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Jiangsu Province, PR China
| | - D West
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - L A Baldwin
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - C Ou
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - L Chen
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - D Napier
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - L Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - L D Brewer
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - D St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - O Thibault
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - J R van Nagell
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - B P Zhou
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - R Drapkin
- Department of Gynecologic Cancer Research, Basser Center for BRCA, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - J-A Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Jiangsu Province, PR China
| | - M L Lu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - F R Ueland
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - X H Yang
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Jiangsu Province, PR China
| |
Collapse
|
25
|
Khurana A, Roy D, Kalogera E, Mondal S, Wen X, He X, Dowdy S, Shridhar V. Quinacrine promotes autophagic cell death and chemosensitivity in ovarian cancer and attenuates tumor growth. Oncotarget 2016; 6:36354-69. [PMID: 26497553 PMCID: PMC4742182 DOI: 10.18632/oncotarget.5632] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
A promising new strategy for cancer therapy is to target the autophagic pathway. In the current study, we demonstrate that the antimalarial drug Quinacrine (QC) reduces cell viability and promotes chemotherapy-induced cell death in an autophagy-dependent manner more extensively in chemoresistant cells compared to their isogenic chemosensitive control cells as quantified by the Chou-Talalay methodology. Our preliminary data, in vitro and in vivo, indicate that QC induces autophagy by downregulating p62/SQSTM1 to sensitize chemoresistant cells to autophagic- and caspase-mediated cell death in a p53-independent manner. QC promotes autophagosome accumulation and enhances autophagic flux by clearance of p62 in chemoresistant ovarain cancer (OvCa) cell lines to a greater extent compared to their chemosensitive controls. Notably, p62 levels were elevated in chemoresistant OvCa cell lines and knockdown of p62 in these cells resulted in a greater response to QC treatment. Bafilomycin A, an autophagy inhibitor, restored p62 levels and reversed QC-mediated cell death and thus chemosensitization. Importantly, our in vivo data shows that QC alone and in combination with carboplatin suppresses tumor growth and ascites in the highly chemoresistant HeyA8MDR OvCa model compared to carboplatin treatment alone. Collectively, our preclinical data suggest that QC in combination with carboplatin can be an effective treatment for patients with chemoresistant OvCa.
Collapse
Affiliation(s)
- Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eleftheria Kalogera
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Xuyang Wen
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Xiaoping He
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sean Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
26
|
Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget 2016; 6:9313-26. [PMID: 25823654 PMCID: PMC4496219 DOI: 10.18632/oncotarget.3220] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/26/2015] [Indexed: 12/17/2022] Open
Abstract
The clinical significance of Cluster of Differentiation 44 (CD44) remains controversial in human ovarian cancer. The aim of this study is to evaluate the clinical significance of CD44 expression by using a unique tissue microarray, and then to determine the biological functions of CD44 in ovarian cancer. In this study, a unique ovarian cancer tissue microarray (TMA) was constructed with paired primary, metastatic, and recurrent tumor tissues from 26 individual patients. CD44 expression in TMA was assessed by immunohistochemistry. Both the metastatic and recurrent ovarian cancer tissues expressed higher level of CD44 than the patient-matched primary tumor. A significant association has been shown between CD44 expression and both the disease free survival and overall survival. A strong increase of CD44 was found in the tumor recurrence of mouse model. Finally, when CD44 was knocked down, proliferation, migration/invasion activity, and spheroid formation were significantly suppressed, while drug sensitivity was enhanced. Thus, up-regulation of CD44 represents a crucial event in the development of metastasis, recurrence, and drug resistance to current treatments in ovarian cancer. Developing strategies to target CD44 may prevent metastasis, recurrence, and drug resistance in ovarian cancer.
Collapse
|
27
|
Pradeep S, Huang J, Mora EM, Nick AM, Cho MS, Wu SY, Noh K, Pecot CV, Rupaimoole R, Stein MA, Brock S, Wen Y, Xiong C, Gharpure K, Hansen JM, Nagaraja AS, Previs RA, Vivas-Mejia P, Han HD, Hu W, Mangala LS, Zand B, Stagg LJ, Ladbury JE, Ozpolat B, Alpay SN, Nishimura M, Stone RL, Matsuo K, Armaiz-Peña GN, Dalton HJ, Danes C, Goodman B, Rodriguez-Aguayo C, Kruger C, Schneider A, Haghpeykar S, Jaladurgam P, Hung MC, Coleman RL, Liu J, Li C, Urbauer D, Lopez-Berestein G, Jackson DB, Sood AK. Erythropoietin Stimulates Tumor Growth via EphB4. Cancer Cell 2015; 28:610-622. [PMID: 26481148 PMCID: PMC4643364 DOI: 10.1016/j.ccell.2015.09.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/05/2014] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
While recombinant human erythropoietin (rhEpo) has been widely used to treat anemia in cancer patients, concerns about its adverse effects on patient survival have emerged. A lack of correlation between expression of the canonical EpoR and rhEpo's effects on cancer cells prompted us to consider the existence of an alternative Epo receptor. Here, we identified EphB4 as an Epo receptor that triggers downstream signaling via STAT3 and promotes rhEpo-induced tumor growth and progression. In human ovarian and breast cancer samples, expression of EphB4 rather than the canonical EpoR correlated with decreased disease-specific survival in rhEpo-treated patients. These results identify EphB4 as a critical mediator of erythropoietin-induced tumor progression and further provide clinically significant dimension to the biology of erythropoietin.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Disease Progression
- Erythropoietin/genetics
- Erythropoietin/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Kaplan-Meier Estimate
- MCF-7 Cells
- Mice, Inbred C57BL
- Mice, Nude
- Middle Aged
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Protein Binding/drug effects
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Recombinant Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Young Adult
Collapse
Affiliation(s)
- Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Jie Huang
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Edna M Mora
- Department of Surgery, University of Puerto Rico, San Juan 00936, Puerto Rico; University of Puerto Rico Comprehensive Cancer Center, San Juan 00936, Puerto Rico; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Alpa M Nick
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Min Soon Cho
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Kyunghee Noh
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Chad V Pecot
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | | | | | - Yunfei Wen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Chiyi Xiong
- Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kshipra Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Jean M Hansen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Archana S Nagaraja
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Rebecca A Previs
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Pablo Vivas-Mejia
