1
|
El-Sahli S, Manturthi S, Durocher E, Bo Y, Akman A, Sannan C, Kirkby M, Iroakazi CD, Deyell H, Kaczmarek S, Lee SH, Iqbal U, Côté M, Wang L, Gadde S. Nanoparticle-Mediated mRNA Delivery to Triple-Negative Breast Cancer (TNBC) Patient-Derived Xenograft (PDX) Tumors. ACS Pharmacol Transl Sci 2025; 8:460-469. [PMID: 39974646 PMCID: PMC11833720 DOI: 10.1021/acsptsci.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
mRNA-based therapies can overcome several challenges faced by traditional therapies in treating a variety of diseases by selectively modulating genes and proteins without genomic integration. However, due to mRNA's poor stability and inherent limitations, nanoparticle (NP) platforms have been developed to deliver functional mRNA into cells. In cancer treatment, mRNA technology has multiple applications, such as restoration of tumor suppressors and activating antitumor immunity. Most of these applications have been evaluated using simple cell-line-based tumor models, which failed to represent the complexity, heterogeneity, and 3D architecture of patient tumors. This discrepancy has led to inconsistencies and failures in clinical translation. Compared to cell line models, patient-derived xenograft (PDX) models more accurately represent patient tumors and are better suitable for modeling. Therefore, for the first time, this study employed two different TNBC PDX tumors to examine the effects of the mRNA-NPs. mRNA-NPs are developed using EGFP-mRNA as a model and studied in TNBC cell lines, ex vivo TNBC PDX organotypic slice cultures, and in vivo TNBC PDX tumors. Our findings show that NPs can effectively accumulate in tumors after intravenous administration, protecting and delivering mRNA to PDX tumors with different genetic and chemosensitivity backgrounds. These studies offer more clinically relevant modeling systems for mRNA nanotherapies in cancer applications.
Collapse
Affiliation(s)
- Sara El-Sahli
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Shireesha Manturthi
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Emma Durocher
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Yuxia Bo
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
| | - Alexandra Akman
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Christina Sannan
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Melanie Kirkby
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Chiamaka Divine Iroakazi
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Hannah Deyell
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Shelby Kaczmarek
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Seung-Hwan Lee
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Umar Iqbal
- Human
Health
Therapeutics Research Centre, National Research Council Canada, Ottawa K1A 0R6, Canada
| | - Marceline Côté
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Lisheng Wang
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Suresh Gadde
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa-Carleton
Institute for Biomedical Engineering (OCIBME), Ottawa K1S 5B6, Canada
| |
Collapse
|
2
|
Tsai YF, Lai JI, Liu CY, Hsi CN, Hsu CY, Huang CC, Feng CJ, Lin YS, Chao TC, Chiu JH, Tseng LM. Correlation Between PIK3R1 Expression and Cell Growth in Human Breast Cancer Cell Line BT-474 and Clinical Outcomes. World J Oncol 2025; 16:131-141. [PMID: 39850525 PMCID: PMC11750754 DOI: 10.14740/wjon1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Background While mutations in the PIK3CA gene play important roles in human breast carcinogenesis, PIK3R1 gene alterations are recognized as actionable mutations for clinical cancer treatment. We aimed to elucidate the role of PIK3R1 in cell proliferation on breast carcinoma and to correlate the PIK3R1 expression with patients' outcome using human tumor tissue arrays. Methods Using human BT-474 (estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)-high) breast carcinoma cell line as in vitro model, the role of PIK3R1 in cell proliferation was elucidated by knock-down of the PIK3R1 gene (ΔPIK3R1) in this cell line. Between January 2000 to December 2015, the records of a cohort of 440 patients in our hospital were retrospectively reviewed, including patients' survival. The correlations between PIK3R1 expression and patient prognosis, such as overall survival (OS) and disease-free survival (DFS), were elucidated by human breast cancer tumor tissue array immunostaining. Results After the PIK3R1 gene was silenced in the BT-474 line, there was an increased cell number and a decrease in the G0G1-fraction, and increased S-fraction and the S+G2M-fraction for the ΔPIK3R1-BT-474 cell line, as compared to their cell wild type (WT) line. Western blot analysis showed that decreased PIK3R1 protein levels were accompanied by an increase of the p-AKT and p-mTOR proteins in the ΔPIK3R1-BT-474 cell line, compared to the equivalent WT line. Using a human tumor tissue array, patients with high-expressed PIK3R1 protein had better outcomes in terms of DFS and OS, compared to those with low-expressed PIK3R1 protein, when breast cancer was at an early stage (stage I/II), but not across all stages of breast cancer in human patients. Conclusions We concluded that downregulated PIK3R1 in BT-474 cells resulted in an increased cell growth and upregulated AKT-mTOR signaling. Clinically, the high-expressed PIK3R1 protein in tumors correlates positively with patients' outcome in stage I and II breast cancer.
