1
|
Xu T, Ngan DK, Zheng W, Huang R. Systematic identification of cancer pathways and potential drugs for intervention through multi-omics analysis. THE PHARMACOGENOMICS JOURNAL 2025; 25:2. [PMID: 39971899 PMCID: PMC11839471 DOI: 10.1038/s41397-025-00361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
The pathogenesis of cancer is complicated, and different types of cancer often exhibit different gene mutations resulting in different omics profiles. The purpose of this study was to systematically identify cancer-specific biological pathways and potential cancer-targeting drugs. We collectively analyzed the transcriptomics and proteomics data from 16 common types of human cancer to study the mechanism of carcinogenesis and seek potential treatment. Statistical approaches were applied to identify significant molecular targets and pathways related to each cancer type. Potential anti-cancer drugs were subsequently retrieved that can target these pathways. The number of significant pathways linked to each cancer type ranged from four (stomach cancer) to 112 (acute myeloid leukemia), and the number of therapeutic drugs that can target these cancer related pathways, ranged from one (ovarian cancer) to 97 (acute myeloid leukemia and non-small-cell lung carcinoma). As a validation of our method, some of these drugs are FDA approved therapies for their corresponding cancer type. Our findings provide a rich source of testable hypotheses that can be applied to deconvolute the complex underlying mechanisms of human cancer and used to prioritize and repurpose drugs as anti-cancer therapies.
Collapse
Affiliation(s)
- Tuan Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Deborah K Ngan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA.
| |
Collapse
|
2
|
Dashtmian AR, Darvishi FB, Arnold WD. Chronological and Biological Aging in Amyotrophic Lateral Sclerosis and the Potential of Senolytic Therapies. Cells 2024; 13:928. [PMID: 38891059 PMCID: PMC11171952 DOI: 10.3390/cells13110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a group of sporadic and genetic neurodegenerative disorders that result in losses of upper and lower motor neurons. Treatment of ALS is limited, and survival is 2-5 years after disease onset. While ALS can occur in younger individuals, the risk significantly increases with advancing age. Notably, both sporadic and genetic forms of ALS share pathophysiological features overlapping hallmarks of aging including genome instability/DNA damage, mitochondrial dysfunction, inflammation, proteostasis, and cellular senescence. This review explores chronological and biological aging in the context of ALS onset and progression. Age-related muscle weakness and motor unit loss mirror aspects of ALS pathology and coincide with peak ALS incidence, suggesting a potential link between aging and disease development. Hallmarks of biological aging, including DNA damage, mitochondrial dysfunction, and cellular senescence, are implicated in both aging and ALS, offering insights into shared mechanisms underlying disease pathogenesis. Furthermore, senescence-associated secretory phenotype and senolytic treatments emerge as promising avenues for ALS intervention, with the potential to mitigate neuroinflammation and modify disease progression.
Collapse
Affiliation(s)
- Anna Roshani Dashtmian
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| | - Fereshteh B. Darvishi
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| | - William David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Gong L, Chen Z, Feng K, Luo L, Zhang J, Yuan J, Ren Y, Wang Y, Zheng X, Li Q. A versatile engineered extracellular vesicle platform simultaneously targeting and eliminating senescent stromal cells and tumor cells to promote tumor regression. J Nanobiotechnology 2024; 22:105. [PMID: 38468249 PMCID: PMC10926582 DOI: 10.1186/s12951-024-02361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Chemotherapy is an important therapeutic approach for malignant tumors for it triggers apoptosis of cancer cells. However, chemotherapy also induces senescence of stromal cells in the tumor microenvironment to promote tumor progression. Strategies aimed at killing tumor cells while simultaneously eliminating senescent stromal cells represent an effective approach to cancer treatment. Here, we developed an engineered Src-siRNA delivery system based on small extracellular vesicles (sEVs) to simultaneously eliminate senescent stromal cells and tumor cells for cancer therapy. The DSPE-PEG-modified urokinase plasminogen activator (uPA) peptide was anchored to the membranes of induced mesenchymal stem cell-derived sEVs (uPA-sEVs), and Src siRNA was loaded into the uPA-sEVs by electroporation (uPA-sEVs-siSrc). The engineered uPA-sEVs-siSrc retained the basic sEVs properties and protected against siSrc degradation. uPA peptide modification enhanced the sEVs with the ability to simultaneously target doxorubicin-induced senescent stromal cells and tumor cells. Src silencing by uPA-sEVs-siSrc induced apoptosis of both senescent stromal cells and tumor cells. The uPA-sEVs-siSrc displayed preferential tumor accumulation and effectively inhibited tumor growth in a tumor xenograft model. Furthermore, uPA-sEVs-siSrc in combination with doxorubicin significantly reduced the senescence burden and enhanced the therapeutic efficacy of chemotherapy. Taken together, uPA-sEVs-siSrc may serve as a promising therapy to kill two birds with one stone, not only killing tumor cells to achieve remarkable antitumor effect, but also eliminating senescent cells to enhance the efficacy of chemotherapeutic agent in tumor regression.
Collapse
Affiliation(s)
- Liangzhi Gong
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhengsheng Chen
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kai Feng
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lei Luo
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ji Yuan
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yajing Ren
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xianyou Zheng
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Qing Li
- Institute of Microsurgery on Extremities, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
4
|
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, Wieder E, Rafie CI, Dosch AR, Zhou Z, Umland O, Amirian H, Ogobuiro IC, Zhang J, Ban Y, Shiau C, Nagathihalli NS, Montgomery EA, Hwang WL, Brambilla R, Komanduri K, Villarino AV, Toska E, Stanger BZ, Gabrilovich DI, Merchant NB, Datta J. Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov 2023; 13:1428-1453. [PMID: 36946782 PMCID: PMC10259764 DOI: 10.1158/2159-8290.cd-22-1046] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iago De Castro Silva
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nilesh U. Deshpande
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samara Singh
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siddharth Mehra
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vanessa T. Garrido
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xinyu Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luis A. Nivelo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Despina S. Kolonias
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eric Wieder
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christine I. Rafie
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Austin R. Dosch
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Haleh Amirian
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ifeanyichukwu C. Ogobuiro
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences; University of Miami Miller School of Medicine, Miami, FL, USA Miami, FL, USA
| | - Carina Shiau
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William L. Hwang
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna Komanduri
- Department of Medicine, University of California San Francisco Health, San Francisco, CA, USA
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Nipun B. Merchant
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jashodeep Datta
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
5
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
6
|
Erdogan MA, Yuca E, Ashour A, Gurbuz N, Sencan S, Ozpolat B. SCN5A promotes the growth and lung metastasis of triple-negative breast cancer through EF2-kinase signaling. Life Sci 2023; 313:121282. [PMID: 36526045 DOI: 10.1016/j.lfs.2022.121282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Mumin Alper Erdogan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Erkan Yuca
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ahmed Ashour
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sevide Sencan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Nanomedicine, Innovative Cancer Therapeutics, Dr. Marr and Roy Neil Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Faisal Hamdi AI, How SH, Islam MK, Lim JCW, Stanslas J. Adaptive therapy to circumvent drug resistance to tyrosine kinase inhibitors in cancer: is it clinically relevant? Expert Rev Anticancer Ther 2022; 22:1309-1323. [PMID: 36376248 DOI: 10.1080/14737140.2022.2147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Cancer is highly adaptable and is constantly evolving against current targeted therapies such as tyrosine kinase inhibitors. Despite advances in recent decades, the emergence of drug resistance to tyrosine kinase inhibitors constantly hampers therapeutic efficacy of cancer treatment. Continuous therapy versus intermittent clinical regimen has been a debate in drug administration of cancer patients. An ecologically-inspired shift in cancer treatment known as 'adaptive therapy' intends to improve the drug administration of drugs to cancer patients that can delay emergence of drug resistance. AREAS COVERED We discuss improved understanding of the concept of drug resistance, the basis of continuous therapy, intermittent clinical regimens, and adaptive therapy will be reviewed. In addition, we discuss how adaptive therapy provides guidance for future cancer treatment. EXPERT OPINION The current understanding of drug resistance in cancer leads to poor prognosis and limited treatment options in patients. Fighting drug resistance mutants is constantly followed by new forms of resistance. In most reported cases, continuous therapy leads to drug resistance and an intermittent clinical regimen vaguely delays it. However, adaptive therapy, conceptually, exploits multiple parameters that can suppress the growth of drug resistance and provides safe treatment for cancer patients in the future.
Collapse
Affiliation(s)
- Amir Imran Faisal Hamdi
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Soon Hin How
- Kuliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Kuliyyah of Medicine, 25200, Kuantan, Malaysia
| | | | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| |
Collapse
|
8
|
Sinnett-Smith J, Anwar T, Reed EF, Teper Y, Eibl G, Rozengurt E. Opposite Effects of Src Family Kinases on YAP and ERK Activation in Pancreatic Cancer Cells: Implications for Targeted Therapy. Mol Cancer Ther 2022; 21:1652-1662. [PMID: 35999654 PMCID: PMC9630827 DOI: 10.1158/1535-7163.mct-21-0964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/22/2022] [Accepted: 08/19/2022] [Indexed: 01/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an aggressive disease that is expected to become the second cause of cancer fatalities during the next decade. As therapeutic options are limited, novel targets, and agents for therapeutic intervention are urgently needed. Previously, we identified potent positive crosstalk between insulin/IGF-1 receptors and G protein-coupled (GPCR) signaling systems leading to mitogenic signaling in PDAC cells. Here, we show that a combination of insulin and the GPCR agonist neurotensin induced rapid activation of Src family of tyrosine kinases (SFK) within PANC-1 cells, as shown by FAK phosphorylation at Tyr576/577 and Tyr861, sensitive biomarkers of SFK activity within intact cells and Src416 autophosphorylation. Crucially, SFKs promoted YAP nuclear localization and phosphorylation at Tyr357, as shown by using the SFK inhibitors dasatinib, saracatinib, the preferential YES1 inhibitor CH6953755, siRNA-mediated knockdown of YES1, and transfection of epitogue-tagged YAP mutants in PANC-1 and Mia PaCa-2 cancer cells, models of the aggressive squamous subtype of PDAC. Surprisingly, our results also demonstrate that exposure to SFK inhibitors, including dasatinib or knockdown of YES and Src induces ERK overactivation in PDAC cells. Dasatinib-induced ERK activation was completely abolished by exposure to the FDA-approved MEK inhibitor trametinib. A combination of dasatinib and trametinib potently and synergistically inhibited colony formation by PDAC cells and suppressed the growth of Mia PaCa-2 cells xenografted into the flank of nude mice. The results provide rationale for considering a combination(s) of FDA-approved SFK (dasatinib) and MEK (e.g., trametinib) inhibitors in prospective clinical trials for the treatment of PDAC.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- VA Greater Los Angeles Health System
| | - Tarique Anwar
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California
| | - Yaroslav Teper
- Department of Surgery, University of California, Los Angeles, California
| | - Guido Eibl
- Department of Surgery, University of California, Los Angeles, California
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- VA Greater Los Angeles Health System
| |
Collapse
|
9
|
Xiao Z, Li J, Yu Q, Zhou T, Duan J, Yang Z, Liu C, Xu F. An Inflammatory Response Related Gene Signature Associated with Survival Outcome and Gemcitabine Response in Patients with Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2022; 12:778294. [PMID: 35002712 PMCID: PMC8733666 DOI: 10.3389/fphar.2021.778294] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with an extremely low 5-year survival rate. Accumulating evidence has unveiled that inflammatory response promotes tumor progression, enhances angiogenesis, and causes local immunosuppression. Herein, we aim to develop an inflammatory related prognostic signature, and found it could be used to predict gemcitabine response in PDAC. Methods: PDAC cohorts with mRNA expression profiles and clinical information were systematically collected from the four public databases. An inflammatory response related genes (IRRGs) prognostic signature was constructed by LASSO regression analysis. Kaplan–Meier survival analysis, receiver operating characteristic analysis, principal component analysis, and univariate and multivariate Cox analyses were carried out to evaluate effectiveness, and reliability of the signature. The correlation between gemcitabine response and risk score was evaluated in the TCGA-PAAD cohort. The GDSC database, pRRophetic algorithm, and connectivity map analysis were used to predict gemcitabine sensitivity and identify potential drugs for the treatment of PDAC. Finally, we analyzed differences in frequencies of gene mutations, infiltration of immune cells, as well as biological functions between different subgroups divided by the prognostic signature. Results: We established a seven IRRGs (ADM, DCBLD2, EREG, ITGA5, MIF, TREM1, and BTG2) signature which divided the PDAC patients into low- and high-risk groups. Prognostic value of the signature was validated in 11 PDAC cohorts consisting of 1337 PDAC patients from 6 countries. A nomogram that integrated the IRRGs signature and clinicopathologic factors of PDAC patients was constructed. The risk score showed positive correlation with gemcitabine resistance. Two drugs (BMS-536924 and dasatinib) might have potential therapeutic implications in high-risk PDAC patients. We found that the high-risk group had higher frequencies of KRAS, TP53, and CDKN2A mutations, increased infiltration of macrophages M0, neutrophils, and macrophages M2 cells, as well as upregulated hypoxia and glycolysis pathways, while the low-risk group had increased infiltration of CD8+ T, naïve B, and plasma and macrophages M1 cells. Conclusion: We constructed and validated an IRRGs signature that could be used to predict the prognosis and gemcitabine response of patients with PDAC, as well as two drugs (BMS-536924 and dasatinib) may contribute to PDAC treatment.