- Department of Surgery, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Hee Dong Han
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA; Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Hu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA; Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behrouz Zand
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Loren J Stagg
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John E Ladbury
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S Neslihan Alpay
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Masato Nishimura
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Rebecca L Stone
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Koji Matsuo
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Guillermo N Armaiz-Peña
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Heather J Dalton
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Christopher Danes
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Blake Goodman
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carola Kruger
- Molecular Neurology, Sygnis AG, Heidelberg 69120, Germany
| | | | - Shyon Haghpeykar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Padmavathi Jaladurgam
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Mien-Chie Hung
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 402, Taiwan
| | - Robert L Coleman
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chun Li
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diana Urbauer
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA; Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Hojjat-Farsangi M. Targeting non-receptor tyrosine kinases using small molecule inhibitors: an overview of recent advances. J Drug Target 2015. [DOI: 10.3109/1061186x.2015.1068319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden and
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
29
|
Yan L, Wang C, Lin B, Liu J, Liu D, Hou R, Wang Y, Gao L, Zhang S, Iwamori M. Lewis y enhances CAM-DR in ovarian cancer cells by activating the FAK signaling pathway and upregulating Bcl-2/Bcl-XL expression. Biochimie 2015; 113:17-25. [PMID: 25726913 DOI: 10.1016/j.biochi.2015.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/25/2015] [Indexed: 02/05/2023]
Abstract
Oligosaccharides on the surface of adhesion molecules may contribute to the process of CAM-DR. To investigate the role of the Lewis y antigen in this process, we established a cell adhesion model mediated by the integrin α5β1-FN interaction in the ovarian cancer cell line, RMG-1-hFUT, which highly expresses Lewis y by transfection with α1,2-fucosyltransferase into RMG-1 cells. Our results indicate that the rates of carboplatin-induced apoptosis and necrosis are reduced in FN-adhered tumor cells, and carboplatin resistance is significantly decreased in the presence of anti-Lewis y antibody. CAM-DR in tumor cells has been correlated with elevated expression of the nuclear anti-apoptotic proteins Bcl-2 and Bcl-XL. Lewis y promotes the expression of the Bcl-2 and Bcl-XL genes by activating the focal adhesion kinase signaling pathway and accelerating their transcription. Thus, Lewis y leads to inhibition of apoptosis and enhancement of CAM-DR by activation of the FAK signaling pathway and upregulation of Bcl-2/Bcl-XL expression in ovarian cancer cell lines.
Collapse
Affiliation(s)
- Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, PR China
| | - Changzhi Wang
- Department of Obstetrics and Gynecology, Shantou University Medical College, Shantou 515000, PR China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, PR China.
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, PR China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, PR China
| | - Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, PR China
| | - Yifei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, PR China
| | - Lili Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, PR China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, PR China
| | - Masao Iwamori
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
30
|
Li M, Hong LI, Liao M, Guo G. Expression and clinical significance of focal adhesion kinase and adrenomedullin in epithelial ovarian cancer. Oncol Lett 2015; 10:1003-1007. [PMID: 26622614 DOI: 10.3892/ol.2015.3278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the expression of focal adhesion kinase (FAK) and adrenomedullin (ADM) and determine their clinical significance and cooperative role in human epithelial ovarian cancer. The expression of FAK and ADM was investigated in epithelial ovarian cancer, benign ovarian tumors and normal control tissues by immunohistochemical staining and optical microscopy. The FAK and ADM expression and correlation with clinicopathological parameters was analyzed using SPSS 13.0 software. The expression of FAK and ADM in epithelial ovarian cancer was significantly higher compared with that in benign tumors or normal ovarian tissues (P<0.01); however, no significant difference was observed between benign tumors and normal tissues (P>0.05). The expression of FAK was found to be correlated with histological grade, clinical stage, lymph node metastasis and prognosis (P<0.05), but exhibited no significant association with patient age or histological type (P>0.05). The expression of ADM was significantly correlated with pathological grade, lymph node metastasis and prognosis (P<0.05), but not with age, clinical stage or histological type (P>0.05). The Spearman's rank correlation analysis revealed a positive correlation between FAK and ADM expression (r=0.314). FAK and ADM were more highly expressed in epithelial ovarian cancer compared with benign tumors or normal ovarian tissues. Furthermore, FAK and ADM may play a cooperative role; specifically, FAK may upregulate ADM in the invasion and migration of epithelial ovarian cancer. Thus, FAK and ADM may represent potential biomarkers for evaluating the malignant potential and prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Mingqun Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China ; Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441100, P.R. China
| | - L I Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Meimei Liao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Guanglin Guo
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
31
|
Alterations in ovarian cancer cell adhesion drive taxol resistance by increasing microtubule dynamics in a FAK-dependent manner. Sci Rep 2015; 5:9529. [PMID: 25886093 PMCID: PMC4400875 DOI: 10.1038/srep09529] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/04/2015] [Indexed: 12/27/2022] Open
Abstract
Chemorefractory ovarian cancer patients show extremely poor prognosis. Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. Despite the close interplay between microtubules and cell adhesion, it remains unknown if chemoresistance alters the way cells adhere to their extracellular environment, a process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they did display increased microtubule dynamics. These changes in microtubule dynamics coincided with faster attachment rates and decreased adhesion strength, which correlated with increased surface β1-integrin expression and decreased focal adhesion formation, respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to be independent of microtubule polymerization but dependent on focal adhesion kinase (FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased microtubule dynamics to equal levels in both populations, indicating alterations in adhesive signaling are up-stream of microtubule dynamics. Taken together, this work demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to their extracellular environment causing down-stream increases in microtubule dynamics, providing a therapeutic target that may improve prognosis by not only recovering drug sensitivity, but also decreasing metastasis.
