1
|
Salinas MD, Rodriguez P, Rubio G, Valdor R. Expression of Lumican and Osteopontin in Perivascular Areas of the Glioblastoma Peritumoral Niche and Its Value for Prognosis. Int J Mol Sci 2024; 26:192. [PMID: 39796053 PMCID: PMC11720198 DOI: 10.3390/ijms26010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs. As biomarkers are rarely studied in TME, in this work, we aimed to validate Lumican and OPN as prognostic markers in the perivascular areas of the peritumoral niche of a cohort of GB patients. Previously, we had validated their expression in GB xenografted mice presenting GB infiltration (OPN) or GB elimination (Lumican) dependent on competent or deficient CMA PCs, respectively. Then, patient sample classification by GB infiltration into the peritumoral brain parenchyma was related to GB-induced CMA in microvasculature PCs, analyzing the expression of the lysosomal receptor, LAMP-2A. Our results revealed a correlation between GB-induced CMA activity in peritumoral PCs and GB patients' outcomes, identifying three degrees of severity. The perivascular expression of both immune activation markers, Iba1 and CD68, was related to CMA-dependent PC immune function and determined as useful for efficient GB prognosis. Lumican expression was identified in perivascular areas of patients with less severe outcome and partially co-localizing with PCs presenting low CMA activity, while OPN was primarily found in perivascular areas of patients with poor outcome and partially co-localizing with PCs presenting high CMA activity. Importantly, we found sex differences in the incidence of middle-aged patients, being significantly higher in men but with worse prognosis in women. Our results confirmed that Lumican and OPN in perivascular areas of the GB peritumoral niche are effective predictive biomarkers for evaluating prognosis and monitoring possible therapeutic immune responses dependent on PCs in tumor progression.
Collapse
Affiliation(s)
- María Dolores Salinas
- Biochemistry, Molecular Biology B and Immunology Department, University of Murcia (UMU), 30120 Murcia, Spain; (M.D.S.); (G.R.)
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Pablo Rodriguez
- Biochemistry, Molecular Biology B and Immunology Department, University of Murcia (UMU), 30120 Murcia, Spain; (M.D.S.); (G.R.)
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Gonzalo Rubio
- Biochemistry, Molecular Biology B and Immunology Department, University of Murcia (UMU), 30120 Murcia, Spain; (M.D.S.); (G.R.)
| | - Rut Valdor
- Biochemistry, Molecular Biology B and Immunology Department, University of Murcia (UMU), 30120 Murcia, Spain; (M.D.S.); (G.R.)
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
2
|
Pankova V, Krasny L, Kerrison W, Tam YB, Chadha M, Burns J, Wilding CP, Chen L, Chowdhury A, Perkins E, Lee AT, Howell L, Guljar N, Sisley K, Fisher C, Chudasama P, Thway K, Jones RL, Huang PH. Clinical Implications and Molecular Features of Extracellular Matrix Networks in Soft Tissue Sarcomas. Clin Cancer Res 2024; 30:3229-3242. [PMID: 38810090 PMCID: PMC11292195 DOI: 10.1158/1078-0432.ccr-23-3960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE The landscape of extracellular matrix (ECM) alterations in soft tissue sarcomas (STS) remains poorly characterized. We aimed to investigate the tumor ECM and adhesion signaling networks present in STS and their clinical implications. EXPERIMENTAL DESIGN Proteomic and clinical data from 321 patients across 11 histological subtypes were analyzed to define ECM and integrin adhesion networks. Subgroup analysis was performed in leiomyosarcomas (LMS), dedifferentiated liposarcomas (DDLPS), and undifferentiated pleomorphic sarcomas (UPS). RESULTS This analysis defined subtype-specific ECM profiles including enrichment of basement membrane proteins in LMS and ECM proteases in UPS. Across the cohort, we identified three distinct coregulated ECM networks which are associated with tumor malignancy grade and histological subtype. Comparative analysis of LMS cell line and patient proteomic data identified the lymphocyte cytosolic protein 1 cytoskeletal protein as a prognostic factor in LMS. Characterization of ECM network events in DDLPS revealed three subtypes with distinct oncogenic signaling pathways and survival outcomes. Evaluation of the DDLPS subtype with the poorest prognosis nominates ECM remodeling proteins as candidate antistromal therapeutic targets. Finally, we define a proteoglycan signature that is an independent prognostic factor for overall survival in DDLPS and UPS. CONCLUSIONS STS comprise heterogeneous ECM signaling networks and matrix-specific features that have utility for risk stratification and therapy selection, which could in future guide precision medicine in these rare cancers.
Collapse
Affiliation(s)
- Valeriya Pankova
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - William Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Yuen B. Tam
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Madhumeeta Chadha
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Christopher P. Wilding
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Liang Chen
- Precision Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases, Heidelberg, Germany.
| | - Avirup Chowdhury
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Emma Perkins
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | | | - Louise Howell
- Light Microscopy Facility, The Institute of Cancer Research, London, United Kingdom.
| | - Nafia Guljar
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Karen Sisley
- Division of Clinical Medicine, The Medical School, University of Sheffield, Sheffield, United Kingdom.
| | - Cyril Fisher
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| | - Priya Chudasama
- Precision Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases, Heidelberg, Germany.
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Robin L. Jones
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
3
|
Yang J, Qin L, Zhou S, Li J, Tu Y, Mo M, Liu X, Huang J, Qin X, Jiao A, Wei W, Yang P. Network pharmacology, molecular docking and experimental study of CEP in nasopharyngeal carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117667. [PMID: 38159821 DOI: 10.1016/j.jep.2023.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Stephania cephalantha Hayata is an important traditional medicinal plant widely used in traditional medicine to treat cancer. Cepharanthine (CEP) was extracted from the roots of Stephania cephalantha Hayata. It has been found to exhibit anticancer activity in different types of cancer cells. Nevertheless, the activity of CEP against nasopharyngeal carcinoma (NPC) and its underlying mechanism warrant further investigation. AIMS OF THE STUDY NPC is an invasive and highly metastatic malignancy that affects the head and neck region. This research aimed to investigate the pharmacological properties and underlying mechanism of CEP against NPC, aiming to offer novel perspectives on treating NPC using CEP. MATERIALS AND METHODS In vitro, the pharmacological activity of CEP against NPC was evaluated using the CCK-8 assay. To predict and elucidate the anticancer mechanism of CEP against NPC, we employed network pharmacology, conducted molecular docking analysis, and performed Western blot experiments. In vivo validation was performed through a nude mice xenograft model of human NPC, Western blot and immunohistochemical (IHC) assays to confirm pharmacological activity and the mechanism. RESULTS In a dose-dependent manner, the proliferation and clonogenic capacity of NPC cells were significantly inhibited by CEP. Additionally, NPC cell migration was suppressed by CEP. The results obtained from network pharmacology experiments revealed that anti-NPC effect of CEP was associated with 8 core targets, including EGFR, AKT1, PIK3CA, and mTOR. By performing molecular docking, the binding capacity of CEP to the candidate core proteins (EGFR, AKT1, PIK3CA, and mTOR) was predicted, resulting in docking energies of -10.0 kcal/mol for EGFR, -12.4 kcal/mol for PIK3CA, -10.8 kcal/mol for AKT1, and -8.6 kcal/mol for mTOR. The Western blot analysis showed that CEP effectively suppressed the expression of EGFR and the phosphorylation levels of downstream signaling proteins, including PI3K, AKT, mTOR, and ERK. After CEP intervention, a noteworthy decrease in tumor size, without inducing any toxicity, was observed in NPC xenograft nude mice undergoing in vivo treatment. Additionally, IHC analysis demonstrated a significant reduction in the expression levels of EGFR and Ki-67 following CEP treatment. CONCLUSION CEP exhibits significant pharmacological effects on NPC, and its mechanistic action involves restraining the activation of the EGFR/PI3K/AKT pathway. CEP represents a promising pharmaceutical agent for addressing and mitigating NPC.
Collapse
Affiliation(s)
- Jiangping Yang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Liujie Qin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Shouchang Zhou
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jixing Li
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yu Tu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Minfeng Mo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xuenian Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jinglun Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xiumei Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Aijun Jiao
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Wei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Peilin Yang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
4
|
Smith MM, Melrose J. Lumican, a Multifunctional Cell Instructive Biomarker Proteoglycan Has Novel Roles as a Marker of the Hypercoagulative State of Long Covid Disease. Int J Mol Sci 2024; 25:2825. [PMID: 38474072 DOI: 10.3390/ijms25052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.
Collapse
Affiliation(s)
- Margaret M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Arthropharm Pty Ltd., Bondi Junction, NSW 2022, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Hartupee C, Nagalo BM, Chabu CY, Tesfay MZ, Coleman-Barnett J, West JT, Moaven O. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target. Front Immunol 2024; 15:1287459. [PMID: 38361931 PMCID: PMC10867137 DOI: 10.3389/fimmu.2024.1287459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading cause of cancer-related deaths in the United States. Limitations in early detection and treatment barriers contribute to the lack of substantial success in the treatment of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC microenvironment that creates a physical and immunologic barrier. Stromal support cells and immunomodulatory cells face aberrant signaling by pancreatic cancer cells that shifts the complex balance of proper repair mechanisms into a state of dysregulation. The product of this dysregulation is the desmoplastic environment that encases the malignant cells leading to a dense, hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance, and suppresses anti-tumor immune invasion. This desmoplastic environment combined with the immunoregulatory events that allow it to persist serve as the primary focus of this review. The physical barrier and immune counterbalance in the tumor microenvironment (TME) make PDAC an immunologically cold tumor. To convert PDAC into an immunologically hot tumor, tumor microenvironment could be considered alongside the tumor cells. We discuss the complex network of microenvironment molecular and cellular composition and explore how they can be targeted to overcome immuno-therapeutic challenges.
