1
|
Wang AJY, Yan C, Reike MJ, Black PC, Contreras-Sanz A. A systematic review of nanocarriers for treatment of urologic cancers. Urol Oncol 2024; 42:75-101. [PMID: 38161104 DOI: 10.1016/j.urolonc.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Nanocarriers (NCs) are a form of nanotechnology widely investigated in cancer treatment to improve the safety and efficacy of systemic therapies by increasing tumor specificity. Numerous clinical trials have explored the use of NCs in urologic cancers since the approval of the first NCs for cancer treatment over 20 years ago. The objective of this systematic review is to examine the effectiveness and safety of NCs in treating urological cancers. This paper summarizes the state of the field by investigating peer-reviewed, published results from 43 clinical trials involving the use of NCs in bladder, prostate, and kidney cancer patients with a focus on safety and efficacy data. Among the 43 trials, 16 were phase I, 20 phase II, and 4 phase I/II. No phase III trials have been reported. While both novel and classic NCs have been explored in urologic cancers, NCs already approved for the treatment of other cancers were more widely represented. Trials in prostate cancer and mixed trials involving both urologic and non-urologic cancer patients were the most commonly reported trials. Although NCs have demonstrable efficacy with adequate safety in non-urologic cancer patient populations, current clinical stage NC options appear to be less beneficial in the urologic cancer setting. For example, nab-paclitaxel and liposomal doxorubicin have proven ineffective in the treatment of urologic cancers despite successes in other cancers. However, several ongoing pre-clinical studies using targeted and locally applied improved NCs may eventually improve their utility.
Collapse
Affiliation(s)
- Amy J Y Wang
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Yan
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Moritz J Reike
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C Black
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada..
| | - Alberto Contreras-Sanz
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada..
| |
Collapse
|
2
|
Ghosh R, De M. Liposome-Based Antibacterial Delivery: An Emergent Approach to Combat Bacterial Infections. ACS OMEGA 2023; 8:35442-35451. [PMID: 37810644 PMCID: PMC10551917 DOI: 10.1021/acsomega.3c04893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
The continued emergence and spread of drug-resistant pathogens and the decline in the approval of new antimicrobial drugs pose a major threat to managing infectious diseases, resulting in high morbidity and mortality. Even though a significant variety of antibiotics can effectively cure many bacterial infectious diseases, microbial infections remain one of the biggest global health problems, which may be due to the traditional drug delivery system's shortcomings which lead to poor therapeutic index, low drug absorption, and numerous other drawbacks. Further, the use of traditional antibiotics to treat infectious diseases has always been accompanied by the emergence of multidrug resistance and adverse side effects. Despite developing numerous new antibiotics, nanomaterials, and various techniques to combat infectious diseases, they have persisted as major global health issues. Improving the current antibiotic delivery systems is a promising approach to solving many life-threatening infections. In this context, nanoliposomal systems have recently attracted much attention. Herein, we attempt to provide a concise summary of recent studies that have used liposomal nanoparticles as delivery systems for antibacterial medicines. The minireview also highlights the enormous potential of liposomal nanoparticles as antibiotic delivery systems. The future of these promising approaches lies in developing more efficient delivery systems by precisely targeting bacterial cells with antibiotics with minimum cytotoxicity and high bacterial combating efficacy.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
3
|
Fatima Qizilbash F, Sartaj A, Qamar Z, Kumar S, Imran M, Mohammed Y, Ali J, Baboota S, Ali A. Nanotechnology revolutionises breast cancer treatment: harnessing lipid-based nanocarriers to combat cancer cells. J Drug Target 2023; 31:794-816. [PMID: 37525966 DOI: 10.1080/1061186x.2023.2243403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
One of the most common cancers that occur in females is breast cancer. Despite the significant leaps and bounds that have been made in treatment of breast cancer, the disease remains one of the leading causes of death among women and a major public health challenge. The therapeutic efficacy of chemotherapeutics is hindered by chemoresistance and toxicity. Nano-based lipid drug delivery systems offer controlled drug release, nanometric size and site-specific targeting. Breast cancer treatment includes surgery, chemotherapy and radiotherapy. Despite this, no single method of treatment for the condition is currently effective due to cancer stem cell metastasis and chemo-resistance. Therefore, the employment of nanocarrier systems is necessary in order to target breast cancer stem cells. This article addresses breast cancer treatment options, including modern treatment procedures such as chemotherapy, etc. and some innovative therapeutic options highlighting the role of lipidic nanocarriers loaded with chemotherapeutic drugs such as nanoemulsion, solid-lipid nanoparticles, nanostructured lipid carriers and liposomes, and their investigations have demonstrated that they can limit cancer cell growth, reduce the risk of recurrence, as well as minimise post-chemotherapy metastasis. This article also explores FDA-approved lipid-based nanocarriers, commercially available formulations, and ligand-based formulations that are being considered for further research.
Collapse
Affiliation(s)
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Lloyd School of Pharmacy, Greater Noida, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
4
|
Ghorai SM, Deep A, Magoo D, Gupta C, Gupta N. Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood-Brain Barrier (BBB). Pharmaceutics 2023; 15:1999. [PMID: 37514185 PMCID: PMC10384895 DOI: 10.3390/pharmaceutics15071999] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Among the challenges to the 21st-century health care industry, one that demands special mention is the transport of drugs/active pharmaceutical agents across the blood-brain barrier (BBB). The epithelial-like tight junctions within the brain capillary endothelium hinder the uptake of most pharmaceutical agents. With an aim to understand more deeply the intricacies of cell-penetrating and targeted peptides as a powerful tool for desirable biological activity, we provide a critical review of both CPP and homing/targeted peptides as intracellular drug delivery agents, especially across the blood-brain barrier (BBB). Two main peptides have been discussed to understand intracellular drug delivery; first is the cell-penetrating peptides (CPPs) for the targeted delivery of compounds of interest (primarily peptides and nucleic acids) and second is the family of homing peptides, which specifically targets cells/tissues based on their overexpression of tumour-specific markers and are thus at the heart of cancer research. These small, amphipathic molecules demonstrate specific physical and chemical modifications aimed at increased ease of cellular internalisation. Because only a limited number of drug molecules can bypass the blood-brain barrier by free diffusion, it is essential to explore all aspects of CPPs that can be exploited for crossing this barrier. Considering siRNAs that can be designed against any target RNA, marking such molecules with high therapeutic potential, we present a synopsis of the studies on synthetic siRNA-based therapeutics using CPPs and homing peptides drugs that can emerge as potential drug-delivery systems as an upcoming requirement in the world of pharma- and nutraceuticals.
Collapse
Affiliation(s)
- Soma Mondal Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Auroni Deep
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Devanshi Magoo
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| |
Collapse
|
5
|
Lopez-Mendez TB, Strippoli R, Trionfetti F, Calvo P, Cordani M, Gonzalez-Valdivieso J. Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal 2022. [DOI: 10.1007/s11244-022-01697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int J Mol Sci 2022; 23:1140. [PMID: 35163063 PMCID: PMC8835305 DOI: 10.3390/ijms23031140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed a sustained increase in the research development of modern-day chemo-therapeutics, especially for those used for high mortality rate pathologies. However, the therapeutic landscape is continuously changing as a result of the currently existing toxic side effects induced by a substantial range of drug classes. One growing research direction driven to mitigate such inconveniences has converged towards the study of natural molecules for their promising therapeutic potential. Triterpenes are one such class of compounds, intensively investigated for their therapeutic versatility. Although the pharmacological effects reported for several representatives of this class has come as a well-deserved encouragement, the pharmacokinetic profile of these molecules has turned out to be an unwelcomed disappointment. Nevertheless, the light at the end of the tunnel arrived with the development of nanotechnology, more specifically, the use of liposomes as drug delivery systems. Liposomes are easily synthesizable phospholipid-based vesicles, with highly tunable surfaces, that have the ability to transport both hydrophilic and lipophilic structures ensuring superior drug bioavailability at the action site as well as an increased selectivity. This study aims to report the results related to the development of different types of liposomes, used as targeted vectors for the delivery of various triterpenes of high pharmacological interest.