Collapse
|
32
|
Gao X, Wang S, Wang B, Deng S, Liu X, Zhang X, Luo L, Fan R, Xiang M, You C, Wei Y, Qian Z, Guo G. Improving the anti-ovarian cancer activity of docetaxel with biodegradable self-assembly micelles through various evaluations. Biomaterials 2015; 53:646-58. [PMID: 25890760 DOI: 10.1016/j.biomaterials.2015.02.108] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Docetaxel (DOC) produces anti-tumor effects by inducing apoptosis and inhibiting cell growth. However, its clinical application is limited by its hydrophobicity and low biocompatibility. Therefore, improving DOC's water solubility, biocompatibility, and anti-tumor effects are important goals that will improve its clinical utility. In this work, DOC and methoxy poly(ethylene glycol) (MPEG)/polycaprolactone (PCL) (MPEG-PCL) showed good compatibility through computer simulations. We prepared DOC-loaded polymeric micelles (DOC/MPEG-PCL micelles) with drug loading of 6.82% and encapsulation efficiency of 98.36%; these were monodispersed and approximately 30 nm in diameter, and released DOC over an extended period in vitro and in vivo. In addition, DOC/MPEG-PCL micelles inhibited cell growth and induced apoptosis more effectively than free DOC in vitro. Furthermore, DOC/MPEG-PCL micelles inhibited ovarian tumor growth more significantly than free DOC. Immunohistochemical analysis indicated that DOC/MPEG-PCL micelles improved DOC's anti-tumor effect by enhancing tumor cell apoptosis and suppressing tumor cell proliferation. Moreover, in bio-imaging analysis, DOC/MPEG-PCL micelles showed a higher concentration and a longer retention time in ovarian tumor tissue than did free DOC, indicating that the DOC/MPEG-PCL micelles delivered more anti-tumor drug to the tumor. Our data suggest that DOC/MPEG-PCL micelles have the potential to be applied clinically in ovarian cancer therapy.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China; Institute of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Shimin Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - BiLan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Senyi Deng
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Xiaoxiao Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - XiaoNing Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - LinLi Luo
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - RangRang Fan
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - MingLi Xiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China.
| | - Chao You
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China; Institute of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - YuQuan Wei
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - ZhiYong Qian
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Gang Guo
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
33
|
Deng Z, Li Y, Fan J, Wang G, Li Y, Zhang Y, Cai G, Shen H, Ferrari M, Hu TY. Circulating peptidome to indicate the tumor-resident proteolysis. Sci Rep 2015; 5:9327. [PMID: 25788424 PMCID: PMC4365414 DOI: 10.1038/srep09327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 01/02/2023] Open
Abstract
Tumor-resident proteases (TRPs) are regarded as informative biomarkers for staging cancer progression and evaluating therapeutic efficacy. Currently in the clinic, measurement of TRP is dependent on invasive biopsies, limiting their usefulness as monitoring tools. Here we identified circulating peptides naturally produced by TRPs, and evaluated their potential to monitor the efficacy of anti-tumor treatments. We established a mouse model for ovarian cancer development and treatment by orthotopic implantation of the human drug-resistant ovarian cancer cell line HeyA8-MDR, followed by porous silicon particle- or multistage vector (MSV) - enabled EphA2 siRNA therapy. Immunohistochemistry staining of tumor tissue revealed decreased expression of matrix metallopeptidase 9 (MMP-9) in mice exhibiting positive responses to MSV-EphA2 siRNA treatment. We demonstrated, via an ex vivo proteolysis assay, that C3f peptides can act as substrates of MMP-9, which cleaves C3f at L1311-L1312 into two peptides (SSATTFRL and LWENGNLLR). Importantly, we showed that these two C3f-derived fragments detected in serum were primarily generated by tumor-resident, but not blood-circulating, MMP-9. Our results suggested that the presence of the circulating fragments specially derived from the localized cleavage in tumor microenvironment can be used to evaluate therapeutic efficacy of anti-cancer treatment, assessed through a relatively noninvasive and user-friendly proteomics approach.
Collapse
Affiliation(s)
- Zaian Deng
- 1] School of Life Science, Tsinghua University, Beijing 100084, China [2] Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States [3] Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yaojun Li
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States
| | - Jia Fan
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States
| | - Guohui Wang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States
| | - Yan Li
- Institute of Biophysics, Chinese Academy Of Sciences, 15 Datum Road, Chaoyang District, Beijing 100101, China
| | - Yaou Zhang
- 1] School of Life Science, Tsinghua University, Beijing 100084, China [2] Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Guoping Cai
- 1] School of Life Science, Tsinghua University, Beijing 100084, China [2] Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Haifa Shen
- 1] Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States [2] Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, 445 E. 69th Street, New York, New York 10021, United States
| | - Mauro Ferrari
- 1] Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States [2] Department of Internal Medicine, Weill Cornell Medical College of Cornell University, 445 E. 69th Street, New York, New York 10021, United States
| | - Tony Y Hu
- 1] Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States [2] Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, 445 E. 69th Street, New York, New York 10021, United States
| |
Collapse
|
34
|
MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer. Sci Rep 2015; 5:8509. [PMID: 25687880 PMCID: PMC4330541 DOI: 10.1038/srep08509] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/22/2015] [Indexed: 01/08/2023] Open
Abstract
Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.
Collapse
|
35
|
Stewart JE, Ma X, Megison M, Nabers H, Cance WG, Kurenova EV, Beierle EA. Inhibition of FAK and VEGFR-3 binding decreases tumorigenicity in neuroblastoma. Mol Carcinog 2015; 54:9-23. [PMID: 23868727 PMCID: PMC4370318 DOI: 10.1002/mc.22070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/01/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. Vascular endothelial growth factor receptor-3 (VEGFR-3), another tyrosine kinase, has also been found to be important in the development of many human tumors including neuroblastoma. Recent reports have found that FAK and VEGFR-3 interact, and we have previously shown that both of these kinases interact in neuroblastoma. We have hypothesized that interruption of the FAK-VEGFR-3 interaction would lead to decreased neuroblastoma cell survival. In the current study, we examined the effects of a small molecule, chloropyramine hydrochloride (C4), designed to disrupt the FAK-VEGFR-3 interaction, upon cellular attachment, migration, and survival in two human neuroblastoma cell lines. We also utilized a murine xenograft model to study the impact of C4 upon tumor growth. In these studies, we showed that disruption of the FAK-VEGFR-3 interaction led to decreased cellular attachment, migration, and survival in vitro. In addition, treatment of murine xenografts with chloropyramine hydrochloride decreased neuroblastoma xenograft growth. Further, this molecule acted synergistically with standard chemotherapy to further decrease neuroblastoma xenograft growth. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other solid tumors of childhood.