Collapse
Affiliation(s)
- Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Siteman Cancer Center, Washington University, St. Louis, MO, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Joycelynn Coleman-Barnett
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Louisiana State University - Louisiana Children's Medical Center (LSU - LCMC) Cancer Center, New Orleans, LA, United States
| |
Collapse
|
6
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
7
|
Trevisi G, Mangiola A. Current Knowledge about the Peritumoral Microenvironment in Glioblastoma. Cancers (Basel) 2023; 15:5460. [PMID: 38001721 PMCID: PMC10670229 DOI: 10.3390/cancers15225460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is a deadly disease, with a mean overall survival of less than 2 years from diagnosis. Recurrence after gross total surgical resection and adjuvant chemo-radiotherapy almost invariably occurs within the so-called peritumoral brain zone (PBZ). The aim of this narrative review is to summarize the most relevant findings about the biological characteristics of the PBZ currently available in the medical literature. The PBZ presents several peculiar biological characteristics. The cellular landscape of this area is different from that of healthy brain tissue and is characterized by a mixture of cell types, including tumor cells (seen in about 30% of cases), angiogenesis-related endothelial cells, reactive astrocytes, glioma-associated microglia/macrophages (GAMs) with anti-inflammatory polarization, tumor-infiltrating lymphocytes (TILs) with an "exhausted" phenotype, and glioma-associated stromal cells (GASCs). From a genomic and transcriptomic point of view, compared with the tumor core and healthy brain tissue, the PBZ presents a "half-way" pattern with upregulation of genes related to angiogenesis, the extracellular matrix, and cellular senescence and with stemness features and downregulation in tumor suppressor genes. This review illustrates that the PBZ is a transition zone with a pre-malignant microenvironment that constitutes the base for GBM progression/recurrence. Understanding of the PBZ could be relevant to developing more effective treatments to prevent GBM development and recurrence.
Collapse
Affiliation(s)
- Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
- Neurosurgical Unit, Ospedale Spirito Santo, 65122 Pescara, Italy
| | - Annunziato Mangiola
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
8
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Guo Z, Li Z, Chen M, Qi X, Sun Z, Wu S, Hou X, Qiu M, Cao Y. Multi-omics analysis reveals the prognostic and tumor micro-environmental value of lumican in multiple cancer types. Front Mol Biosci 2023; 10:1158747. [PMID: 37692065 PMCID: PMC10484533 DOI: 10.3389/fmolb.2023.1158747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Background: Lumican (LUM), a proteoglycan of the extracellular matrix, has been reported to be involved in the regulation of immune escape processes, but the data supporting this phenomenon are not sufficient. In this study, we aimed to explore the links among LUM expression, survival, tumor microenvironment (TME), and immunotherapy in 33 cancer types. Methods: Data from several databases, such as UCSC Xena, GTEx, UALCAN, HPA, GEPIA2, TISIDB, PrognoScan, TIMER2, and GEO, as well as published studies, were used to determine the relationship between LUM expression and clinical features, TME, heterogeneity, and tumor stemness. Results: The expression of LUM was statistically different in most tumors versus normal tissues, both at the RNA and protein expression levels. High expression of LUM was typically associated with a poor prognosis in tumors. Additionally, immune scores, six immune cells, four immunosuppressive cells, cancer-associated fibroblasts (CAFs)-associated and immunosuppressive factors, tumor mutation burden (TMB), microsatellite instability (MSI), DNAss, and RNAss were all significantly associated with LUM. Among them, LUM expression displayed a significant positive correlation with CAFs and their factors, and exhibited immunosuppressive effects in six independent immunotherapy cohorts. Conclusion: Multi-omics analysis suggests that LUM may have been a prognostic marker, contributed to immunosuppression in the TME, and decreased the effectiveness of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zehuai Guo
- Department of Internal Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zeyun Li
- Guangzhou Huaxia Vocational College, Guangzhou, China
| | - Ming Chen
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiangjun Qi
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuenan Hou
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengli Qiu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Dai G, Sun Y, Wei R, Xi L. Small Leucine-Rich Proteoglycan PODNL1 Identified as a Potential Tumor Matrix-Mediated Biomarker for Prognosis and Immunotherapy in a Pan-Cancer Setting. Curr Issues Mol Biol 2023; 45:6116-6139. [PMID: 37504302 PMCID: PMC10378008 DOI: 10.3390/cimb45070386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The podocan-like protein 1 (PODNL1), an important member of the small leucine-rich proteoglycans (SLRP) family, is a crucial component of the tumor microenvironment (TME). But its prognostic values and the role in the TME have not been systematically estimated in a pan-cancer setting. Targeting PODNL1, a systematic exploration into the TCGA datasets, reconciling with the analyses of single-cell transcriptomes and immunotherapeutic cohorts in cancers, and validation by tissue microarray-based multiplex immunofluorescence staining was performed. PODNL1 was significantly correlated with the poor prognosis and immunotherapeutic responses in various cancers. In-depth demonstration of molecular mechanisms indicated that PODNL1 expressions were notably positively correlated with cancer-associated fibroblast (CAF) infiltration levels in 33 types of cancers. It also positively correlated with the pan-fibroblast TGF-β response signature score, and the hallmarks including TGF-β, TNF-α, inflammatory response, apical junction, epithelial-mesenchymal transition and hedgehog in pan-cancer. Furthermore, high PODNL1 expressions were positively related with the regulation of tumor-promoting TGF-β signaling through downregulating SMAD2/3:4 heterotrimer regulations transcription and up-regulating the pathway restricted SMAD protein phosphorylation. Single-cell transcriptome analyses and immunofluorescence validations indicated that PODNL1 was predominantly expressed in the cancer cells and CAFs in various cancers. Additionally, the heterogeneity of cancer genotype-phenotype cross-talking was also observed associated with PODNL1. Our systematic study indicates that PODNL1 plays an important role in the complex regulation network of tumor progression, and lays a foundation for further exploration to develop PODNL1 as a valuable matrix-mediated biomarker for cancer immunotherapy and prognosis in a pan-cancer setting.
Collapse
Affiliation(s)
- Geyang Dai
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Sun
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Wei
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Xi
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Berdiaki A, Giatagana EM, Tzanakakis G, Nikitovic D. The Landscape of Small Leucine-Rich Proteoglycan Impact on Cancer Pathogenesis with a Focus on Biglycan and Lumican. Cancers (Basel) 2023; 15:3549. [PMID: 37509212 PMCID: PMC10377491 DOI: 10.3390/cancers15143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer development is a multifactorial procedure that involves changes in the cell microenvironment and specific modulations in cell functions. A tumor microenvironment contains tumor cells, non-malignant cells, blood vessels, cells of the immune system, stromal cells, and the extracellular matrix (ECM). The small leucine-rich proteoglycans (SLRPs) are a family of nineteen proteoglycans, which are ubiquitously expressed among mammalian tissues and especially abundant in the ECM. SLRPs are divided into five canonical classes (classes I-III, containing fourteen members) and non-canonical classes (classes IV-V, including five members) based on their amino-acid structural sequence, chromosomal organization, and functional properties. Variations in both the protein core structure and glycosylation status lead to SLRP-specific interactions with cell membrane receptors, cytokines, growth factors, and structural ECM molecules. SLRPs have been implicated in the regulation of cancer growth, motility, and invasion, as well as in cancer-associated inflammation and autophagy, highlighting their crucial role in the processes of carcinogenesis. Except for the class I SLRP decorin, to which an anti-tumorigenic role has been attributed, other SLPRs' roles have not been fully clarified. This review will focus on the functions of the class I and II SLRP members biglycan and lumican, which are correlated to various aspects of cancer development.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
12
|
Hu G, Xiao Y, Ma C, Wang J, Qian X, Wu X, Zhu F, Sun S, Qian J. Lumican is a potential predictor on the efficacy of concurrent chemoradiotherapy in cervical squamous cell carcinoma. Heliyon 2023; 9:e18011. [PMID: 37483824 PMCID: PMC10362307 DOI: 10.1016/j.heliyon.2023.e18011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose To identify new novel biomarkers for predicting the efficacy of concurrent chemoradiotherapy(CCRT) in cervical squamous cell carcinoma(CESC). Methods Gene expression datasets GSE56363, GSE5787, and GSE168009 were analyzed to identify candidate genes to predict the efficacy of CCRT in CESC. Single-cell RNA sequencing (scRNA-seq) data from GSE168652 and CESC patients in The Cancer Genome Atlas(TCGA) were systematically analyzed to explore possible molecular mechanisms. Kaplan-Meier evaluated the correlation between LUM (Lumican) and prognostic significance. The expression of LUM protein in biopsy tissues before CCRT was detected by immunohistochemistry in 15 CESC patients. Results LUM mRNA levels were significantly upregulated in nonresponders of CESC.patients receiving CCRT and positively correlated with poor therapeutic effect. Furthermore, high expression of LUM influenced the immune microenvironment in CESC patient-derived organoids treated with CCRT. LUM overexpression in CESC cells induced resistance to CCRT, potentially via immune landscape modulation. Gene Set Enrichment Analysis (GSEA) revealed that possible mechanisms underlying resistance to CCRT might involve the PARs and IL1 signaling pathway affecting the immune landscape. Conclusions High LUM expression is correlated with poor efficacy in CESC patients receiving CCRT, possibly through the PARs and IL1 signaling pathway affecting the immune landscape.
