1
|
Wang M, Zhao JH, Tang MX, Li M, Zhao H, Li ZY, Liu AD. Cell Death Modalities in Therapy of Melanoma. Int J Mol Sci 2025; 26:3475. [PMID: 40331942 PMCID: PMC12026598 DOI: 10.3390/ijms26083475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Melanoma, one of the most lethal cancers, demands urgent and effective treatment strategies. However, a successful therapeutic approach requires a precise understanding of the mechanisms underlying melanoma initiation and progression. This review provides an overview of melanoma pathogenesis, identifies current pathogenic factors contributing to mortality, and explores targeted therapy and checkpoint inhibitor therapy. Furthermore, we examine melanoma classification and corresponding therapies, along with advancements in various cell death mechanisms for melanoma treatment. We also discuss the current treatment status along with some drawbacks encountered during research stages such as resistance and metastasis.
Collapse
Affiliation(s)
- Meng Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Jia-Hui Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Ming-Xuan Tang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Meng Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Hu Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong-Yu Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Dong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Sawhney G, Bhardwaj AR, Sanu K, Bhattacharya D, Singh M, Dhanjal DS, Ayub A, Wani AK, Suman S, Singh R, Chopra C. Nanotechnology at the forefront of liver cancer diagnosis. NANOPHOTOTHERAPY 2025:575-593. [DOI: 10.1016/b978-0-443-13937-6.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Wang X, Xu W, Li J, Shi C, Guo Y, Shan J, Qi R. Nano-omics: Frontier fields of fusion of nanotechnology. SMART MEDICINE 2023; 2:e20230039. [PMID: 39188303 PMCID: PMC11236068 DOI: 10.1002/smmd.20230039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 08/28/2024]
Abstract
Nanotechnology, an emerging force, has infiltrated diverse domains like biomedical, materials, and environmental sciences. Nano-omics, an emerging fusion, combines nanotechnology with omics, boasting amplified sensitivity and resolution. This review introduces nanotechnology basics, surveys its recent strides in nano-omics, deliberates present challenges, and envisions future growth.
Collapse
Affiliation(s)
- Xuan Wang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Weichen Xu
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Jun Li
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Chen Shi
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Yuanyuan Guo
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Ruogu Qi
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUS
| |
Collapse
|
5
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Geng C, Pang S, Ye R, Shi J, Yang Q, Chen C, Wang W. Glycolysis-based drug delivery nanosystems for therapeutic use in tumors and applications. Biomed Pharmacother 2023; 165:115009. [PMID: 37343435 DOI: 10.1016/j.biopha.2023.115009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
Tumor cells are able to use glycolysis to produce energy under hypoxic conditions, and even under aerobic conditions, they rely mainly on glycolysis for energy production, the Warburg effect. Conventional tumor therapeutic drugs are unidirectional, lacking in targeting and have limited therapeutic effect. The development of a large number of nanocarriers and targeted glycolysis for the treatment of tumors has been extensively investigated in order to improve the therapeutic efficacy. This paper reviews the research progress of nanocarriers based on targeting key glycolytic enzymes and related transporters, and combines nanocarrier systems with other therapeutic approaches to provide a new strategy for targeted glycolytic treatment of tumors, providing a theoretical reference for achieving efficient targeted treatment of tumors.
Collapse
Affiliation(s)
- Chenchen Geng
- Department of Biotechnology, Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China
| | - Siyan Pang
- Department of Biotechnology, Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China
| | - Ruyin Ye
- Department of Biotechnology, Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China
| | - Jiwen Shi
- Department of Biotechnology, Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| | - Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China.
| |
Collapse
|
7
|
Ansari L, Mashayekhi-Sardoo H, Baradaran Rahimi V, Yahyazadeh R, Ghayour-Mobarhan M, Askari VR. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review. Biofactors 2023; 49:736-781. [PMID: 36961254 DOI: 10.1002/biof.1945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Despite numerous advantages, curcumin's (CUR) low solubility and low bioavailability limit its employment as a free drug. CUR-incorporated nanoformulation enhances the bioavailability and angiogenesis, collagen deposition, fibroblast proliferation, reepithelization, collagen synthesis, neovascularization, and granulation tissue formation in different wounds. Designing nanoformulations with controlled-release properties ensure the presence of CUR in the defective area during treatment. Different nanoformulations encompassing nanofibers, nanoparticles (NPs), nanospray, nanoemulsion, nanosuspension, nanoliposome, nanovesicle, and nanomicelle were described in the present study comprehensively. Moreover, for some other systems which contain nano-CUR or CUR nanoformulations, including some nanofibers, films, composites, scaffolds, gel, and hydrogels seems the CUR-loaded NPs incorporation has better control of the sustained release, and thereby, the presence of CUR until the final stages of wound healing is more possible. Incorporating CUR-loaded chitosan NPs into nanofiber increased the release time, while 80% of CUR was released during 240 h (10 days). Therefore, this system can guarantee the presence of CUR during the entire healing period. Furthermore, porous structures such as sponges, aerogels, some hydrogels, and scaffolds disclosed promising performance. These architectures with interconnected pores can mimic the native extracellular matrix, thereby facilitating attachment and infiltration of cells at the wound site, besides maintaining a free flow of nutrients and oxygen within the three-dimensional structure essential for rapid and proper wound healing, as well as enhancing mechanical strength.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Advances in the Application of Nanomaterials to the Treatment of Melanoma. Pharmaceutics 2022; 14:pharmaceutics14102090. [PMID: 36297527 PMCID: PMC9610396 DOI: 10.3390/pharmaceutics14102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma can be divided into cutaneous melanoma, uveal melanoma, mucosal melanoma, etc. It is a very aggressive tumor that is prone to metastasis. Patients with metastatic melanoma have a poor prognosis and shorter survival. Although current melanoma treatments have been dramatically improved, there are still many problems such as systemic toxicity and the off-target effects of drugs. The use of nanoparticles may overcome some inadequacies of current melanoma treatments. In this review, we summarize the limitations of current therapies for cutaneous melanoma, uveal melanoma, and mucosal melanoma, as well as the adjunct role of nanoparticles in different treatment modalities. We suggest that nanomaterials may have an effective intervention in melanoma treatment in the future.
Collapse
|
9
|
Diez‐Pascual AM, Rahdar A. Functional Nanomaterials in Biomedicine: Current Uses and Potential Applications. ChemMedChem 2022; 17:e202200142. [PMID: 35729066 PMCID: PMC9544115 DOI: 10.1002/cmdc.202200142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Indexed: 11/07/2022]
Abstract
Nanomaterials, that is, materials made up of individual units between 1 and 100 nanometers, have lately involved a lot of attention since they offer a lot of potential in many fields, including pharmacy and biomedicine, owed to their exceptional physicochemical properties arising from their high surface area and nanoscale size. Smart engineering of nanostructures through appropriate surface or bulk functionalization endows them with multifunctional capabilities, opening up new possibilities in the biomedical field such as biosensing, drug delivery, imaging, medical implants, cancer treatment and tissue engineering. This article highlights up-to-date research in nanomaterials functionalization for biomedical applications. A summary of the different types of nanomaterials and the surface functionalization strategies is provided. Besides, the use of nanomaterials in diagnostic imaging, drug/gene delivery, regenerative medicine, cancer treatment and medical implants is reviewed. Finally, conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Ana María Diez‐Pascual
- Universidad de AlcaláDepartamento de Química Analítica Química Física e Ingeniería QuímicaCarretera Madrid-Barcelona Km. 33.628871Alcalá de Henares, MadridSpain
| | - Abbas Rahdar
- Department of PhysicsUniversity of ZabolZabol98613-35856Iran
| |
Collapse
|
10
|
El-Sattar NEAA, El-Hddad SESA, Ghobashy MM, Zaher AA, El-Adl K. Nanogel-mediated drug delivery system for anticancer agent: pH stimuli responsive poly(ethylene glycol/acrylic acid) nanogel prepared by gamma irradiation. Bioorg Chem 2022; 127:105972. [PMID: 35728290 DOI: 10.1016/j.bioorg.2022.105972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
The popularity of nanogel as nano drug carrier lies in its adjustable physical properties, and the ability to encapsulate drug particles with improved properties is being developed to meet the diverse pH-sensitive nanogel for anticancer agent. Monitoring pH has been identified as an important diagnostic element during the treatment process. A pH-sensitive nanogel consisting of (PEG/PMAc) in the ratio of (50:50%) hasbeen cross-linkedby γ-irradiation techniques at an irradiation dose of 5 kGy. Compound 4 and its nanogel 5 were synthesized and assessed for their anticancer effects against HepG2, A549, MCF-7 and HCT-116 as dual VEGFR-2 and EGFR tyrosine kinases inhibitors. The molecular design was performed to investigate the binding mode of compound 4 with VEGFR-2 and EGFR receptors. Our compound 5 in nanogel showed enhanced anticancer activities against the four tested cancer cell lines and also showed higher inhibition activities against VEGFR-2 and EGFRT790M kinases than the derivative 4. Finally, our derivative 4 showed good in silico calculated ADMET profile. It was expected to show good GIT absorption in human, lower CNS side effects, no hepatotoxic actions and higher acute and oral chronic toxic doses in comparing to sorafenib and erlotinib. The obtained results showed that, our compound could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective dual VEGFR-2/EGFRT790M inhibitors with higher anticancer activity.
