1
|
Peng X, Cai Y, Tang B, Zhang M, Wang X. Expression Significance and Prognostic Value of GPR27 in Ovarian Cancer. J INVEST SURG 2025; 38:2491781. [PMID: 40270229 DOI: 10.1080/08941939.2025.2491781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND This study explored the prognostic role of GPR27 and its predictive value to platinum-based therapy in ovarian cancer. MATERIAL AND METHODS A survival analysis of GPR27, and the therapeutic response to platinum in ovarian cancer was investigated using data from the cancer genome atlas (TCGA) and Gene Expression Omnibus (GEO) databases. GPR27 expression was assessed using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. RESULTS Database analysis and RT-PCR revealed over-expression of GPR27 mRNA in ovarian cancer tissues compared to normal ovarian tissues. Ovarian cancer patients with up-regulated GPR27 transcription were associated with better overall survival and disease-free survival compared to those with downregulated GPR27 mRNA in the TCGA dataset and Kaplan-Meier plot database (N = 1656). GPR27 demonstrated good predictive value for pathological response in patients with ovarian cancer receiving platinum-based therapy. The predictive performance for 6-month relapse-free survival was higher in endometrioid ovarian cancer (AUC:0.804) than that in serous ovarian cancer. GPR27 protein levels were significantly up-regulated in ovarian cancer tissues compared with normal ovarian tissue, and high GPR27 protein expression correlated with early-stage TNM. ROC analysis revealed that the GPR27 protein, quantified by the immunohistochemistry score, effectively predicted the response to platinum-based therapy response with an AUC of 0.7479 in our cohort. CONCLUSION GPR27 was up-regulated in ovarian cancer, compared with that of normal ovarian tissue, and was strongly correlated with survival outcomes and response to platinum-based therapy. GPR27 may serve as a reliable biomarker for platinum -based therapy in ovarian cancer patients.
Collapse
Affiliation(s)
- Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei Province, China
| | - Yahong Cai
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei Province, China
| | - Bing Tang
- Department of orthopedics, The People Hospital of Yunmeng, Xiaogan, Hubei Province, China
| | - Mingtao Zhang
- Department of Radiation Oncology, Jing men NO.1 People's Hospital, Jingmen, Hubei, China
| | - Xia Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Zhao Y, Yue D, Zou Y. Orphan G Protein-Coupled Receptor GPR88: Mapping Its Significance in Central Nervous System Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04893-7. [PMID: 40184024 DOI: 10.1007/s12035-025-04893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
G protein-coupled receptors (GPCRs), comprising the largest family of membrane receptors in humans, play a crucial roles in various physiological and pathological processes. Although several drugs that target GPCRs have been discovered, the characterization of orphan GPCRs (oGPCRs) remains a significant challenge. Despite extensive research, knowledge on a significant portion of these receptors, along with their ligands and target sites, remains undefined. GPR88 belongs to the category of oGPCR that is expressed in various tissues and organs, with numerous studies indicating that it plays a regulatory role in cognitive processes, emotional responses, and motor control, thereby influencing various brain behaviors and functions associated with learning. Therefore, the purpose of this review was to thoroughly examine the role of GPR88 in various central nervous system diseases, with the ultimate aim of positioning it as a potential and promising target for drug development, particularly for the treatment of a broad spectrum of neurological disorders.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P.R., China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610041, P.R., China
| | - Dongxu Yue
- Department of Pathology and Pathophysiology, School of Basic Medicine, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P.R., China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610041, P.R., China
| | - Yingying Zou
- Department of Pathology and Pathophysiology, School of Basic Medicine, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P.R., China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610041, P.R., China.
| |
Collapse
|
3
|
Liu Y, Zhang Q, Huang X. Effect of metformin on incidence, recurrence, and mortality in prostate cancer patients: integrating evidence from real-world studies. Prostate Cancer Prostatic Dis 2025; 28:210-219. [PMID: 39014063 DOI: 10.1038/s41391-024-00871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Metformin has been suggested to reduce the risk of cancer. However, previous studies have been inconsistent regarding the relationship between metformin use and the risk of occurrence of prostate cancer (PCa). The purpose of this study was to assess the effect of metformin on clinical outcomes in patients with PCa in a meta-analysis and to explore the possible dose-response relationship. METHODS A systematic literature search was conducted in 10 electronic databases and 4 registries. The combined relative risks (RRs) were calculated using a random-effects model with 95% confidence interval (CIs) to assess the effect of metformin on the risk of PCa. Relevant subgroup analyses and sensitivity analyses were performed. RESULTS The across studies results show that metformin use associated with lower incidence of PCa (RR: 0.82, 95% CI: 0.74-0.91). Metformin use was also found to reduce PCa recurrence, but the results were not statistically significant (RR: 0.97, 95% CI: 0.81-1.15). Metformin use was not associated with PCa mortality (RR: 0.94, 95% CI: 0.81-1.09). The results of subgroup analyses indicated that the type of study was a cohort study and the population came from both Asia and Europe showed that taking metformin reduced the incidence of PCa. A linear correlation was found between the duration of metformin use and its protective effect. CONCLUSIONS This meta-analysis revealed an independent correlation between metformin use and reduced incidence of PCa. Metformin use was not associated with either PCa recurrence rate or mortality. Furthermore, the effect of metformin on PCa incidence was found to be related to duration.
Collapse
Affiliation(s)
- Yuchen Liu
- Nanchang University Queen Mary School, Nanchang, Jiangxi, PR China
| | - Qingfang Zhang
- Nanchang University Queen Mary School, Nanchang, Jiangxi, PR China
| | - Xuan Huang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
4
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
5
|
Boutin A, Eliseeva E, Templin S, Marcus-Samuels B, Anderson DE, Gershengorn MC, Neumann S. Linsitinib Decreases Thyrotropin-Induced Thyroid Hormone Synthesis by Inhibiting Crosstalk Between Thyroid-Stimulating Hormone and Insulin-Like Growth Factor 1 Receptors in Human Thyrocytes In Vitro and In Vivo in Mice. Thyroid 2025; 35:216-224. [PMID: 39718934 PMCID: PMC11984798 DOI: 10.1089/thy.2024.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Background: Thyrotropin receptor (TSHR) and insulin-like growth factor 1 receptor (IGF-1R) have been shown to crosstalk in primary cultures of human thyrocytes (hThyros) and Graves' orbital fibroblasts. The phenomenon of TSHR/IGF-1R crosstalk has been largely studied in the pathogenesis of thyroid eye disease (TED) in human orbital fibroblasts. Here, we investigated the effects of inhibiting the IGF-1R-mediated contribution to crosstalk by linsitinib (Lins), a small-molecule IGF-1R kinase inhibitor, on TSH-induced regulation of thyroperoxidase (TPO) and thyroglobulin (TG) mRNAs and proteins in hThyros in vitro, and on TPO and TG mRNAs and free thyroxine (fT4) levels in vivo in mice. Methods: Steady-state levels of mRNAs of TPO and TG in hThyros in vitro and mouse thyroid glands were measured by RT-qPCR. Human TG (hTG) and human TPO (hTPO) proteins in human thyroid cell cultures were measured by Western blot or ELISA. Translation rates of hTG were quantified by stable isotope labeling by amino acids method (SILAC). Thyroidal mouse Tpo (mTpo) and Tg (mTg) mRNAs and fT4 in mice were assessed after Lins administration on 3 consecutive days followed by an intraperitoneal dose of bovine TSH (bTSH) 3 hours prior to drawing blood. Results: In primary cultures of hThyros, Lins inhibited bTSH-induced upregulation of hTPO mRNA by 61.5%, and hTPO protein was inhibited by 42.4%. There was no effect of Lins on hTG mRNA, but Lins inhibited the upregulation of secreted and cell-associated hTG protein by 50.1% and 42.2%, respectively, by inhibiting hTG mRNA translation. mTpo mRNA measured in thyroid glands after treatment with Lins was reduced by 31.5%. There was no effect of Lins on mTg mRNA, however, Lins decreased fT4 levels in mice under basal (endogenous mTSH levels) and bTSH-treated conditions. Conclusions: The IGF-1R antagonist Lins inhibited bTSH-stimulated hTG and hTPO protein expression in primary cultures of hThyros and fT4 levels in mice. We suggest that thyroid function studies be monitored when Lins is administered to humans, for example, if it is used to treat TED.