Collapse
Affiliation(s)
- Zhijun Xiao
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jinyin Li
- Department of Pharmacy, Xuhui Central Hospital of Shanghai, Shanghai, China
| | - Qian Yu
- Division of Interventional Radiology, University of Chicago, Chicago, IL, United States
| | - Ting Zhou
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jingjing Duan
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Zhen Yang
- Department of Central Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Cuicui Liu
- Department of Clinical Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Feng Xu
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.,Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| |
Collapse
|
10
|
Targeting eukaryotic elongation factor-2 kinase suppresses the growth and peritoneal metastasis of ovarian cancer. Cell Signal 2021; 81:109938. [PMID: 33539938 DOI: 10.1016/j.cellsig.2021.109938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/25/2022]
Abstract
Ovarian cancer (OC) is the deadliest gynecological cancer and is currently incurable with standard treatment regimens. Early invasion, intraperitoneal metastasis, and an aggressive course are the hallmarks of OC. The major reason for poor prognosis is a lack of molecular targets and highly effective targeted therapies. Therefore, identification of novel molecular targets and therapeutic strategies is urgently needed to improve OC survival. Herein we report that eukaryotic elongation factor-2 kinase (EF2K) is highly upregulated in primary and drug-resistant OC cells and its expresssion associated with progression free survival TCGA database) and promotes cell proliferation, survival, and invasion. Downregulation of EF2K reduced expression of integrin β1 and cyclin D1 and the activity of the Src, phosphoinositide 3-kinase/AKT, and nuclear factor-κB signaling pathways. Also, in vivo, therapeutic targeting of EF2K by using single-lipid nanoparticles containing siRNA led to substantial inhibition of ovarian tumor growth and peritoneal metastasis in nude mouse models. Furthermore, EF2K inhibition led to robust apoptosis and markedly reduced intratumoral proliferation in vivo in ovarian tumor xenografts and intraperitoneal metastatic models. Collectively, our data suggest for the first time that EF2K plays an important role in OC growth, metastasis, and progression and may serve as a novel therapeutic target in OCs.
Collapse
|
11
|
Mayoral-Varo V, Sánchez-Bailón MP, Calcabrini A, García-Hernández M, Frezza V, Martín ME, González VM, Martín-Pérez J. The Relevance of the SH2 Domain for c-Src Functionality in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:462. [PMID: 33530373 PMCID: PMC7865352 DOI: 10.3390/cancers13030462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
The role of Src family kinases (SFKs) in human tumors has been always associated with tyrosine kinase activity and much less attention has been given to the SH2 and SH3 adapter domains. Here, we studied the role of the c-Src-SH2 domain in triple-negative breast cancer (TNBC). To this end, SUM159PT and MDA-MB-231 human cell lines were employed as model systems. These cells conditionally expressed, under tetracycline control (Tet-On system), a c-Src variant with point-inactivating mutation of the SH2 adapter domain (R175L). The expression of this mutant reduced the self-renewal capability of the enriched population of breast cancer stem cells (BCSCs), demonstrating the importance of the SH2 adapter domain of c-Src in the mammary gland carcinogenesis. In addition, the analysis of anchorage-independent growth, proliferation, migration, and invasiveness, all processes associated with tumorigenesis, showed that the SH2 domain of c-Src plays a very relevant role in their regulation. Furthermore, the transfection of two different aptamers directed to SH2-c-Src in both SUM159PT and MDA-MB-231 cells induced inhibition of their proliferation, migration, and invasiveness, strengthening the hypothesis that this domain is highly involved in TNBC tumorigenesis. Therefore, the SH2 domain of c-Src could be a promising therapeutic target and combined treatments with inhibitors of c-Src kinase enzymatic activity may represent a new therapeutic strategy for patients with TNBC, whose prognosis is currently very negative.
Collapse
Affiliation(s)
- Víctor Mayoral-Varo
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
| | - María Pilar Sánchez-Bailón
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Annarica Calcabrini
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marta García-Hernández
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Valerio Frezza
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - María Elena Martín
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Víctor M. González
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Jorge Martín-Pérez
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- Instituto de Investigaciones Sanitarias del Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
12
|
Khan T, Seddon AM, Dalgleish AG, Khelwatty S, Ioannou N, Mudan S, Modjtahedi H. Synergistic activity of agents targeting growth factor receptors, CDKs and downstream signaling molecules in a panel of pancreatic cancer cell lines and the identification of antagonistic combinations: Implications for future clinical trials in pancreatic cancer. Oncol Rep 2020; 44:2581-2594. [PMID: 33125153 PMCID: PMC7640362 DOI: 10.3892/or.2020.7822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive, heterogeneous and fatal type of human cancers for which more effective therapeutic agents are urgently needed. Here, we investigated the sensitivity of a panel of seven human pancreatic cancer cell lines (HPCCLs) to treatment with various tyrosine kinase inhibitors (TKIs), cyclin-dependent kinase (CDK) inhibitors, an inhibitor of STAT3 stattic, and a cytotoxic agent gemcitabine both as single agents and in combination. The membranous expression of various receptors and the effect of selected agents on cell cycle distribution, cell signaling pathways and migration was determined using flow cytometry, western blot analysis and scratch wound healing assays, respectively. While the expression of both HER-3 and HER-4 was low or negative, the expression of EGFR and HER2 was high or intermediate in all HPCCLs. Of all the agents examined, the CDK1/2/5/9 inhibitor, dinacicilib, was the most potent agent which inhibited the proliferation of all seven HPCCLs with IC50 values of ≤10 nM, followed by SRC targeting TKI dasatinib (IC50 of ≤258 nM), gemcitabine (IC50 of ≤330 nM), stattic (IC50 of ≤2 µM) and the irreversible pan-HER TKI afatinib (IC50 of ≤2.95 µM). Treatment with afatinib and dasatinib inhibited the ligand-induced phosphorylation of EGFR and SRC respectively. Statistically significant associations were found between HER2 expression and response to treatment with the ALK/IGF-IR/InsR inhibitor ceritinib and fibroblast growth factor receptor (FGFR)1/2/3 inhibitor AZD4547, HER3 and IGF-IR expression and their response to treatment with TKIs targeting HER family members (erlotinib and afatinib), and c-MET and ALK7 expression and their response to treatment with stattic. Interestingly, treatment with a combination of afatinib with dasatinib and gemcitabine with dasatinib resulted in synergistic tumor growth inhibition in all HPCCLs examined. In contrast, the combination of afatinib with dinaciclib was found to be antagonistic. Finally, the treatment with afatinib, dasatinib and dinaciclib strongly inhibited the migration of all HPCCLs examined. In conclusion, the CDK1/2/5/9 inhibitor dinaciclib, irreversible pan-HER TKI afatinib and SRC targeting TKI dasatinib were most effective at inhibiting the proliferation and migration of HPCCLs and the combination of afatinib with dasatinib and gemcitabine with dasatinib led to synergistic tumor growth inhibition in all HPCCLs examined. Our results support further investigation on the therapeutic potential of these combinations in future clinical trials in pancreatic cancer.
Collapse
Affiliation(s)
- Tanzeel Khan
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Surrey KT1 2EE, UK
| | - Alan M Seddon
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Surrey KT1 2EE, UK
| | | | - Said Khelwatty
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Surrey KT1 2EE, UK
| | - Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NT, UK
| | - Satvinder Mudan
- St George's Hospital, University of London, London SW17 0QT, UK
| | - Helmout Modjtahedi
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Surrey KT1 2EE, UK
| |
Collapse
|
13
|
Targeting SRC Kinase Signaling in Pancreatic Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21207437. [PMID: 33050159 PMCID: PMC7588004 DOI: 10.3390/ijms21207437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The proto-oncogene nonreceptor tyrosine-protein kinase SRC is a member of the SRC family of tyrosine kinases (SFKs), and its activation and overexpression have been shown to play a protumorigenic role in multiple solid cancers, including pancreatic ductal adenocarcinoma (PDAC). PDAC is currently the seventh-leading cause of cancer-related death worldwide, and, by 2030, it is predicted to become the second-leading cause of cancer-related death in the United States. PDAC is characterized by its high lethality (5-year survival of rate of <10%), invasiveness, and chemoresistance, all of which have been shown to be due to the presence of pancreatic cancer stem cells (PaCSCs) within the tumor. Due to the demonstrated overexpression of SRC in PDAC, we set out to determine if SRC kinases are important for PaCSC biology using pharmacological inhibitors of SRC kinases (dasatinib or PP2). Treatment of primary PDAC cultures established from patient-derived xenografts with dasatinib or PP2 reduced the clonogenic, self-renewal, and tumor-initiating capacity of PaCSCs, which we attribute to the downregulation of key signaling factors such as p-FAK, p-ERK1-2, and p-AKT. Therefore, this study not only validates that SRC kinases are relevant and biologically important for PaCSCs but also suggests that inhibitors of SRC kinases may represent a possible future treatment option for PDAC patients, although further studies are still needed.