Collapse
Affiliation(s)
- Ge Hu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Ying Xiao
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, PR China
| | - Chanchan Ma
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230031, PR China
| | - Jinyun Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Xiaotao Qian
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Xiaowei Wu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Fengqin Zhu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Shiying Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230031, PR China
| | - Junchao Qian
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| |
Collapse
|
13
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
14
|
Tan Y, Zhu J, Gutierrez Reyes CD, Lin Y, Tan Z, Wu Z, Zhang J, Cano A, Verschleisser S, Mechref Y, Singal AG, Parikh ND, Lubman DM. Discovery of Core-Fucosylated Glycopeptides as Diagnostic Biomarkers for Early HCC in Patients with NASH Cirrhosis Using LC-HCD-PRM-MS/MS. ACS OMEGA 2023; 8:12467-12480. [PMID: 37033807 PMCID: PMC10077536 DOI: 10.1021/acsomega.3c00519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Aberrant changes in site-specific core fucosylation (CF) of serum proteins contribute to cancer development and progression, which enables them as potential diagnostic markers of tumors. An optimized data-dependent acquisition (DDA) workflow involving isobaric tags for relative and absolute quantitation-labeling and enrichment of CF peptides by lens culinaris lectin was applied to identify CF of serum proteins in a test set of patients with nonalcoholic steatohepatitis (NASH)-related cirrhosis (N = 16) and hepatocellular carcinoma (HCC, N = 17), respectively. A total of 624 CF peptides from 343 proteins, with 683 CF sites, were identified in our DDA-mass spectrometry (MS) analysis. Subsequently, 19 candidate CF peptide markers were evaluated by a target parallel reaction-monitoring-MS workflow in a validation set of 58 patients, including NASH-related cirrhosis (N = 29), early-stage HCC (N = 21), and late-stage HCC (N = 8). Significant changes (p < 0.01) were observed in four CF peptides between cirrhosis and HCC, where peptide LGSFEGLVn160LTFIHLQHNR from LUM in combination with AFP showed the best diagnostic performance in discriminating HCC from cirrhosis, with an area under curve (AUC) of 0.855 compared to AFP only (AUC = 0.717). This peptide in combination with AFP also significantly improved diagnostic performance in distinguishing early HCC from cirrhosis, with an AUC of 0.839 compared to AFP only (AUC = 0.689). Validation of this novel promising biomarker panel in larger cohorts should be performed.
Collapse
Affiliation(s)
- Yifei Tan
- Department
of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610017, China
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United
States
| | - Jianhui Zhu
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United
States
| | | | - Yu Lin
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United
States
| | - Zhijing Tan
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United
States
| | - Zuowei Wu
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United
States
| | - Jie Zhang
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United
States
| | - Alva Cano
- Department
of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sara Verschleisser
- Department
of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yehia Mechref
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Amit G. Singal
- Department
of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Neehar D. Parikh
- Department
of Internal Medicine, University of Michigan
Medical Center, Ann Arbor, Michigan 48109, United States
| | - David M. Lubman
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
15
|
Gao H, Qian R, Ren Q, Zhang L, Qin W, Zhou C, Wang H, Liu C, Zhang Y. The upregulation of keratocan promotes the progression of human pancreatic cancer. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Linke F, Johnson JEC, Kern S, Bennett CD, Lourdusamy A, Lea D, Clifford SC, Merry CLR, Stolnik S, Alexander MR, Peet AC, Scurr DJ, Griffiths RL, Grabowska AM, Kerr ID, Coyle B. Identifying new biomarkers of aggressive Group 3 and SHH medulloblastoma using 3D hydrogel models, single cell RNA sequencing and 3D OrbiSIMS imaging. Acta Neuropathol Commun 2023; 11:6. [PMID: 36631900 PMCID: PMC9835248 DOI: 10.1186/s40478-022-01496-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
The most common malignant brain tumour in children, medulloblastoma (MB), is subdivided into four clinically relevant molecular subgroups, although targeted therapy options informed by understanding of different cellular features are lacking. Here, by comparing the most aggressive subgroup (Group 3) with the intermediate (SHH) subgroup, we identify crucial differences in tumour heterogeneity, including unique metabolism-driven subpopulations in Group 3 and matrix-producing subpopulations in SHH. To analyse tumour heterogeneity, we profiled individual tumour nodules at the cellular level in 3D MB hydrogel models, which recapitulate subgroup specific phenotypes, by single cell RNA sequencing (scRNAseq) and 3D OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) imaging. In addition to identifying known metabolites characteristic of MB, we observed intra- and internodular heterogeneity and identified subgroup-specific tumour subpopulations. We showed that extracellular matrix factors and adhesion pathways defined unique SHH subpopulations, and made up a distinct shell-like structure of sulphur-containing species, comprising a combination of small leucine-rich proteoglycans (SLRPs) including the collagen organiser lumican. In contrast, the Group 3 tumour model was characterized by multiple subpopulations with greatly enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle activity. Extensive TCA cycle metabolite measurements revealed very high levels of succinate and fumarate with malate levels almost undetectable particularly in Group 3 tumour models. In patients, high fumarate levels (NMR spectroscopy) alongside activated stress response pathways and high Nuclear Factor Erythroid 2-Related Factor 2 (NRF2; gene expression analyses) were associated with poorer survival. Based on these findings we predicted and confirmed that NRF2 inhibition increased sensitivity to vincristine in a long-term 3D drug treatment assay of Group 3 MB. Thus, by combining scRNAseq and 3D OrbiSIMS in a relevant model system we were able to define MB subgroup heterogeneity at the single cell level and elucidate new druggable biomarkers for aggressive Group 3 and low-risk SHH MB.
Collapse
Affiliation(s)
- Franziska Linke
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - James E C Johnson
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Stefanie Kern
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christopher D Bennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Children's Hospital, Birmingham, UK
| | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Daniel Lea
- Digital Research Service, University of Nottingham, Nottingham, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, NE1 7RU, UK
| | - Catherine L R Merry
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Children's Hospital, Birmingham, UK
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Anna M Grabowska
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
17
|
Gao H, Liu C, Ren Q, Zhang L, Qin W, Wang H, Zhang Y. The Novel SLRP Family Member Lumican Suppresses Pancreatic Cancer Cell Growth. Pancreas 2023; 52:e29-e36. [PMID: 37378898 DOI: 10.1097/mpa.0000000000002211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVES The past studies clearly indicated that lumican was important in the context of pancreatic cancer (PC) onset and progression, but failed to clarify the underlying mechanistic basis for such activity. As such, we evaluated the functional importance of lumican in the context of pancreatic ductal adenocarcinoma (PDAC) to understand its mechanistic role in PC. METHODS Lumican levels were evaluated in PDAC patient tissues via quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry approaches. The role of lumican was additionally assessed via transfecting PDAC cell lines (BxPC-3, PANC-1) with lumican knockdown or overexpression constructs and treating PDAC cell lines with exogenous recombinant human lumican. RESULTS Lumican expression levels were significantly higher in pancreatic tumor tissues relative to healthy paracancerous tissues. Lumican knockdown in BxPC-3 and PANC-1 enhanced their proliferation and migration, but reduced cellular apoptosis. Alternatively, lumican overexpression and exogenous lumican exposure failed to alter the proliferative activity of these cells. Further, lumican knockdown in BxPC-3 and PANC-1 cells results in marked P53 and P21 dysregulation. CONCLUSIONS Lumican may suppress PDAC tumor growth by regulating P53 and P21, and the function of lumican sugar chains in the context of PC is worth studying in future studies.
Collapse
Affiliation(s)
| | | | | | - Litao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, China
| | - Wei Qin
- From the College of Pharmacy
| | | | | |
Collapse
|
18
|
Cancer-Associated Fibroblast Diversity Shapes Tumor Metabolism in Pancreatic Cancer. Cancers (Basel) 2022; 15:cancers15010061. [PMID: 36612058 PMCID: PMC9817728 DOI: 10.3390/cancers15010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite extensive research, the 5-year survival rate of pancreatic cancer (PDAC) patients remains at only 9%. Patients often show poor treatment response, due partly to a highly complex tumor microenvironment (TME). Cancer-associated fibroblast (CAF) heterogeneity is characteristic of the pancreatic TME, where several CAF subpopulations have been identified, such as myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen presenting CAFs (apCAFs). In PDAC, cancer cells continuously adapt their metabolism (metabolic switch) to environmental changes in pH, oxygenation, and nutrient availability. Recent advances show that these environmental alterations are all heavily driven by stromal CAFs. CAFs and cancer cells exchange cytokines and metabolites, engaging in a tight bidirectional crosstalk, which promotes tumor aggressiveness and allows constant adaptation to external stress, such as chemotherapy. In this review, we summarize CAF diversity and CAF-mediated metabolic rewiring, in a PDAC-specific context. First, we recapitulate the most recently identified CAF subtypes, focusing on the cell of origin, activation mechanism, species-dependent markers, and functions. Next, we describe in detail the metabolic crosstalk between CAFs and tumor cells. Additionally, we elucidate how CAF-driven paracrine signaling, desmoplasia, and acidosis orchestrate cancer cell metabolism. Finally, we highlight how the CAF/cancer cell crosstalk could pave the way for new therapeutic strategies.