Collapse
Affiliation(s)
- Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, Bethesda, Maryland, USA
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology, Bethesda, Maryland, USA
| | - Scott Templin
- Laboratory of Endocrinology and Receptor Biology, Bethesda, Maryland, USA
| | | | - D. Eric Anderson
- Advanced Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2025; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Mandal AK, Merriman TR, Choi HK, Mount DB. Caffeine Inhibits Both Basal and Insulin-Activated Urate Transport. Arthritis Rheumatol 2024; 76:1658-1669. [PMID: 38932509 PMCID: PMC11562663 DOI: 10.1002/art.42940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Caffeine, an adenosine receptor antagonist, is a potent central nervous system stimulant that also impairs insulin signaling. Recent studies have suggested that coffee consumption lowers serum urate (SU) and protects against gout by unknown mechanisms. We hypothesized that caffeine lowers SU by affecting activity of urate transporters. METHODS We examined the effect of caffeine and adenosine on basal and insulin stimulation of net 14C-urate uptake in the human renal proximal tubule cell line PTC-05 and on individual urate transporters expressed in Xenopus laevis oocytes. RESULTS We found that caffeine and adenosine efficiently inhibited both basal and insulin stimulation of net 14C-urate uptake mediated by endogenous urate transporters in PTC-05 cells. In oocytes expressing individual urate transporters, caffeine (>0.2 mM) more efficiently inhibited the basal urate transport activity of GLUT9 isoforms, OAT4, OAT1, OAT3, NPT1, ABCG2, and ABCC4 than did adenosine without significantly affecting URAT1 and OAT10. However, unlike adenosine, caffeine at lower concentrations (<0.2 mM) very effectively inhibited insulin activation of urate transport activity of GLUT9, OAT10, OAT1, OAT3, NPT1, ABCG2, and ABCC4 by blocking activation of Akt and extracellular signal-regulated kinase. CONCLUSION We postulate that inhibition of urate transport activity of the re-absorptive transporters GLUT9, OAT10, and OAT4 by caffeine is a key mechanism in its urate-lowering effects. Additionally, the ability of caffeine to block insulin-activated urate transport by GLUT9a and OAT10 suggests greater relative inhibition of these transporters in hyperinsulinemia.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tony R. Merriman
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham AL
| | - Hyon K. Choi
- Division of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - David B. Mount
- Renal Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Renal Divisions, VA Boston Healthcare System, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Sengupta P, Sen S, Mukhopadhyay D. The receptor tyrosine kinase IGF1R and its associated GPCRs are co-regulated by the noncoding RNA NEAT1 in Alzheimer's disease. Gene 2024; 918:148503. [PMID: 38670398 DOI: 10.1016/j.gene.2024.148503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The study is based on the complexity of Insulin like growth factor receptor (IGF1R) signaling and its regulation by noncoding RNAs (ncRNAs). IGF1R signaling is an important cascade in Alzheimer's disease (AD); however, its regulation and roles are poorly understood. Due to the presence of β-arrestin and GPCR Receptor Kinase binding sites, this protein has been termed a 'functional hybrid', as it can take part in both kinase and GPCR signaling pathways, further adding to its complexity. The objective of this study is to understand the underlying ncRNA regulation controlling IGF1R and GPCRs in AD to find commonalities in the network. We found through data mining that 45 GPCRs were reportedly deregulated in AD and built clusters based on GO/KEGG pathways to show shared functionality with IGF1R. Eight miRs were further discovered that could coregulate IGF1R and GPCRs. We validated their expression in an AD cell model and probed for common lncRNAs downstream that could regulate these miRs. Seven such candidates were identified and further validated. A combined network comprising IGF1R with nine GPCRs, eight miRs, and seven lncRNAs was created to visualize the interconnectivity within pathways. Betweenness centrality analysis showed a cluster of NEAT1, hsa-miR-15a-5p, hsa-miR-16-5p, and IGF1R to be crucial form a competitive endogenous RNA-based (ceRNA) tetrad that could relay information within the network, which was further validated by cell-based studies. NEAT1 emerged as a master regulator that could alter the levels of IGF1R and associated GPCRs. This combined bioinformatics and experimental study for the first time explored the regulation of IGF1R through ncRNAs from the perspective of neurodegeneration.
Collapse
Affiliation(s)
- Priyanka Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Somenath Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata 700 064, India.
| |
Collapse
|
9
|
Chen M, Shen C, Chen Y, Chen Z, Zhou K, Chen Y, Li W, Zeng C, Qing Y, Wu D, Xu C, Tang T, Che Y, Qin X, Xu Z, Wang K, Leung K, Sau L, Deng X, Hu J, Wu Y, Chen J. Metformin synergizes with gilteritinib in treating FLT3-mutated leukemia via targeting PLK1 signaling. Cell Rep Med 2024; 5:101645. [PMID: 39019012 PMCID: PMC11293342 DOI: 10.1016/j.xcrm.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutations, present in over 30% of acute myeloid leukemia (AML) cases and dominated by FLT3-internal tandem duplication (FLT3-ITD), are associated with poor outcomes in patients with AML. While tyrosine kinase inhibitors (TKIs; e.g., gilteritinib) are effective, they face challenges such as drug resistance, relapse, and high costs. Here, we report that metformin, a cheap, safe, and widely used anti-diabetic agent, exhibits a striking synergistic effect with gilteritinib in treating FLT3-ITD AML. Metformin significantly sensitizes FLT3-ITD AML cells (including TKI-resistant ones) to gilteritinib. Metformin plus gilteritinib (low dose) dramatically suppresses leukemia progression and prolongs survival in FLT3-ITD AML mouse models. Mechanistically, the combinational treatment cooperatively suppresses polo-like kinase 1 (PLK1) expression and phosphorylation of FLT3/STAT5/ERK/mTOR. Clinical analysis also shows improved survival rates in patients with FLT3-ITD AML taking metformin. Thus, the metformin/gilteritinib combination represents a promising and cost-effective treatment for patients with FLT3-mutated AML, particularly for those with low income/affordability.
Collapse
Affiliation(s)
- Meiling Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | - Yi Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yuanzhong Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chengwu Zeng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
| | - Tingting Tang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yuan Che
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Zhaoxu Xu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lillian Sau
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China.
| | - Yong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
10
|
Anazco D, Acosta A, Cathcart-Rake EJ, D'Andre SD, Hurtado MD. Weight-centric prevention of cancer. OBESITY PILLARS 2024; 10:100106. [PMID: 38495815 PMCID: PMC10943063 DOI: 10.1016/j.obpill.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Background The link between excess adiposity and carcinogenesis has been well established for multiple malignancies, and cancer is one of the main contributors to obesity-related mortality. The potential role of different weight-loss interventions on cancer risk modification has been assessed, however, its clinical implications remain to be determined. In this clinical review, we present the data assessing the effect of weight loss interventions on cancer risk. Methods In this clinical review, we conducted a comprehensive search of relevant literature using MEDLINE, Embase, Web of Science, and Google Scholar databases for relevant studies from inception to January 20, 2024. In this clinical review, we present systematic reviews and meta-analysis, randomized clinical trials, and prospective and retrospective observational studies that address the effect of different treatment modalities for obesity in cancer risk. In addition, we incorporate the opinions from experts in the field of obesity medicine and oncology regarding the potential of weight loss as a preventative intervention for cancer. Results Intentional weight loss achieved through different modalities has been associated with a reduced cancer incidence. To date, the effect of weight loss on the postmenopausal women population has been more widely studied, with multiple reports indicating a protective effect of weight loss on hormone-dependent malignancies. The effect of bariatric interventions as a protective intervention for cancer has been studied extensively, showing a significant reduction in cancer incidence and mortality, however, data for the effect of bariatric surgery on certain specific types of cancer is conflicting or limited. Conclusion Medical nutrition therapy, exercise, antiobesity medication, and bariatric interventions, might lead to a reduction in cancer risk through weight loss-dependent and independent factors. Further evidence is needed to better determine which population might benefit the most, and the amount of weight loss required to provide a clinically significant preventative effect.
Collapse
Affiliation(s)
- Diego Anazco
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Maria D. Hurtado
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
11
|
Wayne CD, Benbetka C, Besner GE, Narayanan S. Challenges of Managing Type 3c Diabetes in the Context of Pancreatic Resection, Cancer and Trauma. J Clin Med 2024; 13:2993. [PMID: 38792534 PMCID: PMC11122338 DOI: 10.3390/jcm13102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Type 3c diabetes mellitus (T3cDM), also known as pancreatogenic or pancreoprivic diabetes, is a specific type of DM that often develops as a result of diseases affecting the exocrine pancreas, exhibiting an array of hormonal and metabolic characteristics. Several pancreatic exocrine diseases and surgical procedures may cause T3cDM. Diagnosing T3cDM remains difficult as the disease characteristics frequently overlap with clinical presentations of type 1 DM (T1DM) or type 2 DM (T2DM). Managing T3cDM is likewise challenging due to numerous confounding metabolic dysfunctions, including pancreatic endocrine and exocrine insufficiencies and poor nutritional status. Treatment of pancreatic exocrine insufficiency is of paramount importance when managing patients with T3cDM. This review aims to consolidate the latest information on surgical etiologies of T3cDM, focusing on partial pancreatic resections, total pancreatectomy, pancreatic cancer and trauma.
Collapse
Affiliation(s)
- Colton D. Wayne
- Department of Pediatric Surgery, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (C.D.W.); (G.E.B.)
- Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Surgery, Baylor University Medical Center, 3600 Gaston Ave, Dallas, TX 75246, USA
| | | | - Gail E. Besner
- Department of Pediatric Surgery, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (C.D.W.); (G.E.B.)
- Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Siddharth Narayanan
- Department of Pediatric Surgery, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (C.D.W.); (G.E.B.)
- Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
12
|
Głód P, Borski N, Gogola-Mruk J, Opydo M, Ptak A. Bisphenol S and F affect cell cycle distribution and steroidogenic activity of human ovarian granulosa cells, but not primary granulosa tumour cells. Toxicol In Vitro 2023; 93:105697. [PMID: 37717640 DOI: 10.1016/j.tiv.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Bisphenol S (BPS) and F (BPF), a new generation of bisphenols (BPs), are the main substitutes for bisphenol A (BPA). Both have been detected in human body fluids. Importantly, bisphenols are structurally similar to oestrogen, the main sex hormone in females. Because bisphenols bind to nuclear oestrogen receptors (ESR1 and ESR2) and to membrane G-coupled receptor 30 (GPR30), they can disrupt ovarian function. Here, we reveal the molecular mechanism underlying the effects of BPS and BPF on the cell cycle and steroidogenesis in the human ovarian granulosa cell (GC) line HGrC1. We show that BPS and BPF arrest GCs at the G0/G1 phase by inducing expression of cyclin D2, an important event that triggers maximal steroid synthesis in response to the BPS and BPF. We used pharmacological inhibitors to show that BPS and BPF, despite acting via already described pathways, also stimulate steroid secretion via IGF1R pathways in HGrC1 cells. Moreover, we identified differences critical to bisphenols response between normal (HGrC1) and primary tumour granulosa (COV434) cells, that enable COV434 cells to be more resistant to bisphenols. Overall, the data suggest that BPS and BPF drive steroidogenesis in human ovarian GCs by affecting the cell cycle. Furthermore, the results indicate that BPS and BPF act not only via the classical and non-classical ESR pathways, but also via the IGF1R pathway.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
13
|
Park MN. Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products. Int J Mol Sci 2023; 24:15906. [PMID: 37958889 PMCID: PMC10648679 DOI: 10.3390/ijms242115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
14
|
Soni UK, Jenny L, Hegde RS. IGF-1R targeting in cancer - does sub-cellular localization matter? J Exp Clin Cancer Res 2023; 42:273. [PMID: 37858153 PMCID: PMC10588251 DOI: 10.1186/s13046-023-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.
Collapse
Affiliation(s)
- Upendra K Soni
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liam Jenny
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
15
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
16
|
Orchard SG, Lockery JE, Broder JC, Ernst ME, Espinoza S, Gibbs P, Wolfe R, Polekhina G, Zoungas S, Loomans-Kropp HA, Woods RL. Association of metformin, aspirin, and cancer incidence with mortality risk in adults with diabetes. JNCI Cancer Spectr 2023; 7:pkad017. [PMID: 36857596 PMCID: PMC10042437 DOI: 10.1093/jncics/pkad017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Metformin and aspirin are commonly co-prescribed to people with diabetes. Metformin may prevent cancer, but in older people (over 70 years), aspirin has been found to increase cancer mortality. This study examined whether metformin reduces cancer mortality and incidence in older people with diabetes; it used randomization to 100 mg aspirin or placebo in the ASPirin in Reducing Events in the Elderly (ASPREE) trial to quantify aspirin's impact on metformin users. METHODS Analysis included community-dwelling ASPREE participants (aged ≥70 years, or ≥65 years for members of US minority populations) with diabetes. Diabetes was defined as a fasting blood glucose level greater than 125 mg/dL, self-report of diabetes, or antidiabetic medication use. Cox proportional hazards regression models were used to analyze the association of metformin and a metformin-aspirin interaction with cancer incidence and mortality, with adjustment for confounders. RESULTS Of 2045 participants with diabetes at enrollment, 965 were concurrently using metformin. Metformin was associated with a reduced cancer incidence risk (adjusted hazard ratio [HR] = 0.68, 95% confidence interval [CI] = 0.51 to 0.90), but no conclusive benefit for cancer mortality (adjusted HR = 0.72, 95% CI = 0.43 to 1.19). Metformin users randomized to aspirin had greater risk of cancer mortality compared with placebo (HR = 2.53, 95% CI = 1.18 to 5.43), but no effect was seen for cancer incidence (HR = 1.11, 95% CI = 0.75 to 1.64). The possible effect modification of aspirin on cancer mortality, however, was not statistically significant (interaction P = .11). CONCLUSIONS In community-dwelling older adults with diabetes, metformin use was associated with reduced cancer incidence. Increased cancer mortality risk in metformin users randomized to aspirin warrants further investigation. ASPREE TRIAL REGISTRATION ClinicalTrials.gov ID NCT01038583.
Collapse
Affiliation(s)
- Suzanne G Orchard
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Jessica E Lockery
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
- Translational Immunology and Nanotechnology Research Theme, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Department of Internal Medicine, Division of Cancer Prevention and Control, Ohio State University, Columbus, OH, USA
| | - Jonathan C Broder
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Michael E Ernst
- Department of Pharmacy Practice and Science, College of Pharmacy and Department of Family Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Sara Espinoza
- Division of Geriatrics, Gerontology and Palliative Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, and Geriatrics Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Peter Gibbs
- The Walter & Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Galina Polekhina
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Sophia Zoungas
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Holli A Loomans-Kropp
- Department of Internal Medicine, Division of Cancer Prevention and Control, Ohio State University, Columbus, OH, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| |
Collapse
|
17
|
Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform. Cancers (Basel) 2023; 15:cancers15041030. [PMID: 36831374 PMCID: PMC9954791 DOI: 10.3390/cancers15041030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The concept of epigenetic reprogramming predicts long-term functional health effects. This reprogramming can be activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The exogenous or endogenous changes that involve developing a roadmap of epigenetic networking, such as drug components on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, are paramount to establishing youthful cell type and health. This epigenetic landscape is considered one of the hallmarks of cancer. The initiation and progression of cancer are considered to involve epigenetic abnormalities and genetic alterations. Cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer development, including DNA methylation, histone modifications, nucleosome positioning, non-coding RNAs, and microRNA expression. Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two primary cannabinoid receptors, type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes, form the endocannabinoid system. This review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine kinases and Toll-like receptors in the induction of epigenetic landscape alterations in cancer cells, which might transmogrify cancer metabolism and epigenetic reprogramming to a metastatic phenotype. Strategies applied from conception could represent an innovative epigenetic target for preventing and treating human cancer. Here, we describe novel cannabinoid-biased G protein-coupled receptor signaling platforms (GPCR), highlighting putative future perspectives in this field.
Collapse
|
18
|
Sanati M, Aminyavari S, Mollazadeh H, Motamed-Sanaye A, Bibak B, Mohtashami E, Teng Y, Afshari AR, Sahebkar A. The Potential Therapeutic Impact of Metformin in Glioblastoma Multiforme. Curr Med Chem 2023; 30:857-877. [PMID: 35796457 DOI: 10.2174/0929867329666220707103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/13/2022] [Accepted: 04/16/2022] [Indexed: 02/08/2023]
Abstract
In terms of frequency and aggressiveness, glioblastoma multiforme (GBM) is undoubtedly the most frequent and fatal primary brain tumor. Despite advances in clinical management, the response to current treatments is dismal, with a 2-year survival rate varying between 6 and 12 percent. Metformin, a derivative of biguanide widely used in treating type 2 diabetes, has been shown to extend the lifespan of patients with various malignancies. There is limited evidence available on the long-term survival of GBM patients who have taken metformin. This research examined the literature to assess the connection between metformin's anticancer properties and GBM development. Clinical findings, together with the preclinical data from animal models and cell lines, are included in the present review. This comprehensive review covers not only the association of hyperactivation of the AMPK pathway with the anticancer activity of metformin but also other mechanisms underpinning its role in apoptosis, cell proliferation, metastasis, as well as its chemo-radio-sensitizing behavior against GBM. Current challenges and future directions for developments and applications of metformin-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Motamed-Sanaye
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322, USA
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Hallin J, Bowcut V, Calinisan A, Briere DM, Hargis L, Engstrom LD, Laguer J, Medwid J, Vanderpool D, Lifset E, Trinh D, Hoffman N, Wang X, David Lawson J, Gunn RJ, Smith CR, Thomas NC, Martinson M, Bergstrom A, Sullivan F, Bouhana K, Winski S, He L, Fernandez-Banet J, Pavlicek A, Haling JR, Rahbaek L, Marx MA, Olson P, Christensen JG. Anti-tumor efficacy of a potent and selective non-covalent KRAS G12D inhibitor. Nat Med 2022; 28:2171-2182. [PMID: 36216931 DOI: 10.1038/s41591-022-02007-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/09/2022] [Indexed: 12/12/2022]
Abstract
Recent progress in targeting KRASG12C has provided both insight and inspiration for targeting alternative KRAS mutants. In this study, we evaluated the mechanism of action and anti-tumor efficacy of MRTX1133, a potent, selective and non-covalent KRASG12D inhibitor. MRTX1133 demonstrated a high-affinity interaction with GDP-loaded KRASG12D with KD and IC50 values of ~0.2 pM and <2 nM, respectively, and ~700-fold selectivity for binding to KRASG12D as compared to KRASWT. MRTX1133 also demonstrated potent inhibition of activated KRASG12D based on biochemical and co-crystal structural analyses. MRTX1133 inhibited ERK1/2 phosphorylation and cell viability in KRASG12D-mutant cell lines, with median IC50 values of ~5 nM, and demonstrated >1,000-fold selectivity compared to KRASWT cell lines. MRTX1133 exhibited dose-dependent inhibition of KRAS-mediated signal transduction and marked tumor regression (≥30%) in a subset of KRASG12D-mutant cell-line-derived and patient-derived xenograft models, including eight of 11 (73%) pancreatic ductal adenocarcinoma (PDAC) models. Pharmacological and CRISPR-based screens demonstrated that co-targeting KRASG12D with putative feedback or bypass pathways, including EGFR or PI3Kα, led to enhanced anti-tumor activity. Together, these data indicate the feasibility of selectively targeting KRAS mutants with non-covalent, high-affinity small molecules and illustrate the therapeutic susceptibility and broad dependence of KRASG12D mutation-positive tumors on mutant KRAS for tumor cell growth and survival.