Collapse
|
14
|
Stopa KB, Kusiak AA, Szopa MD, Ferdek PE, Jakubowska MA. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci 2020; 21:E3218. [PMID: 32370075 PMCID: PMC7246785 DOI: 10.3390/ijms21093218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) causes annually well over 400,000 deaths world-wide and remains one of the major unresolved health problems. This exocrine pancreatic cancer originates from the mutated epithelial cells: acinar and ductal cells. However, the epithelia-derived cancer component forms only a relatively small fraction of the tumor mass. The majority of the tumor consists of acellular fibrous stroma and diverse populations of the non-neoplastic cancer-associated cells. Importantly, the tumor microenvironment is maintained by dynamic cell-cell and cell-matrix interactions. In this article, we aim to review the most common drivers of PDAC. Then we summarize the current knowledge on PDAC microenvironment, particularly in relation to pancreatic cancer therapy. The focus is placed on the acellular stroma as well as cell populations that inhabit the matrix. We also describe the altered metabolism of PDAC and characterize cellular signaling in this cancer.
Collapse
Affiliation(s)
- Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Agnieszka A. Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Mateusz D. Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Monika A. Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| |
Collapse
|
15
|
Hermida-Prado F, Granda-Díaz R, del-Río-Ibisate N, Villaronga MÁ, Allonca E, Garmendia I, Montuenga LM, Rodríguez R, Vallina A, Alvarez-Marcos C, Rodrigo JP, García-Pedrero JM. The Differential Impact of SRC Expression on the Prognosis of Patients with Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11111644. [PMID: 31731442 PMCID: PMC6896085 DOI: 10.3390/cancers11111644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Aberrant SRC expression and activation is frequently detected in multiple cancers, and hence, targeting SRC has emerged as a promising therapeutic strategy. Different SRC inhibitors have demonstrated potent anti-tumor activity in preclinical models, although they largely lack clinical efficacy as monotherapy in late-stage solid tumors, including head and neck squamous cell carcinomas (HNSCC). Adequate selection and stratification of patients who may respond to and benefit from anti-SRC therapies is therefore needed to guide clinical trials and treatment efficacy. This study investigates the prognostic significance of active SRC expression in a homogeneous cohort of 122 human papillomavirus (HPV)-negative, surgically treated HNSCC patients. Immunohistochemical evaluation of the active form of SRC by means of anti-SRC Clone 28 monoclonal antibody was specifically performed and subsequently correlated with clinical data. The expression of p-SRC (Tyr419), total SRC, and downstream SRC effectors was also analyzed. Our results uncovered striking differences in the prognostic relevance of SRC expression in HNSCC patients depending on the tumor site. Active SRC expression was found to significantly associate with advanced disease stages, presence of lymph node metastasis, and tumor recurrences in patients with laryngeal tumors, but not in the pharyngeal subgroup. Multivariate Cox analysis further revealed active SRC expression as an independent predictor of cancer-specific mortality in patients with laryngeal carcinomas. Concordantly, expression of p-SRC (Tyr419) and the SRC substrates focal adhesion kinase (FAK) and the Arf GTPase-activating protein ASAP1 also showed specific associations with poor prognosis in the larynx. These findings could have important implications in ongoing Src family kinase (SFK)-based clinical trials, as these new criteria could help to improve patient selection and develop biomarker-stratified trials.
Collapse
Affiliation(s)
- Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Nagore del-Río-Ibisate
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - M. Ángeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Irati Garmendia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA); Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra’s Health Research Institute (IDISNA), 31008 Pamplona, Spain;
| | - Luis M. Montuenga
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Program in Solid Tumors, Center for Applied Medical Research (CIMA); Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra’s Health Research Institute (IDISNA), 31008 Pamplona, Spain;
| | - René Rodríguez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Aitana Vallina
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain;
| | - César Alvarez-Marcos
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
| | - Juan P. Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Correspondence: (J.P.R.); (J.M.G.-P.)
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain; (F.H.-P.); (R.G.-D.); (N.d.-R.-I.); (M.Á.V.); (E.A.); (R.R.); (C.A.-M.)
- Ciber de Cáncer, CIBERONC, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Correspondence: (J.P.R.); (J.M.G.-P.)
| |
Collapse
|
16
|
Joseph J, Radulovich N, Wang T, Raghavan V, Zhu CQ, Tsao MS. Rho guanine nucleotide exchange factor ARHGEF10 is a putative tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene 2019; 39:308-321. [DOI: 10.1038/s41388-019-0985-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022]
|
17
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
18
|
Wei J, Han R, Su X, Chen Y, Shi J, Cui X, Zhang H, Gong Y, Chu X, Chen J. Identification of biomarkers and their functions in dasatinib-resistant pancreatic cancer using bioinformatics analysis. Oncol Lett 2019; 18:197-206. [PMID: 31289489 PMCID: PMC6540339 DOI: 10.3892/ol.2019.10281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
Dasatinib is a tyrosine kinase inhibitor, which inhibits tumor proliferation by blocking SRC pathways and is considered as a potential treatment of various epithelial neoplasms, including pancreatic cancer. However, dasatinib efficacy is largely limited due to drug resistance. In the present study, bioinformatics strategies were used to investigate the potential mechanisms of dasatinib-resistance in pancreatic cancer. The gene expression profiles of the Panc0403, Panc0504, Panc1005 (dasatinib-sensitive), SU8686, MiaPaCa2 and Panc1 (acquired dasatinib-resistant) cell lines were obtained from the gene expression omnibus database. The differentially expressed genes (DEGs) were then selected using R software. In addition, gene ontology (GO) and pathway enrichment analysis were performed through the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed and analyzed to determine the hub genes using the Search Tool for the Retrieval of Interacting Genes database. A total of 472 DEGs, including vimentin, transmembrane 4 l six family member 18 and S100 calcium binding protein P, were identified. Enrichment analysis by GO function demonstrated that DEGs were associated with extracellular components, signal regulation and binding factors. The analysis of the Kyoto Encyclopedia of Genes and Genomes demonstrated that several adenocarcinoma pathways were enriched, including the phosphoinositide 3-kinases/protein kinase B and mitogen-activated protein kinase signaling pathways. Some hub genes were highlighted following the PPI network construction, including Rac family small GTPase 1, laminin subunit α3, integrin subunit β4, integrin subunit α2, collagen type VI α1 chain, collagen type I α2 chain, arrestin β1 and synaptotagmin 1, which may be associated with pancreatic adenocarcinoma prognosis. A total of five out of eight hub genes were highly associated with the overall survival rate (P<0.05). In conclusion, the present study reported novel insights into the mechanisms of dasatinib resistance. Identification of these hub genes may be considered as potential novel treatment targets for dasatinib-resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Jingsun Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Rongbo Han
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xinyu Su
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yuetong Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiaowen Cui
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Honghong Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yang Gong
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xia Chu
- Department of Oncology, Nanjing First Hospital, Southeast University, Nanjing, Jiangsu 210006, P.R. China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
19
|
Stock K, Borrink R, Mikesch JH, Hansmeier A, Rehkämper J, Trautmann M, Wardelmann E, Hartmann W, Sperveslage J, Steinestel K. Overexpression and Tyr421-phosphorylation of cortactin is induced by three-dimensional spheroid culturing and contributes to migration and invasion of pancreatic ductal adenocarcinoma (PDAC) cells. Cancer Cell Int 2019; 19:77. [PMID: 30976201 PMCID: PMC6441202 DOI: 10.1186/s12935-019-0798-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/23/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The nucleation-promoting factor cortactin is expressed and promotes tumor progression and metastasis in various cancers. However, little is known about the biological role of cortactin in the progression of pancreatic ductal adenocarcinoma (PDAC). METHODS Cortactin and phosphorylated cortactin (Y421) were investigated immunohistochemically in 66 PDAC tumor specimens. To examine the functional role of cortactin in PDAC, we modulated cortactin expression by establishing two cortactin knockout cell lines (Panc-1 and BxPC-3) with CRISPR/Cas9 technique. Cortactin knockout was verified by immunoblotting and immunofluorescence microscopy and functional effects were determined by cell migration and invasion assays. A proteomic screening approach was performed to elucidate potential binding partners of cortactin. RESULTS Immunohistochemically, we observed higher cortactin expression and Tyr421-phosphorylation in PDAC metastases compared to primary tumor tissues. In PDAC cell lines Panc-1 and BxPC-3, knockdown of cortactin impaired migration and invasion, while cell proliferation was not affected. Three-dimensional spheroid culturing as a model for collective cell migration enhanced cortactin expression and Tyr421-phosphorylation. The activation of cortactin as well as the migratory capacity of PDAC cells could significantly be reduced by dasatinib, a Src family kinase inhibitor. Finally, we identified gelsolin as a novel protein interaction partner of cortactin in PDAC. CONCLUSION Our data provides evidence that cohesive cell migration induces cortactin expression and phosphorylation as a prerequisite for the gain of an invasive, pro-migratory phenotype in PDAC that can effectively be targeted with dasatinib.
Collapse
Affiliation(s)
- Katharina Stock
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Rebekka Borrink
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | | | - Anna Hansmeier
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Jan Rehkämper
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Marcel Trautmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Jan Sperveslage
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Konrad Steinestel
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| |
Collapse
|
20
|
Kim Y, Kim KH, Lee IS, Park JY, Na YC, Chung WS, Jang HJ. Apoptosis and G2/M cell cycle arrest induced by a timosaponin A3 from Anemarrhena asphodeloides Bunge on AsPC-1 pancreatic cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:48-56. [PMID: 30668353 DOI: 10.1016/j.phymed.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 08/06/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Timosaponin A3 (TA3), one of the active components of spirostanol saponin isolated from A. asphodeloides, is widely used as an anticancer agent in a variety of cancer cell lines. However, the research on the anticancer efficacy is very limited in human pancreatic cancer models. PURPOSE In this study, we investigated the molecular targets in the active components of A. asphodeloides, which showed anti-cancer effects in human pancreatic cancer cells, and confirmed the pathways involved. STUDY DESIGN The apoptotic effects of five solvent extracts of A. asphodeloides in human pancreatic cancer cells (AsPC-1) was studied, and the phytochemical leading to their effects identified. Next, we determined whether the phytochemical inhibit STAT3 and ERK1/2, and investigated the pathways involved. METHODS Five solvent extracts of A. asphodeloides (100 µg/ml, 24 h) was investigated for their cytotoxicity against AsPC-1 cells. The active ingredient of the extract exhibiting the highest toxicity were analyzed by liquid chromatography-mass spectrometry. Next, we studied the mechanism of action of the phytochemical in pancreatic cancer. Cell cycle and annexin V/FITC assays were performed to assess cell growth and apoptosis capacity. The effects on apoptosis and proliferation-related pathways, STAT3, and MAPKs were confirmed at the protein level using immunoblotting. The factors regulated in the pathways were investigated using reverse transcription polymerase chain reaction. RESULTS The results showed that the ethyl acetate extract of A. asphodeloides (EAA) induced apoptotic and anti-proliferative activities through the STAT3 and MAPKs pathways. We found that TA3, an active component of EAA, inhibits constitutive STAT3 and ERK1/2 proteins. EAA and TA3 decreased the viability of AsPC-1 cells, leading to cell cycle arrest at the sub-G1 and G2/M phases. Moreover, TA3 inhibited the expression of various genes encoding anti-apoptotic (Bcl-2, Bcl-xl), proliferative (Cyclin D1), metastatic (MMP-9), and angiogenic (VEGF-1) proteins. CONCLUSION The results indicated that TA3, an active phytochemical from A. asphodeloides, could induce apoptosis and suppress cell proliferation by inhibiting the STAT3 and ERK1/2 pathways. Thus, TA3 is a candidate cancer chemotherapeutic agent instead to treat human pancreatic cancer.
