1
|
Hu X, Yu X, Zhang L, Zhang Q, Ji M, Qi K, Wang S, Li Z, Xu K, Fu C. The aberrantly activated AURKB supports and complements the function of AURKA in CALR mutated cells through regulating the cell growth and differentiation. Exp Cell Res 2025; 444:114377. [PMID: 39706286 DOI: 10.1016/j.yexcr.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Aurora kinase B (AURKB) was reported to assist Aurora kinase A (AURKA) to regulate cellular mitosis. AURKA has been found activated in myeloproliferative neoplasms (MPNs) patients with CALR gene mutation, however, it's unclear whether AURKB displays a compensatory function of AURKA in regulation of CALR mutant cell growth and differentiation. Here, we found that AURKB, similar with AURKA, was aberrantly activated in CALR mutant patients, and displayed a more tolerance to the aurora kinase inhibitor. Inhibition of AURKA decreased cell growth and colony formation, induced cell differentiation and apoptosis, while, this inhibitive degree was further enhanced when AURKB was blocked by incremental inhibitor. Transcriptomic analyses revealed a more significant gene enrichment in cells with knockdown of AURKB than that of AURKA, mainly reflecting in oxidative phosphorylation, mitosis, proliferation and apoptosis signaling pathway. Moreover, downregulation of AURKB enhanced cell growth arrest and apoptosis more obviously than that of AURKA, and additionally promoted cell differentiation and metabolism-oxygen consumption rate (OCR). Otherwise, overexpression of AURKA or AURKB facilitated the cell proliferation of CALR mutant cells, and made cells more sensitive to the aurora kinase inhibitor. These results suggest that activated AURKB not only supports the functions of AURKA in promoting the growth of CALR mutated cells, but also has impeded the differentiation of these cells.
Collapse
Affiliation(s)
- Xueting Hu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Liwei Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qigang Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Mengchu Ji
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| | - Chunling Fu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Dai G, Lin J, Jiang Y, Liu X, Chen P, Zhang Y, Song Z, Zhuang X, Cong J, Li Y, Hong X, Liu Y, Xiao D, Li A, Luo Y. Aurora kinase A promotes hepatic stellate cell activation and liver fibrosis through the Wnt/β-catenin pathway. Front Oncol 2025; 14:1517226. [PMID: 39834933 PMCID: PMC11743346 DOI: 10.3389/fonc.2024.1517226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
AIMS Aurora kinase A (AURKA) has been implicated in promoting myeloid and renal fibrosis. This study aimed to investigate the impact and underlying mechanism of AURKA on liver fibrosis and to assess the therapeutic potential of MLN8237, a small-molecule AURKA inhibitor, in preventing liver fibrosis in mice. METHODS The research used bioinformatics analysis and immunohistochemistry staining on fibrotic liver tissues from human and mouse models to assess AURKA expression. The cellular localization of AURKA was determined through double immunofluorescence staining in human fibrotic liver tissues and primary mouse hepatic stellate cells. RNA interference and AURKA antagonism were used to examine the effects of AURKA on liver fibrosis, while RNA-sequencing, qRT-PCR, and western blotting were employed to elucidate the potential molecular mechanisms of AURKA on hepatic stellate cell activation. RESULTS The results showed that AURKA was positively correlated with the progression of liver fibrosis and was predominantly expressed in activated HSCs. Silencing AURKA inhibited HSC activation and proliferation, and induced HSC apoptosis, effects that were similar to those observed with MLN8237 treatment. Additionally, silencing AURKA suppressed the glycogen synthase kinase-3β/β-catenin signaling pathway. Pharmacological inhibition of AURKA phosphorylation also resulted in reduced liver fibrosis in vivo. CONCLUSION In conclusion, AURKA may promote HSC activation and liver fibrosis through the Wnt/β-catenin pathway, suggesting its potential as a therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Guanqi Dai
- Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Junhao Lin
- Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Yuchuan Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xinhui Liu
- Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Yixiao Zhang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhenghui Song
- Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Xuefen Zhuang
- Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jinge Cong
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yingchun Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xuanjia Hong
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yun Liu
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, China
| | - Dong Xiao
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Yue Luo
- Department of Radiotherapy, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Becker IC, Barrachina MN, Lykins J, Camacho V, Stone AP, Chua BA, Signer RAJ, Machlus KR, Whiteheart SW, Roweth HG, Italiano JE. Inhibition of RhoA-mediated secretory autophagy in megakaryocytes mitigates myelofibrosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626665. [PMID: 39677616 PMCID: PMC11642871 DOI: 10.1101/2024.12.04.626665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Megakaryocytes (MKs) are large, polyploid cells that contribute to bone marrow homeostasis through the secretion of cytokines such as transforming growth factor β1 (TGFβ1). During neoplastic transformation, immature MKs accumulate in the bone marrow where they induce fibrotic remodeling ultimately resulting in myelofibrosis. Current treatment strategies aim to prevent MK hyperproliferation, however, little is understood about the potential of targeting dysregulated cytokine secretion from neoplastic MKs as a novel therapeutic avenue. Unconventional secretion of TGFβ1 as well as interleukin 1β (IL1β) via secretory autophagy occurs in cells other than MKs, which prompted us to investigate whether similar mechanisms are utilized by MKs. Here, we identified that TGFβ1 strongly co-localized with the autophagy marker light chain 3B in native MKs. Disrupting secretory autophagy by inhibiting the small GTPase RhoA or its downstream effector Rho kinase (ROCK) markedly reduced TGFβ1 and IL1β secretion in vitro . In vivo , conditional deletion of the essential autophagy gene Atg5 from the hematopoietic system limited megakaryocytosis and aberrant cytokine secretion in an MPL W515L -driven transplant model. Similarly, mice with a selective deletion of Rhoa from the MK and platelet lineage were protected from progressive fibrosis. Finally, disease hallmarks in MPL W515L -transplanted mice were attenuated upon treatment with the autophagy inhibitor hydroxychloroquine or the ROCK inhibitor Y27632, either as monotherapy or in combination with the JAK2 inhibitor ruxolitinib. Overall, our data indicate that aberrant cytokine secretion is dependent on secretory autophagy downstream of RhoA, targeting of which represents a novel therapeutic avenue in the treatment of myelofibrosis. One Sentence Summary TGFβ1 is released from megakaryocytes via RhoA-mediated secretory autophagy, and targeting this process can alleviate fibrosis progression in a preclinical mouse model of myelofibrosis.
Collapse
|
4
|
Collinson RJ, Wilson L, Boey D, Ng ZY, Mirzai B, Chuah HS, Howman R, Grove CS, Malherbe JAJ, Leahy MF, Linden MD, Fuller KA, Erber WN, Guo BB. Transcription factor 3 is dysregulated in megakaryocytes in myelofibrosis. Platelets 2024; 35:2304173. [PMID: 38303515 DOI: 10.1080/09537104.2024.2304173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Transcription factor 3 (TCF3) is a DNA transcription factor that modulates megakaryocyte development. Although abnormal TCF3 expression has been identified in a range of hematological malignancies, to date, it has not been investigated in myelofibrosis (MF). MF is a Philadelphia-negative myeloproliferative neoplasm (MPN) that can arise de novo or progress from essential thrombocythemia [ET] and polycythemia vera [PV] and where dysfunctional megakaryocytes have a role in driving the fibrotic progression. We aimed to examine whether TCF3 is dysregulated in megakaryocytes in MPN, and specifically in MF. We first assessed TCF3 protein expression in megakaryocytes using an immunohistochemical approach analyses and showed that TCF3 was reduced in MF compared with ET and PV. Further, the TCF3-negative megakaryocytes were primarily located near trabecular bone and had the typical "MF-like" morphology as described by the WHO. Genomic analysis of isolated megakaryocytes showed three mutations, all predicted to result in a loss of function, in patients with MF; none were seen in megakaryocytes isolated from ET or PV marrow samples. We then progressed to transcriptomic sequencing of platelets which showed loss of TCF3 in MF. These proteomic, genomic and transcriptomic analyses appear to indicate that TCF3 is downregulated in megakaryocytes in MF. This infers aberrations in megakaryopoiesis occur in this progressive phase of MPN. Further exploration of this pathway could provide insights into TCF3 and the evolution of fibrosis and potentially lead to new preventative therapeutic targets.