Collapse
|
19
|
Takahashi I. Importance of Heparan Sulfate Proteoglycans in Pancreatic Islets and β-Cells. Int J Mol Sci 2022; 23:12082. [PMID: 36292936 PMCID: PMC9603760 DOI: 10.3390/ijms232012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
β-cells in the islets of Langerhans of the pancreas secrete insulin in response to the glucose concentration in the blood. When these pancreatic β-cells are damaged, diabetes develops through glucose intolerance caused by insufficient insulin secretion. High molecular weight polysaccharides, such as heparin and heparan sulfate (HS) proteoglycans, and HS-degrading enzymes, such as heparinase, participate in the protection, maintenance, and enhancement of the functions of pancreatic islets and β-cells, and the demand for studies on glycobiology within the field of diabetes research has increased. This review introduces the roles of complex glycoconjugates containing high molecular weight polysaccharides and their degrading enzymes in pancreatic islets and β-cells, including those obtained in studies conducted by us earlier. In addition, from the perspective of glycobiology, this study proposes the possibility of application to diabetes medicine.
Collapse
Affiliation(s)
- Iwao Takahashi
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Morioka 028-3694, Iwate, Japan
| |
Collapse
|
20
|
Cho HJ, Lee YS, Kim DA, Moon SA, Lee SE, Lee SH, Koh JM. Lumican, an Exerkine, Protects against Skeletal Muscle Loss. Int J Mol Sci 2022; 23:ijms231710031. [PMID: 36077426 PMCID: PMC9456076 DOI: 10.3390/ijms231710031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Exerkines are soluble factors secreted by exercised muscles, mimicking the effects of exercise in various organs, including the muscle itself. Lumican is reportedly secreted from muscles; however, its roles in skeletal muscle remain unknown. Herein, we found that lumican mRNA expression in the extensor digitorum longus was significantly higher in exercised mice than in unloading mice, and lumican stimulated myogenesis in vitro. Additionally, lumican knockdown significantly decreased muscle mass and cross-sectional area (CSA) of the muscle fiber in the gastrocnemius muscle of exercised mice. Lumican upregulated phosphorylation of p38 mitogen-activated protein kinase (MAPK) and a p38 inhibitor near completely blocked lumican-stimulated myogenesis. Inhibitors for integrin α2β1 and integrin ανβ3 also prevented lumican-stimulated myogenesis. Systemic lumican treatment, administered via the tail vein for 4 weeks, significantly increased relative muscle masses by 36.1% in ovariectomized mice. In addition, intramuscular lumican injection into unloaded muscles for 2 weeks significantly increased muscle mass by 8.5%. Both intravenous and intramuscular lumican treatment significantly increased muscle CSA. Our in vitro and in vivo experiments indicate that lumican is a muscle-secreted exerkine that affords protection against muscle loss by activating p38 MAPK via integrin receptors.
Collapse
Affiliation(s)
- Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Sung Ah Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-3010-3247
| |
Collapse
|
21
|
Hamada S, Matsumoto R, Masamune A. HIF-1 and NRF2; Key Molecules for Malignant Phenotypes of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14020411. [PMID: 35053572 PMCID: PMC8773475 DOI: 10.3390/cancers14020411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer progression involves interactions between cancer cells and stromal cells in harsh tumor microenvironments, which are characterized by hypoxia, few nutrients, and oxidative stress. Clinically, cancer cells overcome therapeutic interventions, such as chemotherapy and radiotherapy, to continue to survive. Activation of the adaptation mechanism is required for cancer cell survival under these conditions, and it also contributes to the acquisition of the malignant phenotype. Stromal cells, especially pancreatic stellate cells, play a critical role in the formation of a cancer-promoting microenvironment. We here review the roles of key molecules, hypoxia inducible factor-1 and KEAP1-NRF2, in stress response mechanisms for the adaptation to hypoxia and oxidative stress in pancreatic cancer cells and stellate cells. Various cancer-promoting properties associated with these molecules have been identified, and they might serve as novel therapeutic targets in the future. Abstract Pancreatic cancer is intractable due to early progression and resistance to conventional therapy. Dense fibrotic stroma, known as desmoplasia, is a characteristic feature of pancreatic cancer, and develops through the interactions between pancreatic cancer cells and stromal cells, including pancreatic stellate cells. Dense stroma forms harsh tumor microenvironments characterized by hypoxia, few nutrients, and oxidative stress. Pancreatic cancer cells as well as pancreatic stellate cells survive in the harsh microenvironments through the altered expression of signaling molecules, transporters, and metabolic enzymes governed by various stress response mechanisms. Hypoxia inducible factor-1 and KEAP1-NRF2, stress response mechanisms for hypoxia and oxidative stress, respectively, contribute to the aggressive behaviors of pancreatic cancer. These key molecules for stress response mechanisms are activated, both in pancreatic cancer cells and in pancreatic stellate cells. Both factors are involved in the mutual activation of cancer cells and stellate cells, by inducing cancer-promoting signals and their mediators. Therapeutic interventions targeting these pathways are promising approaches for novel therapies. In this review, we summarize the roles of stress response mechanisms, focusing on hypoxia inducible factor-1 and KEAP1-NRF2, in pancreatic cancer. In addition, we discuss the potential of targeting these molecules for the treatment of pancreatic cancer.
Collapse
|
22
|
Chen CG, Iozzo RV. Extracellular matrix guidance of autophagy: a mechanism regulating cancer growth. Open Biol 2022; 12:210304. [PMID: 34982945 PMCID: PMC8727153 DOI: 10.1098/rsob.210304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) exists as a dynamic network of biophysical and biochemical factors that maintain tissue homeostasis. Given its sensitivity to changes in the intra- and extracellular space, the plasticity of the ECM can be pathological in driving disease through aberrant matrix remodelling. In particular, cancer uses the matrix for its proliferation, angiogenesis, cellular reprogramming and metastatic spread. An emerging field of matrix biology focuses on proteoglycans that regulate autophagy, an intracellular process that plays both critical and contextual roles in cancer. Here, we review the most prominent autophagic modulators from the matrix and the current understanding of the cellular pathways and signalling cascades that mechanistically drive their autophagic function. We then critically assess how their autophagic functions influence tumorigenesis, emphasizing the complexities and stage-dependent nature of this relationship in cancer. We highlight novel emerging data on immunoglobulin-containing and proline-rich receptor-1, heparanase and thrombospondin 1 in autophagy and cancer. Finally, we further discuss the pro- and anti-autophagic modulators originating from the ECM, as well as how these proteoglycans and other matrix constituents specifically influence cancer progression.
Collapse
Affiliation(s)
- Carolyn G. Chen
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Zhu L, Ren S, Daniels MJ, Qiu W, Song L, You T, Wang D, Wang Z. Exogenous HMGB1 Promotes the Proliferation and Metastasis of Pancreatic Cancer Cells. Front Med (Lausanne) 2021; 8:756988. [PMID: 34805222 PMCID: PMC8595098 DOI: 10.3389/fmed.2021.756988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Exogenous HMGB1 plays a vital role in tumor recurrence, and HMGB1 is ubiquitous in the tumor microenvironment. However, the mechanism of action is still unclear. We investigated the role of exogenous HMGB1 in tumor proliferation and metastasis using human SW1990 and PANC-1 cells after radiotherapy and explored the possible molecular mechanism. Materials and Methods: Residual PANC-1 cells and SW1990 cells were isolated after radiotherapy. The supernatant after radiotherapy was collected. The relative expression of HMGB1 was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Electron microscope (EMS) was used to collect the images of pancreatic cancer cells pre and post radiotherapy treatment. The proliferation of pancreatic cancer cells which were treated with different radiation doses was measured by Carboxy Fluorescein Succinimidyl Ester (CFSE). The migration rates of pancreatic cancer cells were measured by wound healing assays. Subsequently, the expression of related proteins was detected by Western Blot. In vivo, the subcutaneous pancreatic tumor models of nude mice were established, and therapeutic capabilities were tested. Results: HMGB1 was detected in the supernatant of pancreatic cancer cells after radiotherapy. The results of CFSE showed that exogenous HMGB1 promotes the proliferation and metastasis of pancreatic cancer cells. The western blot results showed activation of p-GSK 3β and up-regulation of N-CA, Bcl-2, and Ki67 in response to HMGB1 stimulation, while E-CA expression was down-regulated in pancreatic cancer cells in response to HMGB1 stimulation. In vivo, ethyl pyruvate (EP, HMGB1 inhibitor) inhibits the growth of tumors and HMGB1 promotes the proliferation of tumors after radiation. Conclusion: Radiotherapy induces HMGB1 release into the extracellular space. Exogenous HMGB1 promotes the proliferation and metastasis of PANC-1 cells and SW1990 cells by activation of p-GSK 3β which is mediated by Wnt pathway.