Collapse
Affiliation(s)
- Andreea Milan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Prodea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Buzatu
- Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Florina Caruntu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania;
| | - Codruţa Şoica
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| |
Collapse
|
8
|
Singh D, Kaur P, Attri S, Singh S, Sharma P, Mohana P, Kaur K, Kaur H, Singh G, Rashid F, Singh D, Kumar A, Rajput A, Bedi N, Singh B, Buttar HS, Arora S. Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Curr Drug Deliv 2021; 19:560 - 586. [PMID: 34906056 DOI: 10.2174/1567201818666211214112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The conventional anticancer chemotherapies not only cause serious toxic effects, but also produce resistance in tumor cells exposed to long-term therapy. Usually, the killing of metastasized cancer cells requires long-term therapy with higher drug doses, because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and to save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist to deliver drug molecules at the specific target site and reduce the undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in the drug delivery systems, and their application in treating different cancer types in humans.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Pallavi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga. India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario. Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
9
|
Martín-Sabroso C, Fraguas-Sánchez AI, Raposo-González R, Torres-Suárez AI. Perspectives in Breast and Ovarian Cancer Chemotherapy by Nanomedicine Approach: Nanoformulations in Clinical Research. Curr Med Chem 2021; 28:3271-3286. [PMID: 32814522 DOI: 10.2174/0929867327666200819115403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast and ovarian carcinomas represent major health problems in women worldwide. Chemotherapy constitutes the main treatment strategy, and the use of nanocarriers, a good tool to improve it. Several nanoformulations have already been approved, and others are under clinical trials for the treatment of both types of cancers. OBJECTIVE This review focuses on the analysis of the nanoformulations that are under clinical research in the treatment of these neoplasms. RESULTS Currently, there are 6 nanoformulations in clinical trials for breast and ovarian carcinomas, most of them in phase II and phase III. In the case of breast cancer treatment, these nanomedicines contain paclitaxel; and, for ovarian cancer, nanoformulations containing paclitaxel or camptothecin analogs are being evaluated. The nanoencapsulation of these antineoplastics facilitates their administration and reduces their systemic toxicity. Nevertheless, the final approval and commercialization of nanoformulations may be limited by other aspects like lack of correlation between the efficacy results evaluated at in vitro and in vivo levels, difficulty in producing large batches of nanoformulations in a reproducible manner and high production costs compared to conventional formulations of antineoplastics. However, these challenges are not insurmountable and the number of approved nanoformulations for cancer therapy is growing. CONCLUSION Reviewed nanoformulations have shown, in general, excellent results, demonstrating a good safety profile, a higher maximum tolerated dose and a similar or even slightly better antitumor efficacy compared to the administration of free drugs, reinforcing the use of nano-chemotherapy in both breast and ovarian tumors.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Rafaela Raposo-González
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| |
Collapse
|
10
|
Piscatelli JA, Ban J, Lucas AT, Zamboni WC. Complex Factors and Challenges that Affect the Pharmacology, Safety and Efficacy of Nanocarrier Drug Delivery Systems. Pharmaceutics 2021; 13:114. [PMID: 33477395 PMCID: PMC7830329 DOI: 10.3390/pharmaceutics13010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Major developments in nanomedicines, such as nanoparticles (NPs), nanosomes, and conjugates, have revolutionized drug delivery capabilities over the past four decades. Although nanocarrier agents provide numerous advantages (e.g., greater solubility and duration of systemic exposure) compared to their small-molecule counterparts, there is considerable inter-patient variability seen in the systemic disposition, tumor delivery and overall pharmacological effects (i.e., anti-tumor efficacy and unwanted toxicity) of NP agents. This review aims to provide a summary of fundamental factors that affect the disposition of NPs in the treatment of cancer and why they should be evaluated during preclinical and clinical development. Furthermore, this chapter will highlight some of the translational challenges associated with elements of NPs and how these issues can only be addressed by detailed and novel pharmacology studies.
Collapse
Affiliation(s)
- Joseph A. Piscatelli
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
| | - Jisun Ban
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
| | - Andrew T. Lucas
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Zabel MD, Mollnow L, Bender H. siRNA Therapeutics for Protein Misfolding Diseases of the Central Nervous System. Methods Mol Biol 2021; 2282:377-394. [PMID: 33928585 DOI: 10.1007/978-1-0716-1298-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoparticles have been used to deliver siRNA to tissues and cells to silence specific genes in diverse organisms. Research and clinical application of nanoparticles like liposomes for drug delivery requires targeting them to specific anatomic regions or cell types, while avoiding off-target effects or clearance by the liver, kidney, or the immune system. Delivery to the central nervous system (CNS) presents additional challenges to cross the blood-brain barrier (BBB) to specific cell types like neurons, astrocytes, or glia. Here, we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously or instilled intranasally, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome-encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB, and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
Affiliation(s)
- Mark D Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Luke Mollnow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Heather Bender
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Mu Y, Wang D, Bie L, Luo S, Mu X, Zhao Y. Glypican-1-targeted and gemcitabine-loaded liposomes enhance tumor-suppressing effect on pancreatic cancer. Aging (Albany NY) 2020; 12:19585-19596. [PMID: 33035197 PMCID: PMC7732280 DOI: 10.18632/aging.103918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
Liposomes (LPs) as promising drug delivery systems are widely applied in cancer therapy. This study aimed to investigate the effect of glypican-1 (GPC1)-targeted and gemcitabine (GEM)-loaded LP [GPC1-LP (GEM)] on cell proliferation and apoptosis in PANC-1s, as well as on orthotopic pancreatic cancer (PDAC) mice. The GPC1-LP (GEM) and LP (GEM) was prepared, and then the size distribution of GPC1-LP (GEM) was analyzed by dynamic light scattering (DLS). In vitro drug release assay of GPC1-LP (GEM) and LP (GEM) was performed, and the expression of GPC1 in PANC1 cells was detected as well. Next, the effects of free GEM, LP (GEM) and GPC1-LP (GEM) on cell viability, clone number, and apoptosis, as well as the expression of proteins associated with apoptosis were measured in 239T and PANC-1 cells. Furthermore, the body weight and tumor size of orthotopic PDAC mice were evaluated following the treatment of free GEM, LP (GEM) or GPC1-LP (GEM). LP (GEM) and GPC1-LP (GEM) were successfully prepared with a successful GEM release within 24 h. In addition, GPC1 was positively expressed in PANC-1 cells but not 293T cells. These findings provided more insights into the anti-tumor potential for the biomedical application of GPC1-LP (GEM) in PDAC.
Collapse
Affiliation(s)
- Yu Mu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| | - Dezhi Wang
- East China Normal University, Shanghai, China
| | - Liangyu Bie
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoqian Mu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| | - Yanqiu Zhao
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Mi P, Miyata K, Kataoka K, Cabral H. Clinical Translation of Self‐Assembled Cancer Nanomedicines. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000159] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center West China Hospital, Sichuan University No. 17 People's South Road Chengdu 610041 China
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kazunori Kataoka
- Institute for Future Initiatives The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
- Innovation Center of NanoMedicine Kawasaki Institute of Industrial Promotion 3‐25‐14, Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| |
Collapse
|
14
|
Porfiryeva NN, Moustafine RI, Khutoryanskiy VV. PEGylated Systems in Pharmaceutics. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s181123822001004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Abstract
RNA interference is a relatively new tool used to silence specific genes in diverse biological systems. The development of this promising new technique for research and therapeutic use in studying and treating neurological diseases has been hampered by the lack of an efficient way to deliver siRNA transvascularly across the blood-brain barrier (BBB) to the central nervous system (CNS). Here we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
|
16
|
Yuan D, He H, Wu Y, Fan J, Cao Y. Physiologically Based Pharmacokinetic Modeling of Nanoparticles. J Pharm Sci 2018; 108:58-72. [PMID: 30385282 DOI: 10.1016/j.xphs.2018.10.037] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
Abstract
Nanoparticles are frequently designed to improve the pharmacokinetics profiles and tissue distribution of small molecules to prolong their systemic circulation, target specific tissue, or widen the therapeutic window. The multifunctionality of nanoparticles is frequently presented as an advantage but also results in distinct and complicated in vivo disposition properties compared with a conventional formulation of the same molecules. Physiologically based pharmacokinetic (PBPK) modeling has been a useful tool in characterizing and predicting the systemic disposition, target exposure, and efficacy and toxicity of various types of drugs when coupled with pharmacodynamic modeling. Here we review the unique disposition characteristics of nanoparticles, assess how PBPK modeling takes into account the unique disposition properties of nanoparticles, and comment on the applications and challenges of PBPK modeling in characterizing and predicting the disposition and biological effects of nanoparticles.