Collapse
Affiliation(s)
- Nour E A Abd El-Sattar
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Sanad Elaslam S A El-Hddad
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omar Almukhtar University, Libya
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box. 8029, Egypt
| | - Ahmed A Zaher
- Main Laboratories, Chemical Ware Fare, Egyptian Army, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt; Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.
| |
Collapse
|
11
|
Tarannum M, Vivero-Escoto JL. Nanoparticle-based therapeutic strategies targeting major clinical challenges in pancreatic cancer treatment. Adv Drug Deliv Rev 2022; 187:114357. [PMID: 35605679 DOI: 10.1016/j.addr.2022.114357] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to its aggressiveness and the challenges for early diagnosis and treatment. Recently, nanotechnology has demonstrated relevant strategies to overcome some of the major clinical issues in the treatment of PDAC. This review is focused on the pathological hallmarks of PDAC and the impact of nanotechnology to find solutions. It describes the use of nanoparticle-based systems designed for the delivery of chemotherapeutic agents and combinatorial alternatives that address the chemoresistance associated with PDAC, the development of combination therapies targeting the molecular heterogeneity in PDAC, the investigation of novel therapies dealing with the improvement of immunotherapy and handling the desmoplastic stroma in PDAC by remodeling the tumor microenvironment. A special section is dedicated to the design of nanoparticles for unique non-traditional modalities that could be promising in the future for the improvement in the dismal prognosis of PDAC.
Collapse
|
12
|
Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3251. [PMID: 35591584 PMCID: PMC9104878 DOI: 10.3390/ma15093251] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Nanomedicine is a speedily growing area of medical research that is focused on developing nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with unique physicochemical properties have recently attracted a lot of attention since they offer a lot of potential in biomedical research. Novel generations of engineered nanostructures, also known as designed and functionalized nanomaterials, have opened up new possibilities in the applications of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current research in nanotechnology, with a focus on nanomaterial functionalization for medical applications. Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed. Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and medical implants.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Zeng H, Li J, Hou K, Wu Y, Chen H, Ning Z. Melanoma and Nanotechnology-Based Treatment. Front Oncol 2022; 12:858185. [PMID: 35356202 PMCID: PMC8959641 DOI: 10.3389/fonc.2022.858185] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Melanoma is a malignant tumor arising in melanocytes from the basal layer of the epidermis and is the fifth most commonly diagnosed cancer in the United States. Melanoma is aggressive and easily metastasizes, and the survival rate is low. Nanotechnology-based diagnosis and treatment of melanoma have attracted increasing attention. Importantly, nano drug delivery systems have the advantages of increasing drug solubility, enhancing drug stability, prolonging half-life, optimizing bioavailability, targeting tumors, and minimizing side effects; thus, these systems can facilitate tumor cytotoxicity to achieve effective treatment of melanoma. In this review, we discuss current nanosystems used in the diagnosis and treatment of melanoma, including lipid systems, inorganic nanoparticles, polymeric systems, and natural nanosystems. The excellent characteristics of novel and effective drug delivery systems provide a basis for the broad applications of these systems in the diagnosis and treatment of melanoma, particularly metastatic melanoma.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeng Ning
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Li Y, Tan Y, Wen L, Xing Z, Wang C, Zhang L, Wu K, Sun H, Li Y, Lei Q, Wu S. Overexpression of BIRC6 driven by EGF-JNK-HECTD1 signaling is a potential therapeutic target for triple-negative breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:798-812. [PMID: 34729249 PMCID: PMC8526501 DOI: 10.1016/j.omtn.2021.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease. The lack of targeted therapies and poor patient outcome have fostered efforts to discover new molecular targets to treat patients with TNBC. Here, we showed that baculoviral IAP repeat containing 6 (BIRC6) is overexpressed and positively correlated with epidermal growth factor (EGF) receptor (EGFR) in TNBC cells and tissues and that BIRC6 overexpression is associated with poor patient survival. Mechanistic studies revealed that BIRC6 stability is increased by EGF-JNK signaling, which prevents ubiquitination and degradation of BIRC6 mediated by the E3 ubiquitin ligase HECTD1. BIRC6 in turn decreases SMAC expression by inducing the ubiquitin-proteasome pathway, thereby antagonizing apoptosis and promoting the proliferation, colony formation, tumorsphere formation, and tumor growth capacity of TNBC cells. Therapeutically, the PEGylated cationic lipid nanoparticle (pCLN)-assisted delivery of BIRC6 small interfering RNA (siRNA) efficiently silences BIRC6 expression in TNBC cells, thus suppressing TNBC cell growth in vitro and in vivo, and its antitumor activity is significantly superior to that of the EGFR inhibitor gefitinib. Our findings identify an important regulatory mechanism of BIRC6 overexpression and provide a potential therapeutic option for treating TNBC.
Collapse
Affiliation(s)
- Yongpeng Li
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanan Tan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lijuan Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhihao Xing
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen 518000, China
| | - Changxu Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liuhui Zhang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai Wu
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Haiyan Sun
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Yuqing Li
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Qifang Lei
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Song Wu
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, China
- Corresponding author Prof. Song Wu, PhD, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China.
| |
Collapse
|
15
|
Du Y, Liu D, Du Y. Recent advances in hepatocellular carcinoma therapeutic strategies and imaging-guided treatment. J Drug Target 2021; 30:287-301. [PMID: 34727794 DOI: 10.1080/1061186x.2021.1999963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancer in the world, which greatly threatens human health. However, the routine treatment strategies for HCC have failed to specifically eradicate the tumorigenic cells, leading to the occurrence of metastasis and recurrence. To improve treatment efficacies, the development of novel effective technologies is urgently required. Recently, nanotechnologies have gained the extensive attention in cancer targeted therapy, which could provide a promising way for HCC clinical practice. However, a successful cancer management depends on accurate diagnosis of the tumour along with precise therapeutic protocol, thereby predicting the tumour response to existing therapies. The synergistic effect of targeted therapeutic systems and imaging approaches (also called 'imaging-guided cancer treatment') may establish a more effective platform for individual cancer care. This review outlines the recent advanced nano-targeted and -traceable therapeutic strategies for HCC management. The multifunctional nano agents that have both diagnosis and therapy abilities are highlighted. Finally, we conclude with our perspectives on the future development and challenges of HCC nanotheranostics.
Collapse
Affiliation(s)
- Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Ren L, Ren S, Shu L, Wang Z, Shi K, Han W, Wang H. Nanodelivery of a self-assembling prodrug with exceptionally high drug loading potentiates chemotherapy efficacy. Int J Pharm 2021; 605:120805. [PMID: 34144134 DOI: 10.1016/j.ijpharm.2021.120805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/22/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022]
Abstract
Nanomedicines have achieved several successful clinical applications for cancer therapy over the past decades. To date, numerous nanomedicine formats and design rationales have been proposed to improve pharmaceutical delivery and treatment efficacy. Despite these advances, the achievement of high drug loading and loading efficiencies of drug payloads in nanocarriers remains a technical challenge. In addition, study of the correlation between therapeutic potential and drug loading has been ignored. Here, using a self-assembling dimeric cabazitaxel prodrug, we show that the prodrug can be quantitatively entrapped within clinically approved polymer matrices for intravenous injection and that the drug loading in the nanoparticles (NPs) is tunable. The engineered NPs (NPs1-4) with different drug loading values exhibit dissimilar morphologies, release kinetics, in vitro cytotoxic activity, pharmacokinetic properties, tissue distribution, and in vivo anticancer efficacy and safety profiles. Furthermore, the effect of drug loading on the treatment outcomes was explored through detailed in vitro and in vivo studies. Intriguingly, among the constructed NPs, those comprising poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-PLA) copolymers showed substantially prolonged pharmacokinetic properties in the blood circulation, which further promoted their intratumoral delivery and accumulation. Furthermore, the PEG-PLA-composed NPs with high drug loading (~50%) demonstrated favorable efficacy and safety profile in animal models. These data provide convincing evidence that the in vivo performance of a given self-assembling drug is not compromised by high drug loading in nanoplatforms, which may potentially reduce concerns over excipient-associated side effects and immunotoxicities. Overall, our study provides new insight into the rationale for designing more effective and less toxic delivery systems.