Collapse
Affiliation(s)
- Jerry E Stewart
- University of Alabama, Birmingham, 1600 7th Ave. S., Lowder Building, Room 300, Birmingham, Alabama
| | | | | | | | | | | | | |
Collapse
|
36
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|
37
|
Golubovskaya VM, Sumbler B, Ho B, Yemma M, Cance WG. MiR-138 and MiR-135 directly target focal adhesion kinase, inhibit cell invasion, and increase sensitivity to chemotherapy in cancer cells. Anticancer Agents Med Chem 2014; 14:18-28. [PMID: 23438844 DOI: 10.2174/187152061401140108113435] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 11/22/2022]
Abstract
Focal Adhesion Kinase is a 125 kDa non-receptor kinase and overexpressed in many types of tumors. Recently, short noncoding RNAs, called microRNAs have been discovered as regulators of gene expression mainly through binding to the untranslated region (UTR) of mRNA. In this report we show that MiR-138 and MiR-135 down-regulated FAK expression in cancer cells. MiR-138 and MiR-135 inhibited FAK protein expression in different cancer cell lines. The computer analysis of 3'FAK-untranslated region (FAKUTR) identified one conserved MiR-138 binding site (CACCAGCA) at positions 3514-3521 and one conserved MiR-135 (AAGCCAU) binding site at positions 4278-4284 in the FAK-UTR. By a dual-luciferase assay we demonstrate that MiR-138 and MiR-135 directly bound the FAK untranslated region using FAK-UTR-Target (FAK-UTR) luciferase plasmid and inhibited its luciferase activity. The sitedirected mutagenesis of the MiR-138 and MiR-135 binding sites in the FAK-UTR abrogated MiR-138 and MiR-135-directed inhibition of FAK-UTR. Real-time PCR demonstrated that cells transfected with MiR-138 and MiR-135 expressed decreased FAK mRNA levels. Moreover, stable expression of MiR-138 and MiR-135 in 293 and HeLa cells decreased cell invasion and increased sensitivity to 5- fluorouracil (5-FU), FAK inhibitor, Y15, and doxorubicin. In addition, MiR-138 significantly decreased 293 xenograft tumor growth in vivo. This is the first report on regulation of FAK expression by MiR-135 and MiR138 that affected invasion, drug sensitivity, and tumor growth in cancer cells, which is important to the development of FAK-targeted therapeutics and understanding their novel regulations and functions.
Collapse
Affiliation(s)
| | | | | | | | - William G Cance
- Department of Surgical Oncology, Roswell Park, Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
38
|
Shah NR, Tancioni I, Ward KK, Lawson C, Chen XL, Jean C, Sulzmaier FJ, Uryu S, Miller NLG, Connolly DC, Schlaepfer DD. Analyses of merlin/NF2 connection to FAK inhibitor responsiveness in serous ovarian cancer. Gynecol Oncol 2014; 134:104-11. [PMID: 24786638 PMCID: PMC4065804 DOI: 10.1016/j.ygyno.2014.04.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Focal adhesion kinase (FAK) is overexpressed in serous ovarian cancer. Loss of merlin, a product of the neurofibromatosis 2 tumor suppressor gene, is being evaluated as a biomarker for FAK inhibitor sensitivity in mesothelioma. Connections between merlin and FAK in ovarian cancer remain undefined. METHODS Nine human and two murine ovarian cancer cell lines were analyzed for growth in the presence of a small molecule FAK inhibitor (PF-271, also termed VS-6062) from 0.1 to 1 μM for 72 h. Merlin was evaluated by immunoblotting and immunostaining of a human ovarian tumor tissue array. Growth of cells was analyzed in an orthotopic tumor model and evaluated in vitro after stable shRNA-mediated merlin knockdown. RESULTS Greater than 50% inhibition of OVCAR8, HEY, and ID8-IP ovarian carcinoma cell growth occurred with 0.1 μM PF-271 in anchorage-independent (p<0.001) but not in adherent culture conditions. PF-271-mediated reduction in FAK Y397 phosphorylation occurred independently of growth inhibition. Suspended growth of OVCAR3, OVCAR10, IGROV1, IGROV1-IP, SKOV3, SKOV3-IP, A2780, and 5009-MOVCAR was not affected by 0.1 μM PF-271. Merlin expression did not correlate with serous ovarian tumor grade or stage. PF-271 (30 mg/kg, BID) did not inhibit 5009-MOVCAR tumor growth and merlin knockdown in SKOV3-IP and OVCAR10 cells did not alter suspended cell growth upon PF-271 addition. CONCLUSIONS Differential responsiveness to FAK inhibitor treatment was observed. Intrinsic low merlin protein level correlated with PF-271-mediated anchorage-independent growth inhibition, but reduction in merlin expression did not induce sensitivity to FAK inhibition. Merlin levels may be useful for patient stratification in FAK inhibitor trials.
Collapse
Affiliation(s)
- Nina R Shah
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Isabelle Tancioni
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Kristy K Ward
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Christine Lawson
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Xiao Lei Chen
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Christine Jean
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Florian J Sulzmaier
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Sean Uryu
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Nichol L G Miller
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States
| | - Denise C Connolly
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| | - David D Schlaepfer
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093, United States.