Collapse
Affiliation(s)
- Yi-Fang Tsai
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Jiun-I Lai
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chieh-Ning Hsi
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chih-Yi Hsu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100233, Taiwan
| | - Chin-Jung Feng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Division of Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yen-Shu Lin
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Division of Cancer Prevention, Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Jen-Hwey Chiu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of General Surgery, Department of Surgery, Cheng-Hsin General Hospital, Taipei 112401, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- These authors contributed equally to this work
| |
Collapse
|
3
|
Nishimura T, Velaga R, Masuda N, Kawaguchi K, Kawaguchi S, Takada M, Maeshima Y, Tanaka S, Kikawa Y, Kadoya T, Bando H, Nakamura R, Yamamoto Y, Ueno T, Yasojima H, Ishiguro H, Morita S, Ohno S, Haga H, Matsuda F, Ogawa S, Toi M. Genomic and transcriptomic profiling of pre- and postneoadjuvant chemotherapy triple negative breast cancer tumors. Cancer Sci 2024; 115:3928-3942. [PMID: 39375938 PMCID: PMC11611771 DOI: 10.1111/cas.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Our understanding of neoadjuvant treatment with microtubule inhibitors (MTIs) for triple negative breast cancer (TNBC) remains limited. To advance our understanding of the role of breast cancer driver genes' mutational status with pathological complete response (pCR; ypT0/isypN0) prediction and to identify distinct gene sets for MTIs like eribulin and paclitaxel, we carried out targeted genomic (n = 50) and whole transcriptomic profiling (n = 64) of TNBC tumor samples from the Japan Breast Cancer Research Group 22 (JBCRG-22) clinical trial. Lower PIK3CA, PTEN, and HRAS mutations were found in homologous recombination deficiency (HRD)-high (HRD score ≥ 42) tumors with higher pCR rates. When HRD-high tumors were stratified by tumor BRCA mutation status, the pCR rates in BRCA2-mutated tumors were higher (83% vs. 36%). Transcriptomic profiling of TP53-positive tumors identified downregulation of FGFR2 (false discovery rate p value = 2.07e-7), which was also the only common gene between HRD-high and -low tumors with pCR/quasi-pCR treated with paclitaxel and eribulin combined with carboplatin, respectively. Differential enrichment analysis of the HRD-high group posttreatment tumors revealed significant correlation (p = 0.006) of the glycan degradation pathway. FGFR2 expression and the differentially enriched pathways play a role in the response and resistance to MTIs containing carboplatin treatment in TNBC patients.
Collapse
Affiliation(s)
- Tomomi Nishimura
- Department of Next‐generation Clinical Genomic Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ravi Velaga
- Department of Breast and Endocrine SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Norikazu Masuda
- Department of Breast and Endocrine SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Kosuke Kawaguchi
- Department of Breast SurgeryKyoto University Hospital, Kyoto UniversityKyotoJapan
| | - Shuji Kawaguchi
- Center for Genomic Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masahiro Takada
- Department of Breast SurgeryKyoto University Hospital, Kyoto UniversityKyotoJapan
| | - Yurina Maeshima
- Department of Breast SurgeryKyoto University Hospital, Kyoto UniversityKyotoJapan
| | - Sunao Tanaka
- Department of Breast SurgeryKyoto University Hospital, Kyoto UniversityKyotoJapan
| | - Yuichiro Kikawa
- Department of Breast SurgeryKobe City Medical Center General HospitalKobeJapan
- Department of Breast SurgeryKansai Medical University HospitalHirakataJapan
| | | | - Hiroko Bando
- Breast and Endocrine Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | | | - Yutaka Yamamoto
- Department of Breast and Endocrine SurgeryKumamoto University, Graduate School of Medical SciencesKumamotoJapan
| | - Takayuki Ueno
- Breast Oncology CenterThe Cancer Institute Hospital of JFCRTokyoJapan
| | - Hiroyuki Yasojima
- Department of Surgery, Breast OncologyNHO Osaka National HospitalOsakaJapan
| | - Hiroshi Ishiguro
- Breast Oncology ServiceSaitama Medical University International Medical CenterSaitamaJapan
| | - Satoshi Morita
- Department of Biomedical Statistics and BioinformaticsKyoto University Graduate School of MedicineKyotoJapan
| | - Shinji Ohno
- Breast Oncology CenterThe Cancer Institute Hospital of JFCRTokyoJapan
- Social Medical Corporation HakuaikaiSagara HospitalKagoshimaJapan
| | - Hironori Haga
- Diagnostic PathologyKyoto University HospitalKyotoJapan
| | - Fumihiko Matsuda
- Center for Genomic Medicine (Human Biosciences), Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Seishi Ogawa
- Department of Pathology and Tumor BiologyInstitute for the Advanced Study of Human Biology (WPI‐ASHBi), Kyoto University, Graduate School of MedicineKyotoJapan
- Department of Molecular HematologyKarolinska InstituteStockholmSweden
| | - Masakazu Toi
- Tokyo Metropolitan Cancer and Infectious Disease CenterKomagome HospitalBunkyo‐kuTokyoJapan
| |
Collapse
|
4
|
Mueller C, Davis JB, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research: a 2024 update. Expert Rev Proteomics 2024; 21:401-416. [PMID: 39474929 DOI: 10.1080/14789450.2024.2423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Breast cancer subtyping is used clinically for diagnosis, prognosis, and treatment decisions. Subtypes are categorized by cell of origin, histomorphology, gene expression signatures, hormone receptor status, and/or protein levels. Categorizing breast cancer based on gene expression signatures aids in assessing a patient's recurrence risk. Protein biomarkers, on the other hand, provide functional data for selecting therapies for primary and recurrent tumors. We provide an update on protein biomarkers in breast cancer subtypes and their application in prognosis and therapy selection. AREAS COVERED Protein pathways in breast cancer subtypes are reviewed in the context of current protein-targeted treatment options. PubMed, Science Direct, Scopus, and Cochrane Library were searched for relevant studies between 2017 and 17 August 2024. EXPERT OPINION Post-translationally modified proteins and their unmodified counterparts have become clinically useful biomarkers for defining breast cancer subtypes from a therapy perspective. Tissue heterogeneity influences treatment outcomes and disease recurrence. Spatial profiling has revealed complex cellular subpopulations within the breast tumor microenvironment. Deciphering the functional relationships between and within tumor clonal cell populations will further aid in defining breast cancer subtypes and create new treatment paradigms for recurrent, drug resistant, and metastatic disease.