Collapse
Affiliation(s)
- Jill Hallin
- Mirati Therapeutics, Inc., San Diego, CA, USA
| | | | | | | | | | | | - Jade Laguer
- Mirati Therapeutics, Inc., San Diego, CA, USA
| | | | | | - Ella Lifset
- Mirati Therapeutics, Inc., San Diego, CA, USA
| | - David Trinh
- Mirati Therapeutics, Inc., San Diego, CA, USA
| | | | | | | | | | | | | | | | - Alex Bergstrom
- Array BioPharma, Inc. (acquired by Pfizer), Boulder, CO, USA
| | | | - Karyn Bouhana
- Array BioPharma, Inc. (acquired by Pfizer), Boulder, CO, USA
| | - Shannon Winski
- Array BioPharma, Inc. (acquired by Pfizer), Boulder, CO, USA
| | - Leo He
- Monoceros Biosystems, LLC, San Diego, CA, USA
| | | | | | | | | | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, CA, USA
| | | |
Collapse
|
21
|
Rossiter JL, Redlinger LJ, Kolar GR, Samson WK, Yosten GLC. The actions of C-peptide in HEK293 cells are dependent upon insulin and extracellular glucose concentrations. Peptides 2022; 150:170718. [PMID: 34954230 DOI: 10.1016/j.peptides.2021.170718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Connecting peptide, or C-peptide, is a part of the insulin prohormone and is essential for the proper folding and processing of the mature insulin peptide. C-peptide is released from the same beta cell secretory granules as insulin in equimolar amounts. However, due to their relative stabilities in plasma, the two peptides are detected in the circulation at ratios of approximately 4:1 to 6:1 (C-peptide to insulin), depending on metabolic state. C-peptide binds specifically to human cell membranes and induces intracellular signaling cascades, likely through an interaction with the G protein coupled receptor, GPR146. C-peptide has been shown to exert protective effects against the vascular, renal, and ocular complications of diabetes. The effects of C-peptide appear to be dependent upon the presence of insulin and the absolute, extracellular concentration of glucose. In this study, we employed HEK293 cells to further examine the interactive effects of C-peptide, insulin, and glucose on cell signaling. We observed that C-peptide's cellular effects are dampened significantly when cells are exposed to physiologically relevant concentrations of both insulin and C-peptide. Likewise, the actions of C-peptide on cFos and GPR146 mRNA expressions were affected by changes in extracellular glucose concentration. In particular, C-peptide induced significant elevations in cFos expression in the setting of high (25 mmol) extracellular glucose concentration. These data indicate that future experimentation on the actions of C-peptide should control for the presence or absence of insulin and the concentration of glucose. Furthermore, these findings should be considered prior to the development of C-peptide-based therapeutics for the treatment of diabetes-associated complications.
Collapse
Affiliation(s)
- Jacqueline L Rossiter
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Lauren J Redlinger
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
22
|
Wang P, Mak VCY, Cheung LWT. Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis 2022; 10:199-211. [PMID: 37013053 PMCID: PMC10066341 DOI: 10.1016/j.gendis.2022.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor (IGF) axis plays important roles in cancer development and metastasis. The type 1 IGF receptor (IGF-1R) is a key member in the IGF axis and has long been recognized for its oncogenic role in multiple cancer lineages. Here we review the occurrence of IGF-1R aberrations and activation mechanisms in cancers, which justify the development of anti-IGF-1R therapies. We describe the therapeutic agents available for IGF-1R inhibition, with focuses on the recent or ongoing pre-clinical and clinical studies. These include antisense oligonucleotide, tyrosine kinase inhibitors and monoclonal antibodies which may be conjugated with cytotoxic drug. Remarkably, simultaneous targeting of IGF-1R and several other oncogenic vulnerabilities has shown early promise, highlighting the potential benefits of combination therapy. Further, we discuss the challenges in targeting IGF-1R so far and new concepts to improve therapeutic efficacy such as blockage of the nuclear translocation of IGF-1R.
Collapse
|
23
|
Li M, Chang J, Ren H, Song D, Guo J, Peng L, Zhou X, Zhao K, Lu S, Liu Z, Hu P. Downregulation of CCKBR Expression Inhibits the Proliferation of Gastric Cancer Cells, Revealing a Potential Target for Immunotoxin Therapy. Curr Cancer Drug Targets 2022; 22:257-268. [PMID: 34994328 DOI: 10.2174/1568009622666220106113616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
Background Increased CCKBR expression density or frequency has been reported in many neoplasms. Objective We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. Methods A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Wound-healing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. Results Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. Conclusion The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Jiang Chang
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Honglin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Defeng Song
- China-Japan Union Hospital, Jilin University; Changchun 130062, China
| | - Jian Guo
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Lixiong Peng
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Xiaoshi Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Ke Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Shiying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Zengshan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| |
Collapse
|
24
|
Rajpurohit T, Bhattacharya S. Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma. Curr Mol Pharmacol 2022; 15:904-928. [PMID: 35088684 DOI: 10.2174/1874467215666220128161647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
"Pancreatic ductal adenocarcinoma (PDAC)" is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but "Carbohydrate Antigen CA19- 9" remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated "Rat sarcoma virus Ras" conformation "V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas" is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising "Rapidly accelerated fibrosarcoma Raf"/"Mitogen-activated protein kinase MEK"/ "Extracellular signal-regulated kinase ERK" with "Phosphoinositide 3-kinase PI3K"/ "protein kinase B Akt"/ "mammalian target of rapamycin mTOR" pathways. KRas has acquired the label of 'undruggable' since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like "gemcitabine GEM" plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.
Collapse
Affiliation(s)
- Tarun Rajpurohit
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
25
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 729] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
26
|
Gallo M, Adinolfi V, Barucca V, Prinzi N, Renzelli V, Barrea L, Di Giacinto P, Ruggeri RM, Sesti F, Arvat E, Baldelli R, Arvat E, Colao A, Isidori A, Lenzi A, Baldell R, Albertelli M, Attala D, Bianchi A, Di Sarno A, Feola T, Mazziotti G, Nervo A, Pozza C, Puliani G, Razzore P, Ramponi S, Ricciardi S, Rizza L, Rota F, Sbardella E, Zatelli MC. Expected and paradoxical effects of obesity on cancer treatment response. Rev Endocr Metab Disord 2021; 22:681-702. [PMID: 33025385 DOI: 10.1007/s11154-020-09597-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Obesity, whose prevalence is pandemic and continuing to increase, is a major preventable and modifiable risk factor for diabetes and cardiovascular diseases, as well as for cancer. Furthermore, epidemiological studies have shown that obesity is a negative independent prognostic factor for several oncological outcomes, including overall and cancer-specific survival, for several site-specific cancers as well as for all cancers combined. Yet, a recently growing body of evidence suggests that sometimes overweight and obesity may associate with better outcomes, and that immunotherapy may show improved response among obese patients compared with patients with a normal weight. The so-called 'obesity paradox' has been reported in several advanced cancer as well as in other diseases, albeit the mechanisms behind this unexpected relationship are still not clear. Aim of this review is to explore the expected as well as the paradoxical relationship between obesity and cancer prognosis, with a particular emphasis on the effects of cancer therapies in obese people.
Collapse
Affiliation(s)
- Marco Gallo
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Via Genova, 3, 10126, Turin, Italy.