Collapse
Affiliation(s)
- Ryan J Collinson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynne Wilson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Darren Boey
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Zi Yun Ng
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
| | - Bob Mirzai
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Hun S Chuah
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
- Department of Haematology, Rockingham General Hospital, Rockingham, WA, Australia
| | - Rebecca Howman
- Department of Haematology, Sir Charles Gairdner Hospital Nedlands Australia
| | - Carolyn S Grove
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- Department of Haematology, Sir Charles Gairdner Hospital Nedlands Australia
| | | | - Michael F Leahy
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Matthew D Linden
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn A Fuller
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Belinda B Guo
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
5
|
Chen L, Liu J, Chen K, Su Y, Chen Y, Lei Y, Si J, Zhang J, Zhang Z, Zou W, Zhang X, Rondina MT, Wang QF, Li Y. SET domain containing 2 promotes megakaryocyte polyploidization and platelet generation through methylation of α-tubulin. J Thromb Haemost 2024; 22:1727-1741. [PMID: 38537781 DOI: 10.1016/j.jtha.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Megakaryocytes (MKs) are polyploid cells responsible for producing ∼1011 platelets daily in humans. Unraveling the mechanisms regulating megakaryopoiesis holds the promise for the production of clinical-grade platelets from stem cells, overcoming significant current limitations in platelet transfusion medicine. Previous work identified that loss of the epigenetic regulator SET domain containing 2 (SETD2) was associated with an increased platelet count in mice. However, the role of SETD2 in megakaryopoiesis remains unknown. OBJECTIVES Here, we examined how SETD2 regulated MK development and platelet production using complementary murine and human systems. METHODS We manipulated the expression of SETD2 in multiple in vitro and ex vivo models to assess the ploidy of MKs and the function of platelets. RESULTS The genetic ablation of Setd2 increased the number of high-ploidy bone marrow MKs. Peripheral platelet counts in Setd2 knockout mice were significantly increased ∼2-fold, and platelets exhibited normal size, morphology, and function. By knocking down and overexpressing SETD2 in ex vivo human cell systems, we demonstrated that SETD2 negatively regulated MK polyploidization by controlling methylation of α-tubulin, microtubule polymerization, and MK nuclear division. Small-molecule inactivation of SETD2 significantly increased the production of high-ploidy MKs and platelets from human-induced pluripotent stem cells and cord blood CD34+ cells. CONCLUSION These findings identify a previously unrecognized role for SETD2 in regulating megakaryopoiesis and highlight the potential of targeting SETD2 to increase platelet production from human cells for transfusion practices.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingkun Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kunying Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanxun Su
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yihe Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lei
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Si
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhaojun Zhang
- University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center of Bioinformation, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Weiguo Zou
- Shanghai Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Matthew T Rondina
- Departments of Internal Medicine and Pathology, Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Department of Internal Medicine and the Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
He B, Wang C, Niu J, Wang F, Zhang Y, Gao Y, Yang Q. Fasudil promotes polyploidization of megakaryoblasts in an acute megakaryocyte leukemia model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3101-3110. [PMID: 37162543 DOI: 10.1007/s00210-023-02513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Acute megakaryocytic leukemia (AMKL) is a rare neoplasm caused by abnormal megakaryoblasts. Megakaryoblasts keep dividing and avoid undergoing polyploidization to escape maturation. Small-molecule probes inducing polyploidization of megakaryocytic leukemia cells accelerate the differentiation of megakaryocytes. This study aims to determine that Rho kinase (ROCK) inhibition on megakaryoblasts enhances polyploidization and the inhibition of ROCK1 by fasudil benefits AMKL mice. The study investigated fasudil on the megakaryoblast cells in vitro and in vivo. With the differentiation and apoptosis induction, fasudil was used to treat 6133/MPLW515L mice, and the differentiation level was evaluated. Fasudil could reduce proliferation and promote the polyploidization of megakaryoblasts. Meanwhile, fasudil reduced the disease burden of 6133/MPLW515L AMKL mice at a dose that is safe for healthy mice. Combination therapy of ROCK1 inhibitor fasudil and reported clinical AURKA inhibitor MLN8237 achieved a better antileukemia effect in vivo, which alleviated hepatosplenomegaly and promoted the differentiation of megakaryoblast cells. ROCK1 inhibitor fasudil is a good proliferation inhibitor and polyploidization inducer of megakaryoblast cells and might be a novel rationale for clinical AMKL treatment.
Collapse
Affiliation(s)
- Binghong He
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jiajia Niu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fuping Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuting Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
7
|
Fu C, Hu X, Wang S, Yu X, Zhang Q, Zhang L, Qi K, Li Z, Xu K. Inhibition of PAK1 generates an ameliorative effect on MPLW515L mouse model of myeloproliferative neoplasms by regulating the differentiation and survival of megakaryocytes. Exp Hematol 2023; 127:59-69.e2. [PMID: 37741606 DOI: 10.1016/j.exphem.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023]
Abstract
Most thrombopoietin receptor (MPL) mutations result in abnormal megakaryocyte expansion in the spleen or bone marrow (BM), leading to progressive fibrosis. It has been reported that p21 (Rac Family Small GTPase 1 [RAC1])-activated kinase 1 (PAK1) participates in the proliferation and differentiation of megakaryoblasts. PAK1 phosphorylation increased in patients with myeloproliferative neoplasms (MPNs) and murine MPN cells with the Mplw515l mutant gene in this study; however, the function of overactivated PAK1 in MPN cells remains unclear. We found that inhibition of PAK1 caused significant changes in the biological behaviors of MPLW515L mutant cells in vitro, including arrested growth or reduced clonality and increased polyploid DNA and cell apoptosis due to upregulated cleaved caspase 3. In vivo, PAK1 inhibitor treatment caused a slow elevation of leukocytosis and hematocrit (HCT) and a reduction in hepatosplenomegaly in 6133/MPLW515L-transplanted mice, along with reduced tumor cell infiltration and prolonged survival. Further, deletion of PAK1 sustained a relatively normal HCT and platelet count at the beginning of the disease but did not completely alleviate the splenomegaly of MPLW515L mutant mice. Notably, PAK1 knockout attenuated the destruction of splenic structure, and reduced the megakaryocyte burden within the BM. These results suggest that inhibition of PAK1 may be a useful method for treating MPLW515L mutant MPN by intervening megakaryocytes.
Collapse
Affiliation(s)
- Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xueting Hu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qigang Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Liwei Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
8
|
Willekens C, Laplane L, Dagher T, Benlabiod C, Papadopoulos N, Lacout C, Rameau P, Catelain C, Alfaro A, Edmond V, Signolle N, Marchand V, Droin N, Hoogenboezem R, Schneider RK, Penson A, Abdel-Wahab O, Giraudier S, Pasquier F, Marty C, Plo I, Villeval JL, Constantinescu SN, Porteu F, Vainchenker W, Solary E. SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice. Leukemia 2023:10.1038/s41375-023-01878-0. [PMID: 37100881 DOI: 10.1038/s41375-023-01878-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFβ1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.
Collapse
Affiliation(s)
- Christophe Willekens
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Tracy Dagher
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Camelia Benlabiod
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | | | | | | | | | - Valérie Edmond
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Valentine Marchand
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nathalie Droin
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
| | - Rebekka K Schneider
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Florence Pasquier
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Marty
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Isabelle Plo
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Luc Villeval
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
9
|
Passamonti F, Mora B. Myelofibrosis. Blood 2023; 141:1954-1970. [PMID: 36416738 PMCID: PMC10646775 DOI: 10.1182/blood.2022017423] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The clinical phenotype of primary and post-polycythemia vera and postessential thrombocythemia myelofibrosis (MF) is dominated by splenomegaly, symptomatology, a variety of blood cell alterations, and a tendency to develop vascular complications and blast phase. Diagnosis requires assessing complete cell blood counts, bone marrow morphology, deep genetic evaluations, and disease history. Driver molecular events consist of JAK2V617F, CALR, and MPL mutations, whereas about 8% to 10% of MF are "triple-negative." Additional myeloid-gene variants are described in roughly 80% of patients. Currently available clinical-based and integrated clinical/molecular-based scoring systems predict the survival of patients with MF and are applied for conventional treatment decision-making, indication to stem cell transplant (SCT) and allocation in clinical trials. Standard treatment consists of anemia-oriented therapies, hydroxyurea, and JAK inhibitors such as ruxolitinib, fedratinib, and pacritinib. Overall, spleen volume reduction of 35% or greater at week 24 can be achieved by 42% of ruxolitinib-, 47% of fedratinib-, 19% of pacritinib-, and 27% of momelotinib-treated patients. Now, it is time to move towards new paradigms for evaluating efficacy like disease modification, that we intend as a robust and unequivocal effect on disease biology and/or on patient survival. The growing number of clinical trials potentially pave the way for new strategies in patients with MF. Translational studies of some molecules showed an early effect on bone marrow fibrosis and on variant allele frequencies of myeloid genes. SCT is still the only curative option, however, it is associated with relevant challenges. This review focuses on the diagnosis, prognostication, and treatment of MF.
Collapse
Affiliation(s)
- Francesco Passamonti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Department of Oncology, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
| | - Barbara Mora
- Department of Oncology, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
| |
Collapse
|
10
|
He B, Wang C, Wang F, Tian L, Wang H, Fu C, Liu J, Xi C, Zhu C, Yang Q. Differentiation therapy for murine myelofibrosis model with MLN8237 loaded low-density lipoproteins. J Control Release 2023; 356:554-566. [PMID: 36924895 DOI: 10.1016/j.jconrel.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Primary myelofibrosis (PMF) is a severe myeloproliferative neoplasm that is characterized by low-differentiation megakaryoblasts and progressive bone marrow fibrosis. Although an Aurora kinase A (AURKA) targeting small-molecule inhibitor MLN8237 has been approved in clinical trials for differentiation therapy of high-risk PMF patients, its off-target side effects lead to a partial remission and serious complications. Here, we report a dual-targeting therapy agent (rLDL-MLN) with great clinical translation potential for differentiation therapy of PMF disease. In particular, the reconstituted low-density lipoprotein (rLDL) nanocarrier and the loaded MLN8237 can actively target malignant hematopoietic stem/progenitor cells (HSPCs) via LDL receptors and intracellular AURKA, respectively. In contrast to free MLN8237, rLDL-MLN effectively prohibits the proliferation of PMF cell lines and abnormal HSPCs and significantly induces their differentiation, as well as prevents the formation of erythrocyte and megakaryocyte colonies from abnormal HSPCs. Surprisingly, even at a 1500-fold lower dosage (0.01 mg/kg) than that of free MLN8237, rLDL-MLN still exhibits a much more effective therapeutic effect, with the PMF mice almost clear of blast cells. More importantly, rLDL-MLN promotes hematological recovery without any toxic side effects at the effective dosage, holding great promise in the targeted differentiation therapy of PMF patients.