Collapse
Affiliation(s)
- Yumi Kim
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul, Dongdaemun-gu 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kang-Hoon Kim
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul, Dongdaemun-gu 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - In-Seung Lee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul, Dongdaemun-gu 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Young Park
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul, Dongdaemun-gu 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute 150 Bugahyeon-ro, Seoul, Dongdaemun-gu, 03759, Republic of Korea
| | - Won-Seok Chung
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul, Dongdaemun-gu 02447, Republic of Korea.
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul, Dongdaemun-gu 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Ma L, Wei J, Su GH, Lin J. Dasatinib can enhance paclitaxel and gemcitabine inhibitory activity in human pancreatic cancer cells. Cancer Biol Ther 2019; 20:855-865. [PMID: 30866697 DOI: 10.1080/15384047.2019.1579956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
SRC and its activated form, phospho-SRC (pSRC), are aberrantly activated in pancreatic cancer and SRC represents a potential target for pancreatic cancer therapy. In this paper, we examined the inhibitory effect of dasatinib, a potent SRC inhibitor in combination with paclitaxel or gemcitabine on human and murine pancreatic cancer cell lines. The results showed that p-SRC can be highly expressed in most human and mouse pancreatic cancer cell lines compared with normal human cell lines and can be induced by paclitaxel or gemcitabine in HPAC cells. Dasatinib can enhance the efficacy of paclitaxel or gemcitabine by reducing the cell viability and inhibiting the cell proliferation. Dasatinib with paclitaxel combination exhibits statistically greater inhibition of the cell migration ability than single agent alone, paclitaxel with gemcitabine or FOLFIRINOX (combination of fluorouracil, leucovorin, irinotecan, and oxaliplatin) in HAPC, PANC-1, and BXPC-3 human pancreatic cancer cell lines as well as 8-285 APR and 8-365 APR mouse pancreatic cancer cell lines. In addition, dasatinib with gemcitabine combination also showed statistically greater inhibition of cell migration than single agent alone, paclitaxel with gemcitabine, or FOLFIRINOX in HAPC, PANC-1 and 8-285 APR cells. The combination of dasatinib with paclitaxel or gemcitabine also showed greater inhibition of the colony formation ability of pancreatic cancer cells compared with single-agent monotherapy or FOLFIRINOX. Dasatinib with paclitaxel or gemcitabine combination also inhibits p-SRC, p-STAT3, p-AKT, and/or p-ERK in these pancreatic cancer cells. Therefore, our results support that combined dasatinib and paclitaxel or gemcitabine therapy may be a viable therapeutic approach for human pancreatic cancer.
Collapse
Affiliation(s)
- Ling Ma
- a Department of Clinical Laboratory, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Biochemistry and Molecular Biology, School of Medicine , University of Maryland , Baltimore , MD , USA
| | - Jia Wei
- b Department of Biochemistry and Molecular Biology, School of Medicine , University of Maryland , Baltimore , MD , USA
| | - Gloria H Su
- c Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA
| | - Jiayuh Lin
- b Department of Biochemistry and Molecular Biology, School of Medicine , University of Maryland , Baltimore , MD , USA
| |
Collapse
|
22
|
Dosch AR, Dai X, Gaidarski Iii AA, Shi C, Castellanos JA, VanSaun MN, Merchant NB, Nagathihalli NS. Src kinase inhibition restores E-cadherin expression in dasatinib-sensitive pancreatic cancer cells. Oncotarget 2019; 10:1056-1069. [PMID: 30800218 PMCID: PMC6383685 DOI: 10.18632/oncotarget.26621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023] Open
Abstract
The Src family of non-receptor tyrosine kinases are frequently activated in pancreatic ductal adenocarcinoma (PDAC), contributing to disease progression through downregulation of E-cadherin and induction of epithelial-to-mesenchymal transition (EMT). The purpose of this study was to examine the efficacy of Src kinase inhibition in restoring E-cadherin levels in PDAC. Immunohistochemical analysis of human PDAC samples showed Src activation is inversely correlated with E-cadherin levels. Protein and mRNA levels of E-cadherin, the gene expression of its various transcriptional repressors (Zeb1, Snail, Slug, LEF-1, TWIST), and changes in sub-cellular localization of E-cadherin/β-catenin in PDAC cells were characterized in response to treatment with the Src inhibitor, dasatinib (DST). DST repressed Slug mRNA expression, promoted E-cadherin transcription, and increased total and membranous E-cadherin/β-catenin levels in drug-sensitive PDAC cells (BxPC3 and SW1990), however no change was observed in drug-resistant PANC1 cells. BxPC3, PANC1, and MiaPaCa-2 flank tumor xenografts were treated with DST to examine changes in E-cadherin levels in vivo. Although DST inhibited Src phosphorylation in all xenograft models, E-cadherin levels were only restored in BxPC3 xenograft tumors. These results suggest that Src kinase inhibition reverses EMT in drug-sensitive PDAC cells through Slug-mediated repression of E-cadherin and identifies E-cadherin as potential biomarker for determining response to DST treatment.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Alexander A Gaidarski Iii
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jason A Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael N VanSaun
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
23
|
Ma X, Zhang L, Song J, Nguyen E, Lee RS, Rodgers SJ, Li F, Huang C, Schittenhelm RB, Chan H, Chheang C, Wu J, Brown KK, Mitchell CA, Simpson KJ, Daly RJ. Characterization of the Src-regulated kinome identifies SGK1 as a key mediator of Src-induced transformation. Nat Commun 2019; 10:296. [PMID: 30655532 PMCID: PMC6336867 DOI: 10.1038/s41467-018-08154-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Despite significant progress, our understanding of how specific oncogenes transform cells is still limited and likely underestimates the complexity of downstream signalling events. To address this gap, we use mass spectrometry-based chemical proteomics to characterize the global impact of an oncogene on the expressed kinome, and then functionally annotate the regulated kinases. As an example, we identify 63 protein kinases exhibiting altered expression and/or phosphorylation in Src-transformed mammary epithelial cells. An integrated siRNA screen identifies nine kinases, including SGK1, as being essential for Src-induced transformation. Accordingly, we find that Src positively regulates SGK1 expression in triple negative breast cancer cells, which exhibit a prominent signalling network governed by Src family kinases. Furthermore, combined inhibition of Src and SGK1 reduces colony formation and xenograft growth more effectively than either treatment alone. Therefore, this approach not only provides mechanistic insights into oncogenic transformation but also aids the design of improved therapeutic strategies. The systemic understanding of oncogenic kinase signalling is still limited. Here, the authors combine chemical proteomics with functional screens to assess the impact of oncogenic Src on the expressed kinome and identify SGK1 as a critical mediator of Src-induced cell transformation.
Collapse
Affiliation(s)
- Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia
| | - Elizabeth Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rachel S Lee
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fuyi Li
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility and Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility and Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Howard Chan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Chanly Chheang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Kristin K Brown
- Cancer Therapeutics Program and Cancer Metabolism Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christina A Mitchell
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
24
|
Kano Y, Gebregiworgis T, Marshall CB, Radulovich N, Poon BPK, St-Germain J, Cook JD, Valencia-Sama I, Grant BMM, Herrera SG, Miao J, Raught B, Irwin MS, Lee JE, Yeh JJ, Zhang ZY, Tsao MS, Ikura M, Ohh M. Tyrosyl phosphorylation of KRAS stalls GTPase cycle via alteration of switch I and II conformation. Nat Commun 2019; 10:224. [PMID: 30644389 PMCID: PMC6333830 DOI: 10.1038/s41467-018-08115-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Deregulation of the RAS GTPase cycle due to mutations in the three RAS genes is commonly associated with cancer development. Protein tyrosine phosphatase SHP2 promotes RAF-to-MAPK signaling pathway and is an essential factor in RAS-driven oncogenesis. Despite the emergence of SHP2 inhibitors for the treatment of cancers harbouring mutant KRAS, the mechanism underlying SHP2 activation of KRAS signaling remains unclear. Here we report tyrosyl-phosphorylation of endogenous RAS and demonstrate that KRAS phosphorylation via Src on Tyr32 and Tyr64 alters the conformation of switch I and II regions, which stalls multiple steps of the GTPase cycle and impairs binding to effectors. In contrast, SHP2 dephosphorylates KRAS, a process that is required to maintain dynamic canonical KRAS GTPase cycle. Notably, Src- and SHP2-mediated regulation of KRAS activity extends to oncogenic KRAS and the inhibition of SHP2 disrupts the phosphorylation cycle, shifting the equilibrium of the GTPase cycle towards the stalled ‘dark state’. Deregulation of the RAS GTPase cycle due to mutations in RAS genes is commonly associated with cancer development. Here authors use NMR and mass spectrometry to shows that KRAS phosphorylation via Src alters the conformation of switch I and II regions and thereby impacts the GTPase cycle.
Collapse
Affiliation(s)
- Yoshihito Kano
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network and Department of Pathology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Betty P K Poon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Ivette Valencia-Sama
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.,Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, 5G OA4, Canada
| | - Benjamin M M Grant
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Silvia Gabriela Herrera
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Meredith S Irwin
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, 5G OA4, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.,Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network and Department of Pathology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada. .,Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
25
|
Wei J, Ma L, Li C, Pierson CR, Finlay JL, Lin J. Targeting Upstream Kinases of STAT3 in Human Medulloblastoma Cells. Curr Cancer Drug Targets 2019; 19:571-582. [PMID: 30332965 PMCID: PMC6533162 DOI: 10.2174/1568009618666181016165604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Despite improvement in overall survival rate, it still lacks an effective targeted treatment strategy. The Janus family of cytoplasmic tyrosine kinases (JAKs) and Src kinases, upstream protein kinases of signal transducer and activator of transcription 3 (STAT3), play important roles in medulloblastoma pathogenesis and therefore represent potential therapeutic targets. METHODS In this report, we examined the inhibitory efficacy of the JAK1/2 inhibitor, ruxolitinib, the JAK3 inhibitor, tofacitinib and two Src inhibitors, KX2-391 and dasatinib. RESULTS These small molecule drugs significantly reduce cell viability and inhibit cell migration and colony formation in human medulloblastoma cells in vitro. Src inhibitors have more potent efficacy than JAK inhibitors in inhibiting medulloblastoma cell migration ability. The Src inhibitors can inhibit both phosphorylation of STAT3 and Src while JAK inhibitors reduce JAK/STAT3 phosphorylation. We also investigated the combined effect of the Src inhibitor, dasatinib with cisplatin. The results show that dasatinib exerts synergistic effects with cisplatin in human medulloblastoma cells through the inhibition of STAT3 and Src. CONCLUSION Our results suggest that the small molecule inhibitors of STAT3 upstream kinases, ruxolitinib, tofacitinib, KX2-391, and dasatinib could be novel and attractive candidate drugs for the treatment of human medulloblastoma.