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, ASL Verbano Cusio Ossola, Domodossola, Italy
| | - Viola Barucca
- Oncology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Natalie Prinzi
- ENETS Center of Excellence, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori Milano, Milan, Italy
| | - Valerio Renzelli
- Department of Experimental Medicine, AO S. Andrea, Sapienza University of Rome, Rome, Italy
| | - Luigi Barrea
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Paola Di Giacinto
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Rosaria Maddalena Ruggeri
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico G. Martino, Messina, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Arvat
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Via Genova, 3, 10126, Turin, Italy
| | - Roberto Baldelli
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, Weng CF. Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ. Biomed Pharmacother 2021; 144:112333. [PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
Collapse
Affiliation(s)
- Sih-Pei Chen
- Institute of Respiratory Disease, Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Ting-Hsu Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Hui-Suan Ng
- Faculty of Applied Science, UCSI University, UCSI Height, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hip-Seng Yim
- Faculty of Applied Science, UCSI University, UCSI Height, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan.
| | - Ching-Feng Weng
- Institute of Respiratory Disease, Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan; Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan.
| |
Collapse
|
28
|
Rozengurt E, Eibl G. Crosstalk between KRAS, SRC and YAP Signaling in Pancreatic Cancer: Interactions Leading to Aggressive Disease and Drug Resistance. Cancers (Basel) 2021; 13:5126. [PMID: 34680275 PMCID: PMC8533944 DOI: 10.3390/cancers13205126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the predominant form of pancreatic cancer, remains a devastating disease. The purpose of this review is to highlight recent literature on mechanistic and translational developments that advance our understanding of a complex crosstalk between KRAS, YAP and Src tyrosine kinase family (SFK) in PDAC development and maintenance. We discuss recent studies indicating the importance of RAS dimerization in signal transduction and new findings showing that the potent pro-oncogenic members of the SFK phosphorylate and inhibit RAS function. These surprising findings imply that RAS may not play a crucial role in maintaining certain subtypes of PDAC. In support of this interpretation, current evidence indicates that the survival of the basal-like subtype of PDAC is less dependent on RAS but relies, at least in part, on the activity of YAP/TAZ. Based on current evidence, we propose that SFK propels PDAC cells to a state of high metastasis, epithelial-mesenchymal transition (EMT) and reduced dependence on KRAS signaling, salient features of the aggressive basal-like/squamous subtype of PDAC. Strategies for PDAC treatment should consider the opposite effects of tyrosine phosphorylation on KRAS and SFK/YAP in the design of drug combinations that target these novel crosstalk mechanisms and overcome drug resistance.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| |
Collapse
|
29
|
Hsieh MC, Zhang L, Velasco-Gonzalez C, Yi Y, Pareti LA, Trapido EJ, Chen VW, Wu XC. Impact of diabetes and modifiable risk factors on pancreatic cancer survival in a population-based study after adjusting for clinical factors. Cancer Causes Control 2021; 33:37-48. [PMID: 34633573 DOI: 10.1007/s10552-021-01497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
PURPOSES Our study aimed to examine the impact of diabetes, smoking and BMI on pancreatic cancer survival in a population-based setting by adjusting both sociodemographic and clinical factors and measuring their attributable risk. METHODS Data on pancreatic adenocarcinoma patients diagnosed in 2011-2017 were acquired from the Louisiana Tumor Registry. Diabetes, smoking, height, and weight were abstracted from medical records and linked with Hospital Inpatient Discharge Data to enhance the completeness of the diabetes data. The Cox regression model was used to assess effect sizes of diabetes, smoking, and BMI on cancer-specific survival and survival rate. The partial population attributable risk was employed to measure the attributable risk of these risk factors. RESULTS Of the 3,200 eligible patients, 34.6% were diabetics, 23.9% were current smokers, and 52.3% had BMI ≥ 25 kg/m2. After adjusting for sociodemographic and clinical factors, diabetic patients had an increased cancer-specific death risk of 15% (95% CI, 1.06-1.25), 36% (95% CI, 1.19-1.44) for current smokers, and 24% (95% CI, 1.00-1.54) for patients with a BMI ≥ 40 when compared to their counterparts. Diabetic current smokers had significantly lower 2- and 3-year adjusted cancer-specific survival rates, 13.1% and 10.5%, respectively. By eliminating diabetes and modifiable risk factors, an estimated 16.6% (95% CI, 6.9%-25.9%) of the cancer-specific deaths could be avoided during a nine-year observational period between 2011 and 2019. CONCLUSIONS Diabetes and smoking contributed substantially to the reduction of pancreatic cancer survival even after controlling for sociodemographic and clinical factors; however, BMI ≥ 35 was observed to increase risk of mortality among stage III-IV patients only.
Collapse
Affiliation(s)
- Mei-Chin Hsieh
- Louisiana Tumor Registry, School of Public Health, Louisiana State University Health Sciences Center, 2020 Gravier St., 3rd floor, New Orleans, LA, 70112, USA. .,Epidemiology Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Lu Zhang
- Department of Public Health Sciences, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Cruz Velasco-Gonzalez
- Center for Outcomes and Health Services Research, Ochsner Health System, Jefferson, LA, 70121, USA
| | - Yong Yi
- Louisiana Tumor Registry, School of Public Health, Louisiana State University Health Sciences Center, 2020 Gravier St., 3rd floor, New Orleans, LA, 70112, USA
| | - Lisa A Pareti
- Louisiana Tumor Registry, School of Public Health, Louisiana State University Health Sciences Center, 2020 Gravier St., 3rd floor, New Orleans, LA, 70112, USA
| | - Edward J Trapido
- Epidemiology Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Vivien W Chen
- Louisiana Tumor Registry, School of Public Health, Louisiana State University Health Sciences Center, 2020 Gravier St., 3rd floor, New Orleans, LA, 70112, USA.,Epidemiology Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Xiao-Cheng Wu
- Louisiana Tumor Registry, School of Public Health, Louisiana State University Health Sciences Center, 2020 Gravier St., 3rd floor, New Orleans, LA, 70112, USA.,Epidemiology Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
30
|
Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel) 2021; 13:cancers13205067. [PMID: 34680216 PMCID: PMC8534007 DOI: 10.3390/cancers13205067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Obesity is recognized as a chronic progressive disease and risk factor for many human diseases. The high and increasing number of obese people may underlie the expected increase in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an important role. This review discusses selected mechanisms that may accelerate pancreatic cancer development in obesity. Abstract The prevalence of obesity in adults and children has dramatically increased over the past decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue inflammation play a central role. The current review discusses selected topics and mechanisms that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue, intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development. Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore, the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in obese patients.
Collapse
|
31
|
Eibl G, Rozengurt E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev 2021; 40:865-878. [PMID: 34142285 DOI: 10.1007/s10555-021-09977-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma continues to be a lethal disease, for which efficient treatment options are very limited. Increasing efforts have been taken to understand how to prevent or intercept this disease at an early stage. There is convincing evidence from epidemiologic and preclinical studies that the antidiabetic drug metformin possesses beneficial effects in pancreatic cancer, including reducing the risk of developing the disease and improving survival in patients with early-stage disease. This review will summarize the current literature about the epidemiological data on metformin and pancreatic cancer as well as describe the preclinical evidence illustrating the anticancer effects of metformin in pancreatic cancer. Underlying mechanisms and targets of metformin will also be discussed. These include direct effects on transformed pancreatic epithelial cells and indirect, systemic effects on extra-pancreatic tissues.
Collapse
Affiliation(s)
- Guido Eibl
- Department of Surgery, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| |
Collapse
|
32
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Novik AV, Protsenko SA, Baldueva IA, Berstein LM, Anisimov VN, Zhuk IN, Semenova AI, Latipova DK, Tkachenko EV, Semiglazova TY. Melatonin and Metformin Failed to Modify the Effect of Dacarbazine in Melanoma. Oncologist 2021; 26:364-e734. [PMID: 33749049 DOI: 10.1002/onco.13761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/09/2021] [Indexed: 11/07/2022] Open
Abstract
LESSONS LEARNED Melatonin did not increase the efficacy of systemic chemotherapy in melanoma. Metformin did not increase the efficacy of systemic chemotherapy in melanoma. BACKGROUND Current data support the possibility of antitumor activity of melatonin and metformin. METHODS From March 2014 to December 2016, 57 patients with disseminated melanoma received dacarbazine (DTIC) 1,000 mg/m2 on day 1 of a 28-day cycle, either as monotherapy (first group) or in combination with melatonin 3 mg p.o. daily (second group) or metformin 850 mg two times a day p.o. daily (third group) as the first-line of chemotherapy. The primary endpoint was objective response rate (ORR). Secondary endpoints were time to progression (TTP), overall survival (OS), immunologic biomarkers, and quality of life. RESULTS ORR was 7% and did not differ among the treatment groups. Median TTP was 57, 57, and 47 days, respectively, in the first, second, and third groups (р = .362). Median OS was 236, 422, and 419 days, respectively (p = .712). Two patients from the combinations groups showed delayed response to therapy. The increase of CD3+ CD4+ HLA-DR+ lymphocytes (p = .003), CD3+ CD8+ HLA-DR+ (p = .045), CD3+ CD8+ lymphocytes (p = .012), CD4+ CD25high CD127low lymphocytes (p = .029), and overall quantity of lymphocytes (p = .021) was observed in patients with clinical benefit. CONCLUSION No benefit was found in either combination over DTIC monotherapy. Delayed responses in melatonin and metformin combination groups were registered. The increase of lymphocyte subpopulations responsible for antitumor immune response demonstrates the immune system's potential involvement in clinical activity.