| |
Collapse
|
39
|
Li J, Zhang Y, Gao Y, Cui Y, Liu H, Li M, Tian Y. Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep 2014; 32:979-88. [PMID: 24968817 DOI: 10.3892/or.2014.3297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/29/2014] [Indexed: 11/05/2022] Open
Abstract
The expression of HNF1 homeobox B (HNF1B) is associated with cancer risk in several tumors, including ovarian cancer, and its decreased expression play roles in cancer development. However, the study of HNF1B and cancer is limited, and its association with drug resistance in cancer has never been reported. On the basis of array data retrieved from Oncomine and Gene Expression Omnibus (GEO) online database, we found that the mRNA expression of HNF1B in 586 ovarian serous cystadenocarcinomas and in platinum-resistant A2780 epithelial ovarian cancer cells was significantly decreased, indicating a potential role of HNF1B in drug resistance in ovarian cancer. Based on this finding, comprehensive bioinformatics analyses, including protein/gene interaction, protein-small molecule/chemical interaction, biological process annotation, gene co-occurrence and pathway enrichment analysis and microRNA-mRNA interaction, were performed to illustrate the association of HNF1B with drug resistance in ovarian cancer. We found that among the proteins/genes, small molecules/chemicals and microRNAs which directly interacted with HNF1B, the majority was associated with drug resistance in cancer, particularly in ovarian cancer. Biological process annotation revealed that HNF1B closely related to 24 biological processes which were all notably associated with ovarian cancer and drug resistance. These results indicated that the downregulation of HNF1B may contribute to drug resistance in ovarian cancer, via its direct interactions with these drug resistance-related proteins/genes, small molecules/chemicals and microRNAs, and via its regulations on the drug resistance-related biological processes. Pathway enrichment analysis of 36 genes which co-occurred with HNF1B, ovarian cancer and drug resistance indicated that the HNF1B may perform its drug resistance-related functions through 4 pathways including ErbB signaling, focal adhesion, apoptosis and p53 signaling. Collectively, in this study, we illustrated for the first time that HNF1B may contribute to drug resistance in ovarian cancer, potentially through the 4 pathways. The present study may pave the way for further investigation of the drug resistance-related functions of HNF1B in ovarian cancer.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Yonghong Zhang
- Department of Obstetrics and Gynecology, Muping Traditional Chinese Medicine Hospital, Yantai, Shandong, P.R. China
| | - Yutao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing, P.R. China
| | - Yuqian Cui
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China
| | - Mi Li
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
40
|
Stone RL, Baggerly KA, Armaiz-Pena GN, Kang Y, Sanguino AM, Thanapprapasr D, Dalton HJ, Bottsford-Miller J, Zand B, Akbani R, Diao L, Nick AM, DeGeest K, Lopez-Berestein G, Coleman RL, Lutgendorf S, Sood AK. Focal adhesion kinase: an alternative focus for anti-angiogenesis therapy in ovarian cancer. Cancer Biol Ther 2014; 15:919-29. [PMID: 24755674 DOI: 10.4161/cbt.28882] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This investigation describes the clinical significance of phosphorylated focal adhesion kinase (FAK) at the major activating tyrosine site (Y397) in epithelial ovarian cancer (EOC) cells and tumor-associated endothelial cells. FAK gene amplification as a mechanism for FAK overexpression and the effects of FAK tyrosine kinase inhibitor VS-6062 on tumor growth, metastasis, and angiogenesis were examined. FAK and phospho-FAK(Y397) were quantified in tumor (FAK-T; pFAK-T) and tumor-associated endothelial (FAK-endo; pFAK-endo) cell compartments of EOCs using immunostaining and qRT-PCR. Associations between expression levels and clinical variables were evaluated. Data from The Cancer Genome Atlas were used to correlate FAK gene copy number and expression levels in EOC specimens. The in vitro and in vivo effects of VS-6062 were assayed in preclinical models. FAK-T and pFAK-T overexpression was significantly associated with advanced stage disease and increased microvessel density (MVD). High MVD was observed in tumors with elevated endothelial cell FAK (59%) and pFAK (44%). Survival was adversely affected by FAK-T overexpression (3.03 vs 2.06 y, P = 0.004), pFAK-T (2.83 vs 1.78 y, P<0.001), and pFAK-endo (2.33 vs 2.17 y, P = 0.005). FAK gene copy number was increased in 34% of tumors and correlated with expression levels (P<0.001). VS-6062 significantly blocked EOC and endothelial cell migration as well as endothelial cell tube formation in vitro. VS-6062 reduced mean tumor weight by 56% (P = 0.005), tumor MVD by 40% (P = 0.0001), and extraovarian metastasis (P<0.01) in orthotopic EOC mouse models. FAK may be a unique therapeutic target in EOC given the dual anti-angiogenic and anti-metastatic potential of FAK inhibitors.
Collapse
Affiliation(s)
- Rebecca L Stone
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Yu Kang
- Department of Obstetrics and Gynecology; Hospital of Fudan University; Shanghai, PR China
| | - Angela M Sanguino
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Duangmani Thanapprapasr
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Heather J Dalton
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Justin Bottsford-Miller
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Behrouz Zand
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Alpa M Nick
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Koen DeGeest
- Department of Obstetrics and Gynecology; The University of Iowa; Iowa City, IA USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Robert L Coleman
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Susan Lutgendorf
- Department of Psychology; The University of Iowa; Iowa City, IA USA
| | - Anil K Sood
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA; Department of Cancer Biology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
41
|
Duan YT, Yao YF, Huang W, Makawana JA, Teraiya SB, Thumar NJ, Tang DJ, Tao XX, Wang ZC, Jiang AQ, Zhu HL. Synthesis, biological evaluation, and molecular docking studies of novel 2-styryl-5-nitroimidazole derivatives containing 1,4-benzodioxan moiety as FAK inhibitors with anticancer activity. Bioorg Med Chem 2014; 22:2947-54. [PMID: 24792811 DOI: 10.1016/j.bmc.2014.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
A series of 2-styryl-5-nitroimidazole derivatives containing 1,4-benzodioxan moiety (3a-3r) has been designed, synthesized and their biological activities were also evaluated as potential antiproliferation and focal adhesion kinase (FAK) inhibitors. Among all the compounds, 3p showed the most potent activity in vitro which inhibited the growth of A549 with IC50 value of 3.11 μM and Hela with IC50 value of 2.54 μM respectively. Compound 3p also exhibited significant FAK inhibitory activity (IC50=0.45 μM). Docking simulation was performed for compound 3p into the FAK structure active site to determine the probable binding model.