Collapse
Affiliation(s)
- Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Ling Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chenglong Li
- College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Christopher R. Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children ‘s Hospital, The Department of Pathology and Department of Biomedical Education & Anatomy, The College of Medicine, The Ohio State University, Columbus,OH 43205, USA
| | - Jonathan L. Finlay
- Division of Hematology, Oncology and BMT, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Diab M, Azmi A, Mohammad R, Philip PA. Pharmacotherapeutic strategies for treating pancreatic cancer: advances and challenges. Expert Opin Pharmacother 2018; 20:535-546. [PMID: 30592647 DOI: 10.1080/14656566.2018.1561869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Despite many efforts to improve the outcome of pancreatic ductal adenocarcinoma (PDAC), its prognosis remains poor, which is mostly related to late diagnosis and drug resistance. Improving systemic therapy is considered the major challenge in improving the outcome of this disease. AREAS COVERED This review covers novel chemotherapy and targeted agents in the treatment of PDAC, with a focus on advanced stage disease. EXPERT OPINION Current frontline therapies used in the treatment of patients with PDAC with favorable performance status are gemcitabine (GEM) and nab-paclitaxel or 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX). PDAC has a number of genetic mutations that may explain its biological behavior, such as KRAS, p53 and CDK2NA, which occur in more than 90% of cases. Unfortunately, to this day, a specific targeting agent to any of those frequent gene mutations is lacking. Emerging areas of targeted therapies include the DNA repair, stroma, metabolism, and stem cells. Immunotherapy with either vaccines or immune checkpoint inhibitors has not produced any significant improvements in outcome of PDAC. Incorporating different approaches in therapy, including conventional, immunological, and others, is key in offering patients with the best possible care.
Collapse
Affiliation(s)
- Maria Diab
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Asfar Azmi
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Ramzi Mohammad
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Philip A Philip
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA.,b Department of Pharmacology, School of Medicine , Wayne State University , Detroit , MI , USA
| |
Collapse
|
27
|
Yu GT, Mao L, Wu L, Deng WW, Bu LL, Liu JF, Chen L, Yang LL, Wu H, Zhang WF, Sun ZJ. Inhibition of SRC family kinases facilitates anti-CTLA4 immunotherapy in head and neck squamous cell carcinoma. Cell Mol Life Sci 2018; 75:4223-4234. [PMID: 29955905 PMCID: PMC11105240 DOI: 10.1007/s00018-018-2863-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023]
Abstract
The immune system plays a critical role in the establishment, development, and progression of head and neck squamous cell carcinoma (HNSCC). As treatment with single-immune checkpoint agent results in a lower response rate in patients, it is important to investigate new strategies to maintain favorable anti-tumor immune response. Herein, the combination immunotherapeutic value of CTLA4 blockade and SFKs inhibition was assessed in transgenic HNSCC mouse model. Our present work showed that tumor growth was not entirely controlled when HNSCC model mice were administered anti-CTLA4 chemotherapeutic treatment. Moreover, it was observed that Src family kinases (SFKs) were hyper-activated and lack of anti-tumor immune responses following anti-CTLA4 chemotherapeutic treatment. We hypothesized that activation of SFKs is a mechanism of anti-CTLA4 immunotherapy resistance. We, therefore, carried out combined drug therapy using anti-CTLA4 mAbs and an SFKs' inhibitor, dasatinib. As expected, dasatinib and anti-CTLA4 synergistically inhibited tumor growth in Tgfbr1/Pten 2cKO mice. Furthermore, dasatinib and anti-CTLA4 combined to reduce the number of myeloid-derived suppressor cells and Tregs, increasing the CD8+ T cell-to-Tregs ratio. We also found that combining dasatinib with anti-CTLA4 therapy significantly attenuated the expression of p-STAT3Y705 and Ki67 in tumoral environment. These results suggest that combination therapy with SFKs inhibitors may be a useful therapeutic approach to increase the efficacy of anti-CTLA4 immunotherapy in HNSCC.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen/immunology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Dasatinib/therapeutic use
- Disease Models, Animal
- Down-Regulation/drug effects
- Drug Therapy, Combination
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/therapy
- Immunotherapy
- Mice
- Mice, Knockout
- PTEN Phosphohydrolase/deficiency
- PTEN Phosphohydrolase/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- STAT3 Transcription Factor/metabolism
- Squamous Cell Carcinoma of Head and Neck
- Tumor Microenvironment
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Hao Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Er JL, Goh PN, Lee CY, Tan YJ, Hii LW, Mai CW, Chung FFL, Leong CO. Identification of inhibitors synergizing gemcitabine sensitivity in the squamous subtype of pancreatic ductal adenocarcinoma (PDAC). Apoptosis 2018; 23:343-355. [PMID: 29740790 DOI: 10.1007/s10495-018-1459-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is a highly aggressive cancer with a high chance of recurrence, limited treatment options, and poor prognosis. A recent study has classified pancreatic cancers into four molecular subtypes: (1) squamous, (2) immunogenic, (3) pancreatic progenitor and (4) aberrantly differentiated endocrine exocrine. Among all the subtypes, the squamous subtype has the worst prognosis. This study aims to utilize large scale genomic datasets and computational systems biology to identify potential drugs targeting the squamous subtype of PDAC through combination therapy. Using the transcriptomic data available from the International Cancer Genome Consortium, Cancer Cell Line Encyclopedia and Connectivity Map, we identified 26 small molecules that could target the squamous subtype of PDAC. Among them include inhibitors targeting the SRC proto-oncogene (SRC) and the mitogen-activated protein kinase kinase 1/2 (MEK1/2). Further analyses demonstrated that the SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib) synergized gemcitabine sensitivity specifically in the squamous subtype of PDAC cells (SW1990 and BxPC3), but not in the PDAC progenitor cells (AsPC1). Further analysis revealed that the synergistic effects are dependent on SRC or MEK1/2 activities, as overexpression of SRC or MEK1/2 completely abrogated the synergistic effects SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib). In contrast, no significant toxicity was observed in the MRC5 human lung fibroblast and ARPE-19 human retinal pigment epithelial cells. Together, our findings suggest that combinations of SRC or MEK inhibitors with gemcitabine possess synergistic effects on the squamous subtype of PDAC cells and warrant further investigation.
Collapse
Affiliation(s)
- Jia Lin Er
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pei Ni Goh
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chen Yuan Lee
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ying Jie Tan
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ling-Wei Hii
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chun Wai Mai
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organization, 150 Cours Albert Thomas, 69372, Lyon CEDEX 08, France
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia.
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Cardin DB, Goff LW, Chan E, Whisenant JG, Dan Ayers G, Takebe N, Arlinghaus LR, Yankeelov TE, Berlin J, Merchant N. Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: phase I results : A phase I clinical trial. Invest New Drugs 2018; 36:442-450. [PMID: 28990119 PMCID: PMC5891394 DOI: 10.1007/s10637-017-0519-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Pancreatic adenocarcinoma remains a major therapeutic challenge, as the poor (<8%) 5-year survival rate has not improved over the last three decades. Our previous preclinical data showed cooperative attenuation of pancreatic tumor growth when dasatinib (Src inhibitor) was added to erlotinib (EGFR inhibitor) and gemcitabine. Thus, this study was designed to determine the maximum-tolerated dose of the triplet combination. Standard 3 + 3 dose escalation was used, starting with daily oral doses of 70 mg dasatinib and 100 mg erlotinib with gemcitabine on days 1, 8, and 15 (800 mg/m2) of a 28-day cycle (L0). Nineteen patients were enrolled, yet 18 evaluable for dose-limiting toxicities (DLTs). One DLT observed at L0, however dasatinib was reduced to 50 mg (L-1) given side effects observed in the first two patients. At L-1, a DLT occurred in 1/6 patients and dose was re-escalated to L0, where zero DLTs reported in next four patients. Dasatinib was escalated to 100 mg (L1) where 1/6 patients experienced a DLT. Although L1 was tolerable, dose escalation was stopped as investigators felt L1 was within the optimal therapeutic window. Most frequent toxicities were anemia (89%), elevated aspartate aminotransferase (79%), fatigue (79%), nausea (79%), elevated alanine aminotransferase (74%), lymphopenia (74%), leukopenia (74%), neutropenia (63%), and thrombocytopenia (63%), most Grade 1/2. Stable disease as best response was observed in 69% (9/13). Median progression-free and overall survival was 3.6 and 8 months, respectively. Dasatinib, erlotinib, and gemcitabine was safe with manageable side effects, and with encouraging preliminary clinical activity in advanced pancreatic cancer.
Collapse
Affiliation(s)
- Dana B Cardin
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Laura W Goff
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Jennifer G Whisenant
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - G Dan Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Lori R Arlinghaus
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas E Yankeelov
- Institute for Computational and Engineering Sciences, Departments of Biomedical Engineering and Diagnostic Medicine, Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Jordan Berlin
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nipun Merchant
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
30
|
Phosphorylation of the C-Raf N Region Promotes Raf Dimerization. Mol Cell Biol 2017; 37:MCB.00132-17. [PMID: 28694330 DOI: 10.1128/mcb.00132-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The activation of Raf kinases by the small GTPase Ras requires two major sets of phosphorylations. One set lies within the activation loop, and the other lies within the N-terminal acidic region (N region). In the most abundant isoform of Raf, C-Raf, N-region phosphorylations occur on serine 338 (S338) and tyrosine 341 (Y341) and are thought to provide allosteric activation of the Raf dimer. We show that the phosphorylations of these N-region sites does not require C-Raf dimerization, but rather, they precede dimerization. One of these phosphorylations (phospho-Y341) is required for C-Raf dimerization, and this action can be replicated by phosphomimetic mutants both in vivo and in vitro The role of the phosphorylation of Y341 in promoting Raf dimerization is distinct from its well-known function in facilitating S338 phosphorylation. In Ras mutant pancreatic cancer cell lines, the phosphorylation and dimerization of C-Raf are basally elevated. Dimerization is thought to contribute to their elevated growth rate through their activation of the mitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase [ERK]) signaling cascade. Blocking the tyrosine phosphorylation of C-Raf with Src family inhibitors blocks growth, basal dimerization, and ERK activation in these cells. We suggest that the kinases mediating C-Raf Y341 phosphorylation are potential candidate drug targets in selected Ras-dependent cancers.