Collapse
Affiliation(s)
- Lulu Ren
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China; Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Sihang Ren
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Liwei Shu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Zihan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Kewei Shi
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China.
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| |
Collapse
|
17
|
|
18
|
Salehi B, Rodrigues CF, Peron G, Dall'Acqua S, Sharifi-Rad J, Azmi L, Shukla I, Singh Baghel U, Prakash Mishra A, Elissawy AM, Singab AN, Pezzani R, Redaelli M, Patra JK, Kulandaisamy Venil C, Das G, Singh D, Kriplani P, Venditti A, Fokou PVT, Iriti M, Amarowicz R, Martorell M, Cruz-Martins N. Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytother Res 2021; 35:2487-2499. [PMID: 33587320 DOI: 10.1002/ptr.6976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
The development and spread of resistance to antimicrobial drugs is hampering the management of microbial infectious and wound healing processes. Curcumin is the most active and effective constituent of Curcuma longa L., also known as turmeric, and has a very long and strong history of medicinal value for human health and skincare. Curcumin has been proposed as strong antimicrobial potentialities and many attempts have been made to determine its ability to conjointly control bacterial growth and promote wound healing. However, low aqueous solubility, poor tissue absorption and short plasma half-life due its rapid metabolism needs to be solved for made curcumin formulations as suitable treatment for wound healing. New curcumin nanoformulations have been designed to solve the low bioavailability problem of curcumin. Thus, in the present review, the therapeutic applications of curcumin nanoformulations for antimicrobial and wound healing purposes is described.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Lubna Azmi
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Ila Shukla
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, School of Pharmacy, Shobhit University, Gangoh, India
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elissawy
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Abdel Nasser Singab
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Liettoli di Campolongo Maggiore (VE), Italy
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyang-si, South Korea
| | | | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyang-si, South Korea
| | - Deeksha Singh
- E.S.I. Hospital, Kota, Medical, Health and Family Welfare Department, Government of Rajasthan, Rajasthan, India
| | | | | | | | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Ryszard Amarowicz
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Rak AY, Trofimov AV, Ischenko AM, Sokolov AV. [The study of interaction of different forms of human recombinant anti-mullerian hormone with a chimeric analogue of the AMH type II]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:66-73. [PMID: 33645523 DOI: 10.18097/pbmc20216701066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The homodimeric glycoprotein, anti-mullerian hormone (AMH), described over 70 years ago by A. Jost, is the least studied member of the transforming growth factor beta superfamily. Despite the antitumor activity of AMH discovered at the end of the last century, the creation of effective drugs based on AMH is hindered primarily by the lack of information on the mechanism of various AMH forms interaction with a specific type II receptor (MISRII). Previously, we have shown that not only the full-length activated hormone but also its C-terminal fragment (C-rAMH) could bind to MISRII. In this work, using the surface plasmon resonance technique, we compared the interaction of three forms of recombinant AMH (rAMH) with the MISRII analogue - the chimeric protein MISRII-Fc containing AMH type II receptor and a Fc-fragment of the human IgG1 heavy chain. Comparison of the binding of MISRII-Fc, immobilized on a chip with group specificity for human immunoglobulins, to C-rAMH, to intact rAMH (pro-rAMH), and to rAMH containing one uncleaved monomer (hc-rAMH), showed that the KD of the complexes increased: 1.7 nM, 88 nM and 110 nM, respectively. Thus, we have shown that C-terminal fragment of AMH has the maximum affinity for the recombinant MISRII analogue, which indicates the prospects for the development of drugs based on this hormone derivative.
Collapse
Affiliation(s)
- A Ya Rak
- State Research Institute for Highly Pure Biopreparations, Saint-Petersburg, Russia
| | - A V Trofimov
- State Research Institute for Highly Pure Biopreparations, Saint-Petersburg, Russia
| | - A M Ischenko
- State Research Institute for Highly Pure Biopreparations, Saint-Petersburg, Russia
| | - A V Sokolov
- Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
20
|
Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int J Nanomedicine 2021; 16:1313-1330. [PMID: 33628022 PMCID: PMC7898224 DOI: 10.2147/ijn.s289443] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been actively integrated as drug carriers over the last few years to treat various cancers. The main hurdle in the clinical management of cancer is the development of multidrug resistance against chemotherapeutic agents. To overcome the limitations of chemotherapy, the researchers have been developing technological advances for significant progress in the oncotherapy by enabling the delivery of chemotherapeutic agents at increased drug content levels to the targeted spots. Several nano-drug delivery systems designed for tumor-targeting are evaluated in preclinical and clinical trials and showed promising outcomes in cancerous tumors' clinical management. This review describes nanocarrier's importance in managing different types of cancers and emphasizing nanocarriers for drug delivery and cancer nanotherapeutics. It also highlights the recent advances in nanocarriers-based delivery systems, including polymeric nanocarriers, micelles, nanotubes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and quantum dots (QDs). The nanocarrier-based composites are discussed in terms of their structure, characteristics, and therapeutic applications in oncology. To conclude, the challenges and future exploration opportunities of nanocarriers in chemotherapeutics are also presented.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences,College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Junli Wang
- Laboratory of Reproduction and Genetics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore, Pakistan
| |
Collapse
|
21
|
Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2003584. [PMID: 33344143 PMCID: PMC7740107 DOI: 10.1002/advs.202003584] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Indexed: 05/12/2023]
Abstract
Engineered nanomaterials that produce reactive oxygen species on exposure to X- and gamma-rays used in radiation therapy offer promise of novel cancer treatment strategies. Similar to photodynamic therapy but suitable for large and deep tumors, this new approach where nanomaterials acting as sensitizing agents are combined with clinical radiation can be effective at well-tolerated low radiation doses. Suitably engineered nanomaterials can enhance cancer radiotherapy by increasing the tumor selectivity and decreasing side effects. Additionally, the nanomaterial platform offers therapeutically valuable functionalities, including molecular targeting, drug/gene delivery, and adaptive responses to trigger drug release. The potential of such nanomaterials to be combined with radiotherapy is widely recognized. In order for further breakthroughs to be made, and to facilitate clinical translation, the applicable principles and fundamentals should be articulated. This review focuses on mechanisms underpinning rational nanomaterial design to enhance radiation therapy, the understanding of which will enable novel ways to optimize its therapeutic efficacy. A roadmap for designing nanomaterials with optimized anticancer performance is also shown and the potential clinical significance and future translation are discussed.
Collapse
Affiliation(s)
- Sandhya Clement
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Jared M. Campbell
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
- Institute for Regenerative MedicineSechenov First Moscow State Medical University (Sechenov University)Trubetskaya StreetMoscow119991Russia
| | - Saadia Nisar
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Guozhen Liu
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Brian C. Wilson
- Department of Medical BiophysicsUniversity of Toronto/Princess Margaret Cancer CentreUniversity Health NetworkColledge StreetTorontoOntarioON M5G 2C1Canada
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| |
Collapse
|
22
|
Wei QY, Xu YM, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel) 2020; 12:E2783. [PMID: 32998391 PMCID: PMC7600685 DOI: 10.3390/cancers12102783] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Conventional chemotherapy is still an important option of cancer treatment, but it has poor cell selectivity, severe side effects, and drug resistance. Utilizing nanoparticles (NPs) to improve the therapeutic effect of chemotherapeutic drugs has been highlighted in recent years. Nanotechnology dramatically changed the face of oncology by high loading capacity, less toxicity, targeted delivery of drugs, increased uptake to target sites, and optimized pharmacokinetic patterns of traditional drugs. At present, research is being envisaged in the field of novel nano-pharmaceutical design, such as liposome, polymer NPs, bio-NPs, and inorganic NPs, so as to make chemotherapy effective and long-lasting. Till now, a number of studies have been conducted using a wide range of nanocarriers for the treatment of solid tumors including lung, breast, pancreas, brain, and liver. To provide a reference for the further application of chemodrug-loaded nanoformulations, this review gives an overview of the recent development of nanocarriers, and the updated status of their use in the treatment of several solid tumors.