Collapse
Affiliation(s)
- Yong-Tao Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yong-Fang Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jigar A Makawana
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shashikant B Teraiya
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Nilesh J Thumar
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Dan-Jie Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiang-Xiang Tao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
42
|
Aust S, Auer K, Bachmayr-Heyda A, Denkert C, Sehouli J, Braicu I, Mahner S, Lambrechts S, Vergote I, Grimm C, Horvat R, Castillo-Tong DC, Zeillinger R, Pils D. Ambivalent role of pFAK-Y397 in serous ovarian cancer--a study of the OVCAD consortium. Mol Cancer 2014; 13:67. [PMID: 24655477 PMCID: PMC3998046 DOI: 10.1186/1476-4598-13-67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Background Focal adhesion kinase (FAK) autophosphorylation seems to be a potential therapeutic target but little is known about the role and prognostic value of FAK and pFAK in epithelial ovarian cancer (EOC). Recently, we validated a gene signature classifying EOC patients into two subclasses and revealing genes of the focal adhesion pathway as significantly deregulated. Methods FAK expression and pFAK-Y397 abundance were elucidated by immunohistochemistry and microarray analysis in 179 serous EOC patients. In particular the prognostic value of phosphorylated FAK (pFAK-Y397) and FAK in advanced stage EOC was investigated. Results Multiple Cox-regression analysis showed that high pFAK abundance was associated with improved overall survival (HR 0.54; p = 0.034). FAK was positive in a total of 92.2% (n = 165) and high pFAK abundance was found in 36.9% (n = 66). High pFAK abundance (36.9% ; n = 66) was associated with either nodal positivity and/or distant metastasis (p = 0.030). Whole genome gene expression data revealed a connection of the FAK-pFAK-Y397 axis and the mTOR-S6K1 pathway, shown to play a major role in carcinogenesis. Conclusion The role of pFAK-Y397 remains controversial: although high pFAK-Y397 abundance is associated with distant and lymph node metastases, it is independently associated with improved overall survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Dietmar Pils
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Room-No,: 5,Q9,27, A-1090 Vienna, Austria.
| |
Collapse
|
43
|
Beierle EA, Ma X, Stewart JE, Megison M, Cance WG, Kurenova EV. Inhibition of the focal adhesion kinase and vascular endothelial growth factor receptor-3 interaction leads to decreased survival in human neuroblastoma cell lines. Mol Carcinog 2014; 53:230-42. [PMID: 23065847 PMCID: PMC3809027 DOI: 10.1002/mc.21969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 11/08/2022]
Abstract
Neuroblastoma continues to be a devastating childhood solid tumor and is responsible for over 15% of all childhood cancer-related deaths. Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor-3 (VEGFR-3) are protein tyrosine kinases that are overexpressed in a number of human cancers, including neuroblastoma. These two kinases can directly interact and provide survival signals to cancer cells. In this study, we utilized siRNA to VEGFR-3 to demonstrate the biologic importance of this kinase in neuroblastoma cell survival. We also used confocal microscopy and immunoprecipitation to show that FAK and VEGFR-3 bind in neuroblastoma. Finally, employing a 12-amino-acid peptide (AV3) specific to VEGFR-3, we showed that the colocalization between FAK and VEGFR-3 could be disrupted, and that disruption resulted in decreased neuroblastoma cell survival. These studies provide insight to the FAK-VEGFR-3 interaction in neuroblastoma and demonstrate its importance in this tumor type. Focusing upon the FAK-VEGFR-3 interaction may provide a novel therapeutic target for the development of new strategies for treatment of neuroblastoma.
Collapse
Affiliation(s)
- Elizabeth A. Beierle
- University of Alabama, Birmingham, 1600 7 Ave. S., ACC Room 300, Birmingham, AL 35233
| | - Xiaojie Ma
- University of Florida, 1600 Archer Road, Gainesville, FL 32610
| | - Jerry E. Stewart
- University of Alabama, Birmingham, 1600 7 Ave. S., ACC Room 300, Birmingham, AL 35233
| | - Michael Megison
- University of Alabama, Birmingham, 1600 7 Ave. S., ACC Room 300, Birmingham, AL 35233
| | - William G. Cance
- Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| | - Elena V. Kurenova
- Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| |
Collapse
|
44
|
Yoon H, Choi YL, Song JY, Do I, Kang SY, Ko YH, Song S, Kim BG. Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS One 2014; 9:e88587. [PMID: 24523919 PMCID: PMC3921183 DOI: 10.1371/journal.pone.0088587] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) displays a higher resistance to first line chemotherapy, requiring the development of new therapeutics. We previously identified a frequent chromosomal gain at 8q24 that harbors the focal-adhesion kinase (FAK) gene; the potential of this gene as a therapeutic target remains to be evaluated in OCCCs. We first examined the dependence of OCCCs on FAK and the PI3K/AKT signaling pathway. FAK was overexpressed in 20% of 67 OCCC samples, and this overexpression was correlated with its copy number gain. FAK copy number gains and mutations in PIK3CA accounted for about 40% of OCCC samples, suggesting that the FAK/PI3K/AKT axis is an attractive candidate for targeted therapeutics. We, therefore, treated ovarian cancer cell lines, including OCCC subtypes, with the FAK inhibitors PF-562,271 (PF271), and PF-573,228 (PF228). Ovarian cancer cells were more sensitive to PF271 than PF228. We then searched for single agents that exhibited a synergistic effect on cell death in combination with PF271. We found that co-treatment of PF271 with ABT-737, a BCL-2/BCL-XL antagonist, was profoundly effective at inducing apoptosis. RMGI and OVISE cells were more sensitive to ABT-737 than OVMANA and SKOV3 cells, which have PIK3CA mutations. Mechanistically, PF271 treatment resulted in the transient down-regulation of the anti-apoptotic protein MCL1 via the PI3K/AKT pathway. Therefore, PF271/ABT-737 treatment led to the inhibition of the anti-apoptotic proteins MCL1 and BCL-XL/BCL-2. We suggest that pharmacological inhibition of BCL-XL and FAK/PYK2 can be a potential therapeutic strategy for the treatment of OCCC.