Collapse
Affiliation(s)
- Aleksei Viktorovich Novik
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
- Department of Oncology, Child Oncology and Ray Therapy, St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Svetlana Anatolievna Protsenko
- Department of Chemotherapy and Innovative Technologies, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Irina Alexandrovna Baldueva
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Lev Michailovich Berstein
- Department of Endocrinology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Vladimir Nikolaevich Anisimov
- Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Irina Nikolaevna Zhuk
- Department of Chemotherapy, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Anna Igorevna Semenova
- Department of Chemotherapy and Innovative Technologies, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Dilorom Khamidovna Latipova
- Department of Chemotherapy and Innovative Technologies, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Elena Viktorovna Tkachenko
- Department of Chemotherapy, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Tatiana Yurievna Semiglazova
- Department of Chemotherapy and Innovative Technologies, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| |
Collapse
|
34
|
Al-Mrabeh A, Hollingsworth KG, Shaw JAM, McConnachie A, Sattar N, Lean MEJ, Taylor R. 2-year remission of type 2 diabetes and pancreas morphology: a post-hoc analysis of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol 2020; 8:939-948. [PMID: 33031736 DOI: 10.1016/s2213-8587(20)30303-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The pancreas is small and irregular in shape in people with type 2 diabetes. If these abnormalities are caused by the disease state itself rather than being a predisposing factor, remission of type 2 diabetes should restore normal pancreas morphology. The objective of this study was to determine whether changes in pancreas volume and shape occurred during 2 years of remission. METHODS For this post-hoc analysis, we included a subset of adult participants of the Diabetes Remission Clinical Trial (DiRECT), who had type 2 diabetes and were randomly assigned to a weight management intervention or routine diabetes management. Intervention group participants were categorised as responders (HbA1c <6·5% [48 mmol/mol] and fasting blood glucose <7·0 mmol/L, off all anti-diabetes medication) and non-responders, who were classified as remaining diabetic. Data on pancreas volume and irregularity of pancreas border at baseline, 5 months, 12 months, and 24 months after intervention were compared between responders and non-responders; additional comparisons were made between control group participants with type 2 diabetes and a non-diabetic comparator (NDC) group, who were matched to the intervention group by age, sex, and post-weight-loss weight, to determine the extent of any normalisation. We used a mixed-effects regression model based on repeated measures ANOVA with correction for potential confounding. Magnetic resonance techniques were employed to quantify pancreas volume, the irregularity of the pancreas borders, and intrapancreatic fat content. β-cell function and biomarkers of tissue growth were also measured. FINDINGS Between July 25, 2015, and Aug 5, 2016, 90 participants with type 2 diabetes in the DiRECT subset were randomly assigned to intervention (n=64) or control (n=26) and were assessed at baseline; a further 25 non-diabetic participants were enrolled into the NDC group. At baseline, mean pancreas volume was 61·7 cm3 (SD 16·0) in all participants with type 2 diabetes and 79·8 cm3 (14·3) in the NDC group (p<0·0001). At 24 months, pancreas volume had increased by 9·4 cm3 (95% CI 6·1 to 12·8) in responders compared with 6·4 cm3 (2·5 to 10·3) in non-responders (p=0·0008). Pancreas borders at baseline were more irregular in participants with type 2 diabetes than in the NDC group (fractal dimension 1·138 [SD 0·027] vs 1·097 [0·025]; p<0·0001) and had normalised by 24 months in responders only (1·099 [0·028]). Intrapancreatic fat declined by 1·02 percentage points (95% CI 0·53 to 1·51) in 32 responders and 0·51% (-0·17 to 1·19) in 13 non-responders (p=0·23). INTERPRETATION These data show for the first time, to our knowledge, reversibility of the abnormal pancreas morphology of type 2 diabetes by weight loss-induced remission. FUNDING Diabetes UK.
Collapse
Affiliation(s)
- Ahmad Al-Mrabeh
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Kieren G Hollingsworth
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James A M Shaw
- Regenerative Medicine, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alex McConnachie
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michael E J Lean
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roy Taylor
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Amable G, Martínez-León E, Picco ME, Nemirovsky SI, Rozengurt E, Rey O. Metformin inhibition of colorectal cancer cell migration is associated with rebuilt adherens junctions and FAK downregulation. J Cell Physiol 2020; 235:8334-8344. [PMID: 32239671 PMCID: PMC7529638 DOI: 10.1002/jcp.29677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
E-cadherin, a central component of the adherens junction (AJ), is a single-pass transmembrane protein that mediates cell-cell adhesion. The loss of E-cadherin surface expression, and therefore cell-cell adhesion, leads to increased cell migration and invasion. Treatment of colorectal cancer (CRC)-derived cells (SW-480 and HT-29) with 2.0 mM metformin promoted a redistribution of cytosolic E-cadherin to de novo formed puncta along the length of the contacting membranes of these cells. Metformin also promoted translocation from the cytosol to the plasma membrane of p120-catenin, another core component of the AJs. Furthermore, E-cadherin and p120-catenin colocalized with β-catenin at cell-cell contacts. Western blot analysis of lysates of CRC-derived cells revealed a substantial metformin-induced increase in the level of p120-catenin as well as E-cadherin phosphorylation on Ser838/840 , a modification associated with β-catenin/E-cadherin interaction. These modifications in E-cadherin, p120-catenin and β-catenin localization suggest that metformin induces rebuilding of AJs in CRC-derived cells. Those modifications were accompanied by the inhibition of focal adhesion kinase (FAK), as revealed by a significant decrease in the phosphorylation of FAK at Tyr397 and paxillin at Tyr118 . These changes were associated with a reduction in the numbers, but an increase in the size, of focal adhesions and by the inhibition of cell migration. Overall, these observations indicate that metformin targets multiple pathways associated with CRC development and progression.
Collapse
Affiliation(s)
- Gastón Amable
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Eduardo Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - María Elisa Picco
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Sergio I. Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1428EGA, Argentina
| | - Enrique Rozengurt
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, CA, 90095-1768, USA
| | - Osvaldo Rey
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| |
Collapse
|
36
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
37
|
Haq MEU, Akash MSH, Rehman K, Khurshid M. Therapeutic role of metformin and troglitazone to prevent cancer risk in diabetic patients: evidences from experimental studies. TURKISH JOURNAL OF BIOCHEMISTRY 2020; 45:229-239. [DOI: 10.1515/tjb-2019-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Objectives
It is evident from literature that individual with diabetes mellitus is more prone to develop cancer as compared to non-diabetic one. We aimed to highlight the risk factors that trigger the tumor formation in diabetic individuals and collect evidences regarding the preventive role of anti-diabetics in cancer.
Content
A comprehensive literature was searched in English language using electronic databases including PubMed, ScienceDirect, Medline, Scopus and Embase.
Summary and outlook
Antidiabetic drugs notably metformin and troglitazone, exhibit anticancer effects. Metformin targets energy sensor pathway i. e., AMPK/mTOR which is controlled by LKB1. Whereas. troglitazone activates PPARϒ that modulate the transcription of insulin responsive gene which is essential for lipid and glucose metabolism. Adipocytes are highly expressed with PPARɣ which induce differentiation and regulate adipogenesis. Ligand-driven expression of PPARɣ in myoblast and fibroblast cell lines produces adipocyte differentiation in breast cancer. Prostate cancer that expresses PPARɣ may be suppressed by troglitazone and retinoid which inhibit their proliferation and initiate differentiation. The findings summarized here show that metformin and troglitazone may have the ability to inhibit the cancer cell proliferation via involvement of molecular pathways. This therapeutic intervention will help to control the progression of cancer in diabetic patients.
Collapse
Affiliation(s)
- Muhammad Ejaz ul Haq
- Department of Pharmaceutical Chemistry , Government College University , Faisalabad , Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy , University of Agriculture , Faisalabad , Pakistan
| | - Mohsin Khurshid
- Department of Microbiology , Government College University , Faisalabad , Pakistan
| |
Collapse
|
38
|
Metformin Suppresses Development of the Echinococcus multilocularis Larval Stage by Targeting the TOR Pathway. Antimicrob Agents Chemother 2020; 64:AAC.01808-19. [PMID: 32540980 DOI: 10.1128/aac.01808-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Alveolar echinococcosis (AE) is a severe disease caused by the larval stage of the tapeworm Echinococcus multilocularis Current chemotherapeutic treatment options based on benzimidazoles are of limited effectiveness, which underlines the need to find new antiechinococcosis drugs. Metformin is an antihyperglycemic and antiproliferative agent that shows activity against the related parasite Echinococcus granulosus Hence, we assessed the in vitro and in vivo effects of the drug on E. multilocularis Metformin exerted significant dose-dependent killing effects on in vitro cultured parasite stem cells and protoscoleces and significantly reduced the dedifferentiation of protoscoleces into metacestodes. Likewise, oral administration of metformin (50 mg/kg of body weight/day for 8 weeks) was effective in achieving a significant reduction of parasite weight in a secondary murine AE model. Our results revealed mitochondrial membrane depolarization, activation of Em-AMPK, suppression of Em-TOR, and overexpression of Em-Atg8 in the germinal layer of metformin-treated metacestode vesicles. The opposite effects on the level of active Em-TOR in response to exogenous insulin and rapamycin suggest that Em-TOR is part of the parasite's insulin signaling pathway. Finally, the presence of the key lysosomal pathway components, through which metformin reportedly acts, was confirmed in the parasite by in silico assays. Taken together, these results introduce metformin as a promising candidate for AE treatment. Although our study highlights the importance of those direct mechanisms by which metformin reduces parasite viability, it does not necessarily preclude any additional systemic effects of the drug that might reduce parasite growth in vivo.