Collapse
Affiliation(s)
- Claudius Mueller
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Justin B Davis
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
5
|
Andriani L, Ling YX, Yang SY, Zhao Q, Ma XY, Huang MY, Zhang YL, Zhang FL, Li DQ, Shao ZM. Sideroflexin-1 promotes progression and sensitivity to lapatinib in triple-negative breast cancer by inhibiting TOLLIP-mediated autophagic degradation of CIP2A. Cancer Lett 2024; 597:217008. [PMID: 38849012 DOI: 10.1016/j.canlet.2024.217008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and it lacks specific therapeutic targets and effective treatment protocols. By analyzing a proteomic TNBC dataset, we found significant upregulation of sideroflexin 1 (SFXN1) in tumor tissues. However, the precise function of SFXN1 in TNBC remains unclear. Immunoblotting was performed to determine SFXN1 expression levels. Label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry were used to identify the downstream targets of SFXN1. Mechanistic studies of SFXN1 and cellular inhibitor of PP2A (CIP2A) were performed using immunoblotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Functional experiments were used to investigate the role of SFXN1 in TNBC cells. SFXN1 was significantly overexpressed in TNBC tumor tissues and was associated with unfavorable outcomes in patients with TNBC. Functional experiments demonstrated that SFXN1 promoted TNBC growth and metastasis in vitro and in vivo. Mechanistic studies revealed that SFXN1 promoted TNBC progression by inhibiting the autophagy receptor TOLLIP (toll interacting protein)-mediated autophagic degradation of CIP2A. The pro-tumorigenic effect of SFXN1 overexpression was partially prevented by lapatinib-mediated inhibition of the CIP2A/PP2A/p-AKT pathway. These findings may provide a new targeted therapy for patients with TNBC.
Collapse
Affiliation(s)
- Lisa Andriani
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yun-Xiao Ling
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Ying Huang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Cai X, Lin J, Liu L, Zheng J, Liu Q, Ji L, Sun Y. A novel TCGA-validated programmed cell-death-related signature of ovarian cancer. BMC Cancer 2024; 24:515. [PMID: 38654239 DOI: 10.1186/s12885-024-12245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a gynecological malignancy tumor with high recurrence and mortality rates. Programmed cell death (PCD) is an essential regulator in cancer metabolism, whose functions are still unknown in OC. Therefore, it is vital to determine the prognostic value and therapy response of PCD-related genes in OC. METHODS By mining The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Genecards databases, we constructed a prognostic PCD-related genes model and performed Kaplan-Meier (K-M) analysis and Receiver Operating Characteristic (ROC) curve for its predictive ability. A nomogram was created via Cox regression. We validated our model in train and test sets. Quantitative real-time PCR (qRT-PCR) was applied to identify the expression of our model genes. Finally, we analyzed functional analysis, immune infiltration, genomic mutation, tumor mutational burden (TMB) and drug sensitivity of patients in low- and high-risk group based on median scores. RESULTS A ten-PCD-related gene signature including protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), 8-oxoguanine-DNA glycosylase (OGG1), HECT and RLD domain containing E3 ubiquitin protein ligase family member 1 (HERC1), Caspase-2.(CASP2), Caspase activity and apoptosis inhibitor 1(CAAP1), RB transcriptional corepressor 1(RB1), Z-DNA binding protein 1 (ZBP1), CD3-epsilon (CD3E), Clathrin heavy chain like 1(CLTCL1), and CCAAT/enhancer-binding protein beta (CEBPB) was constructed. Risk score performed well with good area under curve (AUC) (AUC3 - year =0.728, AUC5 - year = 0.730). The nomogram based on risk score has good performance in predicting the prognosis of OC patients (AUC1 - year =0.781, AUC3 - year =0.759, AUC5 - year = 0.670). Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the erythroblastic leukemia viral oncogene homolog (ERBB) signaling pathway and focal adhesion were enriched in the high-risk group. Meanwhile, patients with high-risk scores had worse OS. In addition, patients with low-risk scores had higher immune-infiltrating cells and enhanced expression of checkpoints, programmed cell death 1 ligand 1 (PD-L1), indoleamine 2,3-dioxygenase 1 (IDO-1) and lymphocyte activation gene-3 (LAG3), and were more sensitive to A.443,654, GDC.0449, paclitaxel, gefitinib and cisplatin. Finally, qRT-PCR confirmed RB1, CAAP1, ZBP1, CEBPB and CLTCL1 over-expressed, while PPP1R15A, OGG1, CASP2, CD3E and HERC1 under-expressed in OC cell lines. CONCLUSION Our model could precisely predict the prognosis, immune status and drug sensitivity of OC patients.
Collapse
Affiliation(s)
- Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Liyan Ji
- Geneplus-Beijing Institute, Beijing, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
7
|
Inayatullah M, Mahesh A, Turnbull AK, Dixon JM, Natrajan R, Tiwari VK. Basal-epithelial subpopulations underlie and predict chemotherapy resistance in triple-negative breast cancer. EMBO Mol Med 2024; 16:823-853. [PMID: 38480932 PMCID: PMC11018633 DOI: 10.1038/s44321-024-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.
Collapse
Affiliation(s)
- Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arun Mahesh
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arran K Turnbull
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vijay K Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
8
|
Fisher TB, Saini G, Rekha TS, Krishnamurthy J, Bhattarai S, Callagy G, Webber M, Janssen EAM, Kong J, Aneja R. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer. Breast Cancer Res 2024; 26:12. [PMID: 38238771 PMCID: PMC10797728 DOI: 10.1186/s13058-023-01752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. METHODS H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. RESULTS The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. CONCLUSION Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
Collapse
Affiliation(s)
- Timothy B Fisher
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Geetanjali Saini
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - T S Rekha
- JSSAHER (JSS Academy of Higher Education and Research) Medical College, Mysuru, Karnataka, India
| | - Jayashree Krishnamurthy
- JSSAHER (JSS Academy of Higher Education and Research) Medical College, Mysuru, Karnataka, India
| | - Shristi Bhattarai
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Grace Callagy
- Discipline of Pathology, University of Galway, Galway, Ireland
| | - Mark Webber
- Discipline of Pathology, University of Galway, Galway, Ireland
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA.