Collapse
Affiliation(s)
- Heejei Yoon
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Young Song
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ingu Do
- Samsung Cancer Research Institute. Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Young Kang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Hyeh Ko
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Cancer Research Institute. Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangyong Song
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Sheng L, Xiong M, Li C, Meng X. Reversing multidrug-resistant by RNA interference through silencing MDR1 gene in human hepatocellular carcinoma cells subline Bel-7402/ADM. Pathol Oncol Res 2013; 20:541-8. [PMID: 24327315 DOI: 10.1007/s12253-013-9726-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
Multidrug resistance (MDR) in hepatocellular carcinoma (HC) significantly impedes the effect of chemotherapy and is considered as a primary reason leading to its recurrences and metastasis. The aim of present study was to explore new molecular targets for the reversal of MDR in HC by screening the adriamycin (ADM)-induced, human MDR-resistant HC cell subline Bel-7402/ADM. Small interfering RNAs (siRNAs) of four (MDR1si326, MDR1si1513, MDR1si2631 and MDR1si3071) targeting MDR1 were designed and transfected into Bel-7402/ADM cell strains. The experiments involved the following: mRNA expression of MDR1 gene by RT-PCR, P-glycoprotein (P-gp) expression by Western blot, intracellular ADM accumulation flow cytometry, and IC50 of ADM by a cytotoxic MTT assay. Four siRNAs reversed MDR in HC mediated by MDR1 to varying degrees. The expression level of MDR1 mRNA in cells of MDR1si326 or MDR1si2631 group (0.190 ± 0.038 or 0.171 ± 0.011) was more decreased. The expression level of P-gp in cells of MDR1si326 group was the lowest. The accumulation of ADM in cells of MDR1si326 or MDR1si2631 group (77.0 ± 3.5 or 75.4 ± 2.9) was more increased. The IC50 of cells to ADM was lowest in MDR1si326 group (11.32 ± 0.69 mg/L). Compared with other three siRNAs, MDR1si326 performed the optimal reversal effect of drug resistance in human HC Bel-7402/ADM.
Collapse
Affiliation(s)
- Long Sheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,
| | | | | | | |
Collapse
|
46
|
He K, Si P, Wang H, Tahir U, Chen K, Xiao J, Duan X, Huang R, Xiang G. Crocetin induces apoptosis of BGC-823 human gastric cancer cells. Mol Med Rep 2013; 9:521-6. [PMID: 24337515 DOI: 10.3892/mmr.2013.1851] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/26/2013] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of gastrointestinal tumors worldwide, and the side effects of chemotherapeutic drugs and the resistance to chemotherapy remain problematic in its clinical treatment. Therefore, safe and effective novel agents are urgently required. The purpose of the present study was to investigate the crocetin‑sensitive treatment of GC and its possible mechanisms. BGC‑823 human GC cells were treated with crocetin. The effects of crocetin on the viability of the cells were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hoechst 33258 dyeing and Rh123 staining were used to detect cell apoptosis. The BGC‑823 cells were subjected to western blotting analysis for detection of cytochrome c and cleaved caspase‑3 protein expression. Crocetin inhibited the proliferation of the GC cell line in a dose‑ and time‑dependent manner. Apoptotic BGC‑823 cells induced by crocetin were stained by Hoechst 33258 and observed under a light microscope for cell membrane staining of dense nuclei, nuclear pyknosis, fragmentation, chromatin condensation and highlighted nuclear membrane staining. This revealed a decline in the mitochondrial membrane potential of the BGC‑823 cells. Crocetin also induced caspase‑3 activation and cytochrome c translocation into the cytosol from the mitochondria. The results of this study indicate that crocetin induces the apoptosis of BGC‑823 cells, and may be used as an effective agent in the treatment of GC.
Collapse
Affiliation(s)
- Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| | - Picheng Si
- Department of General Surgery, People's Hospital of Heyuan, Heyuan, Guangdong 517001, P.R. China
| | - Hanning Wang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| | - Usman Tahir
- College of Animal Science and Technology, China Agricultural University, Beijing 10083, P.R. China
| | - Kaiyun Chen
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| | - Jinfeng Xiao
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| | - Xiaopeng Duan
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| | - Rui Huang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| | - Guoan Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
47
|
Lee BY, Hochgräfe F, Lin HM, Castillo L, Wu J, Raftery MJ, Martin Shreeve S, Horvath LG, Daly RJ. Phosphoproteomic profiling identifies focal adhesion kinase as a mediator of docetaxel resistance in castrate-resistant prostate cancer. Mol Cancer Ther 2013; 13:190-201. [PMID: 24194567 DOI: 10.1158/1535-7163.mct-13-0225-t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Docetaxel remains the standard-of-care for men diagnosed with metastatic castrate-resistant prostate cancer (CRPC). However, only approximately 50% of patients benefit from treatment and all develop docetaxel-resistant disease. Here, we characterize global perturbations in tyrosine kinase signaling associated with docetaxel resistance and thereby develop a potential therapeutic strategy to reverse this phenotype. Using quantitative mass spectrometry-based phosphoproteomics, we identified that metastatic docetaxel-resistant prostate cancer cell lines (DU145-Rx and PC3-Rx) exhibit increased phosphorylation of focal adhesion kinase (FAK) on Y397 and Y576, in comparison with parental controls (DU145 and PC3, respectively). Bioinformatic analyses identified perturbations in pathways regulating focal adhesions and the actin cytoskeleton and in protein-protein interaction networks related to these pathways in docetaxel-resistant cells. Treatment with the FAK tyrosine kinase inhibitor (TKI) PF-00562271 reduced FAK phosphorylation in the resistant cells, but did not affect cell viability or Akt phosphorylation. Docetaxel administration reduced FAK and Akt phosphorylation, whereas cotreatment with PF-00562271 and docetaxel resulted in an additive attenuation of FAK and Akt phosphorylation and overcame the chemoresistant phenotype. The enhanced efficacy of cotreatment was due to increased autophagic cell death, rather than apoptosis. These data strongly support that enhanced FAK activation mediates chemoresistance in CRPC, and identify a potential clinical niche for FAK TKIs, where coadministration with docetaxel may be used in patients with CRPC to overcome chemoresistance.