Collapse
|
39
|
Dulskas A, Patasius A, Linkeviciute-Ulinskiene D, Zabuliene L, Smailyte G. Cohort Study of Antihyperglycemic Medication and Pancreatic Cancer Patients Survival. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176016. [PMID: 32824907 PMCID: PMC7503289 DOI: 10.3390/ijerph17176016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Background: We assessed the association between the use of metformin and other antihyperglycemic medications on overall survival in diabetic patients with pancreatic cancer. Methods: Patients with pancreatic cancer and diabetes between 2000 and 2015 were identified from the Lithuanian Cancer Registry and the National Health Insurance Fund database. Cohort members were classified into six groups according to type 2 diabetes mellitus treatment: sulfonylurea monotherapy; metformin monotherapy; insulin monotherapy; metformin and sulfonylurea combination; metformin and other antihyperglycemic medications; all other combinations of oral antihyperglycemic medications. Survival was calculated from the date of cancer diagnosis to the date of death or the end of follow-up (31 December 2018). Results: Study group included 454 diabetic patients with pancreatic cancer. We found no statistically significant differences in overall survival between patients by glucose-lowering therapy. However, highest mortality risk was observed in patients on insulin monotherapy, and better survival was observed in the groups of patients using antihyperglycemic medication combinations, metformin alone, and metformin in combination with sulfonylurea. Analysis by cumulative dose of metformin showed significantly lower mortality risk in the highest cumulative dose category (HR 0.76, 95% CI 0.58–0.99). Conclusions: Our study showed that metformin might have a survival benefit for pancreatic cancer patients, suggesting a potentially available option for the treatment.
Collapse
Affiliation(s)
- Audrius Dulskas
- Department of Abdominal and General Surgery and Oncology, National Cancer Institute, 1 Santariskiu Str., LT-08406 Vilnius, Lithuania
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 1 Santariskiu Str., LT-08406 Vilnius, Lithuania;
- Correspondence: ; Tel.: +37-067-520-094
| | - Ausvydas Patasius
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania; (A.P.); (G.S.)
- Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | | | - Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 1 Santariskiu Str., LT-08406 Vilnius, Lithuania;
| | - Giedre Smailyte
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania; (A.P.); (G.S.)
- Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| |
Collapse
|
40
|
Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020; 8:biomedicines8080270. [PMID: 32756381 PMCID: PMC7460249 DOI: 10.3390/biomedicines8080270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Correspondence: ; Tel.: +33-491828829; Fax: +33-491826083
| |
Collapse
|
41
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
42
|
Adipocyte G i signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat Commun 2020; 11:2995. [PMID: 32532984 PMCID: PMC7293267 DOI: 10.1038/s41467-020-16756-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Adipocyte dysfunction links obesity to insulin resistance and type 2 diabetes. Adipocyte function is regulated by receptor-mediated activation of heterotrimeric G proteins. Little is known about the potential in vivo metabolic roles of Gi-type G proteins expressed by adipocytes, primarily due to the lack of suitable animal models. To address this question, we generated mice lacking functional Gi proteins selectively in adipocytes. Here we report that these mutant mice displayed significantly impaired glucose tolerance and reduced insulin sensitivity when maintained on an obesogenic diet. In contrast, using a chemogenetic strategy, we demonstrated that activation of Gi signaling selectively in adipocytes greatly improved glucose homeostasis and insulin signaling. We also elucidated the cellular mechanisms underlying the observed metabolic phenotypes. Our data support the concept that adipocyte Gi signaling is essential for maintaining euglycemia. Drug-mediated activation of adipocyte Gi signaling may prove beneficial for restoring proper glucose homeostasis in type 2 diabetes. Gs-coupled receptor signaling is well known to modulate adipocyte metabolism, but the role of Gi-coupled receptors in adipose tissue is less well understood. Here the authors show that signaling via Gi-type G proteins expressed by adipocytes is essential for maintaining proper blood glucose homeostasis.
Collapse
|
43
|
Quoc Lam B, Shrivastava SK, Shrivastava A, Shankar S, Srivastava RK. The Impact of obesity and diabetes mellitus on pancreatic cancer: Molecular mechanisms and clinical perspectives. J Cell Mol Med 2020; 24:7706-7716. [PMID: 32458441 PMCID: PMC7348166 DOI: 10.1111/jcmm.15413] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 01/18/2023] Open
Abstract
The incidence of obesity and type 2 diabetes (T2DM) in the Western world has increased dramatically during the recent decades. According to the American Cancer Society, pancreatic cancer (PC) is the fourth leading cause of cancer‐related death in the United States. The relationship among obesity, T2DM and PC is complex. Due to increase in obesity, diabetes, alcohol consumption and sedentary lifestyle, the mortality due to PC is expected to rise significantly by year 2040. The underlying mechanisms by which diabetes and obesity contribute to pancreatic tumorigenesis are not well understood. Furthermore, metabolism and microenvironment within the pancreas can also modulate pancreatic carcinogenesis. The risk of PC on a population level may be reduced by modifiable lifestyle risk factors. In this review, the interactions of diabetes and obesity to PC development were summarized, and novel strategies for the prevention and treatment of diabetes and PC were discussed.
Collapse
Affiliation(s)
- Bao Quoc Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sushant K Shrivastava
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, India
| | - Anju Shrivastava
- Department of Oncology, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Rakesh K Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
44
|
Nweke E, Ntwasa M, Brand M, Devar J, Smith M, Candy G. Increased expression of plakoglobin is associated with upregulated MAPK and PI3K/AKT signalling pathways in early resectable pancreatic ductal adenocarcinoma. Oncol Lett 2020; 19:4133-4141. [PMID: 32382352 DOI: 10.3892/ol.2020.11473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, and it is associated with a 5-year survival rate of <10% due to limited early detection methods and ineffective therapeutic options. Thus, an improved understanding of the mechanisms involved in the early stages of PDAC tumorigenesis is crucial in order to identify potential novel diagnostic and therapeutic targets. The most common signalling aberrations in PDAC occur in the Wnt/Notch signalling pathway, as well as within the epidermal growth factor receptor (EGFR) pathway and its associated ligands, EGF and transforming growth factor-β. In addition, the RAS family of oncogenes, which act downstream of EGFR, are found mutated in most pancreatic cancer samples. Plakoglobin, a component of the EGFR signalling pathway, serves an important role in normal cell adhesion; however, its role in PDAC is largely unknown. The present study used transcriptome sequencing and focussed proteome microarrays to identify dysregulated genes and proteins in PDAC. The presence of upregulated plakoglobin expression levels was identified as a distinguishing feature between the PDAC microenvironment and normal pancreatic tissue. Furthermore, plakoglobin was demonstrated to be associated with the differential upregulation of the PI3K/AKT and MAPK signalling pathways in the tumour microenvironment, which suggested that it may serve an important role in PDAC tumourigenesis.
Collapse
Affiliation(s)
- Ekene Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa
| | - Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Johannesburg, Gauteng 1710, Republic of South Africa
| | - Martin Brand
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa.,Department of Surgery, Steve Biko Academic Hospital and The University of Pretoria, Pretoria, Gauteng 0002, Republic of South Africa
| | - John Devar
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa.,Department of Surgery, Chris Hani Baragwanath Hospital, Soweto, Johannesburg, Gauteng 1864, Republic of South Africa
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa.,Department of Surgery, Chris Hani Baragwanath Hospital, Soweto, Johannesburg, Gauteng 1864, Republic of South Africa
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa
| |
Collapse
|
45
|
Ghiasi B, Sarokhani D, Najafi F, Motedayen M, Dehkordi AH. The Relationship Between Prostate Cancer and Metformin Consumption: A Systematic Review and Meta-analysis Study. Curr Pharm Des 2020; 25:1021-1029. [PMID: 30767734 DOI: 10.2174/1381612825666190215123759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer is the most common malignant cancer in men worldwide and after lung cancer, it is the second leading cause of cancer mortality in men. The purpose of this study was to investigate the relationship between prostate cancer and metformin consumption in men. METHODS The current study is a systematic and meta-analysis review based on the PRISMA statement. To access the studies of domestic and foreign databases, Iran Medex, SID, Magiran, Iran Doc, Medlib, ProQuest, Science Direct, PubMed, Scopus, Web of Science and the Google Scholar search engine were searched during the 2009- 2018 period for related keywords. In order to evaluate the heterogeneity of the studies, Q test and I2 indicator were used. The data were analyzed using the STATA 15.1 software. RESULTS In 11 studies with a sample size of 877058, the odds ratio of metformin consumption for reducing prostate cancer was estimated at 0.89 (95%CI: 0.67-1.17). Meta-regression also showed there was no significant relationship between the odds ratio and the publication year of the study. However, there was a significant relationship between the odds ratio and the number of research samples. CONCLUSION Using metformin in men reduces the risk of prostate cancer but it is not statistically significant.