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Maugeri S, Sibbitts J, Privitera A, Cardaci V, Di Pietro L, Leggio L, Iraci N, Lunte SM, Caruso G. The Anti-Cancer Activity of the Naturally Occurring Dipeptide Carnosine: Potential for Breast Cancer. Cells 2023; 12:2592. [PMID: 37998326 PMCID: PMC10670273 DOI: 10.3390/cells12222592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, possessing a multimodal pharmacodynamic profile that includes anti-inflammatory and anti-oxidant activities. Carnosine has also shown its ability to modulate cell proliferation, cell cycle arrest, apoptosis, and even glycolytic energy metabolism, all processes playing a key role in the context of cancer. Cancer is one of the most dreaded diseases of the 20th and 21st centuries. Among the different types of cancer, breast cancer represents the most common non-skin cancer among women, accounting for an estimated 15% of all cancer-related deaths in women. The main aim of the present review was to provide an overview of studies on the anti-cancer activity of carnosine, and in particular its activity against breast cancer. We also highlighted the possible advantages and limitations involved in the use of this dipeptide. The first part of the review entailed a brief description of carnosine's biological activities and the pathophysiology of cancer, with a focus on breast cancer. The second part of the review described the anti-tumoral activity of carnosine, for which numerous studies have been carried out, especially at the preclinical level, showing promising results. However, only a few studies have investigated the therapeutic potential of this dipeptide for breast cancer prevention or treatment. In this context, carnosine has shown to be able to decrease the size of cancer cells and their viability. It also reduces the levels of vascular endothelial growth factor (VEGF), cyclin D1, NAD+, and ATP, as well as cytochrome c oxidase activity in vitro. When tested in mice with induced breast cancer, carnosine proved to be non-toxic to healthy cells and exhibited chemopreventive activity by reducing tumor growth. Some evidence has also been reported at the clinical level. A randomized phase III prospective placebo-controlled trial showed the ability of Zn-carnosine to prevent dysphagia in breast cancer patients undergoing adjuvant radiotherapy. Despite this evidence, more preclinical and clinical studies are needed to better understand carnosine's anti-tumoral activity, especially in the context of breast cancer.
Collapse
Affiliation(s)
- Salvatore Maugeri
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Jay Sibbitts
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Vincenzo Cardaci
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
10
|
Xu N, Lai C, He QM, Cai Y, Yu H, Zhong W, Chen S, Wu FC, Chen H. Integrated proteomics and phosphoproteomics analyses of esophageal cancer cells with different invasive abilities. Life Sci 2023; 332:122078. [PMID: 37734435 DOI: 10.1016/j.lfs.2023.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
AIMS Esophageal squamous cell carcinoma (ESCC) is one of the aggressive and lethal malignancies with an extremely poor prognosis. It is necessary to explore the molecular mechanisms of ESCC invasion. MAIN METHODS We utilized high-throughput mass spectrometry to analyze the proteomes and phosphorylation profiles of two ESCC cell lines with differing invasion capacities (HK vs TE10). Differentially expressed proteins and phosphorites were identified, followed by comprehensive bioinformatics analyses encompassing function and pathway enrichment, protein-protein interaction (PPI) network analysis, hub gene identification, co-expression analysis, kinase-substrate prediction, and drug-target network analysis. CCK-8 assay, transwell examination, wound-healing assay, and western blot was used to validate the effects of fostamatinib on ESCC cells proliferation, invasion, migration, and LYN expression. KEY FINDINGS The Q4 cluster of differentially phosphorylated proteins was primarily associated with functions and pathways relevant to tumor metastasis. Phosphorylated hub proteins including ARHGAP35, CTNNA1, and SHC1 were identified through the analysis of PPI network, and their respective regulated kinases were predicted. Among the predicted kinases, LYN was validated to be associated with lymph node metastasis (N0 vs. N1-3) and prognosis in ESCC patients at mRNA levels using TGGA data and protein levels in ESCC tissues (p < 0.05). Validation experiments confirmed the inhibitory effects of fostamatinib on ESCC cells proliferation, migration, invasion, and LYN expression. SIGNIFICANCE Our multi-omics analysis offers deeper perspectives on ESCC invasiveness and unveils new phosphorylated hub proteins with their regulatory kinase. This study also suggests that fostamatinib may be a potential agent for treating ESCC.
Collapse
Affiliation(s)
- Nansong Xu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Changchun Lai
- Department of Clinical Laboratory, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Qing-Mei He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yubo Cai
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, China
| | - Hui Yu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenhao Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shulin Chen
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Fang-Cai Wu
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, China.