Collapse
Affiliation(s)
- Li Zhu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ren
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Marcus J. Daniels
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wenli Qiu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian Song
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tao You
- Department of Radiotherapy, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqiu Wang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Lai YJ, Kao WWY, Yeh YH, Chen WJ, Chu PH. Lumican deficiency promotes pulmonary arterial remodeling. Transl Res 2021; 237:63-81. [PMID: 34091085 DOI: 10.1016/j.trsl.2021.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is caused by progressive extracellular matrix disorganization and increased pulmonary vascular cell proliferation. Lumican is a member of the small leucine-rich proteoglycan family that controls cell proliferation, and is a potential endogenous modulator of TGF-β signaling pathway. We show that the decreased lumican protein levels in pulmonary arterial smooth muscle cells (PASMCs) is related to the vascular remodeling and stiffening observed in PAH. The role of lumican in PASMC accumulation and activation in response to pulmonary vascular remodeling remains unclear and we hypothesized that the loss of lumican in PASMCs promotes the development of PAH. Our aim was to establish that lumican plays a pivotal role in modulating pathological vascular remodeling in humans using a rat model of monocrotaline-induced PAH and chronically hypoxic mice. We found that mice with a homozygous deletion of lumican (Lum-/-) showed severe pulmonary arterial remodeling and right ventricular hypertrophy in response to hypoxia, and these effects in mice with chronic hypoxia-induced pulmonary hypertension were successfully treated by the administration of a lumican C-terminal peptide (LumC13C-A, lumikine). We identified a mechanistic link by which lumican signaling prevents the activation of phosphorylated AKT, resulting in the suppression of PASMC proliferation. Lumican deficiency promotes pulmonary arterial remodeling. Administration of lumikine reverses the PAH pathogenesis caused by hypoxia-induced experimental PAH. Lumican is an antiproliferative target that functions to suppress pAKT activation during pathogenesis.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Department of Respiratory Therapy, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan; Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Taiwan.
| | - Winston W-Y Kao
- Department of Ophtalmology, University of Cincinnati, Cincinnati, Ohio
| | - Yung-Hsin Yeh
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Pao-Hsien Chu
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| |
Collapse
|
25
|
Giatagana EM, Berdiaki A, Tsatsakis A, Tzanakakis GN, Nikitovic D. Lumican in Carcinogenesis-Revisited. Biomolecules 2021; 11:biom11091319. [PMID: 34572532 PMCID: PMC8466546 DOI: 10.3390/biom11091319] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Carcinogenesis is a multifactorial process with the input and interactions of environmental, genetic, and metabolic factors. During cancer development, a significant remodeling of the extracellular matrix (ECM) is evident. Proteoglycans (PGs), such as lumican, are glycosylated proteins that participate in the formation of the ECM and are established biological mediators. Notably, lumican is involved in cellular processes associated with tumorigeneses, such as EMT (epithelial-to-mesenchymal transition), cellular proliferation, migration, invasion, and adhesion. Furthermore, lumican is expressed in various cancer tissues and is reported to have a positive or negative correlation with tumor progression. This review focuses on significant advances achieved regardingthe role of lumican in the tumor biology. Here, the effects of lumican on cancer cell growth, invasion, motility, and metastasis are discussed, as well as the repercussions on autophagy and apoptosis. Finally, in light of the available data, novel roles for lumican as a cancer prognosis marker, chemoresistance regulator, and cancer therapy target are proposed.
Collapse
Affiliation(s)
- Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.-M.G.); (A.B.); (G.N.T.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.-M.G.); (A.B.); (G.N.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.-M.G.); (A.B.); (G.N.T.)
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.-M.G.); (A.B.); (G.N.T.)
- Correspondence: ; Tel.: +30-281-039-4557
| |
Collapse
|
26
|
Zhu Y, Cheung ALM. Proteoglycans and their functions in esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:507-521. [PMID: 34367925 PMCID: PMC8317653 DOI: 10.5306/wjco.v12.i7.507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that has a poor prognosis. Its high lethality is mainly due to the lack of symptoms at early stages, which culminates in diagnosis at a late stage when the tumor has already metastasized. Unfortunately, the common cancer biomarkers have low sensitivity and specificity in esophageal cancer. Therefore, a better understanding of the molecular mechanisms underlying ESCC progression is needed to identify novel diagnostic markers and therapeutic targets for intervention. The invasion of cancer cells into the surrounding tissue is a crucial step for metastasis. During metastasis, tumor cells can interact with extracellular components and secrete proteolytic enzymes to remodel the surrounding tumor microenvironment. Proteoglycans are one of the major components of extracellular matrix. They are involved in multiple processes of cancer cell invasion and metastasis by interacting with soluble bioactive molecules, surrounding matrix, cell surface receptors, and enzymes. Apart from having diverse functions in tumor cells and their surrounding microenvironment, proteoglycans also have diagnostic and prognostic significance in cancer patients. However, the functional significance and underlying mechanisms of proteoglycans in ESCC are not well understood. This review summarizes the proteoglycans that have been studied in ESCC in order to provide a comprehensive view of the role of proteoglycans in the progression of this cancer type. A long term goal would be to exploit these molecules to provide new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Yun Zhu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
27
|
Wang Y, Qin C, Yang G, Zhao B, Wang W. The role of autophagy in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2021; 1876:188592. [PMID: 34274449 DOI: 10.1016/j.bbcan.2021.188592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
Patients with pancreatic cancer have an abysmal survival rate. The poor prognosis of pancreatic cancer is due to the difficulty of making an early diagnosis, high rate of metastasis, and frequent chemoresistance. In recent years, as a self-regulatory procedure within cells, the effect and mechanism of autophagy have been explored. Dysregulated autophagy serves as a double-edged sword in cancer development in which autophagy inhibits cancer initiation but promotes cancer progression. After tumor formation, activation of autophagy can induce epithelial-mesenchymal transition, regulate metabolism, specifically glutamine usage and the glycolytic process, and mediate drug resistance in pancreatic cancer. Multiple genes, RNA molecules, proteins, and certain drugs exert antitumor effects by inhibiting autophagy-mediated drug resistance. Several clinical trials have combined autophagy inhibitors with chemotherapeutic drugs in pancreatic cancer treatment, some of which have shown promising results. In conclusion, autophagy plays a vital role in pancreatic cancer progression and deserves further study.
Collapse
Affiliation(s)
- Yuanyang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China.
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China.
| |
Collapse
|
28
|
Deng J, Kang Y, Cheng CC, Li X, Dai B, Katz MH, Men T, Kim MP, Koay E, Huang H, Brekken RA, Fleming JB. Ddr1-induced neutrophil extracellular traps drive pancreatic cancer metastasis. JCI Insight 2021; 6:e146133. [PMID: 34237033 PMCID: PMC8492346 DOI: 10.1172/jci.insight.146133] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumors are characterized by a desmoplastic reaction resulting in dense deposition of collagen that is known to promote cancer progression. A central mediator of pro-tumorigenic collagen signaling is the receptor tyrosine kinase discoid domain receptor 1 (DDR1). DDR1 is a critical driver of a mesenchymal and invasive cancer cell PDAC phenotype. Previous studies have demonstrated that genetic or pharmacologic inhibition of DDR1 reduces PDAC tumorigenesis and metastasis. Here, we investigated whether DDR1 signaling has cancer cell non-autonomous effects that promote PDAC progression and metastasis. We demonstrate that collagen-induced DDR1 activation in cancer cells is a major stimulus for CXCL5 production, resulting in the recruitment of tumor-associated neutrophils (TANs), the formation of neutrophil extracellular traps (NETs) and subsequent cancer cell invasion and metastasis. Moreover, we have identified that collagen-induced CXCL5 production was mediated by a DDR1-PKCθ-SYK-NFkB signaling cascade. Together, these results highlight the critical contribution of collagen I-DDR1 interaction in the formation of an immune microenvironment that promotes PDAC metastasis.
Collapse
Affiliation(s)
- Jenying Deng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Ya'an Kang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Chien-Chia Cheng
- Functional Genomics Core, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Bingbing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Taoyan Men
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Eugene Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Huocong Huang
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Rolf A Brekken
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, United States of America
| |
Collapse
|
29
|
The Downregulation of Placental Lumican Promotes the Progression of Preeclampsia. Reprod Sci 2021; 28:3147-3154. [PMID: 34231169 PMCID: PMC8526455 DOI: 10.1007/s43032-021-00660-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Multiple pieces of evidence illustrate that impaired trophoblast function results in preeclampsia (PE), and migration/invasion of human trophoblast cells is stringently regulated by extracellular matrix (ECM) components. Many studies have indicated abnormal expressions of placental ECM components are associated with preeclampsia. However, the change and influence of lumican, a vital member of extracellular matrix (ECM) molecules, on trophoblast cells during preeclampsia remain unclear. This study examines the possibility that the roles of lumican in trophoblast cells contribute to PE. To address this issue, the expression of lumican in human placental tissues was observed using immunohistochemistry, fluorescence quantitative PCR, and Western blot technology. After the HTR-8/SVneo cell line was transfected with pcDNA3.1-human lumican, pGPU6-human lumican shRNA, and their negative controls, the impact of lumican on the HTR-8/SVneo cell line was investigated. Lumican was expressed in human placental tissues. Compared with the control group, its expression was significantly lower in PE placentas. Lumican downregulation inhibited cell proliferation significantly and reduced Bcl-2 expression, but increased P53 expression. These results indicate that the downregulation of placental lumican may drive PE development via promoting the downregulation of Bcl-2 expression and upregulation of P53.