Collapse
Affiliation(s)
- Dongfen Yuan
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Hua He
- China Pharmaceutical University, Nanjing, China
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, New York 14260
| | - Jianghong Fan
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
17
|
Krishnan V, Sarode A, Bhatt R, Oliveira JD, Brown TD, Jiang YP, Reddy Junutula J, Mitragotri S. Surface-Functionalized Carrier-Free Drug Nanorods for Leukemia. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vinu Krishnan
- Department of Chemical Engineering; Engineering II Building; University of California; Santa Barbara CA 93106 USA
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
| | - Apoorva Sarode
- Department of Chemical Engineering; Engineering II Building; University of California; Santa Barbara CA 93106 USA
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
| | - Rohit Bhatt
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
| | - Joshua D. Oliveira
- Department of Chemical Engineering; Engineering II Building; University of California; Santa Barbara CA 93106 USA
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
| | - Tyler D. Brown
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Biomolecular Science and Engineering; University of California; Santa Barbara CA 93106 USA
| | - Y. P. Jiang
- Cellerant Therapeutics Inc.; 1561 Industrial Road San Carlos CA 94070 USA
| | | | - Samir Mitragotri
- Department of Chemical Engineering; Engineering II Building; University of California; Santa Barbara CA 93106 USA
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
| |
Collapse
|
18
|
Li F, Jiang T, Li Q, Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res 2017; 7:2350-2394. [PMID: 29312794 PMCID: PMC5752681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023] Open
Abstract
Camptothecin (CPT) was discovered from plant extracts more than 60 years ago. Since then, only two CPT analogues (irinotecan and topotecan) have been approved for cancer treatment, although several thousand CPT derivatives have been synthesized and many of them were actively studied in our research community over the past 6+ decades. In this review article, we briefly summarize: (1) the discovery and early development of CPTs, (2) the recognized CPT mechanism of action (MOA), (3) the synthesis of CPT and CPT analogues, and (4) the structure-activity relationship (SAR) of CPT and its analogues. Next, we provide evidence that certain CPT analogues can exert improved efficacy with low toxicity independently of topoisomerase I (Top1) inhibition; instead, these CPT analogues use novel MOAs by targeting important cancer survival-associated oncogenic proteins and/or by bypassing various treatment-resistant mechanisms. We then present a comprehensive review of the most advanced CPT analogues in clinical development, with the goal of resolving why no new CPTs have been FDA approved for cancer treatment, beyond irinotecan and topotecan. We argue that new CPT Top1 inhibitor drugs are unlikely being found to be significantly better than irinotecan and/or topotecan in terms of the overall antitumor activity and toxicity. The significance of CPT analogues that possess novel MOAs has not been sufficiently recognized so far. In our opinion, this is a research area with great potential to make a breakthrough for development of the next generation of CPT analogues that possess high efficacy (due to novel targets) and low toxicity (due to low inhibition of Top1 activity/function) for effective treatment of human disease, including cancer.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer InstituteBuffalo, New York, USA
| | - Tao Jiang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of TechnologyHangzhou, China
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Cancer InstituteBuffalo, New York, USA
- Canget BioTekpharmaBuffalo, New York, USA
| |
Collapse
|
19
|
Maranhão RC, Vital CG, Tavoni TM, Graziani SR. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Expert Opin Drug Deliv 2017; 14:1217-1226. [PMID: 28042707 DOI: 10.1080/17425247.2017.1276560] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The toxicity of chemotherapeutic agents, resulting from their low pharmacological index, introduces considerable discomfort and risk to cancer patients. Among several strategies to reduce the toxicity of chemotherapeutic agents, targeted drug delivery is the most promising one. Areas covered: Liposomes, micelles, albumin-based, polymeric, dendritic and lipid core nanoparticles have been used as carriers to concentrate anticancer drugs in neoplastic tissues, and clinical studies of those preparations are reviewed. In most clinical studies, drug delivery systems reduced drug toxicity. Lipid core nanoparticles (LDE) that bind to cell lipoprotein receptors have the ability to concentrate in neoplastic tissues and were the first artificial non-liposomal system shown in in vivo studies to possess targeting properties. The toxicity reduction achieved by LDE as vehicle of carmustine, etoposide and paclitaxel was singularly strong. Expert opinion: The reduced toxicity offered by drug delivery systems has expanded treatment population that may benefit from chemotherapy including feeble, overtreated and elderly patients that would otherwise be offered palliative therapy. Drug delivery systems may either prolong the duration of treatments or allow increases in drug dose.
Collapse
Affiliation(s)
- Raul C Maranhão
- a Heart Institute of the Medical School Hospital , University of São Paulo , São Paulo , Brazil.,b Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| | - Carolina G Vital
- a Heart Institute of the Medical School Hospital , University of São Paulo , São Paulo , Brazil.,b Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| | - Thauany M Tavoni
- a Heart Institute of the Medical School Hospital , University of São Paulo , São Paulo , Brazil.,b Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| | - Silvia R Graziani
- a Heart Institute of the Medical School Hospital , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
20
|
Stern ST, Martinez MN, Stevens DM. When Is It Important to Measure Unbound Drug in Evaluating Nanomedicine Pharmacokinetics? Drug Metab Dispos 2016; 44:1934-1939. [PMID: 27670412 PMCID: PMC5118636 DOI: 10.1124/dmd.116.073148] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023] Open
Abstract
Nanoformulations have become important tools for modifying drug disposition, be it from the perspective of enabling prolonged drug release, protecting the drug molecule from metabolism, or achieving targeted delivery. When examining the in vivo pharmacokinetic properties of these formulations, most investigations either focus on systemic concentrations of total (encapsulated plus unencapsulated) drug, or concentrations of encapsulated and unencapsulated drug. However, it is rare to find studies that differentiate between protein-bound and unbound (free) forms of the unencapsulated drug. In light of the unique attributes of these formulations, we cannot simply assume it appropriate to rely upon the protein-binding properties of the traditionally formulated or legacy drug when trying to define the pharmacokinetic or pharmacokinetic/pharmacodynamic characteristics of these nanoformulations. Therefore, this commentary explores reasons why it is important to consider not only unencapsulated drug, but also the portion of unencapsulated drug that is not bound to plasma proteins. Specifically, we highlight those situations when it may be necessary to include measurement of unencapsulated, unbound drug concentrations as part of the nanoformulation pharmacokinetic evaluation.
Collapse
Affiliation(s)
- Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland (S.T.S., D.M.S.); and Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland (M.N.M.)
| | - Marilyn N Martinez
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland (S.T.S., D.M.S.); and Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland (M.N.M.)
| | - David M Stevens
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland (S.T.S., D.M.S.); and Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland (M.N.M.)
| |
Collapse
|
21
|
Yao VJ, D'Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240:267-286. [PMID: 26772878 PMCID: PMC5444905 DOI: 10.1016/j.jconrel.2016.01.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.