Collapse
Affiliation(s)
- Binghong He
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University; Beijing 100875, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fuping Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University; Beijing 100875, China
| | - Liang Tian
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haitao Wang
- Department of Hematology and Oncology, The Fourth Medical Center of the Chinese People's Liberation Army General Hospital, Beijing 100010, China
| | - Chunling Fu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University; Beijing 100875, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University; Beijing 100875, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University; Beijing 100875, China.
| |
Collapse
|
11
|
Ghit A. Myelofibrosis treatment history and future prospects. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.1186/s43162-022-00169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMyelofibrosis (MF) is a haematopoietic stem cell tumour caused by the lack of BCR-ABL translocation due to point mutations in Janus kinases (JAKs). In previous years, dealing with MF included several protocols such as traditional drugs that control general symptoms, splenectomy, blood transfusion, and allogeneic haematopoietic stem-cell transplantation (HSCT). Allogeneic HSCT is remaining the only treatment that has the potential to alter MF’s progression. However, clinical trials of JAK inhibitors and non-JAK targeted therapies have been increasingly carried out in earlier years. The most prominent JAK inhibitors for the treatment of MF are ruxolitinib, fedratinib, momelotinib, pacritinib, gandotinib, ilginatinib, itacitinib, and lestaurtinib. On the other hand, the non-JAK targeted therapies that showed strong efficacy and safety are alisertib, imetelstat, pembrolizumab, nivolumab, and sotatercept. In this review, we summarized the recent clinical trials carried out on these drugs to understand their efficacy and safety. Also, we talked briefly about allogeneic HSCT as powerful therapy until the present for patients suffering from MF.
Collapse
|
12
|
Qi K, Hu X, Yu X, Cheng H, Wang C, Wang S, Wang Y, Li Y, Cao J, Pan B, Wu Q, Qiao J, Zeng L, Li Z, Xu K, Fu C. Targeting cyclin-dependent kinases 4/6 inhibits survival of megakaryoblasts in acute megakaryoblastic leukaemia. Leuk Res 2022; 120:106920. [PMID: 35872339 DOI: 10.1016/j.leukres.2022.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/19/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Acute megakaryoblastic leukaemia (AMKL) is characterized by expansion of megakaryoblasts, which are hyper-proliferative cells that fail to undergo differentiation. Insight to the cell-cycle regulation revealed important events in early or late megakaryocytes (MKs) maturation; the cyclin-dependent kinases 4 and 6 (CDK4/6) have been reported to participate in the development of progenitor megakaryocytes, mainly by promoting cell cycle progression and DNA polyploidization. However, it remains unclear whether the continuous proliferation, but not differentiation, of megakaryoblasts is related to an aberrant regulation of CDK4/6 in AMKL. Here, we found that CDK4/6 were up regulated in patients with AMKL, and persistently maintained at a high level during the differentiation of abnormal megakaryocytes in vitro, according to a database and western blot. Additionally, AMKL cells were exceptionally reliant on the cell cycle regulators CDK4 or 6, as blocking their activity using an inhibitor or short hairpin RNA (shRNA) significantly reduced the proliferation of 6133/MPL megakaryocytes, reduced DNA polyploidy, induced apoptosis, decreased the level of phosphorylated retinoblastoma protein (p-Rb), and activation of caspase 3. Additionally, CDK4/6 inhibitors and shRNA reduced the numbers of leukemia cells in the liver and bone marrow (BM), alleviated hepatosplenomegaly, and prolonged the survival of AMKL-transplanted mice. These results suggested that blocking the activity of CDK4/6 may represent an effective approach to control megakaryoblasts in AMKL.
Collapse
Affiliation(s)
- Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xueting Hu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Chunqing Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yanjie Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
13
|
A Novel Morphological Parameter Predicting Fibrotic Evolution in Myeloproliferative Neoplasms: New Evidence and Molecular Insights. Int J Mol Sci 2022; 23:ijms23147872. [PMID: 35887218 PMCID: PMC9322985 DOI: 10.3390/ijms23147872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) represent a group of hematological disorders that are traditionally considered as indistinct slow progressing conditions; still, a subset of cases shows a rapid evolution towards myelofibrotic bone marrow failure. Specific abnormalities in the megakaryocyte lineage seem to play a central role in this evolution, especially in the bone marrow fibrosis but also in the induction of myeloproliferation. In this review, we analyze the current knowledge of prognostic factors of MPNs related to their evolution to myelofibrotic bone marrow failure. Moreover, we focused the role of the megakaryocytic lineage in the various stages of MPNs, with updated examples of MPNs in vitro and in vivo models and new therapeutic implications.
Collapse
|
14
|
[Blocking PAK1 kinase activity promotes the differentiation of acute megakaryocytic leukemia cells and induces their apoptosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:499-505. [PMID: 35968594 PMCID: PMC9800214 DOI: 10.3760/cma.j.issn.0253-2727.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: To investigate the effect of blocking P21 activated kinase 1 (PAK1) activity on the proliferation, differentiation, and apoptosis of acute megakaryocytic leukemia (AMKL) cell lines (CHRF and CMK) . Methods: Cell counts were used to detect the effects of PAK1 inhibitors (IPA-3 and G5555) on AMKL cell proliferation inhibition and colony formation, and flow cytometry was used to detect its effects on AMKL cell cycle. The effect of PAK1 inhibitor on the expression of cyclin D1 and apoptosis-related protein Cleaved caspase 3 was detected using Western blot, while interference with the protein expression level of PAK1 in AMKL cells was assessed using lentivirus-mediated shRNA transfection technology. Flow cytometry was used to detect the effects of knockdown of PAK1 kinase activity on the ability of polyploid DNA formation and cell apoptosis in AMKL cells. Results: PAK1 inhibitors inhibited the proliferation of AMKL cells in a dose-dependent manner and reduced the ability of cell colony formation, and the difference was statistically significant when compared with the control group (P<0.05) . Moreover, they also reduced the percentage of AMKL cells in S phase, and Western blot detection showed that the expression levels of phosphorylated PAK1 and cyclin D1 decreased significantly. Finally, PAK1 inhibitors induced AMKL cell apoptosis by up-regulating Cleaved caspase 3 and showed different abilities to increase the content of polyploid DNA in megakaryocytes. Only high concentrations of IPA-3 and low doses of G5555 increased the number of polyploid megakaryocytes, while knockdown of PAK1 kinase activity promoted AMKL cell differentiation and increased the apoptosis rate. Conclusion: PAK1 inhibitor significantly arrests AMKL cell growth and promotes cell apoptosis. Knocking down the expression of PAK1 promotes the formation of polyploid DNA and induces AMKL cell apoptosis. The above findings indicate that inhibiting the activity of PAK1 may control AMKL effectively.
Collapse
|
15
|
Wang F, Qiu T, Wang H, Yang Q. State-of-the-Art Review on Myelofibrosis Therapies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e350-e362. [PMID: 34903489 DOI: 10.1016/j.clml.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Myelofibrosis (MF) is a BCR-ABL1-negative myeloproliferative neoplasm characterized by anemia, extramedullary hematopoiesis, bone marrow fibrosis, splenomegaly, constitutional symptoms and acute myeloid leukemia progression. Currently, allogeneic haematopoietic stem cell transplantation (AHSCT) therapy is the only curative option for MF patients. However, AHSCT is strictly limited due to the high rates of morbidity and mortality. Janus kinase 2 (JAK2) inhibitor Ruxolitinib is the first-line treatment for intermediate-II or high-risk MF patients with splenomegaly and constitutional symptoms, but most MF patients develop resistance or intolerance to Ruxolitinib. Therefore, MF treatment is a challenge for the medical community. This review summarizes 3 investigated directions for MF therapy: monotherapies of JAK inhibitors, monotherapies of non-JAK targeted agents, combination therapies of Ruxolitinib and other agents. We emphasize combination of Ruxolitinib and other agents is a promising strategy.