Collapse
|
30
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
31
|
Kim MP, Li X, Deng J, Zhang Y, Dai B, Allton KL, Hughes TG, Siangco C, Augustine JJ, Kang Y, McDaniel JM, Xiong S, Koay EJ, McAllister F, Bristow CA, Heffernan TP, Maitra A, Liu B, Barton MC, Wasylishen AR, Fleming JB, Lozano G. Oncogenic KRAS Recruits an Expansive Transcriptional Network through Mutant p53 to Drive Pancreatic Cancer Metastasis. Cancer Discov 2021; 11:2094-2111. [PMID: 33839689 DOI: 10.1158/2159-8290.cd-20-1228] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/19/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is almost uniformly fatal and characterized by early metastasis. Oncogenic KRAS mutations prevail in 95% of PDAC tumors and co-occur with genetic alterations in the TP53 tumor suppressor in nearly 70% of patients. Most TP53 alterations are missense mutations that exhibit gain-of-function phenotypes that include increased invasiveness and metastasis, yet the extent of direct cooperation between KRAS effectors and mutant p53 remains largely undefined. We show that oncogenic KRAS effectors activate CREB1 to allow physical interactions with mutant p53 that hyperactivate multiple prometastatic transcriptional networks. Specifically, mutant p53 and CREB1 upregulate the prometastatic, pioneer transcription factor FOXA1, activating its transcriptional network while promoting WNT/β-catenin signaling, together driving PDAC metastasis. Pharmacologic CREB1 inhibition dramatically reduced FOXA1 and β-catenin expression and dampened PDAC metastasis, identifying a new therapeutic strategy to disrupt cooperation between oncogenic KRAS and mutant p53 to mitigate metastasis. SIGNIFICANCE: Oncogenic KRAS and mutant p53 are the most commonly mutated oncogene and tumor suppressor gene in human cancers, yet direct interactions between these genetic drivers remain undefined. We identified a cooperative node between oncogenic KRAS effectors and mutant p53 that can be therapeutically targeted to undermine cooperation and mitigate metastasis.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jenying Deng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yun Zhang
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas
| | - Bingbing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kendra L Allton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tara G Hughes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christian Siangco
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jithesh J Augustine
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy M McDaniel
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Florencia McAllister
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher A Bristow
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle C Barton
- Division of Oncological Sciences, Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
32
|
Liot S, Balas J, Aubert A, Prigent L, Mercier-Gouy P, Verrier B, Bertolino P, Hennino A, Valcourt U, Lambert E. Stroma Involvement in Pancreatic Ductal Adenocarcinoma: An Overview Focusing on Extracellular Matrix Proteins. Front Immunol 2021; 12:612271. [PMID: 33889150 PMCID: PMC8056076 DOI: 10.3389/fimmu.2021.612271] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide and is predicted to become second in 2030 in industrialized countries if no therapeutic progress is made. Among the different types of pancreatic cancers, Pancreatic Ductal Adenocarcinoma (PDAC) is by far the most represented one with an occurrence of more than 90%. This specific cancer is a devastating malignancy with an extremely poor prognosis, as shown by the 5-years survival rate of 2–9%, ranking firmly last amongst all cancer sites in terms of prognostic outcomes for patients. Pancreatic tumors progress with few specific symptoms and are thus at an advanced stage at diagnosis in most patients. This malignancy is characterized by an extremely dense stroma deposition around lesions, accompanied by tissue hypovascularization and a profound immune suppression. Altogether, these combined features make access to cancer cells almost impossible for conventional chemotherapeutics and new immunotherapeutic agents, thus contributing to the fatal outcomes of the disease. Initially ignored, the Tumor MicroEnvironment (TME) is now the subject of intensive research related to PDAC treatment and could contain new therapeutic targets. In this review, we will summarize the current state of knowledge in the field by focusing on TME composition to understand how this specific compartment could influence tumor progression and resistance to therapies. Attention will be paid to Tenascin-C, a matrix glycoprotein commonly upregulated during cancer that participates to PDAC progression and thus contributes to poor prognosis.
Collapse
Affiliation(s)
- Sophie Liot
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Jonathan Balas
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Alexandre Aubert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Laura Prigent
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Perrine Mercier-Gouy
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Philippe Bertolino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France
| | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France
| | - Ulrich Valcourt
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
33
|
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 2021; 14:14. [PMID: 33436044 PMCID: PMC7805044 DOI: 10.1186/s13045-020-01030-w] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Attributable to its late diagnosis, early metastasis, and poor prognosis, pancreatic cancer remains one of the most lethal diseases worldwide. Unlike other solid tumors, pancreatic cancer harbors ample stromal cells and abundant extracellular matrix but lacks vascularization, resulting in persistent and severe hypoxia within the tumor. Hypoxic microenvironment has extensive effects on biological behaviors or malignant phenotypes of pancreatic cancer, including metabolic reprogramming, cancer stemness, invasion and metastasis, and pathological angiogenesis, which synergistically contribute to development and therapeutic resistance of pancreatic cancer. Through various mechanisms including but not confined to maintenance of redox homeostasis, activation of autophagy, epigenetic regulation, and those induced by hypoxia-inducible factors, intratumoral hypoxia drives the above biological processes in pancreatic cancer. Recognizing the pivotal roles of hypoxia in pancreatic cancer progression and therapies, hypoxia-based antitumoral strategies have been continuously developed over the recent years, some of which have been applied in clinical trials to evaluate their efficacy and safety in combinatory therapies for patients with pancreatic cancer. In this review, we discuss the molecular mechanisms underlying hypoxia-induced aggressive and therapeutically resistant phenotypes in both pancreatic cancerous and stromal cells. Additionally, we focus more on innovative therapies targeting the tumor hypoxic microenvironment itself, which hold great potential to overcome the resistance to chemotherapy and radiotherapy and to enhance antitumor efficacy and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
34
|
Lumican, pro-tumorigenic or anti-tumorigenic: A conundrum. Clin Chim Acta 2020; 514:1-7. [PMID: 33333043 DOI: 10.1016/j.cca.2020.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) consists of a myriad of structural and signaling molecules which potentially regulate cell function and homeostasis. Lumican, a class II SLRP (small leucine rich proteoglycan) is a ubiquitous ECM component which not only organizes the collagen based structural matrix, but also modulates cell proliferation signals as observed in cancer. In the perspective of cancer biology, lumican expression in the tumor microenvironment is associated with signaling, which can result in either pro-tumorigenic or anti-tumorigenic effects. Its pro-tumorigenic effects are mainly observed in gastric, bladder and liver cancers, which is associated with deterioration of clinical prognosis. Lumican mediated pro-tumorigenic effects involve activation of focal adhesion kinases (FAK), mitogen activated protein kinases (MAPK) and metalloproteinase-9 (MMP-9). On the contrary, in breast cancer, pancreatic cancer and melanoma, lumican demonstrates anti-tumorigenic effects, which are associated with favorable clinical outcomes. Anti-tumorigenic potential of lumican is clubbed with epithelial-mesenchymal transition reprogramming as well as downregulation of extracellular signal-regulated kinases (ERK), FAK and MMP-14 mediated pathways thereby preventing tumorigenesis. This review highlights that the expressional significance of lumican in cancer biogenesis is tumor specific and demands rigorous cancer-specific evaluation to understand its role as a potential anti-cancer target or a therapeutic molecule.
Collapse
|
35
|
Chen CG, Iozzo RV. Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology. J Biol Chem 2020; 295:16797-16812. [PMID: 33020183 PMCID: PMC7864073 DOI: 10.1074/jbc.rev120.014391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.
Collapse
Affiliation(s)
- Carolyn G Chen
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
36
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
37
|
Hadden M, Mittal A, Samra J, Zreiqat H, Sahni S, Ramaswamy Y. Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188418. [PMID: 32827581 DOI: 10.1016/j.bbcan.2020.188418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies in the world due to its insensitivity to current therapies and its propensity to metastases from the primary tumor mass. This is largely attributed to its complex microenvironment composed of unique stromal cell populations and extracellular matrix (ECM). The recruitment and activation of these cell populations cause an increase in deposition of ECM components, which highly influences the behavior of malignant cells through disrupted forms of signaling. As PDAC progresses from premalignant lesion to invasive carcinoma, this dynamic landscape shields the mass from immune defenses and cytotoxic intervention. This microenvironment influences an invasive cell phenotype through altered forms of mechanical signaling, capable of enacting biochemical changes within cells through activated mechanotransduction pathways. The effects of altered mechanical cues on malignant cell mechanotransduction have long remained enigmatic, particularly in PDAC, whose microenvironment significantly changes over time. A more complete and thorough understanding of PDAC's physical surroundings (microenvironment), mechanosensing proteins, and mechanical properties may help in identifying novel mechanisms that influence disease progression, and thus, provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Matthew Hadden
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative Bioengineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia.