| | - Hao Chen
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
11
|
Zhao JL, Yang J, Li K, Chen Y, Tang M, Zhu HL, Nie CL, Yuan Z, Zhao XY. Abrogation of ATR function preferentially augments cisplatin-induced cytotoxicity in PTEN-deficient breast cancer cells. Chem Biol Interact 2023; 385:110740. [PMID: 37802411 DOI: 10.1016/j.cbi.2023.110740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Targeting replication stress response is currently emerging as new therapeutic strategy for cancer treatment, based on monotherapy and combination approaches. As a key sensor in response to DNA damage, ataxia telangiectasia and rad3-related (ATR) kinase has become a potential therapeutic target as tumor cells are to rely heavily on ATR for survival. The tumor suppressor phosphatase and tensin homolog (PTEN) plays a crucial role in maintaining chromosome integrity. Although ATR inhibition was recently confirmed to show a synergistic inhibitory effect in PTEN-deficient triple-negative breast cancer cells, the molecular mechanism needs to be further elucidated. Additionally, whether the PTEN-deficient breast cancer cells are more preferentially sensitized than PTEN-wild type breast cancer cells to cisplatin plus ATR inhibitor remains unanswered. We demonstrate PTEN dysfunction promotes the killing effect of ATR blockade through the use of RNA interference for PTEN and a highly selective ATR inhibitor VE-821, and certify that VE-821 (1.0 μmol/L) aggravates cytotoxicity of cisplatin on breast cancer cells, especially PTEN-null MDA-MB-468 cells which show more chemoresistance than PTEN-expressing MDA-MB-231 cells. The co-treatment with VE-821 and cisplatin significantly reduced cell viability and proliferative capacity compared with cisplatin mono-treatment (P < 0.05). The increased cytotoxic activity is tied to the enhanced poly (ADP-ribose) polymerase (PARP) cleavage and consequently cell death due to the decrease in phosphorylation levels of checkpoint kinases 1 and 2 (CHK1/2), the reduction of radiation sensitive 51 (RAD51) foci and the increase in phosphorylation of the histone variant H2AX (γ-H2AX) foci (P < 0.05) as well. Together, these findings suggest combination therapy of ATR inhibitor and cisplatin may offer a potential therapeutic strategy for breast tumors.
Collapse
Affiliation(s)
- Jian-Lei Zhao
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jun Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mei Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Li Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chun-Lai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin-Yu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Fisher TB, Saini G, Ts R, Krishnamurthy J, Bhattarai S, Callagy G, Webber M, Janssen EAM, Kong J, Aneja R. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer. RESEARCH SQUARE 2023:rs.3.rs-3243195. [PMID: 37645881 PMCID: PMC10462230 DOI: 10.21203/rs.3.rs-3243195/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment (TME) in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) were separated through a stratified 8-fold cross validation strategy for the first step and leave one out cross validation strategy for the second step. A tile-level histology label prediction pipeline and four machine learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
Collapse
Affiliation(s)
| | | | - Rekha Ts
- JSSAHER (JSS Academy of Higher Education and Research) Medical College
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
14
|
Du X, Sheng J, Chen Y, He S, Yang Y, Huang Y, Fu Y, Lie L, Han Z, Zhu B, Liu H, Wen Q, Zhou X, Zhou C, Hu S, Ma L. The E3 ligase HERC5 promotes antimycobacterial responses in macrophages by ISGylating the phosphatase PTEN. Sci Signal 2023; 16:eabm1756. [PMID: 37279284 DOI: 10.1126/scisignal.abm1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Innate immune signaling in macrophages during viral infection is regulated by ISGylation, the covalent attachment of the ubiquitin-like protein interferon-stimulated gene 15 (ISG15) to protein targets. Here, we explored the role of ISGylation in the macrophage response to infection with Mycobacterium tuberculosis. In human and mouse macrophages, the E3 ubiquitin ligases HERC5 and mHERC6, respectively, mediated the ISGylation of the phosphatase PTEN, which promoted its degradation. The decreased abundance of PTEN led to an increase in the activity of the PI3K-AKT signaling pathway, which stimulated the synthesis of proinflammatory cytokines. Bacterial growth was increased in culture and in vivo when human or mouse macrophages were deficient in the major E3 ISG15 ligase. The findings expand the role of ISGylation in macrophages to antibacterial immunity and suggest that HERC5 signaling may be a candidate target for adjunct host-directed therapy in patients with tuberculosis.
Collapse
Affiliation(s)
- Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shitong He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Tang X, Thompson KJ, Kalari KR, Sinnwell JP, Suman VJ, Vedell PT, McLaughlin SA, Northfelt DW, Aspitia AM, Gray RJ, Carter JM, Weinshilboum R, Wang L, Boughey JC, Goetz MP. Integration of multiomics data shows down regulation of mismatch repair and tubulin pathways in triple-negative chemotherapy-resistant breast tumors. Breast Cancer Res 2023; 25:57. [PMID: 37226243 PMCID: PMC10207800 DOI: 10.1186/s13058-023-01656-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Patients with TNBC are primarily treated with neoadjuvant chemotherapy (NAC). The response to NAC is prognostic, with reductions in overall survival and disease-free survival rates in those patients who do not achieve a pathological complete response (pCR). Based on this premise, we hypothesized that paired analysis of primary and residual TNBC tumors following NAC could identify unique biomarkers associated with post-NAC recurrence. METHODS AND RESULTS We investigated 24 samples from 12 non-LAR TNBC patients with paired pre- and post-NAC data, including four patients with recurrence shortly after surgery (< 24 months) and eight who remained recurrence-free (> 48 months). These tumors were collected from a prospective NAC breast cancer study (BEAUTY) conducted at the Mayo Clinic. Differential expression analysis of pre-NAC biopsies showed minimal gene expression differences between early recurrent and nonrecurrent TNBC tumors; however, post-NAC samples demonstrated significant alterations in expression patterns in response to intervention. Topological-level differences associated with early recurrence were implicated in 251 gene sets, and an independent assessment of microarray gene expression data from the 9 paired non-LAR samples available in the NAC I-SPY1 trial confirmed 56 gene sets. Within these 56 gene sets, 113 genes were observed to be differentially expressed in the I-SPY1 and BEAUTY post-NAC studies. An independent (n = 392) breast cancer dataset with relapse-free survival (RFS) data was used to refine our gene list to a 17-gene signature. A threefold cross-validation analysis of the gene signature with the combined BEAUTY and I-SPY1 data yielded an average AUC of 0.88 for six machine-learning models. Due to the limited number of studies with pre- and post-NAC TNBC tumor data, further validation of the signature is needed. CONCLUSION Analysis of multiomics data from post-NAC TNBC chemoresistant tumors showed down regulation of mismatch repair and tubulin pathways. Additionally, we identified a 17-gene signature in TNBC associated with post-NAC recurrence enriched with down-regulated immune genes.