Collapse
Affiliation(s)
- Fuping Wang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Wang
- Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiong Yang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
16
|
Huang DY, Wang GM, Ke ZR, Zhou Y, Yang HH, Ma TL, Guan CX. Megakaryocytes in pulmonary diseases. Life Sci 2022; 301:120602. [DOI: 10.1016/j.lfs.2022.120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
|
17
|
Bose P, Mesa RA. Novel strategies for challenging scenarios encountered in managing myelofibrosis. Leuk Lymphoma 2022; 63:774-788. [PMID: 34775887 PMCID: PMC11666286 DOI: 10.1080/10428194.2021.1999443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/16/2021] [Indexed: 10/19/2022]
Abstract
Given its rarity, multi-faceted clinical presentation and the relative paucity of approved therapies, the management of myeloproliferative neoplasm (MPN)-associated myelofibrosis (MF) can be challenging. Janus kinase (JAK) inhibitors, the only approved agents at present, have brought many clinical benefits to patients, with prolongation of survival also demonstrated for ruxolitinib. However, these agents have clear limitations. Optimal management of anemia in MF remains a major unmet need. Neither ruxolitinib nor fedratinib is recommended for use in patients with severe thrombocytopenia, i.e. platelets <50 × 109/L, who have a particularly poor prognosis. The search for the optimal partner for JAK inhibitors to address some of the shortcomings of these agents (e.g. limited ability to improve bone marrow fibrosis, cytopenias and induce molecular responses) and achieve meaningful 'disease modification' continues. This has led to the development of a number of rational, preclinically synergistic combinations for use either upfront or in the setting of sub-optimal response to JAK inhibition. Finally, the outlook for patients whose disease progresses on JAK inhibitor therapy continues to be grim, and agents with alternative mechanisms of action may be needed in this setting. In this article, we use a case-based approach to illustrate challenges commonly encountered in clinical practice and our management of the same. Fortunately, there has been enormous growth in drug development efforts in the MF space in the last few years, some of which appear poised to bear fruit in the very near future.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruben A Mesa
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX, USA
| |
Collapse
|
18
|
Li Y, Gao H, Dong H, Wang W, Xu Z, Wang G, Liu Y, Wang H, Ju W, Qiao J, Xu K, Fu C, Zeng L. PEDF reduces malignant cells proliferation and inhibits the progression of myelofibrosis in myeloproliferative neoplasms. Biochem Pharmacol 2022; 199:115013. [DOI: 10.1016/j.bcp.2022.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
|
19
|
Tefferi A, Gangat N, Pardanani A, Crispino JD. Myelofibrosis: Genetic Characteristics and the Emerging Therapeutic Landscape. Cancer Res 2022; 82:749-763. [PMID: 34911786 PMCID: PMC9306313 DOI: 10.1158/0008-5472.can-21-2930] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Primary myelofibrosis (PMF) is one of three myeloproliferative neoplasms (MPN) that are morphologically and molecularly inter-related, the other two being polycythemia vera (PV) and essential thrombocythemia (ET). MPNs are characterized by JAK-STAT-activating JAK2, CALR, or MPL mutations that give rise to stem cell-derived clonal myeloproliferation, which is prone to leukemic and, in case of PV and ET, fibrotic transformation. Abnormal megakaryocyte proliferation is accompanied by bone marrow fibrosis and characterizes PMF, while the clinical phenotype is pathogenetically linked to ineffective hematopoiesis and aberrant cytokine expression. Among MPN-associated driver mutations, type 1-like CALR mutation has been associated with favorable prognosis in PMF, while ASXL1, SRSF2, U2AF1-Q157, EZH2, CBL, and K/NRAS mutations have been shown to be prognostically detrimental. Such information has enabled development of exclusively genetic (GIPSS) and clinically integrated (MIPSSv2) prognostic models that facilitate individualized treatment decisions. Allogeneic stem cell transplantation remains the only treatment modality in MF with the potential to prolong survival, whereas drug therapy, including JAK2 inhibitors, is directed mostly at the inflammatory component of the disease and is therefore palliative in nature. Similarly, disease-modifying activity remains elusive for currently available investigational drugs, while their additional value in symptom management awaits controlled confirmation. There is a need for genetic characterization of clinical observations followed by in vitro and in vivo preclinical studies that will hopefully identify therapies that target the malignant clone in MF to improve patient outcomes.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.,Corresponding Author: Ayalew Tefferi, Division of Hematology, Department of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905. Phone: 507-284-2511; Fax: 507-266-4972; E-mail:
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - John D. Crispino
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
20
|
G6b-B regulates an essential step in megakaryocyte maturation. Blood Adv 2022; 6:3155-3161. [PMID: 35134123 PMCID: PMC9131916 DOI: 10.1182/bloodadvances.2021006151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Loss of G6b-B leads to an unexpected megakaryocyte development defect resulting in severe macrothrombocytopenia. G6b-B–deficient mice display reduced levels of MK-specific transcripts, surface receptors, GATA-1, and thrombopoietin signaling.
G6b-B is a megakaryocyte lineage-specific immunoreceptor tyrosine-based inhibition motif–containing receptor, essential for platelet homeostasis. Mice with a genomic deletion of the entire Mpig6b locus develop severe macrothrombocytopenia and myelofibrosis, which is reflected in humans with null mutations in MPIG6B. The current model proposes that megakaryocytes lacking G6b-B develop normally, whereas proplatelet release is hampered, but the underlying molecular mechanism remains unclear. We report on a spontaneous recessive single nucleotide mutation in C57BL/6 mice, localized within the intronic region of the Mpig6b locus that abolishes G6b-B expression and reproduces macrothrombocytopenia, myelofibrosis, and osteosclerosis. As the mutation is based on a single-nucleotide exchange, Mpig6bmut mice represent an ideal model to study the role of G6b-B. Megakaryocytes from these mice were smaller, displayed a less-developed demarcation membrane system, and had a reduced expression of receptors. RNA sequencing revealed a striking global reduction in the level of megakaryocyte-specific transcripts, in conjunction with decreased protein levels of the transcription factor GATA-1 and impaired thrombopoietin signaling. The reduced number of mature MKs in the bone marrow was corroborated on a newly developed Mpig6b-null mouse strain. Our findings highlight an unexpected essential role of G6b-B in the early differentiation within the megakaryocytic lineage.
Collapse
|
21
|
Zhang J, Jiang P, Tu Y, Li N, Huang Y, Jiang S, Kong W, Yuan R. Identification and validation of long non-coding RNA associated ceRNAs in intrauterine adhesion. Bioengineered 2021; 13:1039-1048. [PMID: 34968168 PMCID: PMC8805920 DOI: 10.1080/21655979.2021.2017578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrotic disease with unclear pathogenesis. Increasing evidence suggested the important role of competitive endogenous RNA (ceRNA) in diseases. This study aimed to identify and verify the key long non-coding RNA (lncRNA) associated-ceRNAs in IUA. The lncRNA/mRNA expression file was obtained by transcriptome sequencing of IUA and normal samples. The microRNAs expression date was downloaded from the Gene Expression Omnibus database. Differential expressions of mRNAs, lncRNAs and miRNAs were analyzed using the DESeq2 (2010) R package. Protein interaction network was constructed to explore hub genes. TargetScan and miRanda databases were used to predicate the interaction. Enrichment analysis in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were performed to identify the biological functions of ceRNAs. Regression analysis of ceRNAs’ expression level was performed. There were 915 mRNAs and 418 lncRNAs differentially expressed. AURKA, CDC20, IL6, ASPM, CDCA8, BIRC5, UBE2C, H2AFX, RRM2 and CENPE were identified as hub genes. The ceRNAs network, including 28 lncRNAs, 28 miRNAs, and 299 mRNAs, was constructed. Regression analysis showed a good positive correlation between ceRNAs expression levels (r > 0.700, p < 0.001). The enriched functions include ion transmembrane transport, focal adhesion, cAMP signaling pathway and cGMP-PKG signaling pathway. The novel lncRNA-miRNA-mRNA network in IUA was excavated. Crucial lncRNAs such as ADIRF-AS1, LINC00632, DIO3OS, MBNL1-AS1, MIR1-1HG-AS1, AC100803.2 was involved in the development of IUA. cGMP-PKG signaling pathway and ion transport might be new directions for IUA pathogenesis research.
Collapse
Affiliation(s)
- Jingni Zhang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Tu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhen Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yuan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Tremblay D, Hoffman R. Emerging drugs for the treatment of myelofibrosis: phase II & III clinical trials. Expert Opin Emerg Drugs 2021; 26:351-362. [PMID: 34875179 DOI: 10.1080/14728214.2021.2015320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Myelofibrosis is a clonal hematologic malignancy with clinical manifestations that include cytopenias, debilitating constitutional symptoms, splenomegaly, bone marrow fibrosis and a propensity toward leukemic progression. While allogeneic hematopoietic stem cell transplantation can be curative, this therapy is not available for the majority of patients. Ruxolitinib and fedratinib are approved JAK2 inhibitors that have produced meaningful benefits in terms of spleen reduction and symptom improvement, but there remain several unmet needs. AREAS COVERED We discuss novel therapies based upon published data from phase II or III clinical trials. Specifically, we cover novel JAK inhibitors (momelotinib and pacritinib), and agents that target bromodomain and extra-terminal domain (pelabresib), the antiapoptotic proteins BCL-2/BCL-xL (navitoclax), MDM2 (navtemadlin), phosphatidylinositol 3-kinase (parsaclisib), or telomerase (imetelstat). EXPERT OPINION Patients with disease related cytopenias are ineligible for currently approved JAK2 inhibitors. However, momelotinib and pacritinib may be able to fill this void. Novel therapies are being evaluated in the upfront setting to improve the depth and duration of responses with ruxolitinib. Future evaluation of agents must be judged on their potential to modify disease progression, which current JAK2 inhibitors lack. Combination therapy, possibly with an immunotherapeutic agent might serve as key components of future myelofibrosis treatment options.
Collapse
Affiliation(s)
- Douglas Tremblay
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA10029
| | - Ronald Hoffman
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA10029
| |
Collapse
|
23
|
Thomas S, Krishnan A. Platelet Heterogeneity in Myeloproliferative Neoplasms. Arterioscler Thromb Vasc Biol 2021; 41:2661-2670. [PMID: 34615371 PMCID: PMC8551046 DOI: 10.1161/atvbaha.121.316373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a group of malignant disorders of the bone marrow where a dysregulated balance between proliferation and differentiation gives rise to abnormal numbers of mature blood cells. MPNs encompass a spectrum of disease entities with progressively more severe clinical features, including complications with thrombosis and hemostasis and an increased propensity for transformation to acute myeloid leukemia. There is an unmet clinical need for markers of disease progression. Our understanding of the precise mechanisms that influence pathogenesis and disease progression has been limited by access to disease-specific cells as biosources. Here, we review the landscape of MPN pathology and present blood platelets as potential candidates for disease-specific understanding. We conclude with our recent work discovering progressive platelet heterogeneity by subtype in a large clinical cohort of patients with MPN.