Collapse
|
31
|
Resistance to dasatinib is associated with the activation of Akt in oral squamous cell carcinoma. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2017. [DOI: 10.1177/2057178x17702920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Xiong Y, Wang C, Shi L, Wang L, Zhou Z, Chen D, Wang J, Guo H. Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases. Front Pharmacol 2017; 8:292. [PMID: 28588494 PMCID: PMC5440522 DOI: 10.3389/fphar.2017.00292] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/08/2017] [Indexed: 01/30/2023] Open
Abstract
Myosin light chain kinase (MLCK) induces contraction of the perijunctional apical actomyosin ring in response to phosphorylation of the myosin light chain. Abnormal expression of MLCK has been observed in respiratory diseases, pancreatitis, cardiovascular diseases, cancer, and inflammatory bowel disease. The signaling pathways involved in MLCK activation and triggering of endothelial barrier dysfunction are discussed in this review. The pharmacological effects of regulating MLCK expression by inhibitors such as ML-9, ML-7, microbial products, naturally occurring products, and microRNAs are also discussed. The influence of MLCK in inflammatory diseases starts with endothelial barrier dysfunction. The effectiveness of anti-MLCK treatment may depend on alleviation of that primary pathological mechanism. This review summarizes evidence for the potential benefits of anti-MLCK agents in the treatment of inflammatory disease and the importance of avoiding treatment-related side effects, as MLCK is widely expressed in many different tissues.
Collapse
Affiliation(s)
- Yongjian Xiong
- Central Laboratory, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Chenou Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Liqiang Shi
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Zijuan Zhou
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Huishu Guo
- Central Laboratory, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
33
|
Evans TRJ, Van Cutsem E, Moore MJ, Bazin IS, Rosemurgy A, Bodoky G, Deplanque G, Harrison M, Melichar B, Pezet D, Elekes A, Rock E, Lin C, Strauss L, O'Dwyer PJ. Phase 2 placebo-controlled, double-blind trial of dasatinib added to gemcitabine for patients with locally-advanced pancreatic cancer. Ann Oncol 2017; 28:354-361. [PMID: 27998964 DOI: 10.1093/annonc/mdw607] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate with limited treatment options. Gemcitabine provides a marginal survival benefit for patients with advanced PDAC. Dasatinib is a competitive inhibitor of Src kinase, which is overexpressed in PDAC tumors. Dasatinib and gemcitabine were combined in a phase 1 clinical trial where stable disease was achieved in two of eight patients with gemcitabine-refractory PDAC. Patients and methods This placebo-controlled, randomized, double-blind, phase II study compared the combination of gemcitabine plus dasatinib to gemcitabine plus placebo in patients with locally advanced, non-metastatic PDAC. Patients received gemcitabine 1000 mg/m2 (30-min IV infusion) on days 1, 8, 15 of a 28-day cycle combined with either 100 mg oral dasatinib or placebo tablets daily. The primary objective was overall survival (OS), with safety and progression-free survival (PFS) as secondary objectives. Exploratory endpoints included overall response rate, freedom from distant metastasis, pain and fatigue progression and response rate, and CA19-9 response rate. Results There was no statistically significant difference in OS between the two treatment groups (HR = 1.16; 95% confidence interval [CI]: 0.81-1.65; P = 0.5656). Secondary and exploratory endpoint analyses also showed no statistically significant differences. The burden of toxicity was higher in the dasatinib arm. Conclusions Dasatinib failed to show increased OS or PFS in patients with locally advanced PDAC. Alternative combinations or trial designs may show a role for src inhibition in PDAC treatment.
Collapse
Affiliation(s)
- T R J Evans
- Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - E Van Cutsem
- Department of Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - M J Moore
- Princess Margaret Cancer, Toronto, Canada
| | - I S Bazin
- Federal State Budgetary Institution, Dubna, Russia
| | - A Rosemurgy
- Surgery, Florida Hospital, Tampa, Tampa, USA
| | - G Bodoky
- Oncology, St.László Teaching Hospital, Budapest, Hungary
| | - G Deplanque
- Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - M Harrison
- East and North Hertfordshire NHS Trust, Northwood, Middlesex, UK
| | - B Melichar
- Department of Oncology, Lekarska Fakulta Univerzity Palackeho a Fakultni Nemocnice, Olomouc, Czech Republic
| | - D Pezet
- CHU Estaing, Clermont-Ferrand, France
| | - A Elekes
- Otsuka Pharmaceutical Development and Commercialization, Princeton
| | - E Rock
- Otsuka Pharmaceutical Development and Commercialization, Princeton
| | - C Lin
- Otsuka Pharmaceutical Development and Commercialization, Princeton
| | - L Strauss
- Bristol-Myers Squibb Company, Princeton
| | - P J O'Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
34
|
Li CH, Xiao Z, Tong JHM, To KF, Fang X, Cheng ASL, Chen Y. EZH2 coupled with HOTAIR to silence MicroRNA-34a by the induction of heterochromatin formation in human pancreatic ductal adenocarcinoma. Int J Cancer 2017; 140:120-129. [DOI: 10.1002/ijc.30414] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Chi-Han Li
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Shatin NT Hong Kong
| | - Zhangang Xiao
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Shatin NT Hong Kong
| | - Joanna Hung-Man Tong
- Department of Anatomical and Cellular Pathology; Prince of Wales Hospital, The Chinese University of Hong Kong; Shatin Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology; Prince of Wales Hospital, The Chinese University of Hong Kong; Shatin Hong Kong
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics, Chinese Academy of Sciences; Beijing China
| | - Alfred SL Cheng
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Shatin NT Hong Kong
- State Key Laboratory of Digestive Diseases; The Chinese University of Hong Kong; Shatin NT Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Shatin NT Hong Kong
- State Key Laboratory of Digestive Diseases; The Chinese University of Hong Kong; Shatin NT Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong; Shenzhen China
| |
Collapse
|
35
|
Nagathihalli NS, Castellanos JA, VanSaun MN, Dai X, Ambrose M, Guo Q, Xiong Y, Merchant NB. Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 2016; 7:65982-65992. [PMID: 27602757 PMCID: PMC5323208 DOI: 10.18632/oncotarget.11786] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dynamic tumor supported by several stromal elements such as pancreatic stellate cells (PSC). Significant crosstalk exists between PSCs and tumor cells to stimulate oncogenic signaling and malignant progression of PDAC. However, how PSCs activate intercellular signaling in PDAC cells remains to be elucidated. We have previously shown that activated signal transducer and activator of transcription 3 (STAT3) signaling is a key component in the progression of pancreatic neoplasia. We hypothesize that PSC secreted IL-6 activates STAT3 signaling to promote PanIN progression to PDAC. Human PDAC and mouse PanIN cells were treated with PSC-conditioned media (PSC-CM), and phospho- and total-STAT3 levels by immunoblot analysis were determined. IL-6 was quantified in PSC-CM and cell invasion and colony formation assays were performed in the presence or absence of a neutralizing IL-6 antibody and the JAK/STAT3 inhibitor AZD1480. Serum from Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) and LSL-KrasG12D/+; Trp53R172H/+; Pdx1Cre/+ (KPC) mice demonstrated increased levels of IL-6 compared to serum from non-PDAC bearing KC and PK mice. PSC secreted IL-6 activated STAT3 signaling in noninvasive, precursor PanIN cells as well as PDAC cells, resulting in enhanced cell invasion and colony formation in both cell types. There was a significant positive linear correlation between IL-6 concentration and the ratio of phosphorylated STAT3/total STAT3. IL-6 neutralization or STAT3 inhibition attenuated PSC-CM induced activation of STAT3 signaling and tumorigenicity. These data provide evidence that PSCs are directly involved in promoting the progression of PanINs towards invasive carcinoma. This study demonstrates a novel role of PSC secreted IL-6 in transitioning noninvasive pancreatic precursor cells into invasive PDAC through the activation of STAT3 signaling.
Collapse
Affiliation(s)
- Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Jason A. Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael N. VanSaun
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | | | - Qiaozhi Guo
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Yanhua Xiong
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nipun B. Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| |
Collapse
|
36
|
Manda-Mapalo M, Khalili P, Quintana D, Rabinowitz I, Zhang Q. Chronic myelogenous leukemia with acquired t(11;14)(q13;q32) CCND1-IGH: A case report and literature review. Cancer Genet 2016; 209:481-485. [DOI: 10.1016/j.cancergen.2016.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 12/30/2022]
|
37
|
Humphrey ES, Su SP, Nagrial AM, Hochgräfe F, Pajic M, Lehrbach GM, Parton RG, Yap AS, Horvath LG, Chang DK, Biankin AV, Wu J, Daly RJ. Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling. Mol Cell Proteomics 2016; 15:2671-85. [PMID: 27259358 PMCID: PMC4974343 DOI: 10.1074/mcp.m116.058313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Comprehensive characterization of signaling in pancreatic ductal adenocarcinoma (PDAC) promises to enhance our understanding of the molecular aberrations driving this devastating disease, and may identify novel therapeutic targets as well as biomarkers that enable stratification of patients for optimal therapy. Here, we use immunoaffinity-coupled high-resolution mass spectrometry to characterize global tyrosine phosphorylation patterns across two large panels of human PDAC cell lines: the ATCC series (19 cell lines) and TKCC series (17 cell lines). This resulted in the identification and quantification of over 1800 class 1 tyrosine phosphorylation sites and the consistent segregation of both PDAC cell line series into three subtypes with distinct tyrosine phosphorylation profiles. Subtype-selective signaling networks were characterized by identification of subtype-enriched phosphosites together with pathway and network analyses. This revealed that the three subtypes characteristic of the ATCC series were associated with perturbations in signaling networks associated with cell-cell adhesion and epithelial-mesenchyme transition, mRNA metabolism, and receptor tyrosine kinase (RTK) signaling, respectively. Specifically, the third subtype exhibited enhanced tyrosine phosphorylation of multiple RTKs including the EGFR, ERBB3 and MET. Interestingly, a similar RTK-enriched subtype was identified in the TKCC series, and 'classifier' sites for each series identified using Random Forest models were able to predict the subtypes of the alternate series with high accuracy, highlighting the conservation of the three subtypes across the two series. Finally, RTK-enriched cell lines from both series exhibited enhanced sensitivity to the small molecule EGFR inhibitor erlotinib, indicating that their phosphosignature may provide a predictive biomarker for response to this targeted therapy. These studies highlight how resolution of subtype-selective signaling networks can provide a novel taxonomy for particular cancers, and provide insights into PDAC biology that can be exploited for improved patient management.
