1
|
Sun F, Ji C, Zhou X, Zhang Y, Cheng H, Ye Z. Targeting RACGAP1 suppresses growth hormone pituitary adenoma growth. Endocrine 2025; 88:234-248. [PMID: 39607642 DOI: 10.1007/s12020-024-04116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Growth hormone pituitary adenoma (GHPA) is a major subtype of pituitary adenoma (PA), with tumor enlargement and abnormal secretion of growth hormone (GH) often causing complications. Rac GTPase-activating protein 1 (RACGAP1), a member of the guanine triphosphatase-activating protein family, is highly overexpressed in multiple tumors and promotes tumor growth. However, the role of RACGAP1 in GHPA remains unelucidated. Besides, specific inhibitors targeting RACGAP1 have not yet been developed. In this study, we aimed to determine the expression and function of RACGAP1 in GHPA and identify effective inhibitors against RACGAP1. METHODS Immunohistochemistry was used to detect the expression of RACGAP1 in GHPA and normal pituitary tissues. The effect of RACGAP1 on cell proliferation, apoptosis, and cell cycle was evaluated by knockdown of RACGAP1 in GH3 cells in vitro and xenograft models of GHPA in vivo. The downstream mechanism of RACGAP1 was explored by RNA sequencing, bioinformatic analysis, and Western blot. Inhibitors targeting RACGAP1 were screened and verified through a structure-based virtual docking method, cell viability assays, and surface plasmon resonance (SPR) experiments. RESULTS RACGAP1 expression was increased in GHPA compared with normal pituitary tissues. Knocking down RACGAP1 suppressed cell growth in vitro and in vivo. Preliminary mechanism studies indicated that inhibition of RACGAP1 led to the upregulation of p21 and the downregulation of several genes involved in the cell cycle signaling pathway, such as Cyclin A, CDK1, and CDK2. Moreover, DB07268 was identified for the first time as an effective RACGAP1 inhibitor that could prominently restrain the proliferation of GH3 cells. CONCLUSION This study demonstrates that RACGAP1 plays a critical role in GHPA, highlighting the novel inhibitor DB07268 as a promising therapeutic approach.
Collapse
Affiliation(s)
- Feifan Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
| | - Chenxing Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
| | - Xiang Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
| |
Collapse
|
2
|
Lin J, Zhu Y, Lin Z, Yu J, Lin X, Lai W, Tong B, Xu L, Li E, Long L. The Expression Regulation and Cancer-Promoting Roles of RACGAP1. Biomolecules 2024; 15:3. [PMID: 39858398 PMCID: PMC11760467 DOI: 10.3390/biom15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/27/2025] Open
Abstract
RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle. Contradictorily, it was also reported that RACGAP1 in gastric cancer could inactivate Rac and RhoA. In addition, studies have revealed that RACGAP1 can be a biomarker for prognosis, and its role in reducing doxorubicin sensitivity poses difficulties for treatment, while the current drug targets mainly focus on its downstream molecule. This article mainly reviews the expression regulation of RACGAP1 and its cancer-promoting functions through oncogene expression mediation and Rho-GTPase activation.
Collapse
Affiliation(s)
- Jiacheng Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | - Yuhao Zhu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | - Zhaoping Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | - Jindong Yu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | - Xiaobing Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | - Weiyuan Lai
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | - Beibei Tong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Wang D, Lv L, Du J, Tian K, Chen Y, Chen M. TRIM16 and PRC1 Are Involved in Pancreatic Cancer Progression and Targeted by Delphinidin. Chem Biol Drug Des 2024; 104:e70026. [PMID: 39635962 DOI: 10.1111/cbdd.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Pancreatic cancer (PC) is the leading cause of cancer-related death worldwide, and new biomarkers, therapeutic targets, and candidate drugs are needed. In this work, three PC-related microarray datasets (GSE183795, GSE28735, and GSE62452) were analyzed. The differentially expressed genes (DEGs) of PC were obtained with the limma package in R. Weighted gene co-expression network analysis (WGCNA) and machine learning approaches were used to screen the hub genes. Kaplan-Meier plotter and receiver operating characteristic (ROC) curve analysis were utilized to assess the diagnostic efficacy of the hub genes. The binding ability between natural bioactive ingredients and hub proteins was evaluated by molecular docking and molecular dynamics simulation. CCK-8, flow cytometry, transwell, and western blot assays were used to analyze the viability, apoptosis, cell cycle progression, invasion, and pathway change of PC cells. Additionally, a nude mice model was used to evaluate the aggressive properties of PC cells in vivo. In this study, a total of 988 DEGs were identified, which were mainly enriched in cell adhesion and PI3K-Akt signaling pathway, and two core genes TRIM16 and PRC1 were further identified. The overall survival of patients with high expression of TRIM16 and PRC1 was shorter. Delphinidin (Del) had good binding affinity with both TRIM16 and PRC1, and Del could inhibit the viability, invasion, and metastasis of PC cells and induce cell apoptosis and G0/G1 phase arrest. In addition, Del could promote the activation of p53 and inhibit the activation of the PI3K/AKT signaling pathway in PC cells. In summary, TRIM16 and PRC1 are identified as prognostic biomarkers and therapeutic targets for PC, and Del has good binding affinity with them and may be a potential therapeutic agent for PC.
Collapse
Affiliation(s)
- Donghua Wang
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Long Lv
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jinghu Du
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Kui Tian
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yu Chen
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Manyu Chen
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
4
|
Wang T, Wang S, Li Z, Xie J, Chen H, Hou J. Machine learning-informed liquid-liquid phase separation for personalized breast cancer treatment assessment. Front Immunol 2024; 15:1485123. [PMID: 39628476 PMCID: PMC11611825 DOI: 10.3389/fimmu.2024.1485123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
Background Breast cancer, characterized by its heterogeneity, is a leading cause of mortality among women. The study aims to develop a Machine Learning-Derived Liquid-Liquid Phase Separation (MDLS) model to enhance the prognostic accuracy and personalized treatment strategies for breast cancer patients. Methods The study employed ten machine learning algorithms to construct 108 algorithm combinations for the MDLS model. The robustness of the model was evaluated using multi-omics and single-cell data across 14 breast cancer cohorts, involving 9,723 patients. Genetic mutation, copy number alterations, and single-cell RNA sequencing were analyzed to understand the molecular mechanisms and predictive capabilities of the MDLS model. Immunotherapy targets were predicted by evaluating immune cell infiltration and immune checkpoint expression. Chemotherapy targets were identified through correlation analysis and drug responsiveness prediction. Results The MDLS model demonstrated superior prognostic power, with a mean C-index of 0.649, outperforming 69 published signatures across ten cohorts. High-MDLS patients exhibited higher tumor mutation burden and distinct genomic alterations, including significant gene amplifications and deletions. Single-cell analysis revealed higher MDLS activity in tumor-aneuploid cells and identified key regulatory factors involved in MDLS progression. Cell-cell communication analysis indicated stronger interactions in high-MDLS groups, and immunotherapy response evaluation showed better outcomes for low-MDLS patients. Conclusion The MDLS model offers a robust and precise tool for predicting breast cancer prognosis and tailoring personalized treatment strategies. Its integration of multi-omics and machine learning highlights its potential clinical applications, particularly in improving the effectiveness of immunotherapy and identifying therapeutic targets for high-MDLS patients.
Collapse
Affiliation(s)
- Tao Wang
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shu Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhuolin Li
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jie Xie
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Huan Chen
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
5
|
Fu S, Dai Y, Zhang P, Zheng K, Cao G, Xu L, Zhong Y, Niu C, Wang X. Extrachromosomal circular DNA (eccDNA) characteristics in the bile and plasma of advanced perihilar cholangiocarcinoma patients and the construction of an eccDNA-related gene prognosis model. Front Cell Dev Biol 2024; 12:1379435. [PMID: 38903532 PMCID: PMC11187006 DOI: 10.3389/fcell.2024.1379435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024] Open
Abstract
Extrachromosomal DNAs (eccDNAs) frequently carry amplified oncogenes. This investigation aimed to examine the occurrence and role of eccDNAs in individuals diagnosed with advanced perihilar cholangiocarcinoma (pCCA) who exhibited distinct prognostic outcomes. Five patients with poor survival outcomes and five with better outcomes were selected among patients who received first-line hepatic arterial infusion chemotherapy from June 2021 to June 2022. The extracted eccDNAs were amplified for high-throughput sequencing. Genes associated with the differentially expressed eccDNAs were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The differentially expressed bile eccDNA-related genes were used to construct a prognostic model. Across all 10 patients, a total of 19,024 and 3,048 eccDNAs were identified in bile and plasma, respectively. The concentration of eccDNA detected in the bile was 9-fold higher than that in plasma. The chromosome distribution of the eccDNAs were similar between bile and matched plasma. GO and KEGG pathway analyses showed enrichment in the mitogen-activated protein kinase (MAPK) and Wnt/β-catenin pathways in patients with poor survival outcomes. According to the prognostic model constructed by eccDNA-related genes, the high-risk group of cholangiocarcinoma patients displayed significantly shorter overall survival (p < 0.001). Moreover, the degree of infiltration of immunosuppressive cells was higher in patients in the high-risk group. In conclusion, EccDNA could be detected in bile and plasma of pCCA patients, with a higher concentration. A prognostic model based on eccDNA-related genes showed the potential to predict the survival and immune microenvironment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaodong Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
6
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
7
|
Xu Z, Wu S, Tu J, Wang M, Liang W, Cheng J, Guan J, Xu J. RACGAP1 promotes lung cancer cell proliferation through the PI3K/AKT signaling pathway. Sci Rep 2024; 14:8694. [PMID: 38622149 PMCID: PMC11018837 DOI: 10.1038/s41598-024-58539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
We aimed to investigate the expression and clinic significance of Rac GTPase Activating Protein 1 (RACGAP1) in human lung adenocarcinoma (LUAD). Online database analysis revealed a significant increase in RACGAP1 mRNA expression among 26 types of tumor tissues, including LUAD tissues. Online database and tissue microarray analyses indicated that RACGAP1 expression was significantly upregulated in LUAD tissues. Genetic variation analysis identified four different genetic variations of RACGAPs in LUAD. Moreover, online database analysis showed that RACGAP1 upregulation was correlated with shorter survival in patients with LUAD. After silencing RACGAP1 expression in A549 cells using siRNA and assessing its protein levels via Western blotting, we found that RACGAP1 knockdown inhibited cell growth and induced apoptosis determined using the Cell Counting Kit-8 assay, colony formation assay, and flow cytometry. Mechanistically, western blot analysis indicated that Bax expression increased, whereas Bcl-2 expression decreased. Moreover, RACGAP1 knockdown attenuated PI3K/AKT pathway activation in lung cancer cells. Taken together, our findings showed that RACGAP1 was overexpressed in LUAD tissues and played an important role in lung cancer by increasing cell growth through the PI3K/AKT signaling pathway. This study suggests recommends evaluating RACGAP1 in clinical settings as a novel biomarker and potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Zhiyang Xu
- Department of Thoracic Surgery, The First Hospital of Putian, The School of Clinical Medicine, Fujian Medical University Putian, Fujian, 351100, China
| | - Shaohang Wu
- Department of Thoracic Surgery, The First Hospital of Putian, The School of Clinical Medicine, Fujian Medical University Putian, Fujian, 351100, China
| | - Jiahua Tu
- Department of Thoracic Surgery, The First Hospital of Putian, The School of Clinical Medicine, Fujian Medical University Putian, Fujian, 351100, China
| | - Mingyang Wang
- Department of Thoracic Surgery, The First Hospital of Putian, The School of Clinical Medicine, Fujian Medical University Putian, Fujian, 351100, China
| | - Weicheng Liang
- Department of Thoracic Surgery, The First Hospital of Putian, The School of Clinical Medicine, Fujian Medical University Putian, Fujian, 351100, China
| | - Jiangdong Cheng
- Department of Thoracic Surgery, The First Hospital of Putian, The School of Clinical Medicine, Fujian Medical University Putian, Fujian, 351100, China
| | - Jun Guan
- Department of Thoracic Surgery, The First Hospital of Putian, The School of Clinical Medicine, Fujian Medical University Putian, Fujian, 351100, China.