Collapse
Affiliation(s)
- Sally Thomas
- Department of Oncology and Metabolism, University of Sheffield and Department of Haematology, Royal Hallamshire Hospital, United Kingdom (S.T.)
| | - Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine, CA (A.K.)
| |
Collapse
|
24
|
Bose P, Verstovsek S. SOHO State of the Art Updates and Next Questions: Identifying and Treating "Progression" in Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:641-649. [PMID: 34272171 PMCID: PMC8565615 DOI: 10.1016/j.clml.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/19/2023]
Abstract
Over the last decade, the Janus kinase (JAK) 1/2 inhibitor ruxolitinib has become widely established as the cornerstone of pharmacologic therapy for most patients with myelofibrosis (MF), providing dramatic and durable benefits in terms of splenomegaly and symptoms, and prolonging survival. Ruxolitinib does not address all aspects of the disease, however; notably cytopenias, and its ability to modify the underlying biology of the disease remains in question. Furthermore, patients eventually lose response to ruxolitinib. Multiple groups have reported the median overall survival of MF patients after ruxolitinib discontinuation to be 13 to 14 months. While consensus criteria only recognize splenic and blast progression as "progressive disease" in patients with MF, disease progression can occur in a variety of ways. Besides increasing splenomegaly and progression to accelerated phase/leukemic transformation, patients may develop worsening disease-related symptoms, cytopenias, progressive leukocytosis, extramedullary hematopoiesis, etc. As in the frontline setting, treatment needs to be tailored to the clinical needs of the patient. Current treatment options for patients with MF who fail ruxolitinib remain unsatisfactory, and this continues to represent an area of major unmet medical need. The regulatory approval of fedratinib has introduced an important option in the postruxolitinib setting. Fortunately, a plethora of novel agents, both new JAK inhibitors and drugs from other classes, eg, bromodomain and extraterminal (BET), murine double minute 2 (MDM2) and telomerase inhibitors, activin receptor ligand traps, BH3-mimetics and more, are poised to greatly expand the therapeutic armamentarium for patients with MF if successful in pivotal trials.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
25
|
Coltro G, Loscocco GG, Vannucchi AM. Classical Philadelphia-negative myeloproliferative neoplasms (MPNs): A continuum of different disease entities. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 365:1-69. [PMID: 34756241 DOI: 10.1016/bs.ircmb.2021.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Classical Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell-derived disorders characterized by uncontrolled proliferation of differentiated myeloid cells and close pathobiologic and clinical features. According to the 2016 World Health Organization (WHO) classification, MPNs include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision aimed in particular at strengthening the distinction between masked PV and JAK2-mutated ET, and between prefibrotic/early (pre-PMF) and overt PMF. Clinical manifestations in MPNs include constitutional symptoms, microvascular disorders, thrombosis and bleeding, splenomegaly secondary to extramedullary hematopoiesis, cytopenia-related symptoms, and progression to overt MF and acute leukemia. A dysregulation of the JAK/STAT pathway is the unifying mechanistic hallmark of MPNs, and is guided by somatic mutations in driver genes including JAK2, CALR and MPL. Additional mutations in myeloid neoplasm-associated genes have been also identified, with established prognostic relevance, particularly in PMF. Prognostication of MPN patients relies on disease-specific clinical models. The increasing knowledge of MPN biology led to the development of integrated clinical and molecular prognostic scores that allow a more refined stratification. Recently, the therapeutic landscape of MPNs has been revolutionized by the introduction of potent, selective JAK inhibitors (ruxolitinib, fedratinib), that proved effective in controlling disease-related symptoms and splenomegaly, yet leaving unmet critical needs, owing the lack of disease-modifying activity. In this review, we will deal with molecular, clinical, and therapeutic aspects of the three classical MPNs aiming at highlighting either shared characteristics, that overall define a continuum within a single disease family, and uniqueness, at the same time.
Collapse
Affiliation(s)
- Giacomo Coltro
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuseppe G Loscocco
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro M Vannucchi
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
26
|
Pemmaraju N, Carter BZ, Bose P, Jain N, Kadia TM, Garcia-Manero G, Bueso-Ramos CE, DiNardo CD, Bledsoe S, Daver NG, Popat U, Konopleva MY, Zhou L, Pierce S, Estrov ZE, Borthakur GM, Ohanian M, Qiao W, Masarova L, Wang X, Mak PY, Cortes J, Jabbour E, Verstovsek S. Final results of a phase 2 clinical trial of LCL161, an oral SMAC mimetic for patients with myelofibrosis. Blood Adv 2021; 5:3163-3173. [PMID: 34424319 PMCID: PMC8405193 DOI: 10.1182/bloodadvances.2020003829] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
Outcomes in patients with high-risk and treatment-resistant myelofibrosis (MF) post-JAK inhibitor therapy remain poor, with no approved drug therapies beyond the JAK inhibitor class. In certain clinical situations, such as severe thrombocytopenia, administration of most JAK inhibitors are contraindicated. Thus, there is an unmet medical need for the development of novel agents for patients with MF. SMAC mimetics [or inhibitor of apoptosis (IAP) antagonists] induce apoptosis in cancer cells. Because these agents are hypothesized to have increased activity in a tumor necrosis factor-α cytokine-rich microenvironment, as is the case with MF, we conducted a single-center, investigator-initiated phase 2 clinical trial, with a monovalent SMAC mimetic LCL161 (oral, starting dose, 1500 mg per week) in patients with intermediate to high-risk MF. In an older group, 66% with ≥2 prior therapies and a median baseline platelet count of 52 × 103/μL and 28% with ASXL1 mutations, we observed a 30% objective response by Revised International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) 2013 criteria. Notably, 6 responding patients achieved clinical improvement of anemia: 4, hemoglobin response; 2, transfusion independence. Median OS was 34 months (range, 2.2-60.1+). Reductions of cIAPs were observed in all responders. The most common toxicity was nausea/vomiting (N/V) in 64% (mostly grade 1/2); fatigue in 46%; and dizziness/vertigo in 30%. There were 4 grade 3/4 adverse events (2, syncope; 1, N/V; 1, skin eruption/pruritis). There were 2 deaths during the study period, both unrelated to the study drug. SMAC mimetics may represent an option for older patients with thrombocytopenia or for those in whom prior JAK inhibitors has failed. This trial was registered at www.clinicaltrials.gov as #NCT02098161.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Uday Popat
- Department of Stem Cell Transplantation, and
| | | | | | | | | | | | | | - Wei Qiao
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX; and
| | | | - Xuemei Wang
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX; and
| | | | - Jorge Cortes
- Georgia Cancer Center, Augusta University, Augusta, GA
| | | | | |
Collapse
|
27
|
Lee SS, Verstovsek S, Pemmaraju N. Novel Therapies in Myeloproliferative Neoplasms: Beyond JAK Inhibitor Monotherapy. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:117-128. [PMID: 35663101 PMCID: PMC9138435 DOI: 10.36401/jipo-20-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 06/15/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders that consist classically of polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). Janus kinase (JAK) inhibitors have become the standard of therapy in treating patients with intermediate- to higher-risk MF. However, JAK inhibitor (JAKi) treatment can be associated with development of resistance, suboptimal response, relapse, or treatment-related adverse effects. With no approved therapies beyond the JAKi class, the estimated median survival, post JAKi failure, is approximately two years or less; therefore, novel therapies are urgently needed in the MF field. In this review, we discuss ruxolitinib use in MPNs as well as causes of ruxolitinib failure or discontinuation. In addition, we review novel therapies being investigated alone or in combination with JAKi administration. We summarize concepts and mechanisms behind emerging novel therapies being studied for MPNs. This review of emerging novel therapies outlines several novel mechanisms of agents, including via promotion of apoptosis, alteration of the microenvironment, activation or inactivation of various pathways, targeting fibrosis, and telomerase inhibition.