Collapse
Affiliation(s)
- Virginia J Yao
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Sara D'Angelo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kimberly S Butler
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Christophe Theron
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Tracey L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Serena Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; Department of Oncology, University of Turin, Candiolo, 10060, Italy
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131; Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131; Cancer Research and Treatment Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131; Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, NM 87185
| | - Andrew R M Bradbury
- Bioscience Division, Los Alamos National Laboratories, Los Alamos, NM, 87545
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| |
Collapse
|
22
|
Trends on polymer- and lipid-based nanostructures for parenteral drug delivery to tumors. Cancer Chemother Pharmacol 2016; 79:251-265. [PMID: 27744564 DOI: 10.1007/s00280-016-3168-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The dawn of the state-of-the-art methods of cancer treatments, nano-based delivery systems, has dispensed with the mainstream chemotherapy for being inadequate in yielding productive results and the numerous reported side effects. The popularity of this complementary approach in the course of the last two decades has been primarily attributed to its capacity to elevate the therapeutic index of anticancer drugs as well as removing the impassable delivery barriers in solid tumors with the minimal damage to the normal tissues. METHODS The PubMed database was consulted to compile this review. RESULTS A wide range of minuscule organic and inorganic nanomaterials, with dimensions not exceeding hundred nanometers, has led to hope for cancer therapy to flare-up once again due to possessing a number of exclusive traits for passive and active tumor targeting, some of which are EPR effect, high interstitial pressure of tumor, overexpressed receptors and angiogenesis. Although a limited number of liposomal and polymer-based therapeutic nanoparticles have gained applicability, a vast number of nanoparticles are still being trailed in order to be fully developed. CONCLUSIONS This study provides an overview of the advantages/disadvantages of nanocarriers for cancer drug delivery.
Collapse
|
23
|
Zimmermann K, Hossann M, Hirschberger J, Troedson K, Peller M, Schneider M, Brühschwein A, Meyer-Lindenberg A, Wess G, Wergin M, Dörfelt R, Knösel T, Schwaiger M, Baumgartner C, Brandl J, Schwamberger S, Lindner LH. A pilot trial of doxorubicin containing phosphatidyldiglycerol based thermosensitive liposomes in spontaneous feline soft tissue sarcoma. Int J Hyperthermia 2016; 33:178-190. [PMID: 27592502 DOI: 10.1080/02656736.2016.1230233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Doxorubicin (DOX)-loaded phosphatidyldiglycerol-based thermosensitive liposomes (DPPG2-TSL-DOX) combined with local hyperthermia (HT) was evaluated in cats with locally advanced spontaneous fibrosarcomas (soft tissue sarcoma [STS]). The study was designed to evaluate the safety and pharmacokinetic profile of the drug. Results from four dose-levels are reported. METHODS Eleven client-owned cats with advanced STS were enrolled. Five cats received escalating doses of 0.1-0.4 mg/kg DOX (group I), three received 0.4 mg/kg constantly (group II) and three 0.6 mg/kg (group III) IV over 15 min. HT with a target temperature of 41.5 °C was started 15 min before drug application and continued for a total of 60 min. Six HT treatments were applied every other week using a radiofrequency applicator. Tumour growth was monitored by magnetic resonance imaging (MRI) and for dose level III also with 18F-FDG PET. RESULTS Treatment was generally well tolerated and reasons for premature study termination in four cats were not associated with drug-induced toxicity. No DPPG2-TSL-DOX based hypersensitivity reaction was observed. One cat showed simultaneous partial response (PR) in MRI and positron emission tomography (PET) whereas one cat showed stable disease in MRI and PR in PET (both cats in dose level III). Pharmacokinetic measurements demonstrated DOX release triggered by HT. CONCLUSION DPPG2-TSL-DOX + HT is a promising treatment option for advanced feline STS by means of targeted drug delivery. As MTD was not reached further investigation is warranted to determine if higher doses would result in even better tumour responses.
Collapse
Affiliation(s)
- Katja Zimmermann
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Martin Hossann
- b Department of Internal Medicine III , University Hospital of Munich, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Johannes Hirschberger
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Karin Troedson
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Michael Peller
- c Institute for Clinical Radiology , University Hospital of Munich, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Moritz Schneider
- c Institute for Clinical Radiology , University Hospital of Munich, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Andreas Brühschwein
- d Clinic of Small Animal Surgery and Reproduction , Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Andrea Meyer-Lindenberg
- d Clinic of Small Animal Surgery and Reproduction , Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Gerhard Wess
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Melanie Wergin
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - René Dörfelt
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Thomas Knösel
- e Department of Pathology , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Markus Schwaiger
- f Department of Nuclear Medicine , Clinic Rechts der Isar, Technical University Munich , Munich , Germany
| | - Christine Baumgartner
- f Department of Nuclear Medicine , Clinic Rechts der Isar, Technical University Munich , Munich , Germany
| | - Johanna Brandl
- f Department of Nuclear Medicine , Clinic Rechts der Isar, Technical University Munich , Munich , Germany
| | - Sabine Schwamberger
- f Department of Nuclear Medicine , Clinic Rechts der Isar, Technical University Munich , Munich , Germany
| | - Lars H Lindner
- b Department of Internal Medicine III , University Hospital of Munich, Ludwig-Maximilians-Universität München , Munich , Germany
| |
Collapse
|
24
|
Lucas AT, Madden AJ, Zamboni WC. Challenges in preclinical to clinical translation for anticancer carrier-mediated agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:642-53. [PMID: 26846457 DOI: 10.1002/wnan.1394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 02/03/2023]
Abstract
Major advances in carrier-mediated agents (CMAs), which include nanoparticles and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages over their small-molecule counterparts, there is substantial variability in how individual CMA formulations and patient characteristics affect the pharmacology, pharmacokinetics (PK), and pharmacodynamics (PD) (efficacy and toxicity) of these agents. Development or selection of animal models is used to predict the effects within a particular human disease. A breadth of studies have begun to emphasize the importance of preclinical animal models in understanding and evaluating the interaction between CMAs and the immune system and tumor matrix, which ultimately influences CMA PK (clearance and distribution) and PD (efficacy and toxicity). It is fundamental to study representative preclinical tumor models that recapitulate patients with diseases (e.g., cancer) and evaluate the interplay between CMAs and the immune system, including the mononuclear phagocyte system (MPS), chemokines, hormones, and other immune modulators. Furthermore, standard allometric scaling using body weight does not accurately predict drug clearance in humans. Future studies are warranted to better understand the complex pharmacology and interaction of CMA carriers within individual preclinical models and their biological systems, such as the MPS and tumor microenvironment, and their application to allometric scaling across species. WIREs Nanomed Nanobiotechnol 2016, 8:642-653. doi: 10.1002/wnan.1394 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew J Madden
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Institute for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Lineberger Comprehensive Cancer Center, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center of Cancer Nanotechnology Excellence, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Institute for NanoMedicine, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Giovinazzo H, Kumar P, Sheikh A, Brooks KM, Ivanovic M, Walsh M, Caron WP, Kowalsky RJ, Song G, Whitlow A, Clarke-Pearson DL, Brewster WR, Van Le L, Zamboni BA, Bae-Jump V, Gehrig PA, Zamboni WC. Technetium Tc 99m sulfur colloid phenotypic probe for the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin in women with ovarian cancer. Cancer Chemother Pharmacol 2016; 77:565-73. [PMID: 26822231 DOI: 10.1007/s00280-015-2945-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/11/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE Significant variability in the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin (PLD) exists. PLD undergoes clearance via the mononuclear phagocyte system (MPS). Technetium Tc 99m sulfur colloid (TSC) is approved for imaging MPS cells. We investigated TSC as a phenotypic probe of PLD pharmacokinetics and pharmacodynamics in women with epithelial ovarian cancer. METHODS TSC 10 mCi IVP was administered and followed by dynamic planar and SPECT/CT imaging and blood pharmacokinetics sampling. PLD 30-40 mg/m(2) IV was administered with or without carboplatin, followed by plasma pharmacokinetics sampling. RESULTS There was a linear relationship between TSC clearance and encapsulated doxorubicin clearance (R(2) = 0.61, p = 0.02), particularly in patients receiving PLD alone (R(2) = 0.81, p = 0.04). There was a positive relationship (ρ = 0.81, p = 0.01) between maximum grade palmar-plantar erythrodysesthesia toxicity developed and estimated encapsulated doxorubicin concentration in hands. CONCLUSIONS TSC is a phenotypic probe for PLD pharmacokinetics and pharmacodynamics and may be used to individualize PLD therapy in ovarian cancer and for other nanoparticles in development.