| | - Jianxin Xu
- Department of Thoracic Surgery, The First Hospital of Putian, The School of Clinical Medicine, Fujian Medical University Putian, Fujian, 351100, China.
| |
Collapse
|
8
|
Zheng CS, Huang WM, Xia HM, Mi JL, Li YQ, Liang HQ, Zhou L, Lu ZX, Wu F. Oncogenic and immunological roles of RACGAP1 in pan-cancer and its potential value in nasopharyngeal carcinoma. Apoptosis 2024; 29:243-266. [PMID: 37670104 DOI: 10.1007/s10495-023-01884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
A particular GTPase-activating protein called RACGAP1 is involved in apoptosis, proliferation, invasion, metastasis, and drug resistance in a variety of malignancies. Nevertheless, the role of RACGAP1 in pan-cancer was less studied, and its value of the expression and prognostic of nasopharyngeal carcinoma (NPC) has not been explored. Hence, the goal of this study was to investigate the oncogenic and immunological roles of RACGAP1 in various cancers and its potential value in NPC. We comprehensively analyzed RACGAP1 expression, prognostic value, function, methylation levels, relationship with immune cells, immune infiltration, and immunotherapy response in pan-cancer utilizing multiple databases. The results discovered that RACGAP1 expression was elevated in most cancers and suggested poor prognosis, which could be related to the involvement of RACGAP1 in various cancer-related pathways such as the cell cycle and correlated with RACGAP1 methylation levels, immune cell infiltration and reaction to immunotherapy, and chemoresistance. RACGAP1 could inhibit anti-tumor immunity and immunotherapy responses by fostering immune cell infiltration and cytotoxic T lymphocyte dysfunction. Significantly, we validated that RACGAP1 mRNA and protein were highly expressed in NPC. The Gene Expression Omnibus database revealed that elevated RACGAP1 expression was associated with shorter PFS in patients with NPC, and RACGAP1 potentially influenced cell cycle progression, DNA replication, metabolism, and immune-related pathways, resulting in the recurrence and metastasis of NPC. This study indicated that RACGAP1 could be a potential biomarker in pan-cancer and NPC.
Collapse
Affiliation(s)
- Cheng-Shan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Wei-Mei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong-Mei Xia
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jing-Lin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Yuan-Qing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Hui-Qing Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Li Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Zhou-Xue Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
9
|
Liu S, Huttad L, He G, He W, Liu C, Cai D, Chen H, Qiu J. Long noncoding RNA HULC regulates the NF-κB pathway and represents a promising prognostic biomarker in liver cancer. Cancer Med 2023; 12:5124-5136. [PMID: 36213936 PMCID: PMC9972175 DOI: 10.1002/cam4.5263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are involved in a diverse array of biological processes. While lncRNAs are commonly upregulated in hepatocellular carcinoma (HCC), the specific regulatory roles they play in this oncogenic context require further study and clarification. Although HULC (lncRNA highly upregulated in liver cancer) is involved in disease pathogenesis, its precise role in this context remains unclear. METHODS Here, we have explored the mechanistic relevance of HULC expression by assessing its expression in patient samples. The importance of this lncRNA in the onset and progression of HCC was investigated through in vitro approaches including Western blotting, quantitative PCR, Transwell assays, electron microscopy, wound healing assays, and real-time cell analysis (RTCA). Additionally, the in vivo functions of this lncRNA were assessed using an orthotopic HCC xenograft in nude mouse model system. RESULTS HULC was identified as a lncRNA that is highly upregulated in human liver tumors. In vitro, HULC was able to promote HCC malignancy, although its excess overexpression also led robust autophagic induction, promoting the increased expression of autophagy-associated genes including LC3 and Beclin-1. At a mechanistic level, HULC was able to promote the phosphorylation of p65 and IkBkB thus enhancing autophagy by increasing LC3II levels in a manner dependent upon the NF-κB pathway. HULC downregulation was also linked to impaired orthotopic HCC tumor growth in vivo. The link between HULC and autophagy may play a role in disease progression. CONCLUSIONS These results suggest that HULC is an oncogenic lncRNA, and may thus offer value as a prognostic biomarker and promoter of HCC development, in addition to being a potential therapeutic target in this cancer type.
Collapse
Affiliation(s)
- Shihai Liu
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lakshmi Huttad
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Guifang He
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weitai He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Changchang Liu
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Duo Cai
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Research Institute of Xi'an Jiaotong University, Hangzhou, Zhejiang, China
| | - Jing Qiu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
10
|
Chen Y, Zhang XF, Ou-Yang L. Inferring cancer common and specific gene networks via multi-layer joint graphical model. Comput Struct Biotechnol J 2023; 21:974-990. [PMID: 36733706 PMCID: PMC9873583 DOI: 10.1016/j.csbj.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease caused primarily by genetic variants. Reconstructing gene networks within tumors is essential for understanding the functional regulatory mechanisms of carcinogenesis. Advances in high-throughput sequencing technologies have provided tremendous opportunities for inferring gene networks via computational approaches. However, due to the heterogeneity of the same cancer type and the similarities between different cancer types, it remains a challenge to systematically investigate the commonalities and specificities between gene networks of different cancer types, which is a crucial step towards precision cancer diagnosis and treatment. In this study, we propose a new sparse regularized multi-layer decomposition graphical model to jointly estimate the gene networks of multiple cancer types. Our model can handle various types of gene expression data and decomposes each cancer-type-specific network into three components, i.e., globally shared, partially shared and cancer-type-unique components. By identifying the globally and partially shared gene network components, our model can explore the heterogeneous similarities between different cancer types, and our identified cancer-type-unique components can help to reveal the regulatory mechanisms unique to each cancer type. Extensive experiments on synthetic data illustrate the effectiveness of our model in joint estimation of multiple gene networks. We also apply our model to two real data sets to infer the gene networks of multiple cancer subtypes or cell lines. By analyzing our estimated globally shared, partially shared, and cancer-type-unique components, we identified a number of important genes associated with common and specific regulatory mechanisms across different cancer types.
Collapse
Affiliation(s)
- Yuanxiao Chen
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen University, Shenzhen, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China
| | - Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen University, Shenzhen, China,Corresponding author.
| |
Collapse
|
11
|
Yang C, Chen L, Niu Q, Ge Q, Zhang J, Tao J, Zhou J, Liang C. Identification and validation of an E2F-related gene signature for predicting recurrence-free survival in human prostate cancer. Cancer Cell Int 2022; 22:382. [PMID: 36471446 PMCID: PMC9721026 DOI: 10.1186/s12935-022-02791-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It is well-established that biochemical recurrence is detrimental to prostate cancer (PCa). In the present study, we explored the mechanisms underlying PCa progression. METHODS Five cohorts from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases were used to perform gene set variation analysis (GSVA) between nonrecurrent and recurrent PCa patients. We obtained the intersection of pathway enrichment results and extracted the corresponding gene list. LASSO Cox regression analysis was used to identify recurrence-free survival (RFS)-related significant genes and establish an RFS prediction gene signature and nomogram. MTT and colony formation assays were conducted to validate our findings. RESULTS The E2F signaling pathway was activated in recurrent PCa patients compared to nonrecurrent patients. We established an E2F-related gene signature for RFS prediction based on the four identified E2F-related genes (CDKN2C, CDKN3, RACGAP1, and RRM2) using LASSO Cox regression in the Memorial Sloan Kettering Cancer Center (MSKCC) cohort. The risk score of each patient in MSKCC was calculated based on the expression levels of CDKN2C, CDKN3, RACGAP1, and RRM2. PCa patients with low-risk scores exhibited higher RFS than those with high-risk scores. Receiver operating characteristic (ROC) curve analysis validated the good performance and prognostic accuracy of the E2F-related gene signature, which was validated in the TCGA-prostate adenocarcinoma (TCGA-PRAD) cohort. Compared to patients with low Gleason scores and early T stages, PCa patients with high Gleason scores and advanced T stages had high-risk scores. Moreover, the E2F-related gene signature-based nomogram yielded good performance in RFS prediction. Functional experiments further confirmed these results. CONCLUSIONS The E2F signaling pathway is associated with biochemical recurrence in PCa. Our established E2F-related gene signature and nomogram yielded good accuracy in predicting the biochemical recurrence in PCa.
Collapse
Affiliation(s)
- Cheng Yang
- grid.412679.f0000 0004 1771 3402Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XInstitute of Urology, Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022 Anhui Province People’s Republic of China
| | - Lei Chen
- grid.412679.f0000 0004 1771 3402Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XInstitute of Urology, Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022 Anhui Province People’s Republic of China
| | - Qingsong Niu
- grid.412679.f0000 0004 1771 3402Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XInstitute of Urology, Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022 Anhui Province People’s Republic of China
| | - Qintao Ge
- grid.412679.f0000 0004 1771 3402Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XInstitute of Urology, Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022 Anhui Province People’s Republic of China
| | - Jiong Zhang
- grid.412679.f0000 0004 1771 3402Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XInstitute of Urology, Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022 Anhui Province People’s Republic of China
| | - Junyue Tao
- grid.412679.f0000 0004 1771 3402Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XInstitute of Urology, Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022 Anhui Province People’s Republic of China
| | - Jun Zhou
- grid.412679.f0000 0004 1771 3402Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XInstitute of Urology, Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022 Anhui Province People’s Republic of China
| | - Chaozhao Liang
- grid.412679.f0000 0004 1771 3402Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XInstitute of Urology, Anhui Medical University, Hefei, China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022 Anhui Province People’s Republic of China
| |
Collapse
|
12
|
Eid RA, Soltan MA, Eldeen MA, Shati AA, Dawood SA, Eissa M, Zaki MSA, Algahtani M, Theyab A, Abdel-Daim MM, Kim B. Assessment of RACGAP1 as a Prognostic and Immunological Biomarker in Multiple Human Tumors: A Multiomics Analysis. Int J Mol Sci 2022; 23:ijms232214102. [PMID: 36430577 PMCID: PMC9695706 DOI: 10.3390/ijms232214102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Several recent studies have pointed out that arc GTPase activating protein 1 (RACGAP1) is a putative oncogene in many human tumors. However, to date, no pan-cancer analysis has been performed to study the different aspects of this gene expression and behavior in tumor tissues. Here, we applied several bioinformatics tools to perform a comprehensive analysis for RACGAP1. First, we assessed the expression of RACGAP1 in several types of human tumors and tried to correlate that with the stage of the tumors analyzed. We then performed a survival analysis to study the correlation between RACGAP1 upregulation in tumors and the clinical outcome. Additionally, we investigated the mutation forms, the correlation with several immune cell infiltration, the phosphorylation status of the interested protein in normal and tumor tissues, and the potential molecular mechanisms of RACGAP1 in cancerous tissue. The results demonstrated that RACGAP1, a highly expressed gene across several types of tumors, correlated with a poor prognosis in several types of human cancers. Moreover, it was found that RACGAP1 affects the tumor immune microenvironment by influencing the infiltration level of several immune cells. Collectively, the current study provides a comprehensive overview of the oncogenic roles of RACGAP1, where our results nominate it as a potential prognostic biomarker and a target for antitumor therapy development.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.A.E.); (B.K.)