Collapse
Affiliation(s)
- Sophia S. Lee
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Lee SE. Disease modifying agents of myeloproliferative neoplasms: a review. Blood Res 2021; 56:S26-S33. [PMID: 33935032 PMCID: PMC8093995 DOI: 10.5045/br.2021.2020325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
The identification of driver mutations in Janus kinase (JAK) 2, calreticulin (CALR), and myeloproliferative leukemia (MPL) has contributed to a better understanding of disease pathogenesis by highlighting the importance of JAK signal transducer and activator of transcription (STAT) signaling in classical myeloproliferative neoplasms (MPNs). This has led to the therapeutic use of novel targeted treatments, such as JAK2 inhibitors. More recently, with the development of next-generation sequencing, additional somatic mutations, which are not restricted to MPNs, have been elucidated. Treatment decisions for MPN patients are influenced by the MPN subtype, symptom burden, and risk classification. Although prevention of vascular events is the main objective of therapy for essential thrombocythemia (ET) and polycythemia vera (PV) patients, disease-modifying drugs are needed to eradicate clonal hematopoiesis and prevent progression to more aggressive myeloid neoplasms. JAK inhibitors are a valuable therapeutic strategy for patients with myelofibrosis (MF) who have splenomegaly and/or disease-related symptoms, but intolerance, refractory, resistance, and disease progression still present challenges. Currently, allogeneic stem cell transplantation remains the only curative treatment for MF, but it is typically limited by age-related comorbidities and high treatment-related mortality. Therefore, a better understanding of the molecular pathogenesis and potential new therapies with the aim of modifying the natural history of the disease is important. In this article, I review the current understanding of the molecular basis of MPNs and clinical studies on potential disease-modifying agents.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Tremblay D, Mascarenhas J. Next Generation Therapeutics for the Treatment of Myelofibrosis. Cells 2021; 10:cells10051034. [PMID: 33925695 PMCID: PMC8146033 DOI: 10.3390/cells10051034] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
Myelofibrosis is a myeloproliferative neoplasm characterized by splenomegaly, constitutional symptoms, bone marrow fibrosis, and a propensity towards transformation to acute leukemia. JAK inhibitors are the only approved therapy for myelofibrosis and have been successful in reducing spleen and symptom burden. However, they do not significantly impact disease progression and many patients are ineligible due to coexisting cytopenias. Patients who are refractory to JAK inhibition also have a dismal survival. Therefore, non-JAK inhibitor-based therapies are being explored in pre-clinical and clinical settings. In this review, we discuss novel treatments in development for myelofibrosis with targets outside of the JAK-STAT pathway. We focus on the mechanism, preclinical rationale, and available clinical efficacy and safety information of relevant agents including those that target apoptosis (navitoclax, KRT-232, LCL-161, imetelstat), epigenetic modulation (CPI-0610, bomedemstat), the bone marrow microenvironment (PRM-151, AVID-200, alisertib), signal transduction pathways (parsaclisib), and miscellaneous agents (tagraxofusp. luspatercept). We also provide commentary on the future of therapeutic development in myelofibrosis.
Collapse
|
30
|
Morsia E, Gangat N. Myelofibrosis: challenges for preclinical models and emerging therapeutic targets. Expert Opin Ther Targets 2021; 25:211-222. [PMID: 33844952 DOI: 10.1080/14728222.2021.1915992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Myelofibrosis (MF) is characterized by anemia, splenomegaly, constitutional symptoms and bone marrow fibrosis. MF has no curative treatment to date, except for a small subset of patients that are eligible for allogeneic hematopoietic stem cell transplant. The discovery in recent years of the MF mutational landscape and the role of bone marrow microenvironment in disease pathogenesis has led to further insights into disease biology and consequentially rationally derived therapies.Areas covered: We searched PubMed/Medline/American Society of Hematology (ASH) abstracts until November 2020 using the following terms: myelofibrosis, mouse models, pre-clinical studies and clinical trials. The development of targeted therapies is aimed to modify the history of the disease. Although JAK inhibitors showed encouraging results in terms of spleen and symptoms response, long term remissions and disease modifying ability is lacking. Beyond JAK inhibitors, a range of agents targeting proliferative, metabolic, apoptotic pathways, the microenvironment, epigenetic modification and immunomodulation are in various stages of investigations. We review pre-clinical data, preliminary clinical results of these agents, and finally offer insights on the management of MF patients.Expert opinion: MF patients refractory or with suboptimal response to JAK inhibitors, may be managed by addition of agents with differing mechanisms, such as bromodomain (BET), lysine demethylase 1 (LSD1), MDM2, or Bcl-Xl inhibitors which could prevent emergence of resistance. Immunotherapies as long-acting interferons, and calreticulin directed antibodies or peptide vaccination are eagerly awaited. Historically, therapeutic challenges in MF have arisen due to the fact that rationally derived therapies that are based on murine models have limited impact on fibrosis and underlying disease biology in human studies, the latter illustrates the complex multi-faceted disease pathogenesis of MF. Together, we not only suggest individualized therapy in MF that is guided by genomic signature but also its early implementation potentially in prefibrotic MF.
Collapse
Affiliation(s)
- Erika Morsia
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
31
|
Abstract
The US Food and Drug Administration (FDA) approval of Janus kinase 2 inhibitors, ruxolitinib and fedratinib for the treatment of intermediate-2 or high-risk primary or secondary myelofibrosis (MF) has revolutionized the management of MF. Nevertheless, these drugs do not reliably alter the natural history of disease. Burgeoning understanding of the molecular pathogenesis and the bone marrow microenvironment in MF has galvanized the development of targeted therapeutics. This review provides insight into the novel therapies under clinical evaluation.
Collapse
|
32
|
Abstract
Megakaryocytes give rise to platelets, which have a wide variety of functions in coagulation, immune response, inflammation, and tissue repair. Dysregulation of megakaryocytes is a key feature of in the myeloproliferative neoplasms, especially myelofibrosis. Megakaryocytes are among the main drivers of myelofibrosis by promoting myeloproliferation and bone marrow fibrosis. In vivo targeting of megakaryocytes by genetic and pharmacologic approaches ameliorates the disease, underscoring the important role of megakaryocytes in myeloproliferative neoplasms. Here we review the current knowledge of the function of megakaryocytes in the JAK2, CALR, and MPL-mutant myeloproliferative neoplasms.
Collapse
|
33
|
Murine Modeling of Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:253-265. [PMID: 33641867 DOI: 10.1016/j.hoc.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are bone marrow disorders that result in the overproduction of mature clonal myeloid elements. Identification of recurrent genetic mutations has been described and aid in diagnosis and prognostic determination. Mouse models of these mutations have confirmed the biologic significance of these mutations in myeloproliferative neoplasm disease biology and provided greater insights on the pathways that are dysregulated with each mutation. The models are useful tools that have led to preclinical testing and provided data as validation for future myeloproliferative neoplasm clinical trials.
Collapse
|
34
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021; 22:ijms22041906. [PMID: 33672997 PMCID: PMC7918142 DOI: 10.3390/ijms22041906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
- Correspondence: ; Tel.: +39-059-422-2173
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| |
Collapse
|
35
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021. [PMID: 33672997 DOI: 10.3390/ijms22041906.pmid:33672997;pmcid:pmc7918142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| |
Collapse
|
36
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
37
|
Tefferi A. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am J Hematol 2021; 96:145-162. [PMID: 33197049 DOI: 10.1002/ajh.26050] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
DISEASE OVERVIEW Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) characterized by stem cell-derived clonal myeloproliferation that is often but not always accompanied by JAK2, CALR, or MPL mutations. Additional disease features include bone marrow reticulin/collagen fibrosis, aberrant inflammatory cytokine expression, anemia, hepatosplenomegaly, extramedullary hematopoiesis (EMH), constitutional symptoms, cachexia, leukemic progression, and shortened survival. DIAGNOSIS Bone marrow morphology is the primary basis for diagnosis. Presence of JAK2, CALR, or MPL mutation, expected in around 90% of the patients, is supportive but not essential for diagnosis; these mutations are also prevalent in the closely related MPNs, namely polycythemia vera (PV) and essential thrombocythemia (ET). The 2016 World Health Organization classification system distinguishes "prefibrotic" from "overtly fibrotic" PMF; the former might mimic ET in its presentation. Furthermore, approximately 15% of patients with ET or PV might progress into a PMF-like phenotype (post-ET/PV MF) during their clinical course. ADVERSE MUTATIONS SRSF2, ASXL1, and U2AF1-Q157 mutations predict inferior survival in PMF, independent of each other and other risk factors. RAS/CBL mutations predicted resistance to ruxolitinib therapy. ADVERSE KARYOTYPE Very high risk abnormalities include -7, inv (3), i(17q), +21, +19, 12p-, and 11q-. RISK STRATIFICATION Two new prognostic systems for PMF have recently been introduced: GIPSS (genetically-inspired prognostic scoring system) and MIPSS70+ version 2.0 (MIPSSv2; mutation- and karyotype-enhanced international prognostic scoring system). GIPSS is based exclusively on mutations and karyotype. MIPSSv2 includes, in addition, clinical risk factors. GIPSS features four and MIPSSv2 five risk categories. RISK-ADAPTED THERAPY Observation alone is advised for MIPSSv2 "low" and "very low" risk disease (estimated 10-year survival 56%-92%); allogeneic hematopoietic stem cell transplant (AHSCT) is the preferred treatment for "very high" and "high" risk disease (estimated 10-year survival 0%-13%); treatment-requiring patients with intermediate-risk disease (estimated 10-year survival 30%) are best served by participating in clinical trials. In non-transplant candidates, conventional treatment for anemia includes androgens, prednisone, thalidomide, and danazol; for symptomatic splenomegaly, hydroxyurea and ruxolitinib; and for constitutional symptoms, ruxolitinib. Fedratinib, another JAK2 inhibitor, has now been FDA-approved for use in ruxolitinib failures. Splenectomy is considered for drug-refractory splenomegaly and involved field radiotherapy for non-hepatosplenic EMH and extremity bone pain. NEW DIRECTIONS A number of new agents, alone or in combination with ruxolitinib, are currently under investigation for MF treatment (ClinicalTrials.gov); preliminary results from some of these clinical trials were presented at the 2020 ASH annual meeting and highlighted in the current document.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
38
|
Brkic S, Meyer SC. Challenges and Perspectives for Therapeutic Targeting of Myeloproliferative Neoplasms. Hemasphere 2021; 5:e516. [PMID: 33403355 PMCID: PMC7773330 DOI: 10.1097/hs9.0000000000000516] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders with dysregulated myeloid blood cell production and propensity for transformation to acute myeloid leukemia, thrombosis, and bleeding. Acquired mutations in JAK2, MPL, and CALR converge on hyperactivation of Janus kinase 2 (JAK2) signaling as a central feature of MPN. Accordingly, JAK2 inhibitors have held promise for therapeutic targeting. After the JAK1/2 inhibitor ruxolitinib, similar JAK2 inhibitors as fedratinib are entering clinical use. While patients benefit with reduced splenomegaly and symptoms, disease-modifying effects on MPN clone size and clonal evolution are modest. Importantly, response to ruxolitinib may be lost upon treatment suggesting the MPN clone acquires resistance. Resistance mutations, as seen with other tyrosine kinase inhibitors, have not been described in MPN patients suggesting that functional processes reactivate JAK2 signaling. Compensatory signaling, which bypasses JAK2 inhibition, and other processes contribute to intrinsic resistance of MPN cells restricting efficacy of JAK2 inhibition overall. Combinations of JAK2 inhibition with pegylated interferon-α, a well-established therapy of MPN, B-cell lymphoma 2 inhibition, and others are in clinical development with the potential to enhance therapeutic efficacy. Novel single-agent approaches targeting other molecules than JAK2 are being investigated clinically. Special focus should be placed on myelofibrosis patients with anemia and thrombocytopenia, a delicate patient population at high need for options. The extending range of new treatment approaches will increase the therapeutic options for MPN patients. This calls for concomitant improvement of our insight into MPN biology to inform tailored therapeutic strategies for individual MPN patients.