Collapse
Affiliation(s)
- Xiaojia Tang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Kevin J Thompson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Krishna R Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| | - Jason P Sinnwell
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Vera J Suman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Peter T Vedell
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Jodi M Carter
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew P Goetz
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Brožová K, Hantusch B, Kenner L, Kratochwill K. Spatial Proteomics for the Molecular Characterization of Breast Cancer. Proteomes 2023; 11:17. [PMID: 37218922 PMCID: PMC10204503 DOI: 10.3390/proteomes11020017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Breast cancer (BC) is a major global health issue, affecting a significant proportion of the female population and contributing to high rates of mortality. One of the primary challenges in the treatment of BC is the disease's heterogeneity, which can lead to ineffective therapies and poor patient outcomes. Spatial proteomics, which involves the study of protein localization within cells, offers a promising approach for understanding the biological processes that contribute to cellular heterogeneity within BC tissue. To fully leverage the potential of spatial proteomics, it is critical to identify early diagnostic biomarkers and therapeutic targets, and to understand protein expression levels and modifications. The subcellular localization of proteins is a key factor in their physiological function, making the study of subcellular localization a major challenge in cell biology. Achieving high resolution at the cellular and subcellular level is essential for obtaining an accurate spatial distribution of proteins, which in turn can enable the application of proteomics in clinical research. In this review, we present a comparison of current methods of spatial proteomics in BC, including untargeted and targeted strategies. Untargeted strategies enable the detection and analysis of proteins and peptides without a predetermined molecular focus, whereas targeted strategies allow the investigation of a predefined set of proteins or peptides of interest, overcoming the limitations associated with the stochastic nature of untargeted proteomics. By directly comparing these methods, we aim to provide insights into their strengths and limitations and their potential applications in BC research.
Collapse
Affiliation(s)
- Klára Brožová
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1210 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1090 Vienna, Austria
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1090 Vienna, Austria
- CBmed GmbH—Center for Biomarker Research in Medicine, 8010 Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Smrekar K, Belyakov A, Jin K. Crosstalk between triple negative breast cancer and microenvironment. Oncotarget 2023; 14:284-293. [PMID: 36999995 PMCID: PMC10064880 DOI: 10.18632/oncotarget.28397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Although many advances have been made in the treatment of breast cancer, for the triple negative breast cancer (TNBC) these therapies have not significantly increased overall survival. Tumor microenvironment (TME) plays an essential role to develop and control TNBC progression. Many preclinical and clinical studies are ongoing to treat patients with TNBC disease, but the effective therapies are currently not available. Here, we have reviewed recent progress in understanding of TNBC and advance in defining mechanisms of TNBC therapies and potential therapeutic strategies to overcome TNBC.
Collapse
Affiliation(s)
- Karly Smrekar
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY 12208, USA
| | - Artem Belyakov
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY 12208, USA
| | - Kideok Jin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY 12208, USA
| |
Collapse
|
18
|
Herzog H, Dogan S, Aktas B, Nel I. Targeted Sequencing of Plasma-Derived vs. Urinary cfDNA from Patients with Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:4101. [PMID: 36077638 PMCID: PMC9454533 DOI: 10.3390/cancers14174101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
In breast cancer, the genetic profiling of circulating cell-free DNA (cfDNA) from blood plasma was shown to have good potential for clinical use. In contrast, only a few studies were performed investigating urinary cfDNA. In this pilot study, we analyzed plasma-derived and matching urinary cfDNA samples obtained from 15 presurgical triple-negative breast cancer patients. We used a targeted next-generation sequencing approach to identify and compare genetic alterations in both body fluids. The cfDNA concentration was higher in urine compared to plasma, but there was no significant correlation between matched samples. Bioinformatical analysis revealed a total of 3339 somatic breast-cancer-related variants (VAF ≥ 3%), whereof 1222 vs. 2117 variants were found in plasma-derived vs. urinary cfDNA, respectively. Further, 431 shared variants were found in both body fluids. Throughout the cohort, the recovery rate of plasma-derived mutations in matching urinary cfDNA was 47% and even 63% for pathogenic variants only. The most frequently occurring pathogenic and likely pathogenic mutated genes were NF1, CHEK2, KMT2C and PTEN in both body fluids. Notably, a pathogenic CHEK2 (T519M) variant was found in all 30 samples. Taken together, our results indicated that body fluids appear to be valuable sources bearing complementary information regarding the genetic tumor profile.