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Samy A. Dawood
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Mohamed Eissa
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca P.O. Box 14799, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca P.O. Box 14799, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh P.O. Box 50927, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah P.O. Box 6231, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.A.E.); (B.K.)
| |
Collapse
|
13
|
Liu X, Li J, Wang Q, Bai L, Xing J, Hu X, Li S, Li Q. Analysis on heterogeneity of hepatocellular carcinoma immune cells and a molecular risk model by integration of scRNA-seq and bulk RNA-seq. Front Immunol 2022; 13:1012303. [PMID: 36311759 PMCID: PMC9606610 DOI: 10.3389/fimmu.2022.1012303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Studies have shown that hepatocellular carcinoma (HCC) heterogeneity is a main cause leading to failure of treatment. Technology of single-cell sequencing (scRNA) could more accurately reveal the essential characteristics of tumor genetics. Methods From the Gene Expression Omnibus (GEO) database, HCC scRNA-seq data were extracted. The FindCluster function was applied to analyze cell clusters. Autophagy-related genes were acquired from the MSigDB database. The ConsensusClusterPlus package was used to identify molecular subtypes. A prognostic risk model was built with the Least Absolute Shrinkage and Selection Operator (LASSO)-Cox algorithm. A nomogram including a prognostic risk model and multiple clinicopathological factors was constructed. Results Eleven cell clusters labeled as various cell types by immune cell markers were obtained from the combined scRNA-seq GSE149614 dataset. ssGSEA revealed that autophagy-related pathways were more enriched in malignant tumors. Two autophagy-related clusters (C1 and C2) were identified, in which C1 predicted a better survival, enhanced immune infiltration, and a higher immunotherapy response. LASSO-Cox regression established an eight-gene signature. Next, the HCCDB18, GSA14520, and GSE76427 datasets confirmed a strong risk prediction ability of the signature. Moreover, the low-risk group had enhanced immune infiltration and higher immunotherapy response. A nomogram which consisted of RiskScore and clinical features had better prediction ability. Conclusion To precisely assess the prognostic risk, an eight-gene prognostic stratification signature was developed based on the heterogeneity of HCC immune cells.
Collapse
Affiliation(s)
- Xiaorui Liu
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Li
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingxiang Wang
- Department of physical examination&Blood collection Xuchang Blood Center, Xuchang, China
| | - Lu Bai
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiyuan Xing
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobo Hu
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Li
- Bioinformatics R&D Department, Hangzhou Mugu Technology Co., Ltd, Hangzhou, China
| | - Qinggang Li
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Up-Regulation of RACGAP1 Promotes Progressions of Hepatocellular Carcinoma Regulated by GABPA via PI3K/AKT Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3034150. [PMID: 35958019 PMCID: PMC9363186 DOI: 10.1155/2022/3034150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the dominating tumors causing death due to lack of timely discovery and valid treatment. Abnormal increase of Rac GTPase activating protein 1 (RACGAP1) has been verified to be an oncogene in plenty tumors. The profound mechanism of RACGAP1 was rarely reported in HCC. In this study, we explored the function and mechanism of RACGAP1 in HCC through multiple analysis and experiments. RACGAP1 expression was up-regulated in HCC samples and the high expression of RACGAP1 was an independent prognostic risk factor for HCC patients. Meanwhile, RACGAP1 promoted developments of HCC both in vitro and in vivo. We verified that RACGAP1 promoted proliferation of HCC via PI3K/AKT/CDK2 and PI3K/AKT/GSK3β/Cyclin D1 signaling pathway. RACGAP1 accelerated the invasion and metastasis of HCC via phosphorylation of GSK3β and nuclear translocation of β-catenin. Furthermore, by luciferase reporter assay and Chromatin immunoprecipitation (ChIP) assay, we confirmed Recombinant GA Binding Protein Transcription Factor Alpha (GABPA) regulated the transcription of RACGAP1. All these findings revealed that RACGAP1 promotes the progression of HCC through a novel mechanism, which might be a new therapeutic target for HCC patients.
Collapse
|
15
|
Xu H, Ma Z, Mo X, Chen X, Xu F, Wu F, Chen H, Zhou G, Xia H, Zhang C. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer 2022; 13:2226-2237. [PMID: 35517402 PMCID: PMC9066198 DOI: 10.7150/jca.66020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone receptor interactor 13 (TRIP13), an AAA-ATPase, participates in the development of many cancers. This study explores the function of TRIP13 and synergistic effects of TRIP13 and PARP1 inhibitors in hepatocellular carcinoma (HCC). The dose-dependent effects of TRIP13 and PARP1 inhibitors on HCC cells proliferation or migration were investigated by the CCK-8 and Transwell assays. Using siRNA or lentivirus to knock down TRIP13, we tested HCC cell and tumor growth in vitro and in vivo. The DNA damage caused by TRIP13 and PARP1 inhibitors was measured by the phosphorylation of H2AX, one of the DNA damage biomarkers. The phosphorylation of H2AX was increased after treatment with DCZ0415 or TRIP13 knockdown. Combining DCZ0415 with PARP1 inhibitor, Olaparib induced synergistic anti-HCC activity. We also found that the overexpression of TRIP13 is significantly associated with early recurrent HCC and poor survival. Up-regulation of TRIP13 in HCC was regulated by transcription factor SP1. In conclusion, our study demonstrated that DCZ0415 targeting TRIP13 impaired non-homologous end-joining repair to inhibit HCC progression and had a synergistic effect with PARP1 inhibitor Olaparib in HCC, suggesting a potential treatment of HCC.
Collapse
Affiliation(s)
- Haojun Xu
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Zhijie Ma
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Mo
- Department of Pathology, The first people's hospital of Foshan, Foshan 528041, China.,School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoli Chen
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fanggui Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fubing Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hongjin Chen
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Institute of Cancer Research, Nanjing 2100092, China
| | - Hongping Xia
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China.,Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Chengfei Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
16
|
Sharma A, Yadav D, Rao P, Sinha S, Goswami D, Rawal RM, Shrivastava N. Identification of potential therapeutic targets associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Comput Biol Med 2022; 146:105688. [DOI: 10.1016/j.compbiomed.2022.105688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023]
|
17
|
Sauzeau V, Beignet J, Vergoten G, Bailly C. Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma. Pharmacol Res 2022; 179:106220. [PMID: 35405309 DOI: 10.1016/j.phrs.2022.106220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Despite novel targeted and immunotherapies, the prognosis remains bleak for patients with hepatocellular carcinoma (HCC), especially for advanced and/or metastatic forms. The rapid emergence of drug resistance is a major obstacle in the success of chemo-, targeted-, immuno-therapies of HCC. Novel targets are needed. The prominent roles of the small GTPase Rac1 in the development and progression of HCC are discussed here, together with its multiple protein partners, and the targeting of Rac1 with RNA-based regulators and small molecules. We discuss the oncogenic functions of Rac1 in HCC, including the contribution of Rac1 mutants and isoform Rac1b. Rac1 is a ubiquitous target, but the protein is frequently overexpressed and hyperactivated in HCC. It contributes to the aggressivity of the disease, with key roles in cancer cell proliferation, tumor metastasis and resistance to treatment. Small molecule targeting Rac1, indirectly or directly, have shown anticancer effects in HCC experimental models. Rac1-binding agents such as EHT 1864 and analogues offer novel opportunities to combat HCC. We discuss the different modalities to repress Rac1 overactivation in HCC with small molecules and the combination with reference drugs to promote cancer cell death and to repress cell invasion. We highlight the necessity to combine Rac1-targeted approach with appropriate biomarkers to select Rac1 activated tumors. Our analysis underlines the prominent oncogenic functions of Rac1 in HCC and discuss the modalities to target this small GTPase. Rac1 shall be considered as a valid target to limit the acquired and intrinsic resistance of HCC tumors and their metastatic potential.
Collapse
Affiliation(s)
- Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du Thorax, Nantes, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes Cedex, France
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, 59006, Lille, France
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal 59290, France.
| |
Collapse
|
18
|
The aberrant upregulation of exon 10-inclusive SREK1 through SRSF10 acts as an oncogenic driver in human hepatocellular carcinoma. Nat Commun 2022; 13:1363. [PMID: 35296659 PMCID: PMC8927159 DOI: 10.1038/s41467-022-29016-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Deregulation of alternative splicing is implicated as a relevant source of molecular heterogeneity in cancer. However, the targets and intrinsic mechanisms of splicing in hepatocarcinogenesis are largely unknown. Here, we report a functional impact of a Splicing Regulatory Glutamine/Lysine-Rich Protein 1 (SREK1) variant and its regulator, Serine/arginine-rich splicing factor 10 (SRSF10). HCC patients with poor prognosis express higher levels of exon 10-inclusive SREK1 (SREK1L). SREK1L can sustain BLOC1S5-TXNDC5 (B-T) expression, a targeted gene of nonsense-mediated mRNA decay through inhibiting exon-exon junction complex binding with B-T to exert its oncogenic role. B-T plays its competing endogenous RNA role by inhibiting miR-30c-5p and miR-30e-5p, and further promoting the expression of downstream oncogenic targets SRSF10 and TXNDC5. Interestingly, SRSF10 can act as a splicing regulator for SREK1L to promote hepatocarcinogenesis via the formation of a SRSF10-associated complex. In summary, we demonstrate a SRSF10/SREK1L/B-T signalling loop to accelerate the hepatocarcinogenesis. Alternative splicing is dysregulated in hepatocellular carcinoma. Here, the authors investigate the role of the splice variant of Splicing Regulatory Glutamic Acid and Lysine Rich Protein 1 (SREK1) and its upstream regulator, Serine/arginine-rich splicing factor 10 (SRSF10) in sustaining the oncogenic signal.
Collapse
|
19
|
Novel Gene Signatures as Prognostic Biomarkers for Predicting the Recurrence of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14040865. [PMID: 35205612 PMCID: PMC8870597 DOI: 10.3390/cancers14040865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary A high percentage of patients who undergo surgical resection for hepatocellular carcinoma (HCC) experience recurrence. Therefore, identification of accurate molecular markers for predicting recurrence of HCC is important. We analyzed recurrence and non-recurrence HCC tissues using two public omics datasets comprising microarray and RNA-sequencing and found novel gene signatures associated with recurrent HCC. These molecules might be used to not only predict for recurrence of HCC but also act as potential prognostic indicators for patients with HCC. Abstract Hepatocellular carcinoma (HCC) has a high rate of cancer recurrence (up to 70%) in patients who undergo surgical resection. We investigated prognostic gene signatures for predicting HCC recurrence using in silico gene expression analysis. Recurrence-associated gene candidates were chosen by a comparative analysis of gene expression profiles from two independent whole-transcriptome datasets in patients with HCC who underwent surgical resection. Five promising candidate genes, CETN2, HMGA1, MPZL1, RACGAP1, and SNRPB were identified, and the expression of these genes was evaluated using quantitative reverse transcription PCR in the validation set (n = 57). The genes CETN2, HMGA1, RACGAP1, and SNRPB, but not MPZL1, were upregulated in patients with recurrent HCC. In addition, the combination of HMGA1 and MPZL1 demonstrated the best area under the curve (0.807, 95% confidence interval [CI] = 0.681–0.899) for predicting HCC recurrence. In terms of clinicopathological correlation, CETN2, MPZL1, RACGAP1, and SNRPB were upregulated in patients with microvascular invasion, and the expression of MPZL1 and SNRPB was increased in proportion to the Edmonson tumor differentiation grade. Additionally, overexpression of CETN2, HMGA1, and RACGAP1 correlated with poor overall survival (OS) and disease-free survival (DFS) in the validation set. Finally, Cox regression analysis showed that the expression of serum alpha-fetoprotein and RACGAP1 significantly affected OS, whereas platelet count, microvascular invasion, and HMGA1 expression significantly affected DFS. In conclusion, HMGA1 and RACGAP1 may be potential prognostic biomarkers for predicting the recurrence of HCC after surgical resection.