Collapse
Affiliation(s)
| | | | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Q.-Y.W.); (Y.-M.X.)
| |
Collapse
|
23
|
Buda V, Brezoiu AM, Berger D, Pavel IZ, Muntean D, Minda D, Dehelean CA, Soica C, Diaconeasa Z, Folescu R, Danciu C. Biological Evaluation of Black Chokeberry Extract Free and Embedded in Two Mesoporous Silica-Type Matrices. Pharmaceutics 2020; 12:pharmaceutics12090838. [PMID: 32882983 PMCID: PMC7558869 DOI: 10.3390/pharmaceutics12090838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Black chokeberry fruits possess a wide range of biological activities, among which the most important that are frequently mentioned in the literature are their antioxidant, anti-inflammatory, anti-proliferative, and antimicrobial properties. The present paper reports, for the first time, the encapsulation of the ethanolic extract of Aronia melanocarpa L. fruits into two mesoporous silica-type matrices (i.e., pristine MCM-41 and MCM-41 silica decorated with zinc oxide nanoparticles). The aim of this work was to evaluate the antiradicalic capacity, the antimicrobial potential, and the effects on the cell viability on a cancer cell line (i.e., A375 human melanoma cell line) versus normal cells (i.e., HaCaT human keratinocytes) of black chokeberry extract loaded on silica-type matrices in comparison to that of the extract alone. The ethanolic polyphenolic extract obtained by conventional extraction was characterized by high-performance liquid chromatography with a photodiode array detector (HPLC–PDA) and spectrophotometric methods. The extract was found to contain high amounts of polyphenols and flavonoids, as well as good radical scavenging activity. The extract-loaded materials were investigated by Fourier transform infrared spectroscopy, N2 adsorption–desorption isotherms, thermal analysis, and radical scavenger activity on solid samples. The black chokeberry extract, both free and loaded onto mesoporous silica-type matrices, exhibited a significant antioxidant capacity. Antibacterial activity was recorded only for Gram-positive bacteria, with a more potent antibacterial effect being observed for the extract loaded onto the ZnO-modified MCM-41 silica-type support than for the free extract, probably due to the synergistic effect of the ZnO nanoparticles that decorate the pore walls of silica. The cellular viability test (i.e., MTT assay) showed dose- and time-dependent activity regarding the melanoma cell line. The healthy cells were less affected than the cancer cells, with all tested samples showing good cytocompatibility at doses of up to 100 µg/mL. Improved in vitro antiproliferative and antimigratory (i.e., scratch assay) potential was demonstrated through the loading of black chokeberry extract into mesoporous silica-type matrices, and the screened samples exhibited low selectivity against the tested non-tumor cell line. Based on presented results, one can conclude that mesoporous silica-type matrices are good hosts for black chokeberry extract, increasing its antioxidant, antibacterial (on the screened strains), and in vitro antitumor (on the screened cell line) properties.
Collapse
Affiliation(s)
- Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
- Correspondence: (D.B.); (I.Z.P.); Tel.: +40-721-694-275 (D.B.); +40-256-494-604 (I.Z.P.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.M.); (C.D.)
- Correspondence: (D.B.); (I.Z.P.); Tel.: +40-721-694-275 (D.B.); +40-256-494-604 (I.Z.P.)
| | - Delia Muntean
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.M.); (C.D.)
| | - Cristina Adriana Dehelean
- Department of Toxicology, University of Medicine and Pharmacy “Victor Babeş”, EftimieMurgu Square, No. 2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3–5, 400372 Cluj-Napoca, Romania;
| | - Roxana Folescu
- Department of Anatomy and Embryology, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.M.); (C.D.)
| |
Collapse
|
24
|
Zhang X, Liu L, Tang M, Li H, Guo X, Yang X. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. Drug Dev Ind Pharm 2020; 46:1150-1162. [PMID: 32482115 DOI: 10.1080/03639045.2020.1776320] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: To assess the feasibility of an exosome-based drug delivery platform for the potent chemotherapeutic agent cisplatin to treat ovarian cancer.Significance: Exosomes have recently been used as drug delivery vehicles because of their natural advantages. Platinum-resistant forms of ovarian cancer require novel drug delivery methods to improve patient outcomes.Methods: We developed and compared different methods of loading exosomes released by mononuclear M1 and M2 macrophages from umbilical cord blood with cisplatin. We characterized the morphology, drug capacity, method of cellular entry, and antitumor efficacy of the exosomes in vitro.Results: Disruption of the exosomal membrane by sonication facilitated a high loading efficiency. Importantly, incorporation of cisplatin into umbilical cord blood-derived M1 macrophage exosomes increased its cytotoxicity 3.3× in drug-resistant A2780/DDP cells and 1.4× in drug-sensitive A2780 cells over chemotherapy alone. Loading of cisplatin into M2 exosomes increased its cytotoxicity by nearly 1.7× in drug-resistant A2780/DDP cells and 1.4× in drug-sensitive A2780 cells.Conclusions: We conclude that cisplatin-loaded M1 exosomes are potentially powerful new tools for the delivery of chemotherapeutics to treat cancers regardless of drug resistance.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Li Liu
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Tang
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Hong Li
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Xiaoqing Guo
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Xiaoqian Yang
- Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Salehi B, Del Prado-Audelo ML, Cortés H, Leyva-Gómez G, Stojanović-Radić Z, Singh YD, Patra JK, Das G, Martins N, Martorell M, Sharifi-Rad M, Cho WC, Sharifi-Rad J. Therapeutic Applications of Curcumin Nanomedicine Formulations in Cardiovascular Diseases. J Clin Med 2020; 9:746. [PMID: 32164244 PMCID: PMC7141226 DOI: 10.3390/jcm9030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) compromises a group of heart and blood vessels disorders with high impact on human health and wellbeing. Curcumin (CUR) have demonstrated beneficial effects on these group of diseases that represent a global burden with a prevalence that continues increasing progressively. Pre- and clinical studies have demonstrated the CUR effects in CVD through its anti-hypercholesterolemic and anti-atherosclerotic effects and its protective properties against cardiac ischemia and reperfusion. However, the CUR therapeutic limitation is its bioavailability. New CUR nanomedicine formulations are developed to solve this problem. The present article aims to discuss different studies and approaches looking into the promising role of nanotechnology-based drug delivery systems to deliver CUR and its derivatives in CVD treatment, with an emphasis on their formulation properties, experimental evidence, bioactivity, as well as challenges and opportunities in developing these systems.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Mexico City 04510, Mexico; (M.L.D.P.-A.); (G.L.-G.)
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Mexico City 04510, Mexico; (M.L.D.P.-A.); (G.L.-G.)
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat 791102, Arunachal Pradesh, India;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326, Korea; (J.K.P.); (G.D.)
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326, Korea; (J.K.P.); (G.D.)
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Marzieh Sharifi-Rad
- Research Department of Agronomy and Plant Breeding, Agricultural Research Institute, University of Zabol, Zabol 3585698613, Iran;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
26
|
Rak AY, Trofimov AV, Pigareva NV, Protasov EA, Karabanova EA, Ischenko AM. Purification of human recombinant anti-mullerian hormone and its derivatives. Biomed Chromatogr 2020; 34:e4782. [PMID: 31845358 DOI: 10.1002/bmc.4782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 11/05/2022]
Abstract
Anti-mullerian hormone (AMH) is a cytokine of transforming growth factor β (TGF-β) superfamily able to induce apoptosis in cells bearing specific AMH type II receptors (AMHRII). AMHRII is overexpressed in some malignant cells, so at present recombinant AMH (rAMH) is considered as a new candidate antineoplastic drug. The use of rAMH may be especially effective in case of such severe diseases as ovarian, prostate and breast cancer. However, the development of a new drug is hampered by the laboriousness of obtaining highly purified rAMH and by the lack of data about the pharmacological characteristics of rAMH derivatives. In this work, we obtained preparations of prohormone, half-cleaved rAMH and a C-terminal fragment of rAMH, which was confirmed by qualitative and quantitative analyses. To obtain rAMH and its derivatives we used a previously developed highly effective producer strain containing the optimized human AMH gene. The production process has been divided into several stages: (a) rAMH biosynthesis in the bioreactor; (b) culture media preparation; (c) purification of rAMH and its derivatives using immunoaffinity chromatography and reversed-phase HPLC; (d) identification of the purified proteins by immunoblotting and analytical reversed-phase HPLC; and (e) evaluation of the hormone forms activity. The obtained proteins may be used in preclinical trials and in vitro study of rAMH derivatives properties.