Collapse
Affiliation(s)
- Hugh Giovinazzo
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, 21205, USA
| | - Parag Kumar
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
- Clinical Pharmacokinetics Research Laboratory, National Institutes of Health, Clinical Center Pharmacy Department, 10 Center Drive Bldg. 10, 1C-240G, Bethesda, MD, 20892, USA
| | - Arif Sheikh
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
| | - Kristina M Brooks
- Clinical Pharmacokinetics Research Laboratory, National Institutes of Health, Clinical Center Pharmacy Department, 10 Center Drive Bldg. 10, 1C-240G, Bethesda, MD, 20892, USA
| | - Marija Ivanovic
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
| | - Mark Walsh
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
| | - Whitney P Caron
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
| | - Richard J Kowalsky
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
| | - Gina Song
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
| | - Ann Whitlow
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
| | - Daniel L Clarke-Pearson
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Wendy R Brewster
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Linda Van Le
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Beth A Zamboni
- Department of Mathematics, Carlow University, Pittsburgh, PA, USA
| | - Victoria Bae-Jump
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Paola A Gehrig
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA.
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA.
- UNC Institute for Pharmacogenomics and Individualized Therapy, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Carolina Center of Cancer Nanotechnology Excellence, 1079 Genetic Medicine Building, Chapel Hill, NC, 27599, USA.
- North Carolina Biomedical Innovation Network, 013 Genetic Medicine Building CB#7361, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol 2015; 6:286. [PMID: 26648870 PMCID: PMC4664963 DOI: 10.3389/fphar.2015.00286] [Citation(s) in RCA: 1512] [Impact Index Per Article: 151.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022] Open
Abstract
The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.
Collapse
Affiliation(s)
- Lisa Sercombe
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia ; Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Tejaswi Veerati
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center Houston, TX, USA ; Department of Biochemistry and Cell Biology, Rice University Houston, TX, USA
| | - Fatemeh Moheimani
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia ; Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center Houston, TX, USA ; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center Houston, TX, USA ; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Susan Hua
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia ; Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| |
Collapse
|
27
|
Song G, Tarrant TK, White TF, Barrow DA, Santos CM, Timoshchenko RG, Hanna SK, Ramanathan RK, Lee CR, Bae-Jump VL, Gehrig PA, Zamboni WC. Roles of chemokines CCL2 and CCL5 in the pharmacokinetics of PEGylated liposomal doxorubicin in vivo and in patients with recurrent epithelial ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1797-807. [DOI: 10.1016/j.nano.2015.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/24/2022]
|
28
|
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Citation(s) in RCA: 1132] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is characterized by uncontrolled cell proliferation and an absence of cell death that, except for hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows thanks to new vascularization and, in time, acquires metastatic potential and spreads to other body sites, which causes metastasis and finally death. Cancer is caused by damage or mutations in the genetic material of the cells due to environmental or inherited factors. While surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently used in metastatic cancers. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects normal cells with fast proliferation rates, such as the hair follicles, bone marrow and gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic drugs, as well as the development of multidrug resistance, support the need to find new effective targeted treatments based on the changes in the molecular biology of the tumor cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved targeted cancer drugs in recent years, block biologic transduction pathways and/or specific cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing the undesirable side effects. Although targeted therapies can be achieved directly by altering specific cell signaling by means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect targeted approaches that mainly deliver chemotherapeutic agents to molecular targets overexpressed on the surface of tumor cells. In particular, we offer a detailed description of different cytotoxic drug carriers, such as liposomes, carbon nanotubes, dendrimers, polymeric micelles, polymeric conjugates and polymeric nanoparticles, in passive and active targeted cancer therapy, by enhancing the permeability and retention or by the functionalization of the surface of the carriers, respectively, emphasizing those that have received FDA approval or are part of the most important clinical studies up to date. These drug carriers not only transport the chemotherapeutic agents to tumors, avoiding normal tissues and reducing toxicity in the rest of the body, but also protect cytotoxic drugs from degradation, increase the half-life, payload and solubility of cytotoxic agents and reduce renal clearance. Despite the many advantages of all the anticancer drug carriers analyzed, only a few of them have reached the FDA approval, in particular, two polymer-protein conjugates, five liposomal formulations and one polymeric nanoparticle are available in the market, in contrast to the sixteen FDA approval of monoclonal antibodies. However, there are numerous clinical trials in progress of polymer-protein and polymer-drug conjugates, liposomal formulations, including immunoliposomes, polymeric micelles and polymeric nanoparticles. Regarding carbon nanotubes or dendrimers, there are no FDA approvals or clinical trials in process up to date due to their unresolved toxicity. Moreover, we analyze in detail the more promising and advanced preclinical studies of the particular case of polymeric nanoparticles as carriers of different cytotoxic agents to active and passive tumor targeting published in the last 5 years, since they have a huge potential in cancer therapy, being one of the most widely studied nano-platforms in this field in the last years. The interest that these formulations have recently achieved is stressed by the fact that 90% of the papers based on cancer therapeutics with polymeric nanoparticles have been published in the last 6 years (PubMed search).
Collapse
|
29
|
NBCD Pharmacokinetics and Bioanalytical Methods to Measure Drug Release. NON-BIOLOGICAL COMPLEX DRUGS 2015. [DOI: 10.1007/978-3-319-16241-6_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials 2014; 35:9833-9843. [DOI: 10.1016/j.biomaterials.2014.08.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022]
|
31
|
Leung AWY, Kalra J, Santos ND, Bally MB, Anglesio MS. Harnessing the potential of lipid-based nanomedicines for type-specific ovarian cancer treatments. Nanomedicine (Lond) 2014; 9:501-22. [PMID: 24746193 DOI: 10.2217/nnm.13.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancers are a group of at least five histologically and clinically distinct diseases, yet at this time patients with these different diseases are all treated with the same platinum and taxane-based chemotherapeutic regimen. With increased knowledge of histotype-specific differences that correlate with treatment responses and resistance, novel treatment strategies will be developed for each distinct disease. Type-specific or resistance-driven molecularly targeted agents will provide some specificity over traditional chemotherapies and it is argued here that nanoscaled drug delivery systems, in particular lipid-based formulations, have the potential to improve the delivery and specificity of pathway-specific drugs and broad-spectrum cytotoxic chemotherapeutics. An overview of the current understanding of ovarian cancers and the evolving clinical management of these diseases is provided. This overview is needed as it provides the context for understanding the current role of drug delivery systems in the treatment of ovarian cancer and the need to design formulations for treatment of clinically distinct forms of ovarian cancer.
Collapse
Affiliation(s)
- Ada W Y Leung
- Experimental Therapeutics, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
32
|
Toley BJ, Tropeano Lovatt ZG, Harrington JL, Forbes NS. Microfluidic technique to measure intratumoral transport and calculate drug efficacy shows that binding is essential for doxorubicin and release hampers Doxil. Integr Biol (Camb) 2014; 5:1184-96. [PMID: 23860772 DOI: 10.1039/c3ib40021b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intratumoral transport and binding are important mechanisms that determine the efficacy of cancer drugs. Current drug screening methods rely heavily on monolayers of cancer cells, which overlook the contribution of tissue-level transport and binding. To quantify these factors, we developed a method that couples an in vitro, drug-delivery device containing a three-dimensional cell mass and a mathematical model of drug diffusion, binding to DNA, release from carriers, and clearance. Spheroids derived from LS174T human colon carcinoma cells were inserted into rectangular chambers to form rectangular cell masses (tissue) and subjected to continuous medium perfusion. To simulate drug delivery and clearance, the tissues were treated with doxorubicin followed by drug-free medium. To evaluate the effect of liposome encapsulation, tissues were treated with liposome-encapsulated doxorubicin (Doxil). Spatiotemporal dynamics of drug distribution and apoptosis was measured by fluorescence microscopy. The diffusivity and DNA binding constant of doxorubicin were determined by fitting experimental data to the mathematical model. Results show that an ideal combination of diffusivity, binding constant, clearance rate, and cytotoxicity contribute to the high therapeutic efficacy of doxorubicin. There was no detectable release of doxorubicin from Doxil in the tissues. The rate of doxorubicin release, evaluated by fitting experimental data to the mathematical model, was below therapeutically effective levels. These results show that despite enhanced systemic circulation obtained by liposome encapsulation, the therapeutic effect of Doxil is limited by slow intratumoral drug release. The experimental and computational methods developed here to calculate drug efficacy provide mechanisms to explain poor performance of drug candidates, and enable design of more successful cancer drugs.