Collapse
|
20
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
21
|
EGF-induced nuclear translocation of SHCBP1 promotes bladder cancer progression through inhibiting RACGAP1-mediated RAC1 inactivation. Cell Death Dis 2022; 13:39. [PMID: 35013128 PMCID: PMC8748695 DOI: 10.1038/s41419-021-04479-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Bladder cancer is a highly heterogeneous and aggressive malignancy with a poor prognosis. EGF/EGFR activation causes the detachment of SHC-binding protein 1 (SHCBP1) from SHC adapter protein 1 (SHC1), which subsequently translocates into the nucleus and promotes cancer development via multiple signaling pathways. However, the role of the EGF-SHCBP1 axis in bladder cancer progression remains unexplored. Herein, we report that SHCBP1 is upregulated in bladder cancer tissues and cells, with cytoplasmic or nuclear localization. Released SHCBP1 responds to EGF stimulation by translocating into the nucleus following Ser273 phosphorylation. Depletion of SHCBP1 reduces EGF-induced cell migration and invasiveness of bladder cancer cells. Mechanistically, SHCBP1 binds to RACGAP1 via its N-terminal domain of amino acids 1 ~ 428, and this interaction is enhanced following EGF treatment. Furthermore, SHCBP1 facilitates cell migration by inhibiting RACGAP-mediated GTP-RAC1 inactivation, whose activity is indispensable for cell movement. Collectively, we demonstrate that the EGF-SHCBP1-RACGAP1-RAC1 axis acts as a novel regulatory mechanism of bladder cancer progression, which offers a new clinical therapeutic strategy to combat bladder cancer.
Collapse
|
22
|
Liang XH, Feng ZP, Liu FQ, Yan R, Yin LY, Shen H, Lu HL. Identification of potential biomarkers for diagnosis of hepatocellular carcinoma. Exp Ther Med 2021; 23:51. [PMID: 34917180 PMCID: PMC8630445 DOI: 10.3892/etm.2021.10973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/07/2020] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate owing to its complexity. Identification of abnormally expressed genes in HCC tissues compared to those in normal liver tissues is a viable strategy for investigating the mechanisms of HCC tumorigenesis and progression as a means of developing novel treatments. A significant advantage of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) is that the data therein were collected from different independent researchers and may be integrated, allowing for a more robust data analysis. Accordingly, in the present study, the gene expression profiles for HCC and control samples were downloaded from the GEO and TCGA. Functional enrichment analysis was performed using a Metascape dataset, and a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/proteins (STRING) online database. The prognostic value of mRNA for HCC was assessed using the Kaplan-Meier Plotter, a public online tool. A gene mRNA heatmap and DNA amplification numbers were obtained from cBioPortal. A total of 2,553 upregulated genes were identified. Functional enrichment analysis revealed that these differentially expressed genes (DEGs) were mainly accumulated in metabolism of RNA and the cell cycle. Considering the complexity and heterogeneity of the molecular alterations in HCC, multiple genes for the prognostication of patients with HCC are more reliable than a single gene. Thus, the PPI network and univariate Cox regression analysis were applied to screen candidate genes (small nuclear ribonucleoprotein polypeptide B and B1, nucleoporin 37, Rac GTPase activating protein 1, kinesin family member 20A, minichromosome maintenance 10 replication initiation factor, ubiquitin conjugating enzyme E2 C and hyaluronan mediated motility receptor) that are associated with the overall survival and progression-free survival of patients with HCC. In conclusion, the present study identified a set of genes that are associated with overall survival and progression-free survival of patients with HCC, providing valuable information for the prognosis of HCC.
Collapse
Affiliation(s)
- Xing-Hua Liang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People's Hospital of Guangzhou), Guangzhou, Guangdong 511300, P.R. China
| | - Zheng-Ping Feng
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People's Hospital of Guangzhou), Guangzhou, Guangdong 511300, P.R. China
| | - Fo-Qiu Liu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People's Hospital of Guangzhou), Guangzhou, Guangdong 511300, P.R. China
| | - Rong Yan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People's Hospital of Guangzhou), Guangzhou, Guangdong 511300, P.R. China
| | - Liang-Yu Yin
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People's Hospital of Guangzhou), Guangzhou, Guangdong 511300, P.R. China
| | - Hao Shen
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People's Hospital of Guangzhou), Guangzhou, Guangdong 511300, P.R. China
| | - Hai-Lin Lu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People's Hospital of Guangzhou), Guangzhou, Guangdong 511300, P.R. China
| |
Collapse
|
23
|
Kim SH, Hwang S, Song GW, Jung DH, Moon DB, Yang JD, Yu HC. Identification of key genes and carcinogenic pathways in hepatitis B virus-associated hepatocellular carcinoma through bioinformatics analysis. Ann Hepatobiliary Pancreat Surg 2021; 26:58-68. [PMID: 34907098 PMCID: PMC8901975 DOI: 10.14701/ahbps.21-108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Backgrounds/Aims Mechanisms for the development of hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected patients remain unclear. The aim of the present study was to identify genes and pathways involved in the development of HBV-associated HCC. Methods The GSE121248 gene dataset, which included 70 HCCs and 37 adjacent liver tissues, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in HCCs and adjacent liver tissues were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were then performed. Results Of 134 DEGs identified, 34 were up-regulated and 100 were down-regulated in HCCs. The 34 up-regulated DEGs were mainly involved in nuclear division, organelle fission, spindle and midbody formation, histone kinase activity, and p53 signaling pathway, whereas the 100 down-regulated DEGs were involved in steroid and hormone metabolism, collagen-coated extracellular matrix, oxidoreductase activity, and activity on paired donors, including incorporation or reduction of molecular oxygen, monooxygenase activity, and retinol metabolism. Analyses of protein-protein interaction networks with a high degree of connectivity identified significant modules containing 14 hub genes, including ANLN, ASPM, BUB1B, CCNB1, CDK1, CDKN3, ECT2, HMMR, NEK2, PBK, PRC1, RACGAP1, RRM2, and TOP2A, which were mainly associated with nuclear division, organelle fission, spindle formation, protein serine/threonine kinase activity, p53 signaling pathway, and cell cycle. Conclusions This study identified key genes and carcinogenic pathways that play essential roles in the development of HBV-associated HCC. This may provide important information for the development of diagnostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok-Bog Moon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Do Yang
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
24
|
Wang Q, Lu S, Chen Y, He H, Lu W, Lin K. Analysis of transcriptome in the relationship between expression of PRC1 protein and prognosis of patients with cholangiocarcinoma. J Int Med Res 2021; 49:300060521989200. [PMID: 33706578 PMCID: PMC8165842 DOI: 10.1177/0300060521989200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate whether protein regulator of cytokinesis 1 (PRC1), which is involved in the regulation of human carcinogenesis, contributes to poor prognosis in patients with cholangiocarcinoma (CCA). METHODS Data and tissues from patients with CCA were retrospectively studied. Immunohistochemical staining and western blotting were used to evaluate and contrast the PRC1 expression profile at the protein level in CCA tumour and pericarcinomatous tissues from the same study population. Relationships between clinical characteristics and patient survival were observed using univariate and multivariate analyses. Correlations between PRC1 expression and clinical characteristics were analysed by logistic regression. RESULTS A total of 45 patients were included. PRC1 expression was found to be upregulated in CCA cancer tissues versus pericarcinomatous tissues. Overexpression of PRC1 was shown to be related to tumour differentiation, tumour node metastasis staging and lymph node metastasis, and was also revealed to be an independent marker of poor CCA prognosis. CONCLUSIONS The present results suggest that PRC1 may be a prognostic and therapeutic biomarker for patients with CCA.
Collapse
Affiliation(s)
- Qing Wang
- Department of Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaoqiong Lu
- Department of Surgery, Changning County People's Hospital, Baoshan, Yunnan, China
| | - Ying Chen
- Department of Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua He
- Department of Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weihui Lu
- Department of Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kanru Lin
- Department of Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Jiang Z, Jiang Q, Fang X, Wang P, Que W, Li H, Yu Y, Liu X, Wang C, Zhong L. Recipient C7 rs9292795 genotype and the risk of hepatocellular carcinoma recurrence after orthotopic liver transplantation in a Han Chinese population. BMC Cancer 2021; 21:521. [PMID: 33964921 PMCID: PMC8106183 DOI: 10.1186/s12885-021-08269-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Complement component(C7) gene has been shown to influence the prognosis in Hepatocellular carcinoma (HCC) patients. The association between C7 and HCC recurrence after orthotopic liver transplantation (OLT), however, is still unknown. The purpose of this study was to evaluate whether the donor and recipient C7 gene polymorphisms are related to HCC recurrence after OLT in the Han Chinese population. METHODS A total of 73 consecutive patients with HCC who had undergone OLT, both donors and recipients, were involved in this research. A single nucleotide polymorphism of C7, rs9292795, was genotyped using Sequenom MassARRAY in the cohort. The expression of C7 and the association between C7 gene polymorphisms and HCC recurrence following OLT were analyzed by bioinformatics and statistical analysis, respectively. RESULTS As shown in database, the expression of C7 was higher in HCC tissues than that in normal tissues, and represented a worse prognosis. We also found that recipient C7 rs9292795 polymorphism, rather than the donor, was significantly associated with HCC recurrence after OLT. Multivariate logistic regression analysis confirmed that TNM stage (P = 0.001), Milan criteria (P = 0.000) and recipient rs9292795 genotype (TT vs AA/AT, P = 0.008) were independent risk factors for HCC recurrence. Furthermore, the recipient carrying AA/AT showed higher recurrence-free survival (RFS) and overall survival (OS) than that carrying TT (P < 0.05). In Cox proportional hazards model, TNM stage, recipient rs9292795 genotype, and Milan criteria were identified as independent factors for RFS and OS (P < 0.05) as well as pre-OLT serum alpha fetoprotein (AFP) level was associated with OS (P < 0.05). CONCLUSIONS Recipient C7 rs9292795 gene polymorphism is related to the recurrence of HCC after OLT, which may be a helpful prognostic marker for HCC patients who receive OLT.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Qianwei Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xu Fang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Weitao Que
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chunguang Wang
- Emergency & Critical Care Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Songjiang District, Shanghai, China.