Collapse
Affiliation(s)
- Emily S Humphrey
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Shih-Ping Su
- ¶Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Level 1, Building 77, Monash University, VIC 3800, Australia
| | - Adnan M Nagrial
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Falko Hochgräfe
- ‖Competence Center Functional Genomics, University of Greifswald, F.-L-Jahnstr. 15, 17489 Greifswald, Germany
| | - Marina Pajic
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Gillian M Lehrbach
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Robert G Parton
- **Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | - Alpha S Yap
- **Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | - Lisa G Horvath
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; ‡‡Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW 2050, Australia
| | - David K Chang
- §§Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Andrew V Biankin
- §§Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK;
| | - Jianmin Wu
- ¶¶Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia;
| | - Roger J Daly
- ¶Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Level 1, Building 77, Monash University, VIC 3800, Australia;
| |
Collapse
|
38
|
Nuche-Berenguer B, Ramos-Álvarez I, Jensen RT. Src kinases play a novel dual role in acute pancreatitis affecting severity but no role in stimulated enzyme secretion. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1015-G1027. [PMID: 27033118 PMCID: PMC4935475 DOI: 10.1152/ajpgi.00349.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/28/2016] [Indexed: 01/31/2023]
Abstract
In pancreatic acinar cells, the Src family of kinases (SFK) is involved in the activation of several signaling cascades that are implicated in mediating cellular processes (growth, cytoskeletal changes, apoptosis). However, the role of SFKs in various physiological responses such as enzyme secretion or in pathophysiological processes such as acute pancreatitis is either controversial, unknown, or incompletely understood. To address this, in this study, we investigated the role/mechanisms of SFKs in acute pancreatitis and enzyme release. Enzyme secretion was studied in rat dispersed pancreatic acini, in vitro acute-pancreatitis-like changes induced by supramaximal COOH-terminal octapeptide of cholecystokinin (CCK). SFK involvement assessed using the chemical SFK inhibitor (PP2) with its inactive control, 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3), under experimental conditions, markedly inhibiting SFK activation. In CCK-stimulated pancreatic acinar cells, activation occurred of trypsinogen, various MAP kinases (p42/44, JNK), transcription factors (signal transducer and activator of transcription-3, nuclear factor-κB, activator protein-1), caspases (3, 8, and 9) inducing apoptosis, LDH release reflective of necrosis, and various chemokines secreted (monocyte chemotactic protein-1, macrophage inflammatory protein-1α, regulated on activation, normal T cell expressed and secreted). All were inhibited by PP2, not by PP3, except caspase activation leading to apoptosis, which was increased, and trypsin activation, which was unaffected, as was CCK-induced amylase release. These results demonstrate SFK activation is playing a dual role in acute pancreatitis, inhibiting apoptosis and promoting necrosis as well as chemokine/cytokine release inducing inflammation, leading to more severe disease, as well as not affecting secretion. Thus, our studies indicate that SFK is a key mediator of inflammation and pancreatic acinar cell death in acute pancreatitis, suggesting it could be a potential therapeutic target in acute pancreatitis.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Nagathihalli NS, Castellanos JA, Shi C, Beesetty Y, Reyzer ML, Caprioli R, Chen X, Walsh AJ, Skala MC, Moses HL, Merchant NB. Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer. Gastroenterology 2015; 149:1932-1943.e9. [PMID: 26255562 PMCID: PMC4863449 DOI: 10.1053/j.gastro.2015.07.058] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/01/2015] [Accepted: 07/30/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense desmoplastic reaction (stroma) that impedes drug delivery to the tumor. Attempts to deplete the tumor stroma have resulted in formation of more aggressive tumors. We have identified signal transducer and activator of transcription (STAT) 3 as a biomarker of resistance to cytotoxic and molecularly targeted therapy in PDAC. The purpose of this study is to investigate the effects of targeting STAT3 on the PDAC stroma and on therapeutic resistance. METHODS Activated STAT3 protein expression was determined in human pancreatic tissues and tumor cell lines. In vivo effects of AZD1480, a JAK/STAT3 inhibitor, gemcitabine or the combination were determined in Ptf1a(cre/+);LSL-Kras(G12D/+);Tgfbr2(flox/flox) (PKT) mice and in orthotopic tumor xenografts. Drug delivery was analyzed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Collagen second harmonic generation imaging quantified tumor collagen alignment and density. RESULTS STAT3 activation correlates with decreased survival and advanced tumor stage in patients with PDAC. STAT3 inhibition combined with gemcitabine significantly inhibits tumor growth in both an orthotopic and the PKT mouse model of PDAC. This combined therapy attenuates in vivo expression of SPARC, increases microvessel density, and enhances drug delivery to the tumor without depletion of stromal collagen or hyaluronan. Instead, the PDAC tumors demonstrate vascular normalization, remodeling of the tumor stroma, and down-regulation of cytidine deaminase. CONCLUSIONS Targeted inhibition of STAT3 combined with gemcitabine enhances in vivo drug delivery and therapeutic response in PDAC. These effects occur through tumor stromal remodeling and down-regulation of cytidine deaminase without depletion of tumor stromal content.
Collapse
Affiliation(s)
- Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Jason A. Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yugandhar Beesetty
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michelle L. Reyzer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Richard Caprioli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alex J. Walsh
- Department of Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melissa C. Skala
- Department of Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Harold L. Moses
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nipun B. Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| |
Collapse
|
40
|
Bartscht T, Rosien B, Rades D, Kaufmann R, Biersack H, Lehnert H, Gieseler F, Ungefroren H. Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: implications for in vivo mode of action. Mol Cancer 2015; 14:199. [PMID: 26588899 PMCID: PMC4654868 DOI: 10.1186/s12943-015-0468-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022] Open
Abstract
Background We have previously shown in pancreatic ductal adenocarcinoma (PDAC) cells that the SRC inhibitors PP2 and PP1 effectively inhibited TGF-β1-mediated cellular responses by blocking the kinase function of the TGF-β type I receptor ALK5 rather than SRC. Here, we investigated the ability of the clinically utilised SRC/ABL inhibitor dasatinib to mimic the PP2/PP1 effect. Methods The effect of dasatinib on TGF-β1-dependent Smad2/3 phosphorylation, general transcriptional activity, gene expression, cell motility, and the generation of tumour stem cells was measured in Panc-1 and Colo-357 cells using immunoblotting, reporter gene assays, RT-PCR, impedance-based real-time measurement of cell migration, and colony formation assays, respectively. Results In both PDAC cell lines, dasatinib effectively blocked TGF-β1-induced Smad phosphorylation, activity of 3TPlux and pCAGA(12)-luc reporter genes, cell migration, and expression of individual TGF-β1 target genes associated with epithelial-mesenchymal transition and invasion. Moreover, dasatinib strongly interfered with the TGF-β1-induced generation of tumour stem cells as demonstrated by gene expression analysis and single cell colony formation. Dasatinib also inhibited the high constitutive migratory activity conferred on Panc-1 cells by ectopic expression of kinase-active ALK5. Conclusions Our data suggest that the clinical efficiency of dasatinib may in part be due to cross-inhibition of tumour-promoting TGF-β signalling. Dasatinib may be useful as a dual TGF-β/SRC inhibitor in experimental and clinical therapeutics to prevent metastatic spread in late-stage PDAC and other tumours. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0468-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Bartscht
- First Department of Medicine, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Benjamin Rosien
- First Department of Medicine, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, UKSH, Campus Lübeck, D-23538, Lübeck, Germany
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747, Jena, Germany
| | - Harald Biersack
- First Department of Medicine, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Hendrik Lehnert
- First Department of Medicine, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Frank Gieseler
- First Department of Medicine, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
41
|
Pathania D, Kuang Y, Sechi M, Neamati N. Mechanisms underlying the cytotoxicity of a novel quinazolinedione-based redox modulator, QD232, in pancreatic cancer cells. Br J Pharmacol 2015; 172:50-63. [PMID: 25047070 DOI: 10.1111/bph.12855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/19/2014] [Accepted: 07/10/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Pancreatic cancer is characterized by alterations in several key signalling proteins, including increased expression and activity of the Src tyrosine kinase and focal adhesion kinase (FAK), which have been linked to its chemoresistance. Sustained Src inhibition reactivates survival pathways regulated by the transcription factor STAT3, also leading to resistance. Therefore, simultaneously targeting Src/FAK and STAT3 signalling could provide an important strategy for treating pancreatic cancer. Recently, we described novel quinazolinediones that increased generation of reactive oxygen species (ROS) and were cytotoxic in pancreatic cancer cells. Here, we have investigated effects of our lead compound, QD232, on Src/FAK and STAT3 signalling. EXPERIMENTAL APPROACH The major signalling pathways affected by QD232 in pancreatic cancer cell lines were identified by Kinexus proteomic analysis. Changes in key signalling proteins were confirmed by Western blotting. Cell migration was assessed by Boyden chamber and wound healing assays. Direct inhibition of kinase activity in vitro was assayed with a panel of 92 oncogenic kinases. Safety and efficacy of QD232 were determined in a xenograft mouse model of pancreatic cancer. KEY RESULTS QD232 potently inhibited Src/FAK and STAT3 phosphorylation, decreasing pancreatic cancer cell viability and migration. Furthermore, QD232 arrested cell cycle progression and induced apoptosis in these cells at low micromolar concentrations. Effects of QD232 on Src/FAK and STAT3 phosphorylation were blocked by N-acetylcysteine or glutathione. CONCLUSIONS AND IMPLICATIONS QD232 is a novel compound with a unique, ROS-dependent mechanism, effective in drug-resistant cancer cell lines. This compound shows potential as therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Divya Pathania
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
42
|
Torres-Ayuso P, Daza-Martín M, Martín-Pérez J, Ávila-Flores A, Mérida I. Diacylglycerol kinase α promotes 3D cancer cell growth and limits drug sensitivity through functional interaction with Src. Oncotarget 2015; 5:9710-26. [PMID: 25339152 PMCID: PMC4259432 DOI: 10.18632/oncotarget.2344] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 02/02/2023] Open
Abstract
Diacylglycerol kinase (DGK)α converts diacylglycerol to phosphatidic acid. This lipid kinase sustains survival, migration and invasion of tumor cells, with no effect over untransformed cells, suggesting its potential as a cancer-specific target. Nonetheless the mechanisms that underlie DGKα specific contribution to cancer survival have not been elucidated. Using three-dimensional (3D) colon and breast cancer cell cultures, we demonstrate that DGKα upregulation is part of the transcriptional program that results in Src activation in these culture conditions. Pharmacological or genetic DGKα silencing impaired tumor growth in vivo confirming its function in malignant transformation. DGKα-mediated Src regulation contributed to limit the effect of Src inhibitors, and its transcriptional upregulation in response to PI3K/Akt inhibitors resulted in reduced toxicity. Src oncogenic properties and contribution to pharmacological resistance have been linked to its overactivation in cancer. DGKα participation in this central node helps to explain why its pharmacological inhibition or siRNA-mediated targeting specifically alters tumor viability with no effect on untransformed cells. Our results identify DGKα-mediated stabilization of Src activation as an important mechanism in tumor growth, and suggest that targeting this enzyme, alone or in combination with other inhibitors in wide clinical use, could constitute a treatment strategy for aggressive forms of cancer.