Collapse
Affiliation(s)
- Bhushan J Toley
- Department of Chemical Engineering, University of Massachusetts, Amherst, 159 Goessmann Laboratory, 686 North Pleasant Street, Amherst, MA 01003-9303, USA.
| | | | | | | |
Collapse
|
33
|
Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:814208. [PMID: 24672796 PMCID: PMC3950423 DOI: 10.1155/2014/814208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/25/2013] [Indexed: 12/14/2022]
Abstract
Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1-100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy.
Collapse
Affiliation(s)
- Su-Eon Jin
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Hyo-Eon Jin
- Department of Bioengineering, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Soon-Sun Hong
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| |
Collapse
|
34
|
Caron WP, Lay JC, Fong AM, La-Beck NM, Kumar P, Newman SE, Zhou H, Monaco JH, Clarke-Pearson DL, Brewster WR, Van Le L, Bae-Jump VL, Gehrig PA, Zamboni WC. Translational studies of phenotypic probes for the mononuclear phagocyte system and liposomal pharmacology. J Pharmacol Exp Ther 2013; 347:599-606. [PMID: 24042160 PMCID: PMC3836305 DOI: 10.1124/jpet.113.208801] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
As nanoparticles (NPs) are cleared via phagocytes of the mononuclear phagocyte system (MPS), we hypothesized that the function of circulating monocytes and dendritic cells (MO/DC) in blood can predict NP clearance (CL). We measured MO/DC phagocytosis and reactive oxygen species (ROS) production in mice, rats, dogs, and patients with refractory solid tumors. Pharmacokinetic studies of polyethylene glycol (PEG)-encapsulated liposomal doxorubicin (PEGylated liposomal doxirubicin [PLD]), CKD-602 (S-CKD602), and cisplatin (SPI-077) were performed at the maximum tolerated dose. MO/DC function was also evaluated in patients with recurrent epithelial ovarian cancer (EOC) administered PLD. Across species, a positive association was observed between cell function and CL of PEGylated liposomes. In patients with EOC, associations were observed between PLD CL and phagocytosis (R(2) = 0.43, P = 0.04) and ROS production (R(2) = 0.61, P = 0.008) in blood MO/DC. These findings suggest that probes of MPS function may help predict PEGylated liposome CL across species and PLD CL in patients with EOC.
Collapse
Affiliation(s)
- Whitney P Caron
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy (W.P.C., P.K., S.E.N., W.C.Z.), School of Medicine (J.C.L., A.M.F., D.L.C.-P., W.R.B., L.V.L., V.L.B.-J., P.A.G.), Department of Biostatistics (H.Z., J.H.M.), Lineberger Comprehensive Cancer Center (D.L.C.-P., W.R.B., L.V.L., V.L.B.-J., P.A.G., W.C.Z.), Institute for Pharmacogenomics and Individualized Therapy (W.C.Z.), Carolina Center of Cancer Nanotechnology Excellence (W.C.Z.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; School of Pharmacy, Texas Tech University Health Sciences Center, St. Amarillo, Texas (N.M.L.-B.); and North Carolina Biomedical Innovation Network, Research Triangle Park, North Carolina (W.C.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee GJ, Min JW, Seo MW, Lee MY, Jin JY. Durable response after just one cycle of belotecan-based chemotherapy in a patient with relapsed primary peritoneal serous carcinoma. J Obstet Gynaecol Res 2013; 40:297-300. [PMID: 24102892 DOI: 10.1111/jog.12161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
Abstract
The efficacy of second-line chemotherapy for relapsed primary peritoneal serous carcinoma has been numerously reported, but reports on durable response after second-line therapy have been rare. We report the case of a 66-year-old woman with relapsed primary peritoneal serous carcinoma who showed durable response after just one cycle of second-line belotecan-based therapy. The response might be a complete pathologic remission. Considering the fact that our patient suffered from neutropenic sepsis during her treatment, we concluded that belotecan-based chemotherapy could be a good option for second-line chemotherapy in some selected patients, so patient selection should be carefully performed due to the toxicity of belotecan.
Collapse
Affiliation(s)
- Guk Jin Lee
- Department of Internal Medicine, Bucheon St Mary's Hospital, The Catholic University School of Medicine, Bucheon, Korea
| | | | | | | | | |
Collapse
|
36
|
Krishnan V, Rajasekaran AK. Clinical nanomedicine: a solution to the chemotherapy conundrum in pediatric leukemia therapy. Clin Pharmacol Ther 2013; 95:168-78. [PMID: 24013811 DOI: 10.1038/clpt.2013.174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023]
Abstract
Although chemotherapy-based treatment of leukemia has tremendously improved survival rates in children, induction of treatment-related side effects is a major concern in clinical oncology. The development of nanotechnology-based drug delivery techniques to target clinically approved anticancer agents specifically to leukemic cells should diminish toxic side effects. This review aims to address the rational design of nanotherapeutics in treating hematologic malignancies with a focus on acute lymphoblastic leukemia (ALL)--the most prominent form of pediatric cancer.
Collapse
Affiliation(s)
- V Krishnan
- 1] Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA [2] Nemours Center for Childhood Cancer Research, A.I. duPont Hospital for Children, Wilmington, Delaware, USA [3] Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - A K Rajasekaran
- 1] Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA [2] Nemours Center for Childhood Cancer Research, A.I. duPont Hospital for Children, Wilmington, Delaware, USA [3] Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA [4] Department of Biological Sciences, Center for Translational Cancer Research, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
37
|
Schell RF, Sidone BJ, Caron WP, Walsh MD, White TF, Zamboni BA, Ramanathan RK, Zamboni WC. Meta-analysis of inter-patient pharmacokinetic variability of liposomal and non-liposomal anticancer agents. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:109-17. [PMID: 23891988 DOI: 10.1016/j.nano.2013.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/21/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED A meta-analysis was conducted to evaluate the inter-patient pharmacokinetic (PK) variability of liposomal and small molecule (SM) anticancer agents. Inter-patient PK variability of 9 liposomal and SM formulations of the same drug was evaluated. PK variability was measured as coefficient of variance (CV%) of area under the plasma concentration versus time curve (AUC) and the fold-difference between AUCmax and AUCmin (AUC range). CV% of AUC and AUC ranges were 2.7-fold (P<0.001) and 16.7-fold (P=0.13) greater, respectively, for liposomal compared with SM drugs. There was an inverse linear relationship between the clearance (CL) of liposomal agents and PK variability with a lower CL associated with greater PK variability (R(2)=0.39). PK variability of liposomal agents was greater when evaluated from 0-336 h compared with 0-24h. PK variability of liposomes is significantly greater than SM. The factors associated with the PK variability of liposomal agents need to be evaluated. FROM THE CLINICAL EDITOR In this meta-analysis, the inter-patient pharmacokinetic variability of 9 liposomal and small molecule anti-cancer agents was studied. The authors determined that several parameters are in favor of the liposomal formulation; however, the PK variability of the formulation was higher compared with small molecule agents, the reason for which remains to be determined in future studies.