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
26
|
Zhang Y, Tang Y, Guo C, Li G. Integrative analysis identifies key mRNA biomarkers for diagnosis, prognosis, and therapeutic targets of HCV-associated hepatocellular carcinoma. Aging (Albany NY) 2021; 13:12865-12895. [PMID: 33946043 PMCID: PMC8148482 DOI: 10.18632/aging.202957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus-associated HCC (HCV-HCC) is a prevalent malignancy worldwide and the molecular mechanisms are still elusive. Here, we screened 240 differentially expressed genes (DEGs) of HCV-HCC from Gene expression omnibus (GEO) and the Cancer Genome Atlas (TCGA), followed by weighted gene coexpression network analysis (WGCNA) to identify the most significant module correlated with the overall survival. 10 hub genes (CCNB1, AURKA, TOP2A, NEK2, CENPF, NUF2, CDKN3, PRC1, ASPM, RACGAP1) were identified by four approaches (Protein-protein interaction networks of the DEGs and of the significant module by WGCNA, and diagnostic and prognostic values), and their abnormal expressions, diagnostic values, and prognostic values were successfully verified. A four hub gene-based prognostic signature was built using the least absolute shrinkage and selection operator (LASSO) algorithm and a multivariate Cox regression model with the ICGC-LIRI-JP cohort (N =112). Kaplan-Meier survival plots (P = 0.0003) and Receiver Operating Characteristic curves (ROC = 0.778) demonstrated the excellent predictive potential for the prognosis of HCV-HCC. Additionally, upstream regulators including transcription factors and miRNAs of hub genes were predicted, and candidate drugs or herbs were identified. These findings provide a firm basis for the exploration of the molecular mechanism and further clinical biomarkers development of HCV-HCC.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/virology
- Computational Biology
- Datasets as Topic
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Humans
- Kaplan-Meier Estimate
- Liver/pathology
- Liver/virology
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/virology
- MicroRNAs/metabolism
- Predictive Value of Tests
- Prognosis
- Protein Interaction Maps/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Assessment/methods
- Transcription Factors/metabolism
- Transcriptome/genetics
Collapse
Affiliation(s)
- Yongqiang Zhang
- Molecular Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yuqin Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Chengbin Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Gen Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| |
Collapse
|
27
|
Qiao Y, Pei Y, Luo M, Rajasekaran M, Hui KM, Chen J. Cytokinesis regulators as potential diagnostic and therapeutic biomarkers for human hepatocellular carcinoma. Exp Biol Med (Maywood) 2021; 246:1343-1354. [PMID: 33899543 DOI: 10.1177/15353702211008380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells. Cytokinesis is a complex, highly regulated process and its failure can lead to genetic instability and apoptosis, contributing to the development of cancer. Human hepatocellular carcinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern observed in human hepatocellular carcinoma results mostly from impairments in cytokinesis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular carcinoma, and their expression levels are often correlated with patient prognosis. Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis regulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an overview of the current understanding of the signaling networks regulating cytokinesis, the key cytokinesis regulators involved in the initiation and development of human hepatocellular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yunxin Pei
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Miao Luo
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| | - Kam M Hui
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianxiang Chen
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| |
Collapse
|
28
|
Chen Y, Jin L, Jiang Z, Liu S, Feng W. Identifying and Validating Potential Biomarkers of Early Stage Lung Adenocarcinoma Diagnosis and Prognosis. Front Oncol 2021; 11:644426. [PMID: 33937050 PMCID: PMC8085413 DOI: 10.3389/fonc.2021.644426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. At present, most patients with LUAD are diagnosed at an advanced stage, and the prognosis of advanced LUAD is poor. Hence, we aimed to identify novel biomarkers for the diagnosis and treatment of early stage LUAD and to explore their predictive value. Methods The microarray datasets GSE63459, GSE27262, and GSE33532 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. The DEGs were subjected to gene ontology (GO) and pathway enrichment analyses using METASCAPE. A protein–protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was performed using MCODE. Overall survival (OS) analysis and analysis of the mRNA expression levels of genes identified by MCODE were performed with UALCAN. Western blot analysis of hub genes in LUAD patients, MTS assays, and clonogenic assays were performed to test the effects of the hub genes on cell proliferation in vitro. Results A total of 341 DEGs were obtained, which were mainly enriched in terms related to blood vessel development, growth factor binding, and extracellular matrix organization. A PPI network consisting of 300 nodes and 1140 edges was constructed, and a significant module including 15 genes was identified. Elevated expression of ASPM, CCNB2, CDCA5, PRC1, KIAA0101, and UBE2T was associated with poor OS in LUAD patients. In the protein level, the hub gene was overexpressed in LUAD patients. In vitro experiments showed that knockdown of the hub genes in the LUAD cell lines could promote cell proliferation. Conclusions DEGs are potential biomarkers for early stage lung adenocarcinoma and could have utility for the diagnosis and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhibin Jiang
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Suo Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
29
|
Luo Z, Lu L, Tang Q, Wei W, Chen P, Chen Y, Pu J, Wang J. CircCAMSAP1 promotes hepatocellular carcinoma progression through miR-1294/GRAMD1A pathway. J Cell Mol Med 2021; 25:3793-3802. [PMID: 33484498 PMCID: PMC8051675 DOI: 10.1111/jcmm.16254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with high prevalence and mortality, and it has brought huge economic and health burden for the world. It is urgent to found novel targets for HCC diagnosis and clinical intervention. Circular RNA (circRNA) has been reported to participate in many cancer progressions including HCC, suggesting that circRNA might paly essential role in HCC initiation and progression. Our study aims to found that potential circRNA participates in HCC development and its underlying molecular mechanisms. We obtained three pairs of HCC tissues and its adjacent normal tissues data from GEO DataSets. MTT, cell colony, EdU, wound-healing, transwell invasion and mouse xenograft model assays were used to demonstrate the biological functions of circCAMSAP1 in HCC progression. Furthermore, we conducted bioinformatics analysis, AGO2-RIP, RNA pull-down and luciferase reporter assays to assess the association of circCAMSAP1-miR-1294-GRAMD1A axis in HCC cells. The expression of circCAMSAP1 was up-regulated in HCC tissues compared with its adjacent normal tissues. Up-regulation of circCAMSAP1 promoted HCC biological functions both in vitro and in vivo. The promotive effects of circCAMSAP1 on HCC progression function through miR-1294/GRAMD1A pathway. CircCAMSAP1 was up-regulated in HCC tissues, and circCAMSAP1 up-regulated GRAMD1A expression to promote HCC proliferation, migration and invasion through miR-1294. CircCAMSAP1 might be a potential prognosis and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zongjiang Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Libai Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.,Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wang Wei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Pengyu Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yichen Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
30
|
Ren K, Zhou D, Wang M, Li E, Hou C, Su Y, Zou Q, Zhou P, Liu X. RACGAP1 modulates ECT2-Dependent mitochondrial quality control to drive breast cancer metastasis. Exp Cell Res 2021; 400:112493. [PMID: 33485843 DOI: 10.1016/j.yexcr.2021.112493] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
Most cancer deaths are due to the colonization of tumor cells in distant organs. More evidence indicates that overexpression of RACGAP1 plays a critical role in cancer metastasis. However, the underlying mechanism still remains poorly understood. Here we found that RACGAP1 promoted breast cancer metastasis through regulating mitochondrial quality control. Overexpression of RACGAP1 in breast cancer cells led to the fragmentation of mitochondria, increased mitophagy intensity, mitochondrial turnover, and aerobic glycolysis ATP production. We showed that RACGAP1 promoted mitochondrial fission through recruiting ECT2 during anaphase and subsequently had activated ERK-DRP1 pathway. We further demonstrated the phosphorylation of RACGAP1 is essential for its ability of binding with ECT2 and its downstream effects. RACGAP1 overexpression also increased the expression of PGC-1a, a key mitochondrial biogenesis regulator, presumably by the increased mitophagy intensity induced by RACGAP1. PGC-1a increased the enrichment of DNMT1 in mitochondria, mitochondrial DNMT1 augmented mitochondrial DNA methylation and upregulated mitochondrial genome transcription. Our data indicated that RACGAP1 simultaneously facilitated mitophagy and mitochondrial biogenesis through regulating DRP1 phosphorylation and PGC-1a expression, eventually improved mitochondrial quality control in breast cancer cells. Our study provided a new angle in understanding the RACGAP1-overexpression related malignancy in breast cancer patients.
Collapse
Affiliation(s)
- Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Danmei Zhou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Meili Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Ermin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Su
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiang Zou
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuping Liu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
31
|
Feng Y, Dramani Maman ST, Zhu X, Liu X, Bongolo CC, Liang C, Tu J. Clinical value and potential mechanisms of LINC00221 in hepatocellular carcinoma based on integrated analysis. Epigenomics 2021; 13:299-317. [PMID: 33406920 DOI: 10.2217/epi-2020-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aims:This study aimed to unveil the functional roles of LINC00221 in hepatocellular carcinoma (HCC). Materials and methods:A discovery cohort and a validation cohort were respectively used to identify and verify the clinical value of LINC00221 in HCC. Bioinformatics analysis was performed to explore its potential mechanisms. Results:LINC00221 was upregulated in HCC tissues and serum samples. Survival analysis and receiver operating characteristic curve further revealed its prognostic and diagnostic roles. Exploration of the mechanism showed that LINC00221 might exert a pro-cancer role via the lncRNA-miRNA-mRNA network.Conclusions: Our study reveals that upregulated LINC00221 can serve as a potential diagnostic and prognostic biomarker and provides novel clues as to the role of LINC00221 in HCC.
Collapse
Affiliation(s)
- Yanlin Feng
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Souraka Tapara Dramani Maman
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinyu Zhu
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuefang Liu
- Department of Clinical Laboratory, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Christian Cedric Bongolo
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunzi Liang
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiancheng Tu
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
32
|
Jiang Z, Zhang Y, Liu X, Liang J, Qiu G, Zhu X, Chen J, Li L. Identification of a Functional ceRNA Network to Explore Potential Biomarkers for Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:12341-12355. [PMID: 33293827 PMCID: PMC7719347 DOI: 10.2147/ott.s278912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To establish a novel circRNA-miRNA-mRNA network associated with the poor prognosis of hepatocellular carcinoma (HCC). MATERIALS AND METHODS Quantitative real-time PCR was used to verify the differentially expressed circRNA. Moreover, the competing endogenous RNA networks were established using bioinformatics methods. Meanwhile, the prognostic value and potential mechanism of ceRNA network in hepatocellular carcinoma (HCC) were analyzed. RESULTS This work found that circ_0130911 was highly expressed in HCC tissues and early recurring HCC. Further, we effectively constructed a ceRNA network. The ceRNA network regulated by circ_0130911 might influence the prognosis of HCC by regulating cell cycle-related pathways. CONCLUSION The ceRNA network proposed here can be used as a novel biomarker for the prognosis of HCC, thereby providing new insights for the targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhijun Jiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Xinyu Liu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Jingchen Liang
- Department of Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Guanhua Qiu
- Department of Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Xiaoqi Zhu
- Department of Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| |
Collapse
|
33
|
Butyrate-containing structured lipids inhibit RAC1 and epithelial-to-mesenchymal transition markers: a chemopreventive mechanism against hepatocarcinogenesis. J Nutr Biochem 2020; 86:108496. [PMID: 32920087 DOI: 10.1016/j.jnutbio.2020.108496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers. The rising incidence of HCC worldwide and its resistance to pharmacotherapy indicate that the prevention of HCC development may be the most impactful strategy to improve HCC-related morbidity and mortality. Among the broad range of chemopreventive agents, the use of dietary and nutritional agents is an attractive and promising approach; however, a better understanding of the mechanisms of their potential cancer suppressive action is needed to justify their use. In the present study, we investigated the underlying molecular pathways associated with the previously observed suppressive effect of butyrate-containing structured lipids (STLs) against liver carcinogenesis using a rat "resistant hepatocyte" model of hepatocarcinogenesis that resembles the development of HCC in humans. Using whole transcriptome analysis, we demonstrate that the HCC suppressive effect of butyrate-containing STLs is associated with the inhibition of the cell migration, cytoskeleton organization, and epithelial-to-mesenchymal transition (EMT), mediated by the reduced levels of RACGAP1 and RAC1 proteins. Mechanistically, the inhibition of the Racgap1 and Rac1 oncogenes is associated with cytosine DNA and histone H3K27 promoter methylation. Inhibition of the RACGAP1/RAC1 oncogenic signaling pathways and EMT may be a valuable approach for liver cancer prevention.