Collapse
Affiliation(s)
- Henrike Herzog
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| | - Senol Dogan
- Soft Matter Physics Division, Peter-Debye-Institute, University of Leipzig, 04103 Leipzig, Germany
| | - Bahriye Aktas
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| | - Ivonne Nel
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Liu D, Hao Q, Li J, Li Q, Wang K, Geng Q, Wu Y, Vadgama JV, Wu Y. ZBED2 expression enhances interferon signaling and predicts better survival of estrogen receptor-negative breast cancer patients. Cancer Commun (Lond) 2022; 42:663-667. [PMID: 35486908 PMCID: PMC9257990 DOI: 10.1002/cac2.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/16/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dingxie Liu
- Bluewater Biotech LLCNew ProvidenceNJ07974USA
| | - Qiongyu Hao
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Jieqing Li
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhouGuangdong510080P. R. China
| | - Qun Li
- Department of OncologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P. R. China
| | - Kun Wang
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhouGuangdong510080P. R. China
| | - Qing Geng
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanHubei430060P. R. China
| | - Yutong Wu
- Bluewater Biotech LLCNew ProvidenceNJ07974USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Yong Wu
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| |
Collapse
|
20
|
Mehlich D, Marusiak AA. Kinase inhibitors for precision therapy of triple-negative breast cancer: Progress, challenges, and new perspectives on targeting this heterogeneous disease. Cancer Lett 2022; 547:215775. [DOI: 10.1016/j.canlet.2022.215775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022]
|
21
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
22
|
Chai C, Wu HH, Abuetabh Y, Sergi C, Leng R. Regulation of the tumor suppressor PTEN in triple-negative breast cancer. Cancer Lett 2022; 527:41-48. [PMID: 34902523 DOI: 10.1016/j.canlet.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BCa) in which estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) are not expressed. Although TNBC cases account for approximately 15% of all BCa cases, TNBC patients' prognosis is poor compared with that of other BCa subtypes. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays an important role in cell proliferation and migration by negatively regulating the PI3K/Akt pathway. PTEN is one of the most commonly inactivated tumor suppressors in BCa. PTEN inactivity is associated with larger tumor sizes, multiple lymph node metastases, and an aggressive triple-negative phenotype. This review primarily focuses on two key points: (1) PTEN and its function. (2) The regulation of tumor suppressor PTEN in TNBC. We provide a summary of genomic alterations of PTEN in BCa. We further discuss the transcriptional regulation of PTEN and how PTEN is regulated by posttranscription and posttranslational modification, as well as by protein interactions. Finally, we discuss the perspectives of the PTEN protein in TNBC.
Collapse
Affiliation(s)
- Chengsen Chai
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
23
|
Psaras AM, Valiuska S, Noé V, Ciudad CJ, Brooks TA. Targeting KRAS Regulation with PolyPurine Reverse Hoogsteen Oligonucleotides. Int J Mol Sci 2022; 23:2097. [PMID: 35216221 PMCID: PMC8876201 DOI: 10.3390/ijms23042097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS is a GTPase involved in the proliferation signaling of several growth factors. The KRAS gene is GC-rich, containing regions with known and putative G-quadruplex (G4) forming regions. Within the middle of the G-rich proximal promoter, stabilization of the physiologically active G4mid structure downregulates transcription of KRAS; the function and formation of other G4s within the gene are unknown. Herein we identify three putative G4-forming sequences (G4FS) within the KRAS gene, explore their G4 formation, and develop oligonucleotides targeting these three regions and the G4mid forming sequence. We tested Polypurine Reverse Hoogsteen hairpins (PPRHs) for their effects on KRAS regulation via enhancing G4 formation or displacing G-rich DNA strands, downregulating KRAS transcription and mediating an anti-proliferative effect. Five PPRH were designed, two against the KRAS promoter G4mid and three others against putative G4FS in the distal promoter, intron 1 and exon 5. PPRH binding was confirmed by gel electrophoresis. The effect on KRAS transcription was examined by luciferase, FRET Melt2, qRT-PCR. Cytotoxicity was evaluated in pancreatic and ovarian cancer cells. PPRHs decreased activity of a luciferase construct driven by the KRAS promoter. PPRH selectively suppressed proliferation in KRAS dependent cancer cells. PPRH demonstrated synergistic activity with a KRAS promoter selective G4-stabilizing compound, NSC 317605, in KRAS-dependent pancreatic cells. PPRHs selectively stabilize G4 formation within the KRAS mid promoter region and represent an innovative approach to both G4-stabilization and to KRAS modulation with potential for development into novel therapeutics.
Collapse
Affiliation(s)
- Alexandra Maria Psaras
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA;
| | - Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA;
| |
Collapse
|
24
|
Transcriptional landscape associated with TNBC resistance to neoadjuvant chemotherapy revealed by single-cell RNA-seq. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:151-162. [PMID: 34703883 PMCID: PMC8517543 DOI: 10.1016/j.omto.2021.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Triple-negative breast cancer (TNBC) resistance to neoadjuvant chemotherapy (NAC) represents a major clinical challenge; therefore, delineating tumor heterogeneity can provide novel insight into resistance mechanisms and potential therapeutic targets. Herein, we identified the transcriptional landscape associated with TNBC resistance to NAC at the single-cell level by analyzing publicly available transcriptome data from more than 5,000 single cells derived from four extinction (responders) and four persistence (non-responders) patients, revealing remarkable tumor heterogeneity. Employing iterative clustering and guide-gene selection (ICGS) and uniform manifold approximation and projection (UMAP), we classified TNBC single cells into several clusters based on their distinct gene signatures. The presence of clusters indicative of immune cell activation was a hallmark of the extinction group pre-NAC, while post NAC, the extinction tissue consisted mostly of breast, omental fat, and fibroblasts. The persistent gene signatures of pre-NAC resembled the gene signature of lung epithelial, mammary, and salivary glands and acute myeloid leukemia blast cells, which were associated with enhanced cellular movement and activation of FOXM1, NOTCH1, and MYC and suppression of tumor necrosis factor (TNF) and IFNG mechanistic networks. Multivariate survival analysis identified persistence-derived three-gene signature (KIF5BhighHLA-ClowIGHG2low) predictive of relapse-free survival (hazard ratio [HR]: 2.2 [1.6–3.2, p < 0.0001]) in a second cohort of 360 TNBC patients. Mechanistically, loss of function of several upregulated genes in the persistent group (BYSL, FDPS, ENO1, MED20, MRPL9, MRPL37, NDUFB11, PMVK, MYC, and GSTP1) inhibited MDA-MB-231 and BT-549 TNBC models’ colony-forming unit (CFU) potential and enhanced their sensitivity to paclitaxel. Our data unraveled the transcriptional portrait associated with NAC resistance, identified several key genes, and suggested their potential utilization as prognostic markers and therapeutic targets in TNBC.