Collapse
Affiliation(s)
- Ryan F Schell
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA; Translational Oncology and Nanoparticle Drug Development Initiative (TOND(2)I) Lab, UNC, Chapel Hill, NC, USA
| | - Brian J Sidone
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND(2)I) Lab, UNC, Chapel Hill, NC, USA; Duquesne University Mylan School of Pharmacy
| | - Whitney P Caron
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA; Translational Oncology and Nanoparticle Drug Development Initiative (TOND(2)I) Lab, UNC, Chapel Hill, NC, USA
| | - Mark D Walsh
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA; Translational Oncology and Nanoparticle Drug Development Initiative (TOND(2)I) Lab, UNC, Chapel Hill, NC, USA
| | - Taylor F White
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA; Translational Oncology and Nanoparticle Drug Development Initiative (TOND(2)I) Lab, UNC, Chapel Hill, NC, USA
| | - Beth A Zamboni
- Department of Mathematics, Carlow University, Pittsburgh, Pennsylvania
| | | | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA; Translational Oncology and Nanoparticle Drug Development Initiative (TOND(2)I) Lab, UNC, Chapel Hill, NC, USA; Molecular Therapeutics, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; UNC GLP Bioanalytical Facility, Chapel Hill, NC, USA; Institute for Pharmacogenomics and Individualized Therapy (IPIT), Chapel Hill, NC, USA; Carolina Center of Cancer Nanotechnology Excellence (C-CCNE), Chapel Hill, NC, USA; North Carolina Biomedical Innovation Network (NC BIN), Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer. PLoS One 2013; 8:e61359. [PMID: 23650496 PMCID: PMC3641071 DOI: 10.1371/journal.pone.0061359] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Introduction Breast cancer brain metastases (BCBM) are a challenging consequence of advanced BC. Nanoparticle agents, including liposomes, have shown enhanced delivery to solid tumors and brain. We compared pharmacokinetics (PK) and efficacy of PEGylated liposomal doxorubicin (PLD) with non-liposomal doxorubicin (NonL-doxo) in an intracranial model of BC. Methods Athymic mice were inoculated intracerebrally with MDA-MB-231-BR-luciferase-expressing cells. Tumor-bearing mice were administered PLD or NonL-doxo at 6mg/kg IV×1 and were euthanized prior to and 0.083, 1, 3, 6, 24, 72 and 96 h post-treatment. Samples were processed to measure sum total doxorubicin via HPLC. PLD and NonL-doxo were administered IV weekly as single agents (6 mg/kg) or in combination (4.5 mg/kg) with the PARP inhibitor, ABT-888, PO 25 mg/kg/day. Efficacy was assessed by survival and bioluminescence. Results Treatment with PLD resulted in approximately 1,500-fold higher plasma and 20-fold higher intracranial tumor sum total doxorubicin AUC compared with NonL-doxo. PLD was detected at 96 h; NonL-doxo was undetectable after 24 h in plasma and tumor. Median survival of PLD-treated animals was 32 days (d, [CI] 31–38), which was significantly longer than controls (26d [CI 25–28]; p = 0.0012) or NonL-doxo treatment (23.5d [CI 18–28], p = 0.0002). Combination treatment with PLD/ABT-888 yielded improved survival compared to NonL-doxo/ABT-888 (35d [CI 31–38] versus 29.5d [CI 25–34]; p = 0.006). Conclusions PLD provides both PK and efficacy advantage over NonL-doxo in the treatment of an in vivo model of BCBM. The results provide preclinical rationale to translate findings into early phase trials of PLD, with or without ABT-888, for patients with BCBM.
Collapse
|
39
|
Caron WP, Morgan KP, Zamboni BA, Zamboni WC. A Review of Study Designs and Outcomes of Phase I Clinical Studies of Nanoparticle Agents Compared with Small-Molecule Anticancer Agents. Clin Cancer Res 2013; 19:3309-15. [DOI: 10.1158/1078-0432.ccr-12-3649] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Abstract
RNA interference is a relatively new tool used to silence specific genes in diverse biological systems. The development of this promising new technique for research and therapeutic use in studying and treating neurological diseases has been hampered by the lack of an efficient way to deliver siRNA transvascularly across the blood-brain barrier (BBB) to the central nervous system (CNS). Here we describe a method for delivering siRNA to the CNS by complexing it to a peptide that acts as a neuronal address by binding to acetylcholine receptors (AchRs). Adding cationic liposomes to the complex protects it from serum nucleases and proteases en route. When injected intravenously, these liposome-siRNA-peptide complexes resist serum degradation, effectively cross the BBB, and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
Affiliation(s)
- Mark D Zabel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
41
|
Wu H, Ramanathan RK, Zamboni BA, Strychor S, Ramalingam S, Edwards RP, Friedland DM, Stoller RG, Belani CP, Maruca LJ, Bang YJ, Zamboni WC. Mechanism-based model characterizing bidirectional interaction between PEGylated liposomal CKD-602 (S-CKD602) and monocytes in cancer patients. Int J Nanomedicine 2012; 7:5555-5564. [PMID: 23112576 PMCID: PMC3480239 DOI: 10.2147/ijn.s35751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
S-CKD602 is a PEGylated liposomal formulation of CKD-602, a potent topoisomerase I inhibitor. The objective of this study was to characterize the bidirectional pharmacokinetic-pharmacodynamic (PK-PD) interaction between S-CKD602 and monocytes. Plasma concentrations of encapsulated CKD-602 and monocytes counts from 45 patients with solid tumors were collected following intravenous administration of S-CKD602 in the phase I study. The PK-PD models were developed and fit simultaneously to the PK-PD data, using NONMEM(®). The monocytopenia after administration of S-CKD602 was described by direct toxicity to monocytes in a mechanism-based model, and by direct toxicity to progenitor cells in bone marrow in a myelosuppression-based model. The nonlinear PK disposition of S-CKD602 was described by linear degradation and irreversible binding to monocytes in the mechanism-based model, and Michaelis-Menten kinetics in the myelosuppression-based model. The mechanism-based PK-PD model characterized the nonlinear PK disposition, and the bidirectional PK-PD interaction between S-CKD602 and monocytes.
Collapse
Affiliation(s)
- Huali Wu
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Ramesh K Ramanathan
- Translational Research Division, The Translational Genomics Research Institute, Scottsdale, AZ, USA
| | - Beth A Zamboni
- Department of Mathematics, Carlow University, Pittsburgh, PA, USA
| | - Sandra Strychor
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Robert P Edwards
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ronald G Stoller
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandra P Belani
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren J Maruca
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yung-Jue Bang
- College of Medicine, Seoul National University, Seoul, Korea
| | - William C Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 2012; 14:83-93. [PMID: 22301396 DOI: 10.1007/s12094-012-0766-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conventional anticancer drugs display significant shortcomings which limit their use in cancer therapy. For this reason, important progress has been achieved in the field of nanotechnology to solve these problems and offer a promising and effective alternative for cancer treatment. Nanoparticle drug delivery systems exploit the abnormal characteristics of tumour tissues to selectively target their payloads to cancer cells, either by passive, active or triggered targeting. Additionally, nanoparticles can be easily tuned to improve their properties, thereby increasing the therapeutic index of the drug. Liposomes, polymeric nanoparticles, polymeric micelles and polymer- or lipid-drug conjugate nanoparticles incorporating cytotoxic therapeutics have been developed; some of them are already on the market and others are under clinical and preclinical research. However, there is still much research to be done to be able to defeat the limitations of traditional anticancer therapy. This review focuses on the potential of nanoparticle delivery systems in cancer treatment and the current advances achieved.
Collapse
|
43
|
Song G, Wu H, Yoshino K, Zamboni WC. Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs. J Liposome Res 2012; 22:177-92. [PMID: 22332871 DOI: 10.3109/08982104.2012.655285] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various attempts to increase the therapeutic index of the drug while minimizing side effects have been made in drug delivery systems. Among several promising strategies, liposomes represent an advanced technology to target active molecules to the site of action. Rapid clearance of circulating liposomal drugs administered intravenously has been a critical issue because circulation time in the blood affects drug exposure at the target site. The clinical use of liposomal drugs is complicated by large intra- and interindividual variability in their pharmacokinetics (PK) and pharmacodynamics (PD). Thus, it is important to understand the factors affecting the PK/PD of the liposomal formulation of drugs and to elucidate the mechanisms underlying the variability in the PK/PD of liposomal drugs. In this review article, we describe the characteristics of liposome formulations and discuss the effects of various factors, including liposome-associated factors, host-associated factors, and treatment on the PK/PD of liposomal agents.