Collapse
|
34
|
Zhao W, Wang M, Wang C, Liu Y, Liu H, Luo S. RACGAP1 is transcriptionally regulated by E2F3, and its depletion leads to mitotic catastrophe in esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:950. [PMID: 32953750 PMCID: PMC7475413 DOI: 10.21037/atm-20-2901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background RACGAP1 has significant involvement in tumorigenesis of cancers, including liver cancer, stomach cancer, and colon cancer. However, the role and the exact mechanism of RACGAP1 in esophageal squamous cell carcinoma (ESCC) has not been explored. Methods QPCR and Western blots analysis was performed to analyze the expression of RACGAP1 in ESCC. MTT assays and colony formation assays were performed to explore the functional role of RACGAP1 in ESCC. Cell cycle analysis and immunofluorescence assays were used to investigate the function of RACGAP1 involvement in mitotic catastrophe. At last, we conducted the public datasets mining to explore the expression status and prognosis value of RACGAP1 as well as the correlation between RACGAP1 and E2F3 in various cancers. Results The high abnormal expression of RACGAP1 is observed in ESCC and associated with worse clinical outcomes of patients with ESCC. RACGAP1, a novel cell cycle associated gene regulated by E2F3, acts as an oncogenic driver in ESCC cell lines. Notably, for the first time, RACGAP1 depletion induced severe mitotic catastrophe, followed by massive cell death. Conclusions Our findings showed the essential role of RACGAP1 in ESCC cancer cell survival and the therapeutic potential of RACGAP1 as a molecular target for ESCC.
Collapse
Affiliation(s)
- Weifeng Zhao
- Department of Medical Oncology, the Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Department of Oncology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengyao Wang
- Radiation Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Chaojie Wang
- Department of Oncology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yingjun Liu
- Department of General Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huimin Liu
- Department of Oncology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Medical Oncology, the Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
35
|
Peng N, He J, Li J, Huang H, Huang W, Liao Y, Zhu S. Long noncoding RNA MALAT1 inhibits the apoptosis and autophagy of hepatocellular carcinoma cell by targeting the microRNA-146a/PI3K/Akt/mTOR axis. Cancer Cell Int 2020; 20:165. [PMID: 32435156 PMCID: PMC7222315 DOI: 10.1186/s12935-020-01231-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background Increased long noncoding RNA (lncRNA) expression is characteristic to hepatocellular carcinoma (HCC) and several other neoplasms. The present study aimed to identify the mechanism underlying modulation of HCC development by the lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Methods Quantitative real-time polymerase chain reaction was used to determine MALAT1 and microRNA (miR)-146a expression in HCC tissues and cell lines. Western blotting was performed to measure PI3K, Akt, and mTOR levels. Dual-luciferase reporter assay was used to validate the direct targeting and negative regulatory interaction between miR-146a and MALAT1. Cell viability, proliferation, and apoptosis were analyzed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, colony formation assay, and flow cytometry, respectively; autophagy was detected based on LC3B expression. Results MALAT1 expression was higher in HCC tissues than in normal tissues. MALAT1 upregulation promoted HCC cell proliferation, whereas MALAT1 downregulation promoted HCC apoptosis and autophagy. Moreover, effects of MALAT1 downregulation on HCC cells were abolished by miR-146a inhibition. miR-146a directly targeted the 3'-untranslated region of PI3K, and PI3K protein level was clearly decreased upon miR-146a mimic transfection. Conclusions MALAT1 may modulate HCC cell proliferation, apoptosis, and autophagy via sponging miR-146a, which regulates HCC progression.
Collapse
Affiliation(s)
- Ningfu Peng
- 1Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Qingxiu District, Nanning, 530021 Guangxi China
| | - Jingrong He
- 1Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Qingxiu District, Nanning, 530021 Guangxi China
| | - Jindu Li
- 1Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Qingxiu District, Nanning, 530021 Guangxi China
| | - Hao Huang
- 1Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Qingxiu District, Nanning, 530021 Guangxi China
| | - Weiqiao Huang
- 1Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Qingxiu District, Nanning, 530021 Guangxi China
| | - Yingyang Liao
- 2Department of Clinical Nutrition, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi China
| | - Shaoliang Zhu
- 1Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Qingxiu District, Nanning, 530021 Guangxi China
| |
Collapse
|
36
|
Shi Z, Xiao Z, Hu L, Gao Y, Zhao J, Liu Y, Shen G, Xu Q, Huang D. The genetic association between type 2 diabetic and hepatocellular carcinomas. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:380. [PMID: 32355824 PMCID: PMC7186634 DOI: 10.21037/atm.2020.02.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) and hepatocellular carcinoma (HCC) are both major health problems throughout the world. It has been reported that T2DM is an independent risk factor for HCC, although the pathophysiology is still unclear. Methods In order to identify differentially expressed genes (DEGs) in T2DM and HCC, gene expression datasets for T2DM (GSE15653), HCC (GSE60502) and metformin-treated cells (GSE69850) were obtained from the Gene Expression Omnibus database repository. Protein-protein interaction (PPI) networks for the DEGs were constructed and gene clusters selected for functional enrichment analysis. Ten genes with the highest degree of connectivity were selected as hub genes and prognostic analysis together with analysis of gene expression and protein distribution were performed for these genes. Lastly, we investigated associations between the hub genes and genes associated with metformin treatment in hepatocarcinoma cells. Results In total, 256 common DEGs, including 155 up-regulated genes and 101 down-regulated genes, were identified. Enrichment analyses showed that the genes of the major module were largely associated with the cell cycle. All of the 10 hub genes (CCNA2, CCNB1, MAD2L1, BU1B, RACGAP1, CHEK1, BUB1, ASPM, NCAPG and TTK) have a strong association with lower overall survival in liver cancer patients and four genes (CCNA2, CCNB1, CHEK1 and BUB1) have reduced expression in metformin-treated samples. Conclusions This study identified a number of genes that may play important roles in the association of T2DM and HCC, including four genes which may be the target of metformin treatment for diabetes and HCC. The specific mechanisms involved remain to be identified.
Collapse
Affiliation(s)
- Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310014, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310014, China
| | - Linjun Hu
- The Medical College of Qingdao University, Qingdao 266071, China
| | - Yuling Gao
- Department of Genetic Laboratory, Shaoxing Women and Children Hospital, Shaoxing 312030, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao 266071, China
| | - Guoliang Shen
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
37
|
Liu L, Chen A, Chen S, Song W, Yao Q, Wang P, Zhou S. CCNB2, NUSAP1 and TK1 are associated with the prognosis and progression of hepatocellular carcinoma, as revealed by co-expression analysis. Exp Ther Med 2020; 19:2679-2689. [PMID: 32256749 PMCID: PMC7086186 DOI: 10.3892/etm.2020.8522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
The mortality rate associated with hepatocellular carcinoma (HCC) is the third highest among all digestive system tumors. However, the causes of HCC development and the underlying mechanisms have remained to be fully elucidated. In the present bioinformatics study, genetic markers were identified and their association with HCC was determined. The mRNA expression datasets GSE87630, GSE74656 and GSE76427 were downloaded from the Gene Expression Omnibus (GEO) database. A total of 96 differentially expressed genes (DEGs) were screened from the 3 GEO datasets, including 25 upregulated and 71 downregulated genes. DEGs were uploaded to the database for Annotation, Visualization and Integrated Discovery to screen for enriched Gene Ontology terms in various categories and the Search Tool for the Retrieval of Interacting Genes/Proteins was used to identify the interactions and functions of the DEGs. A total of 3 genetic markers were identified in a stepwise pathway and functional analysis in a previous study. The association of the genetic markers with prognosis was analysed using the UALCAN online analysis tool. Regression analysis was also performed to identify the relationship between HCC grade and disease recurrence and the expression of genetic markers using The Cancer Genome Atlas HCC dataset. In addition, the expression of the 3 genetic markers in HCC tissues was determined using reverse transcription-quantitative PCR, the Oncomine database and the Human Protein Atlas database. The expression levels of the 3 genetic markers cyclin B2 (CCNB2), nucleolar and spindle-associated protein 1 (NUSAP1) and thymidine kinase 1 (TK1) were significantly correlated with each other and high mRNA expression of CCNB2 was significantly associated with poor overall survival of patients with HCC. Receiver operating characteristic curve analysis indicated that NUSAP1 and TK1 were capable of distinguishing between recurrent and non-recurrent HCC. Furthermore, CCNB2, NUSAP1 and TK1 were highly correlated with the HCC grade. It was also indicated that the mRNA expression of CCNB2, NUSAPA and TK1 was increased in primary HCC tissues when compared with that in adjacent tissues. The present study identified that the CCNB2, NUSAP1 and TK1 genes may serve as prognostic markers for HCC, and may be of value from the perspectives of basic research and clinical treatment of HCC.
Collapse
Affiliation(s)
- Linglong Liu
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Anning Chen
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Siyu Chen
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qingmei Yao
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Pengfei Wang
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
38
|
Pu J, Wang J, Wei H, Lu T, Wu X, Wu Y, Shao Z, Luo C, Lu Y. lncRNA MAGI2-AS3 Prevents the Development of HCC via Recruiting KDM1A and Promoting H3K4me2 Demethylation of the RACGAP1 Promoter. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:351-362. [PMID: 31629962 PMCID: PMC6807294 DOI: 10.1016/j.omtn.2019.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/31/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022]
Abstract
Accumulating studies have implicated the role of long non-coding RNAs (lncRNAs) in the pathogenesis of hepatocellular carcinoma (HCC) through the regulating transcription and mRNA stability. A recent report has linked Rac GTPase-activating protein 1 (RACGAP1) to the early recurrence of HCC. The current study aimed to ascertain whether MAGI2 antisense RNA 3 (MAGI2-AS3) influences the development of HCC by regulating RACGAP1. MAGI2-AS3 expression was initially quantified in both the HCC tissues and cell lines. In order to elucidate the role of MAGI2-AS3 in the development of HCC, MAGI2-AS3 was overexpressed or silenced in HCC cells after which cell proliferation, apoptosis, invasion, and migration were evaluated. Chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), and biotin-labeled RNA pull-down assays were conducted to determine the interactions among MAGI2-AS3, KDM1A, and RACGAP1. Finally, the effects of MAGI2-AS3 and RACGAP1 on the tumorigenesis of transplanted HCC cells in nude mice were evaluated. MAGI2-AS3 was found to be under-expressed in HCC tissues and cell lines. The restoration of MAGI2-AS3 was identified to markedly inhibit HCC cell growth, migrating ability, and invasiveness, and promote cell apoptosis. Interaction between MAGI2-AS3 and KDM1A was identified. KDM1A recruited by MAGI2-AS3 was found to promote H3K4me2 demethylation at the RACGAP1 promoter, which ultimately decreased the expression of RACGAP1. We also identified that RACGAP1 knockdown eliminated the stimulatory effects of MAGI2-AS3 silencing on the malignant phenotypes of HCC cells. Additionally, the expression of MAGI2-AS3 reduced tumor weight and size in HCC transplanted nude mice. Taken together, the key observations of the current study demonstrate the potential of MAGI2-AS3 as a tumor suppressor and a promising target for HCC treatment.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China.