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
38
|
Camuzard O, Santucci-Darmanin S, Carle GF, Pierrefite-Carle V. Autophagy in the crosstalk between tumor and microenvironment. Cancer Lett 2020; 490:143-153. [PMID: 32634449 DOI: 10.1016/j.canlet.2020.06.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/31/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is the major catabolic process in eukaryotic cells for the degradation and recycling of damaged macromolecules and organelles. It plays a crucial role in cell quality control and nutrient supply under stress conditions. Although autophagy is classically described as a degradative mechanism, it can also be involved in some secretion pathways, leading to the extracellular release of proteins, aggregates, or organelles. The role of autophagy in cancer is complex and depends on tumor development stage. While autophagy limits cancer development in the early stages of tumorigenesis, it can also have a protumoral role in more advanced cancers, promoting primary tumor growth and metastatic spread. In addition to its pro-survival role in established tumors, autophagy recently emerged as an active player in the crosstalk between tumor and stromal cells. The aim of this review is to analyze the impact of tumoral autophagy on the microenvironment and conversely the effect of stromal cell autophagy on tumor cells.
Collapse
Affiliation(s)
- Olivier Camuzard
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut des sciences du vivant Frédéric Joliot, Université Côte d'Azur, Faculté de Médecine, Nice, France; Service de Chirurgie Réparatrice et de la Main, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut des sciences du vivant Frédéric Joliot, Université Côte d'Azur, Faculté de Médecine, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut des sciences du vivant Frédéric Joliot, Université Côte d'Azur, Faculté de Médecine, Nice, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut des sciences du vivant Frédéric Joliot, Université Côte d'Azur, Faculté de Médecine, Nice, France.
| |
Collapse
|
39
|
Karamanou K, Franchi M, Vynios D, Brézillon S. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin Cancer Biol 2020; 62:125-133. [PMID: 31401293 DOI: 10.1016/j.semcancer.2019.08.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
A great hallmark of breast cancer is the absence or presence of estrogen receptors ERα and ERβ, with a dominant role in cell proliferation, differentiation and cancer progression. Both receptors are related with Epithelial-to-Mesenchymal Transition (EMT) since there is a relation between ERs and extracellular matrix (ECM) macromolecules expression, and therefore, cell-cell and cell-ECM interactions. The endocrine resistance of ERα endows epithelial cells with increased aggressiveness and induces cell proliferation, resulting into a mesenchymal phenotype and an EMT status. ERα signaling may affect the transcriptional factors which govern EMT. Knockdown or silencing of ERα and ERβ in MCF-7 and MDA-MB-231 breast cancer cells respectively, provoked pivotal changes in phenotype, cellular functions, mRNA and protein levels of EMT markers, and consequently the EMT status. Mesenchymal cells owe their migratory and invasive properties to invadopodia, while in epithelial cells, lamellipodia and filopodia are mostly observed. Invadopodia, are actin-rich protrusions of plasma membrane, promoting proteolytic degradation of ECM and tumor invasion. Cortactin and MMP-14 govern the formation and principal functions of invadopodia. In vitro experiments proved that lumican inhibits cortactin and MMP-14 expression, alters the formation of lamellipodia and transforms mesenchymal cells into epithelial-like. Conclusively, lumican may inhibit or even reverse the several metastatic features that EMT endows in breast cancer cells. Therefore, a lumican-based anti-cancer therapy which will pharmacologically target and inhibit EMT might be interesting to be developed.
Collapse
Affiliation(s)
- Konstantina Karamanou
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Demitrios Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
| |
Collapse
|
40
|
Bazzichetto C, Conciatori F, Luchini C, Simionato F, Santoro R, Vaccaro V, Corbo V, Falcone I, Ferretti G, Cognetti F, Melisi D, Scarpa A, Ciuffreda L, Milella M. From Genetic Alterations to Tumor Microenvironment: The Ariadne's String in Pancreatic Cancer. Cells 2020; 9:309. [PMID: 32012917 PMCID: PMC7072496 DOI: 10.3390/cells9020309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
The threatening notoriety of pancreatic cancer mainly arises from its negligible early diagnosis, highly aggressive progression, failure of conventional therapeutic options and consequent very poor prognosis. The most important driver genes of pancreatic cancer are the oncogene KRAS and the tumor suppressors TP53, CDKN2A, and SMAD4. Although the presence of few drivers, several signaling pathways are involved in the oncogenesis of this cancer type, some of them with promising targets for precision oncology. Pancreatic cancer is recognized as one of immunosuppressive phenotype cancer: it is characterized by a fibrotic-desmoplastic stroma, in which there is an intensive cross-talk between several cellular (e.g., fibroblasts, myeloid cells, lymphocytes, endothelial, and myeloid cells) and acellular (collagen, fibronectin, and soluble factors) components. In this review; we aim to describe the current knowledge of the genetic/biological landscape of pancreatic cancer and the composition of its tumor microenvironment; in order to better direct in the intrinsic labyrinth of this complex tumor type. Indeed; disentangling the genetic and molecular characteristics of cancer cells and the environment in which they evolve may represent the crucial step towards more effective therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Francesca Simionato
- Division of Oncology, University of Verona, 37126 Verona, Italy; (F.S.); (M.M.)
| | - Raffaela Santoro
- Medicine-Digestive Molecular Clinical Oncology Research Unit, University of Verona, 37126 Verona, Italy; (R.S.); (D.M.)
| | - Vanja Vaccaro
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Vincenzo Corbo
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy; (V.C.); (A.S.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Davide Melisi
- Medicine-Digestive Molecular Clinical Oncology Research Unit, University of Verona, 37126 Verona, Italy; (R.S.); (D.M.)
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy; (V.C.); (A.S.)
| | - Ludovica Ciuffreda
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Michele Milella
- Division of Oncology, University of Verona, 37126 Verona, Italy; (F.S.); (M.M.)
| |
Collapse
|
41
|
Hayes AJ, Melrose J. Keratan Sulphate in the Tumour Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:39-66. [PMID: 32266652 DOI: 10.1007/978-3-030-40146-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue-associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia. .,Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW, Australia. .,Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards, NSW, Australia.
| |
Collapse
|
42
|
Tian C, Clauser KR, Öhlund D, Rickelt S, Huang Y, Gupta M, Mani DR, Carr SA, Tuveson DA, Hynes RO. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc Natl Acad Sci U S A 2019; 116:19609-19618. [PMID: 31484774 PMCID: PMC6765243 DOI: 10.1073/pnas.1908626116] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has prominent extracellular matrix (ECM) that compromises treatments yet cannot be nonselectively disrupted without adverse consequences. ECM of PDAC, despite the recognition of its importance, has not been comprehensively studied in patients. In this study, we used quantitative mass spectrometry (MS)-based proteomics to characterize ECM proteins in normal pancreas and pancreatic intraepithelial neoplasia (PanIN)- and PDAC-bearing pancreas from both human patients and mouse genetic models, as well as chronic pancreatitis patient samples. We describe detailed changes in both abundance and complexity of matrisome proteins in the course of PDAC progression. We reveal an early up-regulated group of matrisome proteins in PanIN, which are further up-regulated in PDAC, and we uncover notable similarities in matrix changes between pancreatitis and PDAC. We further assigned cellular origins to matrisome proteins by performing MS on multiple lines of human-to-mouse xenograft tumors. We found that, although stromal cells produce over 90% of the ECM mass, elevated levels of ECM proteins derived from the tumor cells, but not those produced exclusively by stromal cells, tend to correlate with poor patient survival. Furthermore, distinct pathways were implicated in regulating expression of matrisome proteins in cancer cells and stromal cells. We suggest that, rather than global suppression of ECM production, more precise ECM manipulations, such as targeting tumor-promoting ECM proteins and their regulators in cancer cells, could be more effective therapeutically.