Collapse
Affiliation(s)
- Alexandra Ya Rak
- State Research Institute of Highly Pure Biopreparations, St Petersburg, Russian Federation.,St. Petersburg State University, St Petersburg, Russian Federation
| | - Alexander V Trofimov
- State Research Institute of Highly Pure Biopreparations, St Petersburg, Russian Federation
| | - Natalia V Pigareva
- State Research Institute of Highly Pure Biopreparations, St Petersburg, Russian Federation
| | - Eugeny A Protasov
- State Research Institute of Highly Pure Biopreparations, St Petersburg, Russian Federation
| | - Elena A Karabanova
- State Research Institute of Highly Pure Biopreparations, St Petersburg, Russian Federation
| | - Alexander M Ischenko
- State Research Institute of Highly Pure Biopreparations, St Petersburg, Russian Federation
| |
Collapse
|
27
|
Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer. Nucl Med Biol 2019; 80-81:1-12. [PMID: 31759312 DOI: 10.1016/j.nucmedbio.2019.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
Abstract
METHODS We have developed a nuclear and fluorescence labeling strategy for nanocrystalline cellulose (CNC), an emerging biomaterial with versatile chemistry and facile preparation from renewable sources. We modified CNC through 1,1'-carbonyldiimidazole (CDI) activation with radiometal chelators desferrioxamine B and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), allowing for the labeling with zirconium-89 (t½ = 78.41 h) and copper-64 (t½ = 12.70 h), respectively, for non-invasive positron emission tomography (PET) imaging. The far-red fluorescent dye Cy5 was added for ex vivo optical imaging, microscopy and flow cytometry. The multimodal CNC were evaluated in the syngeneic orthotopic 4T1 tumor model of human stage IV breast cancer. RESULTS Modified CNC exhibited low cytotoxicity in RAW 264.7 macrophages over 96 h, and high radiolabel stability in vitro. After systemic administration, radiolabeled CNC were rapidly sequestered to the organs of the reticulo-endothelial system (RES), indicating immune recognition and no passive tumor targeting by the enhanced permeability and retention (EPR) effect. Modification with NOTA was a more favorable strategy in terms of radiolabeling yield, specific radioactivity, and both the radiolabel and dispersion stability in physiological conditions. Flow cytometry analysis of Cy5-positive immune cells from the spleen and tumor corroborated the uptake of CNC to phagocytic cells. CONCLUSIONS Future studies on the in vivo behavior of CNC should be concentrated on improving the nanomaterial stability and circulation half-life under physiological conditions and optimizing further the labeling yields for the multimodality imaging strategy presented. ADVANCES IN KNOWLEDGE Our studies constitute one of the first accounts of a multimodality nuclear and fluorescent probe for the evaluation of CNC biodistribution in vivo and outline the pitfalls in radiometal labeling strategies for future evaluation of targeted CNC-based drug delivery systems. IMPLICATIONS FOR PATIENT CARE Quantitative and sensitive molecular imaging methods provide information on the structure-activity relationships of the nanomaterial and guide the translation from in vitro models to clinically relevant animal models.
Collapse
|
28
|
Rak AY, Trofimov AV, Ischenko AM. Anti-mullerian hormone receptor type II as a Potential Target for Antineoplastic Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819030053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Heenatigala Palliyage G, Singh S, Ashby CR, Tiwari AK, Chauhan H. Pharmaceutical Topical Delivery of Poorly Soluble Polyphenols: Potential Role in Prevention and Treatment of Melanoma. AAPS PharmSciTech 2019; 20:250. [PMID: 31297635 DOI: 10.1208/s12249-019-1457-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
Melanoma is regarded as the fifth and sixth most common cancer in men and women, respectively, and it is estimated that one person dies from melanoma every hour in the USA. Unfortunately, the treatment of melanoma is difficult because of its aggressive metastasis and resistance to treatment. The treatment of melanoma continues to be a challenging issue due to the limitations of available treatments such as a low response rate, severe adverse reactions, and significant toxicity. Natural polyphenols have attracted considerable attention from the scientific community due to their chemopreventive and chemotherapeutic efficacy. It has been suggested that poorly soluble polyphenols such as curcumin, resveratrol, quercetin, coumarin, and epigallocatechin-3-gallate may have significant benefits in the treatment of melanoma due to their antioxidant, anti-inflammatory, antiproliferative, and chemoprotective efficacies. The major obstacles for the use of polyphenolic compounds are low stability and poor bioavailability. Numerous nanoformulations, including solid lipid nanoparticles, polymeric nanoparticles, micelles, and liposomes, have been formulated to enhance the bioavailability and stability, as well as the therapeutic efficacy of polyphenols. This review will provide an overview of poorly soluble polyphenols that have been reported to have antimetastatic efficacy in melanomas.
Collapse
|
30
|
Rak AY, Trofimov AV, Ischenko AM. [Mullerian inhibiting substance type II receptor as a potential target for antineoplastic therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:202-213. [PMID: 31258143 DOI: 10.18097/pbmc20196503202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers properties of the type II anti-Mullerian hormone receptor (mullerian inhibiting substance receptor type II, MISRII), a transmembrane sensor with its own serine/threonine protein kinase activity, triggering apoptosis of the Mullerian ducts in mammalian embryogenesis and providing formation of the male type reproductive system. According to recent data, MISRII overexpression in the postnatal period is found in cells of a number of ovarian, mammary gland, and prostate tumors, and anti-Mullerian hormone (AMH) has a pro-apoptotic effect on MISRII-positive tumor cells. This fact makes MISRII a potential target for targeted anti-cancer therapy. Treatment based on targeting MISRII seems to be a much more effective alternative to the traditional one and will significantly reduce the drug dose. However, the mechanism of MISRII-AMH interaction is still poorly understood, so the development of new anticancer drugs is complicated. The review analyzes MISRII molecular structure and expression levels in various tissues and cell lines, as well as current understanding of the AMH binding mechanisms and data on the possibility of using MISRII as a target for the action of AMH-based antineoplastic drugs.
Collapse
Affiliation(s)
- A Ya Rak
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia
| | - A V Trofimov
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| | - A M Ischenko
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| |
Collapse
|
31
|
Venditti I. Engineered Gold-Based Nanomaterials: Morphologies and Functionalities in Biomedical Applications. A Mini Review. Bioengineering (Basel) 2019; 6:bioengineering6020053. [PMID: 31185667 PMCID: PMC6630817 DOI: 10.3390/bioengineering6020053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, several engineered gold-based nanomaterials, such as spheres, rods, stars, cubes, hollow particles, and nanocapsules have been widely explored in biomedical fields, in particular in therapy and diagnostics. As well as different shapes and dimensions, these materials may, on their surfaces, have specific functionalizations to improve their capability as sensors or in drug loading and controlled release, and/or particular cell receptors ligands, in order to get a definite targeting. In this review, the up-to-date progress will be illustrated regarding morphologies, sizes and functionalizations, mostly used to obtain an improved performance of nanomaterials in biomedicine. Many suggestions are presented to organize and compare the numerous and heterogeneous experimental data, such as the most important chemical-physical parameters, which guide and control the interaction between the gold surface and biological environment. The purpose of all this is to offer the readers an overview of the most noteworthy progress and challenges in this research field.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, University of Roma Tre, via della Vasca Navale 79, 00146 Rome, Italy.
| |
Collapse
|
32
|
Kopeckova K, Eckschlager T, Sirc J, Hobzova R, Plch J, Hrabeta J, Michalek J. Nanodrugs used in cancer therapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:122-131. [PMID: 30967685 DOI: 10.5507/bp.2019.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/25/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer despite the introduction of new targeted therapy remains for many patients a fatal disease. Nanotechnology in cancer medicine has emerged as a promising approach to defeat cancer. Targeted delivery of anti-cancer drugs by different nanosystems promises enhanced drug efficacy, selectivity, better safety profile and reduced systemic toxicity. The article presents an overview of recent developments in cancer nanomedicine. We focus on approved anti-cancer medical products and on the results of clinical studies, highlighting that liposomal and micellar cytostatics or albumin-based nanoparticles have less side effects and are more efficient than "free" drugs. In addition, we discuss results of in vitro and in vivo preclinical studies with lipid, inorganic and polymer nanosystems loaded by anticancer drugs which according to our meaning are important for development of new nanodrugs. Pharmacokinetic characteristics of nanodrugs are discussed and characterization of major nanotechnology systems used for cancer nanomedicine is presented.
Collapse
Affiliation(s)
- Katerina Kopeckova
- Department of Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jakub Sirc
- Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic Corresponding author: Katerina Kopeckova, e-mail
| | - Radka Hobzova
- Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic Corresponding author: Katerina Kopeckova, e-mail
| | - Johana Plch
- Department of Pediatric Hematology and Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jiri Michalek
- Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic Corresponding author: Katerina Kopeckova, e-mail
| |
Collapse
|
33
|
Shanmuganathan R, Edison TNJI, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int J Biol Macromol 2019; 130:727-736. [PMID: 30771392 DOI: 10.1016/j.ijbiomac.2019.02.060] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 01/26/2023]
Abstract
Cancer is becoming a major reason for death troll worldwide due to the difficulty in finding an efficient, cost effective and target specific method of treatment or diagnosis. The variety of cancer therapy used in the present scenario have painful side effects, low effectiveness and high cost, which are some major drawbacks of the available therapies. Apart from the conventional cancer therapy, nanotechnology has grown extremely towards treating cancer. Nanotechnology is a promising area of science focusing on developing target specific drug delivery system for carrying small or large active molecules to diagnose and treat cancer cells. In the field of nanoscience, Chitosan nanopolymers (ChNPs) are been emerging as a potential carrier due to their biodegradability and biocompatibility. The easy modification and versatility in administration route of ChNPs has attracted attention of researchers towards loading chemicals, proteins and gene drugs for target specific therapy of cancer cells. Therefore, the present review deals with the growing concern towards cancer therapy, introduction of ChNPs, mode of action and other strategies employed by researchers till date towards cancer treatment and diagnosis ChNPs.