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Tao Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Xianjian Wu
- Graduate College, Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yi Wu
- Graduate College, Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Zesheng Shao
- Graduate College, Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Chunying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| |
Collapse
|
39
|
Song ZY, Chao F, Zhuo Z, Ma Z, Li W, Chen G. Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis. Aging (Albany NY) 2019; 11:4736-4756. [PMID: 31306099 PMCID: PMC6660050 DOI: 10.18632/aging.102087] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022]
Abstract
The pathogenic mechanisms of prostate cancer (PCa) remain to be defined. In this study, we utilized the Robust Rank Aggregation (RRA) method to integrate 10 eligible PCa microarray datasets from the GEO and identified a set of significant differentially expressed genes (DEGs) between tumor samples and normal, matched specimens. To explore potential associations between gene sets and PCa clinical features and to identify hub genes, we utilized WGCNA to construct gene co-expression networks incorporating the DEGs screened with the use of RRA. From the key module, we selected LMNB1, TK1, ZWINT, and RACGAP1 for validation. We found that these genes were up-regulated in PCa samples, and higher expression levels were associated with higher Gleason scores and tumor grades. Moreover, ROC and K-M plots indicated these genes had good diagnostic and prognostic value for PCa. On the other hand, methylation analyses suggested that the abnormal up-regulation of these four genes likely resulted from hypomethylation, while GSEA and GSVA for single hub gene revealed they all had a close association with proliferation of PCa cells. These findings provide new insight into PCa pathogenesis, and identify LMNB1, TK1, RACGAP1 and ZWINT as candidate biomarkers for diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
- Zhen-yu Song
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhiyuan Zhuo
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhe Ma
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Wenzhi Li
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gang Chen
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
40
|
Li B, Pu K, Wu X. Identifying novel biomarkers in hepatocellular carcinoma by weighted gene co-expression network analysis. J Cell Biochem 2019; 120:11418-11431. [PMID: 30746803 DOI: 10.1002/jcb.28420] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/04/2018] [Indexed: 01/24/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor found in the bile duct epithelial cells, and the second most common tumor of the liver. However, the pivotal roles of most molecules of tumorigenesis in HCC are still unclear. Hence, it is essential to detect the tumorigenic mechanism and develop novel prognostic biomarkers for clinical application. The data of HCC mRNA-seq and clinical information from The Cancer Genome Atlas (TCGA) database were analyzed by weighted gene co-expression network analysis (WGCNA). Co-expression modules and clinical traits were constructed by the Pearson correlation analysis, interesting modules were selected and gene ontology and pathway enrichment analysis were performed. Intramodule analysis and protein-protein interaction construction of selected modules were conducted to screen hub genes. In addition, upstream transcription factors and microRNAs of hub genes were predicted by miRecords and NetworkAnalyst database. Afterward, a high connectivity degree of hub genes from two networks was picked out to perform the differential expression validation in the Gene Expression Profiling Interactive Analysis database and Human Protein Atlas database and survival analysis in Kaplan-Meier plotter online tool. By utilizing WGCNA, several hub genes that regulate the mechanism of tumorigenesis in HCC were identified, which was associated with clinical traits including the pathological stage, histological grade, and liver function. Surprisingly, ZWINT, CENPA, RACGAP1, PLK1, NCAPG, OIP5, CDCA8, PRC1, and CDK1 were identified statistically as hub genes in the blue module, which were closely implicated in pathological T stage and histologic grade of HCC. Moreover, these genes also were strongly associated with the HCC cell growth and division. Network and survival analyses found that nine hub genes may be considered theoretically as indicators to predict the prognosis of patients with HCC or clinical treatment target, it will be necessary for basic experiments and large-scale cohort studies to validate further.
Collapse
Affiliation(s)
- Boxuan Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Xinan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
41
|
Yin C, Toiyama Y, Okugawa Y, Shigemori T, Yamamoto A, Ide S, Kitajima T, Fujikawa H, Yasuda H, Okita Y, Hiro J, Yoshiyama S, Ohi M, Araki T, Yao L, Kusunoki M. Rac GTPase-Activating Protein 1 (RACGAP1) as an Oncogenic Enhancer in Esophageal Carcinoma. Oncology 2019; 97:155-163. [PMID: 31216559 DOI: 10.1159/000500592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE Rac GTPase-activating protein 1 (RACGAP1) is associated with cell proliferation, and there is much evidence of its oncogenic role. This study investigated the clinical importance and functional role of RACGAP1 in esophageal carcinoma (EC). METHODS A total of 81 EC patients were enrolled in the study. We assessed the immunohistochemical score of EC tissues and adjacent normal esophageal mucosae, and then performed multiple cell function tests by means of in vitro experiments to elucidate the functional role of RACGAP1 using RNA interference technology in EC cell lines. RESULTS RACGAP1 was significantly overexpressed in EC tissues compared with the adjacent normal esophageal mucosae (p < 0.0001). Moreover, RACGAP1 overexpression was significantly correlated with poor overall survival (p = 0.032) and disease-free survival (p = 0.012) in EC patients. High RACGAP1 expression was also significantly correlated with the presence of lymphatic invasion (p = 0.012), vessel invasion (p = 0.003), and advanced TNM (tumor-node-metastasis) stage (p = 0.046) in EC patients. In vitro analysis demonstrated that RACGAP1 was involved in the proliferation, tumorigenicity, invasion, migration, and anoikis resistance in EC cells. CONCLUSIONS RACGAP1 plays a pivotal role in EC development, suggesting that it could be used as an indicator of prognosis in EC patients.
Collapse
Affiliation(s)
- Chengzeng Yin
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan.,Department of Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yuji Toiyama
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan,
| | - Yoshinaga Okugawa
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Tsunehiko Shigemori
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Akira Yamamoto
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Shozo Ide
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Takahito Kitajima
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroyuki Fujikawa
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiromi Yasuda
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoshiki Okita
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Junichiro Hiro
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Shigeyuki Yoshiyama
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Masaki Ohi
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Toshimitsu Araki
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Li Yao
- Department of Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Masato Kusunoki
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
42
|
Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence. Cell Death Dis 2019; 10:426. [PMID: 31160556 PMCID: PMC6546712 DOI: 10.1038/s41419-019-1666-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023]
Abstract
Accumulating evidence has indicated crucial roles for pseudogenes in human cancers. However, the roles played by pseudogenes in the pathogenesis of HCC, particularly HCC early recurrence, still incompletely elucidated. Herein, we identify a novel early recurrence related pseudogene RACGAP1P which was significantly upregulated in HCC and was associated with larger tumour size, advanced clinical stage, abnormal AFP level and shorter survival time. In vitro and in vivo experiments have shown that RACGAP1P is a prerequisite for the development of malignant characteristics of HCC cells, including cell growth and migration. Mechanistic investigations indicated that RACGAP1P elicits its oncogenic activity as a ceRNA to sequestrate miR-15-5p from its endogenous target RACGAP1, thereby leading to the upregulation of RACGAP1 and the activation of RhoA/ERK signalling. These results may provide new insights into the functional crosstalk of the pseudogene/miRNA/parent-gene genetic network during HCC early relapse and may contribute to improving the clinical intervention for this subset of HCC patients.
Collapse
|
43
|
Liao YJ, Yin XL, Deng Y, Peng XW. PRC1 gene silencing inhibits proliferation, invasion, and angiogenesis of retinoblastoma cells through the inhibition of the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 120:16840-16852. [PMID: 31144388 DOI: 10.1002/jcb.28942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Retinoblastoma is an ocular malignancy occurring in childhood. The current study evaluates the ability of silenced PRC1 on retinoblastoma cell proliferation, and angiogenesis via the Wnt/β-catenin signaling pathway. A total of 36 cases of retinoblastoma tissues (n = 36) and normal retinal tissues (n = 10) were selected in the current study. Retinoblastoma cells presenting with the high PRC1 messenger RNA (mRNA) expression were selected among the WERI-Rb-1, HXO-RB44, Y79, SO-Rb50, and SO-Rb70 cells lines, and were transfected with siRNA-PRC1 and LiCl (the activator of the Wnt/β-catenin pathway). The expressions of PRC1, VEGF, Wnt1, β-catenin, CyclinD1, extent of β-catenin, and GSK-3β phosphorylation were evaluated. Cell proliferation, cell-cycle distribution, and cell invasion of retinoblastoma cells were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and Transwell assay. The angiogenesis of retinoblastoma cells was detected by tube formation assay. HXO-RB44 and WERI-Rb-1 cells were selected owing to the highest PRC1 mRNA expression. Meanwhile, PRC2 gene silencing presented lower expression levels of PRC1, VEGF, Wnt1, β-catenin, CyclinD1, extent of β-catenin and GSK-3β phosphorylation, decreased proliferation and invasion abilities, extended G0/G1 phase, and shortened S and G2/M phases of HXO-RB44 and WERI-Rb-1 cells, suggesting the silenced PRC2 inactivated Wnt/β-catenin pathway, so as to further restrain the retinoblastoma cell proliferation, invasion, and angiogenesis. These results support the view that PRC1 gene silencing could suppress the proliferation, and angiogenesis of retinoblastoma cells by repressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu-Jun Liao
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiao-Long Yin
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yan Deng
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiao-Wei Peng
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
44
|
Khalid M, Idichi T, Seki N, Wada M, Yamada Y, Fukuhisa H, Toda H, Kita Y, Kawasaki Y, Tanoue K, Kurahara H, Mataki Y, Maemura K, Natsugoe S. Gene Regulation by Antitumor miR-204-5p in Pancreatic Ductal Adenocarcinoma: The Clinical Significance of Direct RACGAP1 Regulation. Cancers (Basel) 2019; 11:cancers11030327. [PMID: 30866526 PMCID: PMC6468488 DOI: 10.3390/cancers11030327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Previously, we established a microRNA (miRNA) expression signature in pancreatic ductal adenocarcinoma (PDAC) tissues using RNA sequencing and found significantly reduced expression of miR-204-5p. Here, we aimed to investigate the functional significance of miR-204-5p and to identify miR-204-5p target genes involved in PDAC pathogenesis. Cancer cell migration and invasion were significantly inhibited by ectopic expression of miR-204-5p in PDAC cells. Comprehensive gene expression analyses and in silico database searches revealed 25 putative targets regulated by miR-204-5p in PDAC cells. Among these target genes, high expression levels of RACGAP1, DHRS9, AP1S3, FOXC1, PRP11, RHBDL2 and MUC4 were significant predictors of a poor prognosis of patients with PDAC. In this study, we focused on RACGAP1 (Rac guanosine triphosphatase-activating protein 1) because its expression was most significantly predictive of PDAC pathogenesis (overall survival rate: p = 0.0000548; disease-free survival rate: p = 0.0014). Overexpression of RACGAP1 was detected in PDAC clinical specimens, and its expression enhanced the migration and invasion of PDAC cells. Moreover, downstream genes affected by RACGAP1 (e.g., MMP28, CEP55, CDK1, ANLN and S100A14) are involved in PDAC pathogenesis. Our strategy to identify antitumor miRNAs and their target genes will help elucidate the molecular pathogenesis of PDAC.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Haruhi Fukuhisa
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yota Kawasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Kiyonori Tanoue
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| |
Collapse
|
45
|
Wu M, Liu Z, Zhang A, Li N. Identification of key genes and pathways in hepatocellular carcinoma: A preliminary bioinformatics analysis. Medicine (Baltimore) 2019; 98:e14287. [PMID: 30702595 PMCID: PMC6380748 DOI: 10.1097/md.0000000000014287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. However, the precise mechanisms of the development and progression of HCC remain unclear. The present study attempted to identify and functionally analyze the differentially expressed genes between HCC and cirrhotic tissues by using comprehensive bioinformatics analyses. METHODS The GSE63898 gene expression profile was downloaded from the Gene Expression Omnibus (GEO) and analyzed using the online tool GEO2R to identify differentially expressed genes (DEGs). Gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs were performed in DAVID. The STRING database was used to evaluate the interactions of DEGs and to construct a protein-protein interaction (PPI) network using Cytoscape software. Hub genes were selected using the cytoHubba plugin and were validated with the cBioPortal database. RESULTS A total of 301 DEGs were identified between HCC and cirrhotic tissues. The GO analysis results showed that these DEGs were significantly enriched in certain biological processes including negative regulation of growth and cell chemotaxis. Several significant pathways, including the p53 signaling pathway, were identified as being closely associated with these DEGs. The top 12 hub genes were screened and included TTK, NCAPG, TOP2A, CCNB1, CDK1, PRC1, RRM2, UBE2C, ZWINT, CDKN3, AURKA, and RACGAP1. The cBioPortal analysis found that alterations in hub genes could result in significantly reduced disease-free survival in HCC. CONCLUSION The present study identified a series of key genes and pathways that may be involved in the tumorigenicity and progression of HCC, providing a new understanding of the underlying molecular mechanisms of carcinogenesis in HCC.