Collapse
Affiliation(s)
- Chenxi Tian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Daniel Öhlund
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85 Umeå, Sweden
| | - Steffen Rickelt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ying Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mala Gupta
- New York University Winthrop Hospital, Mineola, NY 11501
| | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | | | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
43
|
Yu Z, Liu L, Shu Q, Li D, Wang R. Leukemia stem cells promote chemoresistance by inducing downregulation of lumican in mesenchymal stem cells. Oncol Lett 2019; 18:4317-4327. [PMID: 31579426 DOI: 10.3892/ol.2019.10767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Leukemia stem cells (LSCs) are responsible for therapeutic failure and relapse of acute lymphoblastic leukemia. As a result of the interplay between LSCs and bone marrow mesenchymal stem cells (BM-MSCs), cancer cells may escape from chemotherapy and immune surveillance, thereby promoting leukemia progress and relapse. The present study identified that the crosstalk between LSCs and BM-MSCs may contribute to changes of immune phenotypes and expression of hematopoietic factors in BM-MSCs. Furthermore, Illumina Genome Analyzer/Hiseq 2000 identified 7 differentially expressed genes between BM-MSCsLSC and BM-MSCs. The Illumina sequencing results were further validated by reverse transcription-quantitative polymerase chain reaction. Following LSC simulation, 2 genes were significantly upregulated, whereas the remaining 2 genes were significantly downregulated in MSCs. The most remarkable changes were identified in the expression levels of lumican (LUM) gene. These results were confirmed by western blot analysis. In addition, decreased LUM expression led to decreased apoptosis, and promoted chemoresistance to VP-16 in Nalm-6 cells. These results suggest that downregulation of LUM expression in BM-MSCs contribute to the anti-apoptotic properties and resistance to chemotherapy in LSCs.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Liu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiang Shu
- Department of Immunology, Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P.R. China
| | - Dong Li
- Department of Immunology, Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P.R. China
| | - Ran Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
44
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
45
|
Sarcar B, Li X, Fleming JB. Hypoxia-Induced Autophagy Degrades Stromal Lumican into Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma: A Mini-Review. ACTA ACUST UNITED AC 2019. [PMID: 31406961 PMCID: PMC6690605 DOI: 10.29245/2578-2967/2019/1.1165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) in the tumor microenvironment (TME) has gained considerable interest in recent years as a crucial component in fundamental cellular processes and provides novel therapeutic targets. Lumican is a class II small leucine-rich proteoglycan with a key role in ECM organization and modulation of biological functions dependent on tumor type, abundance, and stage of disease. The presence of stromal lumican in the ECM surrounding pancreatic ductal adenocarcinoma (PDAC) inhibits cancer cell replication and is associated with improved patient outcomes after multimodal therapies. In this mini-review, were-present our novel findings describing how hypoxia (1% O2) within the TME influences stromal lumican expression and secretion. We observed that hypoxia specifically inhibited lumican expression and secretion post-transcriptionally only from pancreatic stellate cells. Hypoxia-induced increased lactate production did not influence lumican expression. Notably, autophagy was induced by hypoxia in ex vivo cultures of patient-derived primary PDAC xenograft and pancreatic stellate cells; however, the cancer cells remain unaffected. Moreover, hypoxia-inducible factor (HIF)-1α expression or inhibition of AMP-regulated protein kinase (AMPK) activation within hypoxic stellate cells restored lumican expression levels. Interestingly, AMPK inhibition attenuated hypoxia-reduced phosphorylation of the mTOR/p70S6K/4EBP signaling pathway. The aim of this mini-review is to summarize our recent publication that hypoxia reduces stromal lumican in PDAC through autophagy-mediated degradation and reduction in protein synthesis within pancreatic cancer stellate cells. This may provide another plausible mechanism by which hypoxia-induced stromal autophagy leads to cancer growth.
Collapse
Affiliation(s)
- Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| |
Collapse
|
46
|
Sarcar B, Li X, Fleming JB. Hypoxia-Induced Autophagy Degrades Stromal Lumican into Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma: A Mini-Review. JOURNAL OF CANCER TREATMENT & DIAGNOSIS 2019; 3:22-27. [PMID: 31406961 PMCID: PMC6690605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The extracellular matrix (ECM) in the tumor microenvironment (TME) has gained considerable interest in recent years as a crucial component in fundamental cellular processes and provides novel therapeutic targets. Lumican is a class II small leucine-rich proteoglycan with a key role in ECM organization and modulation of biological functions dependent on tumor type, abundance, and stage of disease. The presence of stromal lumican in the ECM surrounding pancreatic ductal adenocarcinoma (PDAC) inhibits cancer cell replication and is associated with improved patient outcomes after multimodal therapies. In this mini-review, were-present our novel findings describing how hypoxia (1% O2) within the TME influences stromal lumican expression and secretion. We observed that hypoxia specifically inhibited lumican expression and secretion post-transcriptionally only from pancreatic stellate cells. Hypoxia-induced increased lactate production did not influence lumican expression. Notably, autophagy was induced by hypoxia in ex vivo cultures of patient-derived primary PDAC xenograft and pancreatic stellate cells; however, the cancer cells remain unaffected. Moreover, hypoxia-inducible factor (HIF)-1α expression or inhibition of AMP-regulated protein kinase (AMPK) activation within hypoxic stellate cells restored lumican expression levels. Interestingly, AMPK inhibition attenuated hypoxia-reduced phosphorylation of the mTOR/p70S6K/4EBP signaling pathway. The aim of this mini-review is to summarize our recent publication that hypoxia reduces stromal lumican in PDAC through autophagy-mediated degradation and reduction in protein synthesis within pancreatic cancer stellate cells. This may provide another plausible mechanism by which hypoxia-induced stromal autophagy leads to cancer growth.
Collapse
Affiliation(s)
- Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Jason B. Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, FL, USA
| |
Collapse
|
47
|
Small Leucine Rich Proteoglycans (decorin, biglycan and lumican) in cancer. Clin Chim Acta 2019; 491:1-7. [PMID: 30629950 DOI: 10.1016/j.cca.2019.01.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) prevents invasion of tumour cells and possesses an intrinsic mechanism to down-regulate signalling processes that promote cancer proliferation. Small Leucine Rich Proteoglycans (SLRPs) are ubiquitous ECM components involved in matrix structural organization and as such can potentially regulate cancer cell multiplication, angiogenesis and migration. Decorin, a class I SLRP that modulates collagen fibrillogenesis, also functions as a natural pan-tyrosine kinase inhibitor to reduce tumour growth. In fact, decreased decorin expression has been associated with tumour aggressiveness and lower survival. In contrast, biglycan, another class I SLRP, was highly expressed in cancer and was associated with metastatic activity and lower survival. Tissue expression of lumican, a class II SLRP, was associated with clinical outcome and appears tumour specific. Recently, decorin, biglycan and lumican were found to be potential biomarkers in bladder cancer. This review updates our current understanding on the molecular interplay and significance of decorin, biglycan and lumican expression in cancer.
Collapse
|
48
|
Li X, Lee Y, Kang Y, Dai B, Perez MR, Pratt M, Koay EJ, Kim M, Brekken RA, Fleming JB. Hypoxia-induced autophagy of stellate cells inhibits expression and secretion of lumican into microenvironment of pancreatic ductal adenocarcinoma. Cell Death Differ 2019; 26:382-393. [PMID: 30283082 PMCID: PMC6329841 DOI: 10.1038/s41418-018-0207-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/04/2018] [Accepted: 09/12/2018] [Indexed: 11/09/2022] Open
Abstract
Lumican is secreted by pancreatic stellate cells and inhibits cancer progression. Extracellular lumican inhibits cancer cell replication and restrains growth of early-stage pancreatic adenocarcinoma (PDAC) such that patients with tumors containing stromal lumican experience a three-fold longer survival after treatment. In the present study, patient tumor tissues, ex-vivo cultures of patient-derived xenografts (PDX), PDAC stellate and tumor cells were used to investigate whether hypoxia (1% O2) within the tumor microenvironment influences stromal lumican expression and secretion. We observed that hypoxia significantly reduced lumican expression and secretion from pancreatic stellate cells, but not cancer cells. Although hypoxia enhanced lactate dehydrogenase A (LDHA) expression and lactate secretion from all cells, neither hypoxia-induced nor exogenous lactate influenced lumican expression. Autophagy was induced by hypoxia in ex vivo cultures of PDX and pancreatic stellate cells, but not cancer cells cultured in 2D. Autophagic flux inhibitors, bafilomycin A1, chloroquine diphosphate salt, and ammonium chloride prevented hypoxia-mediated reduction in lumican expression in stellate cells. Furthermore, inhibition of AMP-regulated protein kinase (AMPK) phosphorylation or hypoxia-inducible factor (HIF)-1α expression within hypoxic stellate cells restored lumican expression levels. Hypoxia did not affect lumican mRNA expression, indicating that hypoxia-induced reduction of lumican occurs post-transcriptionally; in addition, AMPK inhibition prevented hypoxia-reduced phosphorylation of the mTOR/p70S6K/4EBP signaling pathway, a key contributor to protein synthesis. Taken together, these findings demonstrate that hypoxia reduces stromal lumican in PDAC through autophagy-mediated degradation and reduction in protein synthesis within pancreatic cancer stellate cells.
Collapse
Affiliation(s)
- Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yeonju Lee
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingbing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayrim Rios Perez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Pratt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J Koay
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rolf A Brekken
- Hamon Center of Therapeutic Oncology Research and Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
49
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [PMID: 30905465 DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship. Cancers (Basel) 2018; 10:cancers10090316. [PMID: 30200666 PMCID: PMC6162452 DOI: 10.3390/cancers10090316] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extraordinarily dense fibrotic stroma that impedes tumor perfusion and delivery of anticancer drugs. Since the extracellular matrix (ECM) comprises the bulk of the stroma, it is primarily responsible for the increased interstitial tissue pressure and stiff mechanical properties of the stroma. Besides its mechanical influence, the ECM provides important biochemical and physical cues that promote survival, proliferation, and metastasis. By serving as a nutritional source, the ECM also enables PDAC cells to survive under the nutrient-poor conditions. While therapeutic strategies using stroma-depleting drugs have yielded disappointing results, an increasing body of research indicates the ECM may offer a variety of potential therapeutic targets. As preclinical studies of ECM-targeted drugs have shown promising effects, a number of clinical trials are currently investigating agents with the potential to advance the future treatment of PDAC. Thus, the present review seeks to give an overview of the complex relationship between the ECM and PDAC.
Collapse
|