Collapse
Affiliation(s)
- Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Manuel Daza-Martín
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Jorge Martín-Pérez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols/CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
43
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
44
|
Nuche-Berenguer B, Moreno P, Jensen RT. Elucidation of the roles of the Src kinases in pancreatic acinar cell signaling. J Cell Biochem 2015; 116:22-36. [PMID: 25079913 PMCID: PMC4229413 DOI: 10.1002/jcb.24895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Recent studies report the Src-family kinases (SFK's) are important in a number of physiological and pathophysiological responses of pancreatic acinar cells (pancreatitis, growth, apoptosis); however, the role of SFKs in various signaling cascades important in mediating these cell functions is either not investigated or unclear. To address this we investigated the action of SFKs in these signaling cascades in rat pancreatic acini by modulating SFK activity using three methods: adenovirus-induced expression of an inactive dominant-negative CSK (Dn-CSK-Advirus) or wild-type CSK (Wt-CSK-Advirus), which activate or inhibit SFK, respectively, or using the chemical inhibitor, PP2, with its inactive control, PP3. CCK (0.3, 100 nM) and TPA (1 μM) activated SFK and altered the activation of FAK proteins (PYK2, p125(FAK)), adaptor proteins (p130(CAS), paxillin), MAPK (p42/44, JNK, p38), Shc, PKC (PKD, MARCKS), Akt but not GSK3-β. Changes in SFK activity by using the three methods of altering SFK activity affected CCK/TPAs activation of SFK, PYK2, p125(FAK), p130(CAS), Shc, paxillin, Akt but not p42/44, JNK, p38, PKC (PKD, MARCKS) or GSK3-β. With chemical inhibition the active SFK inhibitor, PP2, but not the inactive control analogue, PP3, showed these effects. For all stimulated changes pre-incubation with both adenoviruses showed similar effects to chemical inhibition of SFK activity. In conclusion, using three different approaches to altering Src activity allowed us to define fully for the first time the roles of SFKs in acinar cell signaling. Our results show that in pancreatic acinar cells, SFKs play a much wider role than previously reported in activating a number of important cellular signaling cascades shown to be important in mediating both acinar cell physiological and pathophysiological responses.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Paola Moreno
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R. T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
45
|
Pan Y, Zheng M, Zhong L, Yang J, Zhou S, Qin Y, Xiang R, Chen Y, Yang SY. A Preclinical Evaluation of SKLB261, a Multikinase Inhibitor of EGFR/Src/VEGFR2, as a Therapeutic Agent against Pancreatic Cancer. Mol Cancer Ther 2014; 14:407-18. [PMID: 25519702 DOI: 10.1158/1535-7163.mct-14-0485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youli Pan
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Mingwu Zheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Shu Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Ya Qin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
46
|
Akkari L, Gocheva V, Kester JC, Hunter KE, Quick ML, Sevenich L, Wang HW, Peters C, Tang LH, Klimstra DS, Reinheckel T, Joyce JA. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev 2014; 28:2134-50. [PMID: 25274726 PMCID: PMC4180975 DOI: 10.1101/gad.249599.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During the process of tumor progression, cancer cells can produce the requisite growth- and invasion-promoting factors and can also rely on noncancerous cells in the tumor microenvironment as an alternative, cell-extrinsic source. However, whether the cellular source influences the function of such tumor-promoting factors remains an open question. Here, we examined the roles of the cathepsin Z (CtsZ) protease, which is provided by both cancer cells and macrophages in pancreatic neuroendocrine tumors in humans and mice. We found that tumor proliferation was exclusively regulated by cancer cell-intrinsic functions of CtsZ, whereas tumor invasion required contributions from both macrophages and cancer cells. Interestingly, several of the tumor-promoting functions of CtsZ were not dependent on its described catalytic activity but instead were mediated via the Arg-Gly-Asp (RGD) motif in the enzyme prodomain, which regulated interactions with integrins and the extracellular matrix. Together, these results underscore the complexity of interactions within the tumor microenvironment and indicate that cellular source can indeed impact molecular function.
Collapse
Affiliation(s)
- Leila Akkari
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Vasilena Gocheva
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Jemila C Kester
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Karen E Hunter
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Marsha L Quick
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Lisa Sevenich
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Hao-Wei Wang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Christoph Peters
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs University, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), D-79104 Freiburg, Germany
| | - Laura H Tang
- Pathology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - David S Klimstra
- Pathology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs University, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), D-79104 Freiburg, Germany
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA;
| |
Collapse
|
47
|
Ashour AA, Gurbuz N, Alpay SN, Abdel-Aziz AAH, Mansour AM, Huo L, Ozpolat B. Elongation factor-2 kinase regulates TG2/β1 integrin/Src/uPAR pathway and epithelial-mesenchymal transition mediating pancreatic cancer cells invasion. J Cell Mol Med 2014; 18:2235-51. [PMID: 25215932 PMCID: PMC4224557 DOI: 10.1111/jcmm.12361] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/10/2014] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the lethal cancers with extensive local tumour invasion, metastasis, early systemic dissemination and poorest prognosis. Thus, understanding the mechanisms regulating invasion/metastasis and epithelial-mesenchymal transition (EMT), is the key for developing effective therapeutic strategies for pancreatic cancer (PaCa). Eukaryotic elongation factor-2 kinase (eEF-2K) is an atypical kinase that we found to be highly up-regulated in PaCa cells. However, its role in PaCa invasion/progression remains unknown. Here, we investigated the role of eEF-2K in cellular invasion, and we found that down-regulation of eEF-2K, by siRNA or rottlerin, displays impairment of PaCa cells invasion/migration, with significant decreases in the expression of tissue transglutaminase (TG2), the multifunctional enzyme implicated in regulation of cell attachment, motility and survival. These events were associated with reductions in β1 integrin/uPAR/MMP-2 expressions as well as decrease in Src activity. Furthermore, inhibition of eEF-2K/TG2 axis suppresses the EMT, as demonstrated by the modulation of the zinc finger transcription factors, ZEB1/Snail, and the tight junction proteins, claudins. Importantly, while eEF-2K silencing recapitulates the rottlerin-induced inhibition of invasion and correlated events, eEF-2K overexpression, by lentivirus-based expression system, suppresses such rottlerin effects and potentiates PaCa cells invasion/migration capability. Collectively, our results show, for the first time, that eEF-2K is involved in regulation of the invasive phenotype of PaCa cells through promoting a new signalling pathway, which is mediated by TG2/β1 integrin/Src/uPAR/MMP-2, and the induction of EMT biomarkers which enhance cancer cell motility and metastatic potential. Thus, eEF-2K could represent a novel potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Ahmed A Ashour
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar UniversityCairo, Egypt
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
| | - Sultan Neslihan Alpay
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
| | - Abdel-Aziz H Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar UniversityCairo, Egypt
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar UniversityCairo, Egypt
| | - Longfei Huo
- Department of Molecular & Cellular Oncology, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
- Non-Coding RNA, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
| |
Collapse
|
48
|
Sun Y, Chen C, Zhang P, Xie H, Hou L, Hui Z, Xu Y, Du Q, Zhou X, Su B, Gao W. Reduced miR-3127-5p expression promotes NSCLC proliferation/invasion and contributes to dasatinib sensitivity via the c-Abl/Ras/ERK pathway. Sci Rep 2014; 4:6527. [PMID: 25284075 PMCID: PMC5377463 DOI: 10.1038/srep06527] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/15/2014] [Indexed: 12/23/2022] Open
Abstract
miR-3127-5p is a primate-specific miRNA which is down-regulated in recurrent NSCLC tissue vs. matched primary tumor tissue (N = 15) and in tumor tissue vs. normal lung tissue (N = 177). Reduced miR-3127-5p expression is associated with a higher Ki-67 proliferation index and unfavorable prognosis in NSCLC. Overexpression of miR-3127-5p significantly reduced NSCLC cells proliferation, migration, and motility in vitro and in vivo. The oncogene ABL1 was a direct miR-3127-5p target, and miR-3127-5p regulated the activation of the Abl/Ras/ERK pathway and transactivated downstream proliferation/metastasis-associated molecules. Overexpression of miR-3127-5p in A549 or H292 cells resulted in enhanced resistance to dasatinib, an Abl/src tyrosine kinase inhibitor. miR-3127-5p expression levels were correlated with dasatinib sensitivity in NSCLC cell lines without K-Ras G12 mutation. In conclusion, miR-3127-5p acts as a tumor suppressor gene and is a potential biomarker for dasatinib sensitivity in the non-mutated Ras subset of NSCLC.
Collapse
Affiliation(s)
- Yifeng Sun
- 1] Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China [2] Department of Thoracic Surgery, Shanghai Chest Hospital Affiliated Shanghai Jiaotong University, No. 241, Huaihaixi Road, Shanghai, 200030, P.R. China [3]
| | - Chang Chen
- 1] Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China [2]
| | - Peng Zhang
- 1] Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China [2]
| | - Huikang Xie
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China
| | - Likun Hou
- Department of pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China
| | - Zheng Hui
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China
| | - Yongjie Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China
| | - Qiaoling Du
- Departments of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Health Hospital. Tongji University School of Medicine, No. 536, Changle Road, Shanghai, 200126, P.R. China
| | - Xiao Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Road, Shanghai, 200433, P.R. China
| | - Wen Gao
- Department of Thoracic Surgery, Shanghai Chest Hospital Affiliated Shanghai Jiaotong University, No. 241, Huaihaixi Road, Shanghai, 200030, P.R. China
| |
Collapse
|
49
|
Gurbuz N, Ashour AA, Alpay SN, Ozpolat B. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells. PLoS One 2014; 9:e105245. [PMID: 25170871 PMCID: PMC4149367 DOI: 10.1371/journal.pone.0105245] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B– and 5-HT1D–mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new therapeutic targets for managing pancreatic cancer.
Collapse
Affiliation(s)
- Nilgun Gurbuz
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ahmed A Ashour
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - S Neslihan Alpay
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America; Non-Coding RNA, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
50
|
SOCS3 methylation in synergy with Reg3A overexpression promotes cell growth in pancreatic cancer. J Mol Med (Berl) 2014; 92:1257-69. [PMID: 24996521 DOI: 10.1007/s00109-014-1184-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023]
Abstract
UNLABELLED Pancreatic cancer (PaC) is the fifth leading cause of cancer death in the world, but the molecular mechanisms for its development remain unclear. Regenerating islet-derived protein 3-alpha (Reg3A) has been reported overexpressed in pancreatic inflammation and associated with PaC malignancies, thus believed as a potential target in inflammation-linked pancreatic carcinogenesis. Silencing of suppressor of cytokine signaling SOCS3, a well-known feedback inhibitor of cell proliferation, has been found in many human cancers. Here, we identified that SOCS3 was aberrantly methylated in its CpG island in 3/5 human PaC cell lines and 11/36 cancer tissue samples. SOCS3 restoration by a demethylating agent, 5-aza-2'-deoxycytidine, remarkably suppressed cell proliferation and induced apoptosis of methylated PaC cells. Moreover, we also have shown that Reg3A was highly expressed in PaC cells and tissue samples. Assessment of potential relationship between SOCS3 and Reg3A aberrations in vitro revealed that SOCS3 worked downstream of Reg3A and modulated Reg3A-linked pro-tumor functions. siRNA-mediated SOCS3 knock-down in normal pancreatic epithelial cells and plasmid-transfected SOCS3 overexpression in PaC cells, respectively, resulted in the obvious promotion and inhibition of Reg3A-induced cell proliferation, thereby suggesting SOCS3 negatively regulating Reg3A-mediated PaC progression. In addition, our findings also revealed that JAK/STAT3/NF-κB appear involved in the effect of SOCS3-Reg3A interaction on pancreatic cell growth. In summary, SOCS3 inactivation by methylation was demonstrated to act in synergy with Reg3A overexpression to promote PaC cell growth and maybe the progress of inflammation-linked pancreatic carcinogenesis. KEY MESSAGES Reg3A overexpression promoted cell growth in pancreatic cancer. SOCS3 is a key target in cancer by inhibiting cell growth and inducing apoptosis. SOCS3 negatively regulated Reg3A-mediated cell growth in pancreatic cancer. SOCS3 methylation act in synergy with Reg3A overexpression to promote pancreatic cancer cell growth.
Collapse
|