Collapse
Affiliation(s)
| | | | | | - Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, India
| | | | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
34
|
Ryu Y, Kang JA, Kim D, Kim SR, Kim S, Park SJ, Kwon SH, Kim KN, Lee DE, Lee JJ, Kim HS. Programed Assembly of Nucleoprotein Nanoparticles Using DNA and Zinc Fingers for Targeted Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802618. [PMID: 30398698 DOI: 10.1002/smll.201802618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/29/2018] [Indexed: 06/08/2023]
Abstract
With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA and zinc fingers (ZnFs) for targeted protein delivery is presented. Two types of ZnFs with different sequence specificities are genetically fused to a targeting moiety and a protein cargo, respectively. Double-stranded DNA with multiple ZnF-binding sequences is grafted onto inorganic nanoparticles, followed by conjugation with the ZnF-fused proteins, generating the assembly of NNPs with a uniform size distribution and high stability. The approach enables controlled loading of a protein cargo on the NNPs, offering a high cytosolic delivery efficiency and target specificity. The utility and potential of the assembly as a versatile protein delivery vehicle is demonstrated based on their remarkable antitumor activity and target specificity with negligible toxicity in a xenograft mice model.
Collapse
Affiliation(s)
- Yiseul Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jung Ae Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongup, 56212, South Korea
| | - Dasom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Song-Rae Kim
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Seungmin Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seong Ji Park
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung-Hae Kwon
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Kil-Nam Kim
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongup, 56212, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon, 24341, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
35
|
Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018; 23:2787. [PMID: 30373235 PMCID: PMC6278361 DOI: 10.3390/molecules23112787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has extensively demonstrated the anticancer potential of nutraceuticals, including plant polyphenols. Polymeric nanocarrier systems have played an important role in improving the physicochemical and pharmacological properties of polyphenols, thus ameliorating their therapeutic effectiveness. This article summarizes the benefits and shortcomings of various polymeric systems developed for the delivery of polyphenols in cancer therapy and reveals some ideas for future work.
Collapse
Affiliation(s)
- Umeorah Ernest
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai-Yan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming-Jun Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 1416663547, Iran.
| | | | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 5165665931, Iran.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| |
Collapse
|
36
|
de Sousa Cunha F, Dos Santos Pereira LN, de Costa E Silva TP, de Sousa Luz RA, Nogueira Mendes A. Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2018; 27:732-741. [PMID: 30207742 DOI: 10.1080/1061186x.2018.1523418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of nanoparticulate systems with action in breast and ovarian cancer has been highlighted in recent years as an alternative to increasing the therapeutic index of conventional anticancer drugs. Thus, nanoparticles have advantageous characteristics in the treatment of cancer. Several nanocarriers of drugs and nanoparticles are described in the literature. The pharmacokinetics of the drugs can be modified by the use of nanocarriers, which in turn facilitate the specific delivery of the drug to the tumour cell. Therefore, the present work is a review that examines some nanosystems with nanoparticles for action in the treatment of breast cancer and ovarian cancer.
Collapse
Affiliation(s)
- Fabiana de Sousa Cunha
- a Departamento de Química, Campus Poeta Torquato Neto , Universidade Estadual do Piauí , Teresina , Brazil
| | - Laise Nayra Dos Santos Pereira
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Thâmara Pryscilla de Costa E Silva
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Roberto Alves de Sousa Luz
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Anderson Nogueira Mendes
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil.,c Departamento de Biofísica e Fisiologia, Centro de Ciências em Saúde , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| |
Collapse
|
37
|
Wang X, Gao S, Qin Z, Tian R, Wang G, Zhang X, Zhu L, Chen X. Evans Blue Derivative-Functionalized Gold Nanorods for Photothermal Therapy-Enhanced Tumor Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15140-15149. [PMID: 29648446 DOI: 10.1021/acsami.8b02195] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chemotherapy is a standard care for cancer management, but the lack of tumor targeting and high dose-induced side effects still limit its utility in patients. Here, we report a chemotherapy combined with photothermal therapy (PTT) for enhanced cancer ablation by functionalization of gold nanorods (GNRs) with a novel small molecule named truncated Evans blue (tEB). On the basis of the high binding affinity of tEB with albumin, an Abraxane-like nanodrug, human serum albumin/hydroxycamptothecin (HSA/HCPT), was further complexed with GNR-tEB. This formed an HCPT/HSA/tEB-GNR (HHEG) with excellent biostability and biocompatibility. With photoacoustic and fluorescence imaging, we observed HHEG tumor targeting, which is mediated by enhanced permeability retention effect. The accumulation of HHEG peaked in tumor at 12 h postinjection. Moreover, HHEG can effectively ablate tumor growth with laser illumination via chemo/thermal therapy after intravenous administration into SCC7 tumor. This combination is much better than chemotherapy or PTT alone. Collectively, we constructed a chemo/thermal therapy nanostructure based on a tEB-modified GNR for better tumor treatment effect. The use of tEB in gold nanoparticles can facilitate many new approaches to design hybrid nanoparticles.
Collapse
Affiliation(s)
- Xiangyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | | | - Zainen Qin
- Collaborative Innovation Center of Guangxi Biological Medicine and the Medical and Scientific Research Center Guangxi Medical University , Nanning , Guangxi 530000 , China
| | | | - Guohao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | - Lei Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
38
|
Müller EK, Gräfe C, Wiekhorst F, Bergemann C, Weidner A, Dutz S, Clement JH. Magnetic Nanoparticles Interact and Pass an In Vitro Co-Culture Blood-Placenta Barrier Model. NANOMATERIALS 2018; 8:nano8020108. [PMID: 29443880 PMCID: PMC5853739 DOI: 10.3390/nano8020108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
Abstract
Magnetic nanoparticles are interesting tools for biomedicine. Before application, critical prerequisites have to be fulfilled. An important issue is the contact and interaction with biological barriers such as the blood-placenta barrier. In order to study these processes in detail, suitable in vitro models are needed. For that purpose a blood-placenta barrier model based on the trophoblast-like cell line BeWo and primary placenta-derived pericytes was established. This model was characterized by molecular permeability, transepithelial electrical resistance and cell-cell-contact markers. Superparamagnetic iron oxide nanoparticles (SPIONs) with cationic, anionic or neutral surface charge were applied. The localization of the nanoparticles within the cells was illustrated by histochemistry. The time-dependent passage of the nanoparticles through the BeWo/pericyte barrier was measured by magnetic particle spectroscopy and atomic absorption spectroscopy. Cationically coated SPIONs exhibited the most extensive interaction with the BeWo cells and remained primarily in the BeWo/pericyte cell layer. In contrast, SPIONs with neutral and anionic surface charge were able to pass the cell layer to a higher extent and could be detected beyond the barrier after 24 h. This study showed that the mode of SPION interaction with and passage through the in vitro blood-placenta barrier model depends on the surface charge and the duration of treatment.
Collapse
Affiliation(s)
- Elena K Müller
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Christine Gräfe
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2-12, D-10587 Berlin, Germany.
| | | | - Andreas Weidner
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 2, D-98693 Ilmenau, Germany.
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 2, D-98693 Ilmenau, Germany.
| | - Joachim H Clement
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
39
|
Zhitnyak IY, Bychkov IN, Sukhorukova IV, Kovalskii AM, Firestein KL, Golberg D, Gloushankova NA, Shtansky DV. Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32498-32508. [PMID: 28857548 DOI: 10.1021/acsami.7b08713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein we study the effect of doxorubicin-loaded BN nanoparticles (DOX-BNNPs) on cell lines that differ in the multidrug resistance (MDR), namely KB-3-1 and MDR KB-8-5 cervical carcinoma lines, and K562 and MDR i-S9 leukemia lines. We aim at revealing the possible differences in the cytotoxic effect of free DOX and DOX-BNNP nanoconjugates on these types of cells. The spectrophotometric measurements have demonstrated that the maximum amount of DOX in the DOX-BNNPs is obtained after saturation in alkaline solution (pH 8.4), indicating the high efficiency of BNNPs saturation with DOX. DOX release from DOX-BNNPs is a pH-dependent and DOX is more effectively released in acid medium (pH 4.0-5.0). Confocal laser scanning microscopy has shown that the DOX-BNNPs are internalized by neoplastic cells using endocytic pathway and distributed in cell cytoplasm near the nucleus. The cytotoxic studies have demonstrated a higher sensitivity of the leukemia lines to DOX-BNNPs compared with the carcinoma lines: IC50(DOX-BNNPs) is 1.13, 4.68, 0.025, and 0.14 μg/mL for the KB-3-1, MDR KB-8-5, K562, and MDR i-S9 cell lines, respectively. To uncover the mechanism of cytotoxic effect of nanocarriers on MDR cells, DOX distribution in both the nucleus and cytoplasm has been studied. The results indicate that the DOX-BNNP nanoconjugates significantly change the dynamics of DOX accumulation in the nuclei of both KB-3-1 and KB-8-5 cells. Unlike free DOX, the utilization of DOX-BNNPs nanoconjugates allows for maintaining a high and stable level of DOX in the nucleus of MDR KB-8-5 cells.