Collapse
Affiliation(s)
- Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Division of Hematology, University Hospital Basel, Switzerland
| |
Collapse
|
39
|
Venugopal S, Mascarenhas J. Novel therapeutics in myeloproliferative neoplasms. J Hematol Oncol 2020; 13:162. [PMID: 33267911 PMCID: PMC7709419 DOI: 10.1186/s13045-020-00995-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Hyperactive signaling of the Janus-Associated Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) pathway is central to the pathogenesis of Philadelphia-chromosome-negative myeloproliferative neoplasms (MPN), i.e., polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) which are characterized by inherent biological and clinical heterogeneity. Patients with MPNs suffer from substantial symptom burden and curtailed longevity due to thrombohemorrhagic complications or progression to myelofibrosis or acute myeloid leukemia. Therefore, the management strategies focus on thrombosis risk mitigation in PV/ET, alleviation of symptom burden and improvement in cytopenias and red blood cell transfusion requirements, and disease course alteration in PMF. The United States Food and Drug Administration's (USFDA) approval of two JAK inhibitors (ruxolitinib, fedratinib) has transformed the therapeutic landscape of MPNs in assuaging the need for frequent therapeutic phlebotomy (PV) and reduction in spleen and symptom burden (PV and PMF). Despite improving biological understanding of these complex clonal hematopoietic stem/progenitor cell neoplasms, none of the currently available therapies appear to modify the proclivity of the disease per se, thereby remaining an urgent unmet clinical need and an ongoing area of intense clinical investigation. This review will highlight the evolving targeted therapeutic agents that are in early- and late-stage MPN clinical development.
Collapse
Affiliation(s)
- Sangeetha Venugopal
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030 USA
| | - John Mascarenhas
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029 USA
| |
Collapse
|
40
|
Mughal TI, Pemmaraju N, Psaila B, Radich J, Bose P, Lion T, Kiladjian JJ, Rampal R, Jain T, Verstovsek S, Yacoub A, Cortes JE, Mesa R, Saglio G, van Etten RA. Illuminating novel biological aspects and potential new therapeutic approaches for chronic myeloproliferative malignancies. Hematol Oncol 2020; 38:654-664. [PMID: 32592408 PMCID: PMC8895354 DOI: 10.1002/hon.2771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 01/18/2023]
Abstract
This review reflects the presentations and discussion at the 14th post-American Society of Hematology (ASH) International Workshop on Chronic Myeloproliferative Malignancies, which took place on the December 10 and 11, 2019, immediately after the 61st ASH Annual Meeting in Orlando, Florida. Rather than present a resume of the proceedings, we address some of the topical translational science research and clinically relevant topics in detail. We consider how recent studies using single-cell genomics and other molecular methods reveal novel aspects of hematopoiesis which in turn raise the possibility of new therapeutic approaches for patients with myeloproliferative neoplasms (MPNs). We discuss how alternative therapies could benefit patients with chronic myeloid leukemia who develop BCR-ABL1 mutant subclones following ABL1-tyrosine kinase inhibitor therapy. In MPNs, we focus on efforts beyond JAK-STAT and the merits of integrating activin receptor ligand traps, interferon-α, and allografting in the current treatment algorithm for patients with myelofibrosis.
Collapse
MESH Headings
- Anemia/diagnosis
- Anemia/etiology
- Anemia/therapy
- Biomarkers
- Biomarkers, Tumor
- Combined Modality Therapy/adverse effects
- Combined Modality Therapy/methods
- Disease Management
- Disease Susceptibility
- Drug Development
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/complications
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Diagnostic Techniques
- Molecular Targeted Therapy
- Myeloproliferative Disorders/complications
- Myeloproliferative Disorders/diagnosis
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/therapy
- Prognosis
- Single-Cell Analysis/methods
- Translational Research, Biomedical
- Treatment Outcome
Collapse
Affiliation(s)
| | | | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jerald Radich
- Frederick Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Thomas Lion
- Childrens Cancer Research Institute, Vienna, Austria
| | | | - Raajit Rampal
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tania Jain
- Sidney Kimmel Cancer Center, John Hopkins Hospital, Baltimore, Maryland, USA
| | | | - Abdulraheem Yacoub
- Division of Hematologic Malignancies, University of Kansas, Kansas City, Kansas, USA
| | - Jorge E. Cortes
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Ruben Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, Texas, USA
| | | | | |
Collapse
|
41
|
Jammal N, Rausch CR, Kadia TM, Pemmaraju N. Cell cycle inhibitors for the treatment of acute myeloid leukemia: a review of phase 2 & 3 clinical trials. Expert Opin Emerg Drugs 2020; 25:491-499. [PMID: 33161749 DOI: 10.1080/14728214.2020.1847272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Acute myeloid leukemia (AML) is a clinically heterogeneous hematologic malignancy with poor long term outcomes. Cytotoxic chemotherapy remains the backbone of therapy especially among younger patients; however the effective incorporation of targeted therapies continues to be an area of active research in an effort to improve response durations and survival. Cell cycle inhibitors (CCI) are a novel class of agents which may be of particular interest for development in patients with AML. Areas covered: We will review the concept of CCIs along with available pre-clinical and clinical data in the treatment of AML both in North America and abroad. Specific drug targets reviewed include cyclin D kinase, Aurora kinase, CHK1, and WEE1. Expert opinion: Utilization of CCIs in patients with AML is an emerging approach that has shown promise in pre-clinical models. It has been challenging to translate this concept into clinical success thus far, due to marginal single-agent activity and significant toxicity profiles, however clinical evaluation is ongoing. Addition of these agents to cytotoxic chemotherapy and other targeted therapies provides a potential combinatorial path forward for this novel class of therapies. Developing optimal combinations while balancing toxicity are among the top clinical challenges that must be overcome before we can anticipate adoption of these agents into the armamentarium of AML therapy.
Collapse
Affiliation(s)
- Nadya Jammal
- Department of Leukemia, University of Texas, MD Anderson Cancer Center , Houston, Texas, USA
| | - Caitlin R Rausch
- Department of Leukemia, University of Texas, MD Anderson Cancer Center , Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, University of Texas, MD Anderson Cancer Center , Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas, MD Anderson Cancer Center , Houston, Texas, USA
| |
Collapse
|
42
|
CXCL4's "Gliful" subversion of BM in MPN. Blood 2020; 136:1999-2000. [PMID: 33119760 DOI: 10.1182/blood.2020007943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Bose P, Masarova L, Verstovsek S. Novel Concepts of Treatment for Patients with Myelofibrosis and Related Neoplasms. Cancers (Basel) 2020; 12:cancers12102891. [PMID: 33050168 PMCID: PMC7599937 DOI: 10.3390/cancers12102891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Myelofibrosis (MF) is an advanced form of a group of rare, related bone marrow cancers termed myeloproliferative neoplasms (MPNs). Some patients develop myelofibrosis from the outset, while in others, it occurs as a complication of the more indolent MPNs, polycythemia vera (PV) or essential thrombocythemia (ET). Patients with PV or ET who require drug treatment are typically treated with the chemotherapy drug hydroxyurea, while in MF, the targeted therapies termed Janus kinase (JAK) inhibitors form the mainstay of treatment. However, these and other drugs (e.g., interferons) have important limitations. No drug has been shown to reliably prevent the progression of PV or ET to MF or transformation of MPNs to acute myeloid leukemia. In PV, it is not conclusively known if JAK inhibitors reduce the risk of blood clots, and in MF, these drugs do not improve low blood counts. New approaches to treating MF and related MPNs are, therefore, necessary. Abstract Janus kinase (JAK) inhibition forms the cornerstone of the treatment of myelofibrosis (MF), and the JAK inhibitor ruxolitinib is often used as a second-line agent in patients with polycythemia vera (PV) who fail hydroxyurea (HU). In addition, ruxolitinib continues to be studied in patients with essential thrombocythemia (ET). The benefits of JAK inhibition in terms of splenomegaly and symptoms in patients with MF are undeniable, and ruxolitinib prolongs the survival of persons with higher risk MF. Despite this, however, “disease-modifying” effects of JAK inhibitors in MF, i.e., bone marrow fibrosis and mutant allele burden reduction, are limited. Similarly, in HU-resistant/intolerant PV, while ruxolitinib provides excellent control of the hematocrit, symptoms and splenomegaly, reduction in the rate of thromboembolic events has not been convincingly demonstrated. Furthermore, JAK inhibitors do not prevent disease evolution to MF or acute myeloid leukemia (AML). Frontline cytoreductive therapy for PV generally comprises HU and interferons, which have their own limitations. Numerous novel agents, representing diverse mechanisms of action, are in development for the treatment of these three classic myeloproliferative neoplasms (MPNs). JAK inhibitor-based combinations, all of which are currently under study for MF, have been covered elsewhere in this issue. In this article, we focus on agents that have been studied as monotherapy in patients with MF, generally after JAK inhibitor resistance/intolerance, as well as several novel compounds in development for PV/ET.