Collapse
Affiliation(s)
- Brian Y Lee
- Corresponding Author: Roger J. Daly, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Level 1, Building 77, Monash University, VIC 3800, Australia. Telephone: 61-3-990-29301;
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T, Pecot CV, Zand B, Liu T, Huang J, Jennings NB, Rupaimoole R, Taylor M, Pradeep S, Wu SY, Lu C, Wen Y, Huang J, Liu J, Sood AK. Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst 2013; 105:1485-95. [PMID: 24062525 DOI: 10.1093/jnci/djt210] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously found focal adhesion kinase (FAK) inhibition sensitizes ovarian cancer to taxanes; however, the mechanisms are not well understood. METHODS We characterized the biologic response of taxane-resistant and taxane-sensitive ovarian cancer models to a novel FAK inhibitor (VS-6063). We used reverse-phase protein arrays (RPPA) to identify novel downstream targets in taxane-resistant cell lines. Furthermore, we correlated clinical and pathological data with nuclear and cytoplasmic expression of FAK and YB-1 in 105 ovarian cancer samples. Statistical tests were two-sided, and P values were calculated with Student t test or Fisher exact test. RESULTS We found that VS-6063 inhibited FAK phosphorylation at the Tyr397 site in a time- and dose-dependent manner. The combination of VS-6063 and paclitaxel markedly decreased proliferation and increased apoptosis, which resulted in 92.7% to 97.9% reductions in tumor weight. RPPA data showed that VS-6063 reduced levels of AKT and YB-1 in taxane-resistant cell lines. FAK inhibition enhanced chemosensitivity in taxane-resistant cells by decreasing YB-1 phosphorylation and subsequently CD44 in an AKT-dependent manner. In human ovarian cancer samples, nuclear FAK expression was associated with increased nuclear YB-1 expression (χ²) = 37.7; P < .001). Coexpression of nuclear FAK and YB-1 was associated with statistically significantly worse median overall survival (24.9 vs 67.3 months; hazard ratio = 2.64; 95% confidence interval = 1.38 to 5.05; P = .006). CONCLUSIONS We have identified a novel pathway whereby FAK inhibition with VS-6063 overcomes YB-1-mediated paclitaxel resistance by an AKT-dependent pathway. These findings have implications for clinical trials aimed at targeting FAK.
Collapse
Affiliation(s)
- Yu Kang
- Affiliations of authors: Department of Gynecologic Oncology and Repro ductive Medicine (YK, WH, CI, CVP, HJD, BZ, TL, JH, NBJ, RR, MT, TM, SP, SYW, CL, YW, AKS), Center for RNAi and Non-Coding RNA (CI, AKS), Department of Pathology (JH, JL), and Department of Cancer Biology (AKS), The University of Texas MD Anderson Cancer Center, Houston, TX; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China (YK); Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (TL)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Loessner D, Kobel S, Clements JA, Lutolf MP, Hutmacher DW. Hydrogel Microwell Arrays Allow the Assessment of Protease-Associated Enhancement of Cancer Cell Aggregation and Survival. MICROARRAYS 2013; 2:208-27. [PMID: 27605189 PMCID: PMC5003461 DOI: 10.3390/microarrays2030208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/31/2013] [Accepted: 08/13/2013] [Indexed: 01/03/2023]
Abstract
Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.
Collapse
Affiliation(s)
- Daniela Loessner
- Faculty of Health, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia.
| | - Stefan Kobel
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Building AI 3138, Station 15, CH-1015 Lausanne, Switzerland.
| | - Judith A Clements
- Faculty of Health, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia.
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Building AI 3138, Station 15, CH-1015 Lausanne, Switzerland.
| | - Dietmar W Hutmacher
- Faculty of Science and Engineering, IHBI, QUT, 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia.
| |
Collapse
|
50
|
Duldulao MP, Lee W, Nelson RA, Li W, Chen Z, Kim J, Garcia-Aguilar J. Mutations in specific codons of the KRAS oncogene are associated with variable resistance to neoadjuvant chemoradiation therapy in patients with rectal adenocarcinoma. Ann Surg Oncol 2013; 20:2166-71. [PMID: 23456389 PMCID: PMC5584556 DOI: 10.1245/s10434-013-2910-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mutations in KRAS and TP53 are common in colorectal carcinogenesis and are associated with resistance to therapy. Rectal cancers carrying both mutations are less likely to respond to neoadjuvant chemoradiation therapy (CRT) compared with wild-type tumors. Codon-specific KRAS mutations are associated with variable resistance to targeted therapies, but their association with rectal cancer response to CRT remains unclear. Our objective was to establish a correlation between specific KRAS mutations and rectal cancer response to CRT and to investigate if the correlation was related to a different association between KRAS and TP53 mutations. METHODS A total of 148 stage II-III rectal cancer patients underwent preoperative CRT followed by surgery. DNA was extracted from pretreatment tumor biopsies and paired normal surgical tissues and KRAS and TP53 genotyping was performed. Specific KRAS mutations were then correlated with tumor response and with concurrent TP53 mutation. RESULTS A total of 60 patients had KRAS mutation, 12 in codon 13 and 48 in other locations. Also, 80 patients had TP53 mutation; 27 had concurrent KRAS/TP53 mutations. Tumors with any KRAS mutation were less likely to have a pCR compared with wild-type KRAS (p = 0.006). Specifically, no tumors with KRAS codon 13 mutations had a pCR (p = 0.03). Tumors with KRAS codon 13 mutations also had a higher incidence of concurrent TP53 mutation compared with tumors with other KRAS mutations (p = 0.02). CONCLUSIONS Mutations in different KRAS codons may have different effects on rectal cancer resistance to CRT. This variable resistance may be related to a different frequency of TP53 mutations in KRAS mutant tumors.
Collapse
Affiliation(s)
| | - Wendy Lee
- Department of Surgery, City of Hope, Duarte, 91010, CA
| | | | - Wenyan Li
- Department of Surgery, City of Hope, Duarte, 91010, CA
| | - Zhenbin Chen
- Department of Surgery, City of Hope, Duarte, 91010, CA
| | - Joseph Kim
- Department of Surgery, City of Hope, Duarte, 91010, CA
| | | |
Collapse
|