Collapse
Affiliation(s)
- Irina Y Zhitnyak
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Igor N Bychkov
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Irina V Sukhorukova
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| | - Andrey M Kovalskii
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| | - Konstantin L Firestein
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , Second George Street, Brisbane, Queensland 4000, Australia
| | - Dmitri Golberg
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , Second George Street, Brisbane, Queensland 4000, Australia
- Intrenational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
| | - Natalya A Gloushankova
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| |
Collapse
|
40
|
Zhu WT, Liu SY, Wu L, Xu HL, Wang J, Ni GX, Zeng QB. Delivery of curcumin by directed self-assembled micelles enhances therapeutic treatment of non-small-cell lung cancer. Int J Nanomedicine 2017; 12:2621-2634. [PMID: 28435247 PMCID: PMC5388225 DOI: 10.2147/ijn.s128921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It has been widely reported that curcumin (CUR) exhibits anticancer activity and triggers the apoptosis of human A549 non-small-cell lung cancer (NSCLC) cells. However, its application is limited owing to its poor solubility and bioavailability. Therefore, there is an urgent need to develop a new CUR formulation with higher water solubility and better biocompatibility for clinical application in the future. MATERIALS AND METHODS In this study, CUR-loaded methoxy polyethylene glycol-polylactide (CUR/mPEG-PLA) polymeric micelles were prepared by a thin-film hydration method. Their characteristics and antitumor effects were evaluated subsequently. RESULTS The average size of CUR/mPEG-PLA micelles was 34.9±2.1 nm with its polydispersity index (PDI) in the range of 0.067-0.168. The encapsulation efficiency and drug loading were 90.2%±0.78% and 9.1%±0.07%, respectively. CUR was constantly released from the CUR/mPEG-PLA micelles, and its cellular uptake in A549 cells was significantly increased. It was also found that CUR/mPEG-PLA micelles inhibited A549 cell proliferation, increased the cell cytotoxicity, induced G2/M stage arrest and promoted cell apoptosis. Moreover, the CUR/mPEG-PLA micelles suppressed the migration and invasion of A549 cells more obviously than free CUR. Additionally, CUR/mPEG-PLA micelles inhibited human umbilical vein endothelial cells migration, invasion and corresponding tube formation, implying the antiangiogenesis ability. Its enhanced antitumor mechanism may be related to the reduced expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, MMP-9 and Bcl-2 as well as the increased expression of Bax. CONCLUSION The mPEG-PLA copolymer micelles can serve as an efficient carrier for CUR. The CUR/mPEG-PLA micelles have promising clinical potential in treating NSCLC.
Collapse
Affiliation(s)
- Wen-Ting Zhu
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Sheng-Yao Liu
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wu
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hua-Li Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guo-Xin Ni
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qing-Bing Zeng
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Multicomponent, Tumor-Homing Chitosan Nanoparticles for Cancer Imaging and Therapy. Int J Mol Sci 2017; 18:ijms18030594. [PMID: 28282891 PMCID: PMC5372610 DOI: 10.3390/ijms18030594] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
Current clinical methods for cancer diagnosis and therapy have limitations, although survival periods are increasing as medical technologies develop. In most cancer cases, patient survival is closely related to cancer stage. Late-stage cancer after metastasis is very challenging to cure because current surgical removal of cancer is not precise enough and significantly affects bystander normal tissues. Moreover, the subsequent chemotherapy and radiation therapy affect not only malignant tumors, but also healthy tissues. Nanotechnologies for cancer treatment have the clear objective of solving these issues. Nanoparticles have been developed to more accurately differentiate early-stage malignant tumors and to treat only the tumors while dramatically minimizing side effects. In this review, we focus on recent chitosan-based nanoparticles developed with the goal of accurate cancer imaging and effective treatment. Regarding imaging applications, we review optical and magnetic resonance cancer imaging in particular. Regarding cancer treatments, we review various therapeutic methods that use chitosan-based nanoparticles, including chemo-, gene, photothermal, photodynamic and magnetic therapies.
Collapse
|
42
|
Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv 2017; 24:162-180. [PMID: 28156178 PMCID: PMC8241076 DOI: 10.1080/10717544.2016.1236846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
Collapse
Affiliation(s)
- Orazio Vittorio
- a UNSW Australia, Children's Cancer Institute, Lowy Cancer Research Center and ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Australian Center for NanoMedicine , Sydney , NSW , Australia
| | - Manuela Curcio
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Monica Cojoc
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany
| | - Gerardo F Goya
- d Institute of Nanoscience of Aragon (INA) and Department of Condensed Matter Physics, University of Zaragoza , Zaragoza , Spain
| | - Silke Hampel
- e Leibniz Institute of Solid State and Material Research Dresden , Dresden , Germany , and
| | - Francesca Iemma
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Anna Dubrovska
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany.,f German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Giuseppe Cirillo
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| |
Collapse
|
43
|
Bowerman CJ, Byrne JD, Chu KS, Schorzman AN, Keeler AW, Sherwood CA, Perry JL, Luft JC, Darr DB, Deal AM, Napier ME, Zamboni WC, Sharpless NE, Perou CM, DeSimone JM. Docetaxel-Loaded PLGA Nanoparticles Improve Efficacy in Taxane-Resistant Triple-Negative Breast Cancer. NANO LETTERS 2017; 17:242-248. [PMID: 27966988 PMCID: PMC5404392 DOI: 10.1021/acs.nanolett.6b03971] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Novel treatment strategies, including nanomedicine, are needed for improving management of triple-negative breast cancer. Patients with triple-negative breast cancer, when considered as a group, have a worse outcome after chemotherapy than patients with breast cancers of other subtypes, a finding that reflects the intrinsically adverse prognosis associated with the disease. The aim of this study was to improve the efficacy of docetaxel by incorporation into a novel nanoparticle platform for the treatment of taxane-resistant triple-negative breast cancer. Rod-shaped nanoparticles encapsulating docetaxel were fabricated using an imprint lithography based technique referred to as Particle Replication in Nonwetting Templates (PRINT). These rod-shaped PLGA-docetaxel nanoparticles were tested in the C3(1)-T-antigen (C3Tag) genetically engineered mouse model (GEMM) of breast cancer that represents the basal-like subtype of triple-negative breast cancer and is resistant to therapeutics from the taxane family. This GEMM recapitulates the genetics of the human disease and is reflective of patient outcome and, therefore, better represents the clinical impact of new therapeutics. Pharmacokinetic analysis showed that delivery of these PLGA-docetaxel nanoparticles increased docetaxel circulation time and provided similar docetaxel exposure to tumor compared to the clinical formulation of docetaxel, Taxotere. These PLGA-docetaxel nanoparticles improved tumor growth inhibition and significantly increased median survival time. This study demonstrates the potential of nanotechnology to improve the therapeutic index of chemotherapies and rescue therapeutic efficacy to treat nonresponsive cancers.
Collapse
Affiliation(s)
- Charles J. Bowerman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27515, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James D. Byrne
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kevin S. Chu
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Allison N. Schorzman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Amanda W. Keeler
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Candice A. Sherwood
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jillian L. Perry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James C. Luft
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David B. Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Allison M. Deal
- Lineberger Comprehensive Cancer Center Biostatistics and Clinical Data Management Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mary E. Napier
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William C. Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Norman E. Sharpless
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph M. DeSimone
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27515, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Chapel Hill, North Carolina 27607, United States
| |
Collapse
|
44
|
Denizli M, Aslan B, Mangala LS, Jiang D, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK. Chitosan Nanoparticles for miRNA Delivery. Methods Mol Biol 2017; 1632:219-230. [PMID: 28730442 PMCID: PMC7423176 DOI: 10.1007/978-1-4939-7138-1_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RNA interference techniques represent a promising strategy for therapeutic applications. In addition to small interfering RNA-based approaches, which have been widely studied and translated into clinical investigations, microRNA-based approaches are attractive owing to their "one hit, multiple targets" concept. To overcome challenges with in vivo delivery of microRNAs related to stability, cellular uptake, and specific delivery, our group has developed and characterized chitosan nanoparticles for nucleotide delivery. This platform allows for robust target modulation and antitumor activity following intravenous administration.