Collapse
Affiliation(s)
- Min Wu
- Department of General surgery
| | | | - Aiying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Department of General surgery
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Ge Q, Lu M, Ju L, Qian K, Wang G, Wu CL, Liu X, Xiao Y, Wang X. miR-4324-RACGAP1-STAT3-ESR1 feedback loop inhibits proliferation and metastasis of bladder cancer. Int J Cancer 2019; 144:3043-3055. [PMID: 30511377 DOI: 10.1002/ijc.32036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Considering the importance of microRNAs (miRNAs) in regulating cellular processes, we performed microarray analysis and revealed miR-4324 as one of the most differentially expressed miRNAs in bladder cancer (BCa). Then, we discovered that miR-4324 was a negative regulator of Rac GTPase activating protein 1 (RACGAP1) and that RACGAP1 functioned as an oncogenic protein in BCa. Our studies indicated that ectopic overexpression of miR-4324 in BCa cells significantly suppressed cell proliferation and metastasis and enhanced chemotherapy sensitivity to doxorubicin by repressing RACGAP1 expression. Further studies showed that estrogen receptor 1 (ESR1) increased the expression of miR-4324 by binding to its promoter, while the downregulation of ESR1 in BCa was caused by hypermethylation of its promoter. p-STAT3 induced the enrichment of DNMT3B by binding to the ESR1 promoter and then induced methylation of the ESR1 promoter. In turn, RACGAP1 induced STAT3 phosphorylation, increasing p-STAT3 expression and promoting its translocation to the nucleus. Therefore, the miR-4324-RACGAP1-STAT3-ESR1 feedback loop could be a critical regulator of BCa progression.
Collapse
Affiliation(s)
- Qiangqiang Ge
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, D.C., USA
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China.,Urological Clinical Research Center of Laparoscopy in Hubei Province, Wuhan, China
| |
Collapse
|
47
|
Seshachalam VP, Sekar K, Hui KM. Insights into the etiology-associated gene regulatory networks in hepatocellular carcinoma from The Cancer Genome Atlas. J Gastroenterol Hepatol 2018; 33:2037-2047. [PMID: 29672926 DOI: 10.1111/jgh.14262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Hepatitis B virus (HBV), hepatitis C virus, alcohol consumption, and non-alcoholic fatty liver disease are the major known risk factors for hepatocellular carcinoma (HCC). There have been very few studies comparing the underlying biological mechanisms associated with the different etiologies of HCC. In this study, we hypothesized the existence of different regulatory networks associated with different liver disease etiologies involved in hepatocarcinogenesis. METHODS Using upstream regulatory analysis tool in ingenuity pathway analysis software, upstream regulators (URs) were predicted using differential expressed genes for HCC to facilitate the interrogation of global gene regulation. RESULTS Analysis of regulatory networks for HBV HCC revealed E2F1 as activated UR, regulating genes involved in cell cycle and DNA replication, and HNF4A and HNF1A as inhibited UR. In hepatitis C virus HCC, interferon-γ, involved in cellular movement and signaling, was activated, while IL1RN, mitogen-activated protein kinase 1 involved in interleukin 22 signaling and immune response, was inhibited. In alcohol consumption HCC, ERBB2 involved in inflammatory response and cellular movement was activated, whereas HNF4A and NUPR1 were inhibited. For HCC derived from non-alcoholic fatty liver disease, miR-1249-5p was activated, and NUPR1 involved in cell cycle and apoptosis was inhibited. The prognostic value of representative genes identified in the regulatory networks for HBV HCC can be further validated by an independent HBV HCC dataset established in our laboratory with survival data. CONCLUSIONS Our study identified functionally distinct candidate URs for HCC developed from different etiologic risk factors. Further functional validation studies of these regulatory networks could facilitate the management of HCC towards personalized medicine.
Collapse
Affiliation(s)
| | - Karthik Sekar
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Center Singapore, Singapore
| | - Kam M Hui
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Center Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
48
|
Martini T, Heinkele J, Mayr R, Weis CA, Wezel F, Wahby S, Eckstein M, Schnöller T, Breyer J, Wirtz R, Ritter M, Bolenz C, Erben P. Predictive value of lymphangiogenesis and proliferation markers on mRNA level in urothelial carcinoma of the bladder after radical cystectomy. Urol Oncol 2018; 36:530.e19-530.e27. [PMID: 30446441 DOI: 10.1016/j.urolonc.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 09/03/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To evaluate the mRNA expression of lymphangiogenesis and proliferation markers and to examine its association with histopathological characteristics and clinical outcome in patients with urothelial carcinoma of the bladder (UCB) after radical cystectomy (RC). PATIENTS AND METHODS Gene expression analysis of the vascular endothelial growth -C and -D (VEGF-C/-D), its receptor VEGF receptor-3 (VEGFR-3), MKI67, and RACGAP1 was performed in 108 patients after radical cystectomy and their correlation with clinical-pathological parameters was investigated. Uni- and multivariate regression analyses were used to identify predictors for cancer-specific survival (CSS), recurrence-free survival (RFS) and overall survival (OS) after RC. RESULTS The expression of RACGAP1 and VEGFR-3 showed an association with a higher pT stage (P = 0.049; P = 0.009). MKI67 showed an association with a high-grade urothelial carcinoma of the bladder (P = 0.021). VEGFR-3 expression was significantly associated with the presence of lymphovascular invasion (LVI) (P = 0.016) and lymph node metastases (pN+) (P = 0.028). With the univariate analysis, overexpression of VEGFR-3 (P = 0.029) and the clinical-pathological parameters pT stage (P < 0.0001), pN+ (P = 0.0004), LVI (P < 0.0001) and female gender (P = 0.021) were significantly associated with a reduced CSS. Multivariate analysis identified a higher pT stage (P = 0.017) and LVI (P = 0.008) as independent predictors for reduced CSS. Independent predictors for reduced OS were a higher pT stage (P = 0.0007) and LVI (P = 0.0021), while overexpression of VEGF-D was associated with better OS (P < 0.0001). CONCLUSIONS The mRNA expression of the investigated markers showed associations with common histopathological parameters. Increased expression of VEGF-D is independently associated with better overall survival.
Collapse
Affiliation(s)
| | - Jakob Heinkele
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Roman Mayr
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix Wezel
- Department of Urology, University of Ulm, Ulm, Germany
| | - Sarah Wahby
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Markus Eckstein
- Institute of Pathology, University of Erlangen-Nüremberg, Erlangen, Germany
| | | | - Johannes Breyer
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Germany
| | - Ralph Wirtz
- STRATIFYER Molecular Pathology GmbH, Cologne, Germany; Institute of Pathology, The St. Elisabeth Hospital Köln-Hohenlind, Cologne, Germany
| | - Manuel Ritter
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Philipp Erben
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
49
|
Hajiasgharzadeh K, Somi MH, Shanehbandi D, Mokhtarzadeh A, Baradaran B. Small interfering RNA-mediated gene suppression as a therapeutic intervention in hepatocellular carcinoma. J Cell Physiol 2018; 234:3263-3276. [PMID: 30362510 DOI: 10.1002/jcp.27015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the lethal and difficult-to-cure cancers worldwide. Owing to the late diagnosis and drug resistance of malignant hepatocytes, treatment of this cancer by conventional chemotherapy agents is challenging, and researchers are seeking new alternative treatment options to overcome therapy resistance in this neoplasm. RNA interference (RNAi) is a potent and specific approach in targeting gene expression and has emerged as a novel therapeutic tool for many diseases, including cancers. Small interfering RNA (siRNA) is a type of RNAi that is produced intracellularly from exogenous synthetic oligonucleotides and can selectively knock down target gene expression in a sequence-specific manner. Various factors play roles in the initiation and progression of HCC and provide multiple candidate targets for siRNA intervention. In addition, due to the liver's unique architecture and availability of some hepatic siRNA delivery methods, this organ has received much more attention as a target tissue for such oligonucleotide action. Recent advances in designing nanoparticle systems for the in vivo delivery of siRNAs have markedly enhanced the potency of siRNA-mediated gene silencing under clinical development for HCC therapy. The utility of siRNAs as anti-HCC agents is the subject of the current review. siRNA-based gene therapies could be one of the main feasible approaches for HCC therapy in the future.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Wilson BD, Ricks-Santi LJ, Mason TE, Abbas M, Kittles RA, Dunston GM, Kanaan YM. Admixture Mapping Links RACGAP1 Regulation to Prostate Cancer in African Americans. Cancer Genomics Proteomics 2018; 15:185-191. [PMID: 29695400 DOI: 10.21873/cgp.20076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer is the most common malignancy in US males. African American men have higher incidence and mortality rates than European Americans. Five single nucleotide polymorphisms are associated with PCa. We hypothesized haplotypes inferred from these SNPs are also associated with PCa. PATIENTS AND METHODS We genotyped SNPs in a case-control admixture mapping study. SNP haplotypes inferred for 157 PCa cases and 150 controls were used in the regression analysis. RESULTS We found an association between "GTCCC", "ATTCT", and "ACCCC" haplotypes and PCa after ancestry adjustment (OR=3.62, 95%CI=1.42-9.21, p=0.0070; OR=7.89, 95%CI=2.36-26.31, p=0.0008; OR=4.34, 95%CI=1.75-10.78, p=0.0016). The rs615382 variant disrupts the recombination signal binding protein with immunoglobulin kappa J binding site in Rac GTPase activating protein 1 (RACGAP1). CONCLUSION Disruption of notch 1 mediated-repression of RACGAP1 may contribute to PCa in African Americans.
Collapse
Affiliation(s)
- Bradford D Wilson
- National Human Genome Center, Howard University, Washington, DC, U.S.A.
| | | | - Tshela E Mason
- National Human Genome Center, Howard University, Washington, DC, U.S.A
| | - Muneer Abbas
- National Human Genome Center, Howard University, Washington, DC, U.S.A.,Department of Microbiology, Howard University, Washington, DC, U.S.A
| | - Rick A Kittles
- City of Hope Comprehensive Cancer Center, Duarte, CA, U.S.A
| | - Georgia M Dunston
- National Human Genome Center, Howard University, Washington, DC, U.S.A.,Department of Microbiology, Howard University, Washington, DC, U.S.A
| | - Yasmine M Kanaan
- Department of Microbiology, Howard University, Washington, DC, U.S.A
| |
Collapse
|