Collapse
Affiliation(s)
- Gina Song
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
44
|
Wu H, Ramanathan RK, Zamboni BA, Strychor S, Ramalingam S, Edwards RP, Friedland DM, Stoller RG, Belani CP, Maruca LJ, Bang YJ, Zamboni WC. Population pharmacokinetics of pegylated liposomal CKD-602 (S-CKD602) in patients with advanced malignancies. J Clin Pharmacol 2012; 52:180-194. [PMID: 21233302 DOI: 10.1177/0091270010394851] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
S-CKD602 is a pegylated long-circulating liposomal formulation of CKD-602, a potent topoisomerase I inhibitor. A population pharmacokinetic (PK) model for encapsulated and released CKD-602 following administration of S-CKD602 was developed to assess factors that may influence S-CKD602 PK. Plasma samples from 45 patients with solid tumors were collected in a phase 1 study. S-CKD602 was administered as a 1-hour intravenous infusion with doses ranging from 0.1 to 2.5 mg/m(2) . Plasma concentrations of encapsulated and released CKD-602 were used to develop a population PK model using NONMEM. PK of encapsulated CKD-602 was described by a 1-compartment model with nonlinear clearance, and PK of released CKD-602 was described by a 2-compartment model with linear clearance for all patients. Covariate analysis revealed that tumor in the liver was a significant covariate for clearance of encapsulated CKD-602 and that age significantly influenced the release rate of CKD-602 from S-CKD602. Maximum elimination rate in patients with liver tumor is 1.5-fold higher compared with patients without liver tumor. Release rate of CKD-602 from S-CKD602 in patients less than 60 years old was 2.7-fold higher compared with patients 60 years old or older. These observations have potential implications in the optimal dosing of liposomal agents.
Collapse
Affiliation(s)
- Huali Wu
- University of North Carolina (UNC) Eshelman School of Pharmacy, UNC, Chapel Hill, North CarolinaUNC Lineberger Comprehensive Cancer Center, UNC, Chapel Hill, North CarolinaUNC Institute for Pharmacogenomics and Individualized Therapy, UNC, Chapel Hill, North CarolinaCarolina Center for Cancer Nanotechology Excellence, UNC, Chapel Hill, North CarolinaUniversity of Pittsburgh Cancer Institute, Pittsburgh, PennsylvaniaSchool of Medicine, University of Pittsburgh, PittsburghDepartment of Mathematics, Carlow University, PittsburghCKD Research Institute, Chonan, KoreaSeoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huynh NT, Morille M, Bejaud J, Legras P, Vessieres A, Jaouen G, Benoit JP, Passirani C. Treatment of 9L Gliosarcoma in Rats by Ferrociphenol-Loaded Lipid Nanocapsules Based on a Passive Targeting Strategy via the EPR Effect. Pharm Res 2011; 28:3189-98. [DOI: 10.1007/s11095-011-0501-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/27/2011] [Indexed: 11/24/2022]
|
46
|
Zamboni WC, Maruca LJ, Strychor S, Zamboni BA, Ramalingam S, Edwards RP, Kim J, Bang Y, Lee H, Friedland DM, Stoller RG, Belani CP, Ramanathan RK. Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J Liposome Res 2011; 21:158-165. [PMID: 20626314 DOI: 10.3109/08982104.2010.496085] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND STEALTH(®) liposomal CKD-602 (S-CKD602), a camptothecin analog, is eliminated by the reticuloendothelial system (RES), which consists of cells, including monocytes. We evaluated the relationship between monocyte and absolute neutrophil counts (ANCs) in the blood and pharmacokinetic disposition of S-CKD602 and nonliposomal CKD-602 (NL-CKD602) in patients. METHODS As part of a phase I study of S-CKD602 and phase I and II studies of NL-CKD602, the percent decreases in ANC and monocytes at their nadir were calculated. After S-CKD602, the amount of CKD-602 recovered in urine was measured. RESULTS For S-CKD602 in patients <60 years, the percent decrease in ANC and monocytes were 43 ± 31 and 58 ± 26%, respectively (P = 0.001). For S-CKD602 in patients ≥60, the percent decrease in ANC and monocytes were 41 ± 31 and 45 ± 36%, respectively (P = 0.50). For NL-CKD602 (n = 42), the percent decrease in ANC and monocytes were similar (P > 0.05). For S-CKD602, the relationship between the percent decrease in monocytes and CKD-602 recovered in urine was stronger in patients <60 (R(2) = 0.82), compared with patients ≥60 (R(2) = 0.30). CONCLUSIONS Monocytes are more sensitive to S-CKD602, compared with neutrophils, and the increased sensitivity is related to the liposomal formulation, not CKD-602. These results suggest that monocytes engulf S-CKD602, which causes the release of CKD-602 from the liposome and toxicity to the monocytes, and that the effects are more prominent in patients <60.
Collapse
Affiliation(s)
- William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 2010; 5:1415-33. [DOI: 10.2217/nnm.10.113] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Research in designing and engineering long-circulating nanoparticles, so-called ‘stealth’ nanoparticles, has been attracting increasing interest as a new platform for targeted drug delivery, especially in chemotherapy. In particular, the modification of nanoparticulate surfaces with poly(ethylene glycol) derivatives has illustrated a decreased uptake of nanoparticles by mononuclear phagocyte system cells and, hence, an increased circulation time, allowing passive accumulation in the tumor. The clinical trials on patients with solid tumors are described in this article, to illustrate this generation of promising nanoparticles. In the last few years, the new-generation technique of grafting ligands on the nanoparticle surface in order to target and penetrate specific cancer cells has been developed. This article discusses the benefits of passive targeting for drug delivery to the solid tumors via the enhanced permeability and retention effect, when using stealth nanoparticles, and compares them with the advantages of active targeting.
Collapse
Affiliation(s)
- Ngoc Trinh Huynh
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Emilie Roger
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Nolwenn Lautram
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Jean-Pierre Benoît
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | | |
Collapse
|
48
|
Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharm 2010; 7:307-49. [PMID: 20108971 DOI: 10.1021/mp900243b] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review summarizes the in vivo assessment-preliminary, preclinical, and clinical-of chemotherapeutics derived from camptothecin or a derivative. Camptothecin is a naturally occurring, pentacyclic quinoline alkaloid that possesses high cytotoxic activity in a variety of cell lines. Major limitations of the drug, including poor solubility and hydrolysis under physiological conditions, prevent full clinical utilization. Camptothecin remains at equilibrium in an active lactone form and inactive hydrolyzed carboxylate form. The active lactone binds to DNA topoisomerase I cleavage complex, believed to be the single site of activity. Binding inhibits DNA religation, resulting in apoptosis. A series of small molecule camptothecin derivatives have been developed that increase solubility, lactone stability and bioavailability to varying levels of success. A number of macromolecular agents have also been described wherein camptothecin(s) are covalently appended or noncovalently associated with the goal of improving solubility and lactone stability, while taking advantage of the tumor physiology to deliver larger doses of drug to the tumor with lower systemic toxicity. With the increasing interest in drug delivery and polymer therapeutics, additional constructs are anticipated. The goal of this review is to summarize the relevant literature for others interested in the field of camptothecin-based therapeutics, specifically in the context of biodistribution, dosing regimens, and pharmacokinetics with the desire of providing a useful source of comparative data. To this end, only constructs where in vivo data is available are reported. The review includes published reports in English through mid-2009.
Collapse
Affiliation(s)
- Vincent J Venditto
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
49
|
Abstract
Lipid-based nanoparticle technology has developed from chemical drug carrier into an efficient multifunctional siRNA tumor targeting delivery system. In this review, we start with an overview of the lipid-based nanomedicine history and the two classes of lipidic vectors for DNA or siRNA delivery. Then we discuss the features of lipid-based nanomedicine that lead to effective tumor targeting and the principles behind. We also discuss nanoparticle surface modification, classes of tumor targeting ligands, and other state-of-the-art strategies for enhancing endosome release primarily focused on lipid-based systems. At the end, we show that multifunctional self-assembled lipid-based nanoparticles could also be versatile delivery vehicles for cancer molecular imaging probes.
Collapse
Affiliation(s)
- Yu-Cheng Tseng
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|