Collapse
|
44
|
Jutzi JS, Mullally A. Remodeling the Bone Marrow Microenvironment - A Proposal for Targeting Pro-inflammatory Contributors in MPN. Front Immunol 2020; 11:2093. [PMID: 32983162 PMCID: PMC7489333 DOI: 10.3389/fimmu.2020.02093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are malignant bone marrow (BM) disorders, typically arising from a single somatically mutated hematopoietic stem cell. The most commonly mutated genes, JAK2, CALR, and MPL lead to constitutively active JAK-STAT signaling. Common clinical features include myeloproliferation, splenomegaly and constitutional symptoms. This review covers the contributions of cellular components of MPN pathology (e.g., monocytes, megakaryocytes, and mesenchymal stromal cells) as well as cytokines and soluble mediators to the development of myelofibrosis (MF) and highlights recent therapeutic advances. These findings outline the importance of malignant and non-malignant BM constituents to the pathogenesis and treatment of MF.
Collapse
Affiliation(s)
- Jonas Samuel Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Cancer Program, Broad Institute, Cambridge, MA, United States
| |
Collapse
|
45
|
Kuykendall AT, Horvat NP, Pandey G, Komrokji R, Reuther GW. Finding a Jill for JAK: Assessing Past, Present, and Future JAK Inhibitor Combination Approaches in Myelofibrosis. Cancers (Basel) 2020; 12:E2278. [PMID: 32823910 PMCID: PMC7464183 DOI: 10.3390/cancers12082278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm hallmarked by the upregulation of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway with associated extramedullary hematopoiesis and a high burden of disease-related symptoms. While JAK inhibitor therapy is central to the management of MF, it is not without limitations. In an effort to improve treatment for MF patients, there have been significant efforts to identify combination strategies that build upon the substantial benefits of JAK inhibition. Early efforts to combine agents with additive therapeutic profiles have given way to rationally designed combinations hoping to demonstrate clinical synergism and modify the underlying disease. In this article, we review the preclinical basis and existing clinical data for JAK inhibitor combination strategies while highlighting emerging strategies of particular interest.
Collapse
Affiliation(s)
- Andrew T. Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nathan P. Horvat
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA;
| | - Garima Pandey
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (G.P.); (G.W.R.)
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (G.P.); (G.W.R.)
| |
Collapse
|
46
|
Bose P, Verstovsek S. Management of myelofibrosis after ruxolitinib failure. Leuk Lymphoma 2020; 61:1797-1809. [PMID: 32297800 PMCID: PMC8565616 DOI: 10.1080/10428194.2020.1749606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Over the last decade, the Janus kinase1/2 (JAK1/2) inhibitor ruxolitinib has emerged as a cornerstone of myelofibrosis (MF) management. Ruxolitinib improves splenomegaly and symptoms regardless of driver mutation status, and confers a survival advantage in patients with intermediate-2/high risk MF. However, cytopenias remain problematic, and evidence for a robust anti-clonal effect is lacking. Furthermore, the median duration of spleen response to ruxolitinib in clinical trials is approximately 3 years, and ruxolitinib does not appear to affect the risk of leukemic transformation. There is no therapy approved specifically for patients whose disease 'progresses' on ruxolitinib, defining which remains challenging. The recent regulatory approval of the JAK2 inihibitor fedratinib partially fulfills this unmet need, but much remains to be done. Other JAK inhibitors and a plethora of novel agents are being studied in the ruxolitinib 'failure' setting, as well as 'add-on' therapies to ruxolitinib in patients having a 'sub-optimal' response.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
47
|
Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, Yee D, Hitchcock IS, Sousos N, O'Sullivan J, Anderson S, Senis YA, Weinberg OK, Calicchio ML, Iskander D, Royston D, Milojkovic D, Roberts I, Bodine DM, Thongjuea S, Mead AJ. Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets. Mol Cell 2020; 78:477-492.e8. [PMID: 32386542 PMCID: PMC7217381 DOI: 10.1016/j.molcel.2020.04.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.
Collapse
Affiliation(s)
- Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA.
| | - Guanlin Wang
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Rong Li
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Elisabeth F Heuston
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Lauren Murphy
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Daniel Yee
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nikolaos Sousos
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Jennifer O'Sullivan
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Stacie Anderson
- NHGRI Flow Cytometry Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Yotis A Senis
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 1255, Etablissement Français du Sang Grand Est, Strasbourg 67065, France
| | - Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica L Calicchio
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Deena Iskander
- Centre for Haematology, Hammersmith Hospital, Imperial College of Medicine, London W12 OHS, UK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dragana Milojkovic
- Centre for Haematology, Hammersmith Hospital, Imperial College of Medicine, London W12 OHS, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - David M Bodine
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Supat Thongjuea
- NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK.
| |
Collapse
|
48
|
Bankar A, Gupta V. Investigational non-JAK inhibitors for chronic phase myelofibrosis. Expert Opin Investig Drugs 2020; 29:461-474. [PMID: 32245330 DOI: 10.1080/13543784.2020.1751121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Patients with myelofibrosis (MF) have no effective treatment option after the failure of approved JAK inhibitor (JAKi) therapy. Non-JAK inhibitors (non-JAKi) that target non-canonical molecular pathways are undergoing clinical evaluations to optimize efficacy and/or to reduce hematological toxicity of JAKi. AREA COVERED This article reviews the efficacy data from completed and ongoing early phase clinical trials of non-JAKi agents for chronic phase MF. The article also illuminates some of the challenges of myelofibrosis drug development. EXPERT OPINION Most non-JAKi agents tested so far have shown modest benefit in improving the efficacy of ruxolitinib. Several novel agents such as BET inhibitor- CPI-0610, activin receptor ligand trap- luspatercept, recombinant pentraxin-PRM-151, telomerase inhibitor- imetelstat and bcl-2 inhibitor- navitoclax, have shown promising activity; however, they require vigorous evaluation in randomized controlled trials to understand the clinical benefit. Drugs that target new molecular pathways (MDM2, p-selectin, TIM-3, TGF-β, aurora kinase) and immune-based strategies (CALR vaccine, anti-PD-1, allogeneic cord blood regulatory T cells) are in early phase trials. Further translational studies to target leukemic stem cells, improvement in trial designs by incorporating control arm and survival endpoints, and patient-focused collaborations among all stakeholders could pave a way for future success in MF drug development.
Collapse
Affiliation(s)
- Aniket Bankar
- Medical Oncology and Hematology, Princess Margaret Cancer Center , Toronto, Ontario, Canada
| | - Vikas Gupta
- Medical Oncology and Hematology, Princess Margaret Cancer Center , Toronto, Ontario, Canada
| |
Collapse
|
49
|
Migliaccio AR. GATA1 gets personal. Haematologica 2020; 105:852-854. [PMID: 32238463 DOI: 10.3324/haematol.2019.246355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anna Rita Migliaccio
- Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum - Università di Bologna, Bologna and Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, US
| |
Collapse
|
50
|
Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol 2020; 191:152-170. [PMID: 32196650 DOI: 10.1111/bjh.16576] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022]
Abstract
Myelofibrosis is an enigmatic myeloproliferative neoplasm, despite noteworthy strides in understanding its genetic underpinnings. Driver mutations involving JAK2, CALR or MPL in 90% of patients mediate constitutive JAK-STAT signaling which, in concert with epigenetic alterations (ASXL1, DNMT3A, SRSF2, EZH2, IDH1/2 mutations), play a fundamental role in disease pathogenesis. Aberrant immature megakaryocytes are a quintessential feature, exhibiting reduced GATA1 protein expression and secreting a plethora of pro-inflammatory cytokines (IL-1 ß, TGF-ß), growth factors (b-FGF, PDGF, VEGF) in addition to extra cellular matrix components (fibronectin, laminin, collagens). The ensuing disrupted interactions amongst the megakaryocytes, osteoblasts, endothelium, stromal cells and myofibroblasts within the bone marrow culminate in the development of fibrosis and osteosclerosis. Presently, prognostic assessment tools for primary myelofibrosis (PMF) are centered on genetics, with incorporation of cytogenetic and molecular information into the mutation-enhanced (MIPSS 70-plus version 2.0) and genetically-inspired (GIPSS) prognostic scoring systems. Both models illustrate substantial clinical heterogeneity in PMF and serve as the crux for risk-adapted therapeutic decisions. A major challenge remains the dearth of disease-modifying drugs, whereas allogeneic transplant offers the chance of long-term remission for some patients. Our review serves to synopsise current appreciation of the pathogenesis of myelofibrosis together with emerging management strategies.
Collapse
|