Collapse
Affiliation(s)
- Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingegowda S Mangala
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Bldg., CPB6.3275, 1515 Holcombe Blvd., Unit 1362, Houston, TX, 77030, USA
| | - Dahai Jiang
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Bldg., CPB6.3275, 1515 Holcombe Blvd., Unit 1362, Houston, TX, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Bldg., CPB6.3275, 1515 Holcombe Blvd., Unit 1362, Houston, TX, 77030, USA.
- Program in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Vieira DB, Gamarra LF. Advances in the use of nanocarriers for cancer diagnosis and treatment. EINSTEIN-SAO PAULO 2016; 14:99-103. [PMID: 27074238 PMCID: PMC4872924 DOI: 10.1590/s1679-45082016rb3475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022] Open
Abstract
The use of nanocarriers as drug delivery systems for therapeutic or imaging agents can improve the pharmacological properties of commonly used compounds in cancer diagnosis and treatment. Advances in the surface engineering of nanoparticles to accommodate targeting ligands turned nanocarriers attractive candidates for future work involving targeted drug delivery. Although not targeted, several nanocarriers have been approved for clinical use and they are currently used to treat and/or diagnosis various types of cancers. Furthermore, there are several formulations, which are now in various stages of clinical trials. This review examined some approved formulations and discussed the advantages of using nanocarriers in cancer therapy.
Collapse
|
46
|
Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma. Int J Pharm 2016; 517:168-174. [PMID: 27956195 DOI: 10.1016/j.ijpharm.2016.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022]
Abstract
Redox-responsive nanoparticles were synthesized by desolvation of bovine serum albumin followed by disulfide-bond crosslinking with N, N'-Bis (acryloyl) cystamine. Dynamic light scattering and transmission electron microscopy studies revealed spherical nanoparticles (mean diameter: 83nm, polydispersity index: 0.3) that were glutathione-responsive. Confocal microscopy revealed rapid, efficient internalization of the nanoparticles by Daoy medulloblastoma cells and healthy controls (HaCaT keratinocytes). Cisplatin-loaded nanoparticles with drug:carrier ratios of 5%, 10%, and 20% were tested in both cell lines. The formulation with the highest drug:carrier ratio reduced Daoy and HaCaT cell viability with IC50 values of 6.19 and 11.17μgmL-1, respectively. The differential cytotoxicity reflects the cancer cells' higher glutathione content, which triggers more extensive disruption of the disulfide bond-mediated intra-particle cross-links, decreasing particle stability and increasing their cisplatin release. These findings support continuing efforts to improve the safety and efficacy of antineoplastic drug therapy for pediatric brain tumors using selective nanoparticle-based drug delivery systems.
Collapse
|
47
|
Gräfe C, Slabu I, Wiekhorst F, Bergemann C, von Eggeling F, Hochhaus A, Trahms L, Clement JH. Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells. Phys Med Biol 2016; 61:3986-4000. [PMID: 27163489 DOI: 10.1088/0031-9155/61/11/3986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Crossing the blood-brain barrier is an urgent requirement for the treatment of brain disorders. Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool as carriers for therapeutics because of their physical properties, biocompatibility, and their biodegradability. In order to investigate the interaction of nanoparticles with endothelial cell layers in detail, in vitro systems are of great importance. Human brain microvascular endothelial cells are a well-suited blood-brain barrier model. Apart from generating optimal conditions for the barrier-forming cell units, the accurate detection and quantification of SPIONs is a major challenge. For that purpose we use magnetic particle spectroscopy to sensitively and directly quantify the SPION-specific iron content. We could show that SPION concentration depends on incubation time, nanoparticle concentration and location. This model system allows for further investigations on particle uptake and transport at cellular barriers with regard to parameters including particles' shape, material, size, and coating.
Collapse
Affiliation(s)
- C Gräfe
- Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Barth RF, Wu G, Meisen WH, Nakkula RJ, Yang W, Huo T, Kellough DA, Kaumaya P, Turro C, Agius LM, Kaur B. Design, synthesis, and evaluation of cisplatin-containing EGFR targeting bioconjugates as potential therapeutic agents for brain tumors. Onco Targets Ther 2016; 9:2769-81. [PMID: 27274273 PMCID: PMC4869632 DOI: 10.2147/ott.s99242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP]) fragment and epidermal growth factor receptor (EGFR)-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR) to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux®) as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5) and then linking it to C225 by means of two heterobifunctional reagents. The second bioconjugate (C225-PG-Pt) employed the same methodology except that polyglutamic acid was used as the carrier. The third and fourth bioconjugates used two different EGF peptides, PEP382 and PEP455, with direct coordination to the Pt center of the cis-DDP fragment. In vivo studies with C225-G5-Pt failed to demonstrate therapeutic activity following intracerebral (ic) convection-enhanced delivery (CED) to F98EGFR glioma-bearing rats. The second bioconjugate, C225-PG-Pt, failed to show in vitro cytotoxicity. Furthermore, because of its high molecular weight, we decided that lower molecular weight peptides might provide better targeting and microdistribution within the tumor. Both PEP382-Pt and PEP455-Pt bioconjugates were cytotoxic in vitro and, based on this, a pilot study was initiated using PEP455-Pt. The end point for this study was tumor size at 6 weeks following tumor cell implantation and 4 weeks following ic CED of PEP455-Pt to F98 glioma-bearing rats. Neuropathologic examination revealed that five of seven rats were either tumor-free or only had microscopic tumors at 42 days following tumor implantation compared to a mean survival time of 20.5 and 26.3 days for untreated controls. In conclusion, we have succeeded in reformatting the toxicity profile of cis-DDP and demonstrated the therapeutic efficacy of the PEP455-Pt bioconjugate in F98 glioma-bearing rats.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Gong Wu
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - W Hans Meisen
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Robin J Nakkula
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Weilian Yang
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Tianyao Huo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - David A Kellough
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Pravin Kaumaya
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Lawrence M Agius
- Department of Pathology, Mater Dei Hospital, University of Malta Medical School, Msida, Malta
| | - Balveen Kaur
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
49
|
Chu L, Gao H, Cheng T, Zhang Y, Liu J, Huang F, Yang C, Shi L, Liu J. A charge-adaptive nanosystem for prolonged and enhanced in vivo antibiotic delivery. Chem Commun (Camb) 2016; 52:6265-8. [PMID: 27077219 DOI: 10.1039/c6cc01269h] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Herein we report on a charge-adaptive nanosystem for prolonged and enhanced in vivo antibiotic delivery. The nanocarrier achieves acid-dependent charge conversion, thus prolonging the circulation time and enhancing antibiotic accumulation in subcutaneous inflammation models.
Collapse
Affiliation(s)
- Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Barros SM, Whitaker SK, Sukthankar P, Avila LA, Gudlur S, Warner M, Beltrão EIC, Tomich JM. A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules. Arch Biochem Biophys 2016; 596:22-42. [PMID: 26926258 PMCID: PMC4841695 DOI: 10.1016/j.abb.2016.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
Various strategies are being developed to improve delivery and increase the biological half-lives of pharmacological agents. To address these issues, drug delivery technologies rely on different nano-sized molecules including: lipid vesicles, viral capsids and nano-particles. Peptides are a constituent of many of these nanomaterials and overcome some limitations associated with lipid-based or viral delivery systems, such as tune-ability, stability, specificity, inflammation, and antigenicity. This review focuses on the evolution of bio-based drug delivery nanomaterials that self-assemble forming vesicles/capsules. While lipid vesicles are preeminent among the structures; peptide-based constructs are emerging, in particular peptide bilayer delimited capsules. The novel biomaterial-Branched Amphiphilic Peptide Capsules (BAPCs) display many desirable properties. These nano-spheres are comprised of two branched peptides-bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK, designed to mimic diacyl-phosphoglycerides in molecular architecture. They undergo supramolecular self-assembly and form solvent-filled, bilayer delineated capsules with sizes ranging from 20 nm to 2 μm depending on annealing temperatures and time. They are able to encapsulate different fluorescent dyes, therapeutic drugs, radionuclides and even small proteins. While sharing many properties with lipid vesicles, the BAPCs are much more robust. They have been analyzed for stability, size, cellular uptake and localization, intra-cellular retention and, bio-distribution both in culture and in vivo.
Collapse
Affiliation(s)
- Sheila M Barros
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA; Department of Biochemistry, Federal University of Pernambuco-UFPE, Recife, Pernambuco, 50670-901, Brazil
| | - Susan K Whitaker
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Pinakin Sukthankar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - L Adriana Avila
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sushanth Gudlur
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Matt Warner
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Eduardo I C Beltrão
- Department of Biochemistry, Federal University of Pernambuco-UFPE, Recife, Pernambuco, 50670-901, Brazil
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|