Collapse
Affiliation(s)
- Bahareh Ghiasi
- Department of Nephrology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Diana Sarokhani
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah Uninversity of Medical Sciences, Kermanshah, Iran
| | - Farid Najafi
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah Uninversity of Medical Sciences, Kermanshah, Iran
| | - Morteza Motedayen
- Cardiology Department, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Hasanpour Dehkordi
- Department of Medical-Surgical, Faculty of Nursing and Midwifery, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
46
|
Emamgholipour S, Ebrahimi R, Bahiraee A, Niazpour F, Meshkani R. Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling. Crit Rev Clin Lab Sci 2020:1-19. [DOI: 10.1080/10408363.2019.1699498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshad Niazpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Gupta MK, Vasudevan NT. GPCRs and Insulin Receptor Signaling in Conversation: Novel Avenues for Drug Discovery. Curr Top Med Chem 2019; 19:1436-1444. [PMID: 31512997 DOI: 10.2174/1568026619666190712211642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes is a major health issue worldwide with complex metabolic and endocrine abnormalities. Hyperglycemia, defects in insulin secretion and insulin resistance are classic features of type 2 diabetes. Insulin signaling regulates metabolic homeostasis by regulating glucose and lipid turnover in the liver, skeletal muscle and adipose tissue. Major treatment modalities for diabetes include the drugs from the class of sulfonyl urea, Insulin, GLP-1 agonists, SGLT2 inhibitors, DPP-IV inhibitors and Thiazolidinediones. Emerging antidiabetic therapeutics also include classes of drugs targeting GPCRs in the liver, adipose tissue and skeletal muscle. Interestingly, recent research highlights several shared intermediates between insulin and GPCR signaling cascades opening potential novel avenues for diabetic drug discovery.
Collapse
Affiliation(s)
- Manveen K Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
48
|
Bustamante P, Miyamoto D, Goyeneche A, de Alba Graue PG, Jin E, Tsering T, Dias AB, Burnier MN, Burnier JV. Beta-blockers exert potent anti-tumor effects in cutaneous and uveal melanoma. Cancer Med 2019; 8:7265-7277. [PMID: 31588689 PMCID: PMC6885887 DOI: 10.1002/cam4.2594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background Melanoma is a life‐threatening group of cancers mainly affecting the skin (cutaneous melanoma, CM) and the eyes (uveal melanoma, UM). Nearly half of patients with UM develop liver metastases regardless of the primary treatment. For this reason, adjuvant therapy to prevent disease progression is essential to improve survival of patients with melanoma. Beta‐adrenoceptors (β‐AR) have emerged as novel targets to inhibit tumor growth and dissemination in CM, but have not been investigated in UM. Methods The aim of this study was to comprehensively evaluate the effects of a non‐selective β‐blocker in UM and CM. Propranolol was tested on four UM and two CM cell lines to determine the effects of this beta‐blocker. The expression of β‐AR in UM was assessed in enucleated eyes of 36 patients. Results The results showed that propranolol exerts potent anti‐proliferative effects, attenuates migration, reduces VEGF and induces cell cycle arrest and apoptosis in both UM and CM in a dose‐dependent manner. Furthermore, levels of cell‐free DNA released from the cells correlated to propranolol treatment and may be an indicator of treatment response. Finally, immunohistochemical analysis revealed the expression of β1 and β2 adrenoceptors in all UM patients, with higher expression seen in the more aggressive epithelioid versus less aggressive spindle cells. Conclusions Collectively our data suggest that a nonselective beta‐blocker may be effective against melanoma. For the first time, we show potent anti‐tumor effects in UM cells following propranolol administration and expression of β1 and β2 adrenoceptors in patient tissue.
Collapse
Affiliation(s)
- Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Denise Miyamoto
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alicia Goyeneche
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Eva Jin
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ana Beatriz Dias
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Miguel N Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
49
|
Hu G, He M, Ko WKW, Ye C, Hu Q, Wong AOL. IGFs Potentiate TAC3-induced SLα Expression via Upregulation of TACR3 Expression in Grass Carp Pituitary Cells. Cells 2019; 8:cells8080887. [PMID: 31412674 PMCID: PMC6721824 DOI: 10.3390/cells8080887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022] Open
Abstract
In mammals, the tachykinin 3 (TAC3)/tachykinin receptor 3 (TACR3) systems have been confirmed to play an important role in the regulation of puberty onset. Using grass carp pituitary cells as the model, our recent study found that the TAC3 gene products could significantly induce somatolactin α (SLα) synthesis and secretion via TACR3 activation. In the present study, we seek to examine if pituitary TACR3 can serve as a regulatory target and contribute to TAC3 interactions with other SLα regulators. Firstly, grass carp TACR3 was cloned and tissue distribution showed that it could be highly detected in grass carp pituitary. Using HEK293 cells as the model, functional expression also revealed that grass carp TACR3 exhibited ligand binding selectivity and post-receptor signaling highly comparable to its mammalian counterpart. Using grass carp pituitary cells as the model, TACR3 mRNA expression could be stimulated by insulin-like growth factor (IGF)-I and -II via the IGF-I receptor coupled to phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways. Interestingly, IGF-I/-II cotreatment could also significantly enhance TAC3-induced SLα mRNA expression and the potentiating effect was dependent on TACR3 expression and activation of adenylate cyclase (AC)/cAMP/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC), and Ca2+/calmodulin (CaM)/calmodulin-dependent protein kinase II (CaMK-II) cascades. Besides, IGF-I-induced Akt phosphorylation but not MEK, extracellular signal-regulated kinase (ERK1/2), and P38MAPK phosphorylation was notably enhanced by TACR3 activation. These results, as a whole, suggest that the potentiating effect of IGFs on TAC3 gene products-induced SLα mRNA expression was mediated by TACR3 upregulation and functional crosstalk of post-receptor signaling in the pituitary.
Collapse
Affiliation(s)
- Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mulan He
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Wendy K W Ko
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Cheng Ye
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongyao Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Anderson O L Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Lee DJ, McMullen CP, Foreman A, Huang SH, Lu L, Xu W, de Almeida JR, Liu G, Bratman SV, Goldstein DP. Impact of metformin on disease control and survival in patients with head and neck cancer: a retrospective cohort study. J Otolaryngol Head Neck Surg 2019; 48:34. [PMID: 31345259 PMCID: PMC6659246 DOI: 10.1186/s40463-019-0348-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/21/2019] [Indexed: 01/03/2023] Open
Abstract
Objective A number of in vitro and clinical studies have suggested potential antineoplastic effects of metformin. The impact of this medication on outcomes in head and neck cancer is less clear. Our aim was to determine the effect of metformin on outcomes within our large cohort of head and neck cancer patients with Type II Diabetes (T2DM). Study design Retrospective cohort study. Setting Tertiary Cancer Centre. Subjects and methods A retrospective review of individuals with head and neck squamous carcinoma (HNSCC) and T2DM between January 2005 and December 2011 at Princess Margaret Cancer Centre was conducted. Medication history was obtained from surveys at initial presentation and electronic medical record review. Using Cox regression analyses, the association between metformin use and local, regional and distant failures was explored. Subgroup analyses were conducted for oral cavity, oropharynx and larynx. Results A total of 329 HNSCC patients with T2DM were identified, including 195 metformin users and 134 non-metformin users. Patients were well-matched in terms of clinical, pathologic, and treatment factors. No difference in local, regional, or distant failure was observed between diabetic metformin users and diabetic non-metformin users for the entire cohort or within subgroup analysis for subsite. No difference between the two groups was observed for overall survival, recurrence-free survival, and disease-specific survival at 5 years. Conclusion No association between metformin use and oncologic outcomes were observed in this large cohort of HNSCC patients. Multicenter, prospective studies may be needed to verify previous studies identifying a potential anti-neoplastic effect of this medication.
Collapse
Affiliation(s)
- Daniel J Lee
- Department of Otolaryngology Head and Neck Surgery/Surgical Oncology, University Health Network, Princess Margaret Cancer Center, University of Toronto, 610 University Ave 3-952, Toronto, ON, M4V 2N8, Canada
| | - Caitlin P McMullen
- Department of Otolaryngology Head and Neck Surgery/Surgical Oncology, University Health Network, Princess Margaret Cancer Center, University of Toronto, 610 University Ave 3-952, Toronto, ON, M4V 2N8, Canada
| | - Andrew Foreman
- Department of Otolaryngology Head and Neck Surgery/Surgical Oncology, University Health Network, Princess Margaret Cancer Center, University of Toronto, 610 University Ave 3-952, Toronto, ON, M4V 2N8, Canada
| | - Shao Hui Huang
- Department of Radiation Oncology, University Health Network, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Lin Lu
- Biostatistics Department, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Wei Xu
- Biostatistics Department, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - John R de Almeida
- Department of Otolaryngology Head and Neck Surgery/Surgical Oncology, University Health Network, Princess Margaret Cancer Center, University of Toronto, 610 University Ave 3-952, Toronto, ON, M4V 2N8, Canada
| | - Geoffrey Liu
- Biostatistics Department, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Department of Radiation Oncology, University Health Network, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - David P Goldstein
- Department of Otolaryngology Head and Neck Surgery/Surgical Oncology, University Health Network, Princess Margaret Cancer Center, University of Toronto, 610 University Ave 3-952, Toronto, ON, M4V 2N8, Canada.
| |
Collapse
|