Collapse
|
25
|
Ibragimova MK, Tsyganov MM, Litviakov NV. Molecular-Genetic Portrait of Breast Cancer with Triple Negative Phenotype. Cancers (Basel) 2021; 13:cancers13215348. [PMID: 34771512 PMCID: PMC8582512 DOI: 10.3390/cancers13215348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Breast cancer is a genetically heterogeneous disease with different molecular biological and clinical characteristics. The available knowledge about the genetic heterogeneity of the most aggressive molecular subtype of breast cancer—triple-negative—has led to discoveries in drug treatment. Identification of the molecular-genetic phenotype of breast cancer is an important prognostic factor of the disease and allows personalization of the patient’s treatment. Abstract Understanding of the genetic mechanisms and identification of the biological markers of tumor progression that form the individual molecular phenotype of transformed cells can characterize the degree of tumor malignancy, the ability to metastasize, the hormonal sensitivity, and the effectiveness of chemotherapy, etc. Breast cancer (BC) is a genetically heterogeneous disease with different molecular biological and clinical characteristics. The available knowledge about the genetic heterogeneity of the most aggressive molecular subtype of breast cancer—triple-negative (TN)—has led to discoveries in drug treatment, including the use of DNA damaging agents (platinum and PARP inhibitors) for these tumors, as well as the use of immunotherapy. Most importantly, the ability to prescribe optimal drug treatment regimens for patients with TNBC based on knowledge of the molecular-genetic characteristics of this subtype of BC will allow the achievement of high rates of overall and disease-free survival. Thus, identification of the molecular-genetic phenotype of breast cancer is an important prognostic factor of the disease and allows personalization of the patient’s treatment.
Collapse
Affiliation(s)
- Marina K. Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia; (M.M.T.); (N.V.L.)
- National Research Tomsk State University, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey M. Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia; (M.M.T.); (N.V.L.)
| | - Nikolai V. Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia; (M.M.T.); (N.V.L.)
| |
Collapse
|
26
|
Regulation of low-density lipoprotein receptor expression in triple negative breast cancer by EGFR-MAPK signaling. Sci Rep 2021; 11:17927. [PMID: 34504181 PMCID: PMC8429745 DOI: 10.1038/s41598-021-97327-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
Expression of the low-density lipoprotein receptor (LDLR) has been shown to play a critical role in hypercholesterolemia-associated breast cancer growth and is associated with shorter recurrence-free survival in human breast cancer studies. We sought to identify how circulating LDL cholesterol and tumor LDLR might accelerate oncogenic processes by determining whether increased LDLR expression and cholesterol uptake are associated with the activation of the epidermal growth factor receptor (EGFR) signaling pathway in triple negative breast cancer (TNBC) cell lines. EGF stimulation of MDA-MB-468 (MDA468) cells activated p44/42MAPK (MAPK), increased expression of LDLR, and fluorescent LDL cholesterol uptake. However, stimulation of MDA-MB-231 (MDA231) cells with EGF did not lead to increased expression of LDLR despite inducing phosphorylation of EGFR. Inhibition of MAPK using UO126 in MDA231 cells reduced LDLR expression, and in MDA468 cells, UO126 impaired the LDLR increase in response to EGF. MDA468 cells exposed to the transcription inhibitor, Actinomycin, prior to treatment with EGF showed reduced degradation of LDLR mRNA compared to vehicle-treated cells. Our results suggest that the EGF-associated increase in LDLR protein expression is cell line-specific. The common pathway regulating LDLR expression was MAPK in both TNBC cell lines.
Collapse
|
27
|
Zhang X, Liu Y. Targeting the PI3K/AKT/mTOR Signaling Pathway in Primary Central Nervous System Lymphoma: Current Status and Future Prospects. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:165-173. [PMID: 32416683 DOI: 10.2174/1871527319666200517112252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/22/2022]
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is a rare invasive extranodal non- Hodgkin lymphoma, a vast majority of which is Diffuse Large B-Cell Lymphoma (DLBCL). Although high-dose methotrexate-based immunochemotherapy achieves a high remission rate, the risk of relapse and related death remains a crucial obstruction to long-term survival. Novel agents for the treatment of lymphatic malignancies have significantly broadened the horizons of therapeutic options for PCNSL. The PI3K/AKT/mTOR signaling pathway is one of the most important pathways for Bcell malignancy growth and survival. Novel therapies that target key components of this pathway have shown antitumor effects in many B-cell malignancies, including DLBCL. This review will discuss the aberrant status of the PI3K/AKT/mTOR signaling pathways in PCNSL and the application prospects of inhibitors in hopes of providing alternative clinical therapeutic strategies and improving prognosis.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China
| |
Collapse
|
28
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
29
|
Fernandes LE, Epstein CG, Bobe AM, Bell JSK, Stumpe MC, Salazar ME, Salahudeen AA, Pe Benito RA, McCarter C, Leibowitz BD, Kase M, Igartua C, Huether R, Hafez A, Beaubier N, Axelson MD, Pegram MD, Sammons SL, O'Shaughnessy JA, Palmer GA. Real-world Evidence of Diagnostic Testing and Treatment Patterns in US Patients With Breast Cancer With Implications for Treatment Biomarkers From RNA Sequencing Data. Clin Breast Cancer 2021; 21:e340-e361. [PMID: 33446413 DOI: 10.1016/j.clbc.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE/BACKGROUND We performed a retrospective analysis of longitudinal real-world data (RWD) from patients with breast cancer to replicate results from clinical studies and demonstrate the feasibility of generating real-world evidence. We also assessed the value of transcriptome profiling as a complementary tool for determining molecular subtypes. METHODS De-identified, longitudinal data were analyzed after abstraction from records of patients with breast cancer in the United States (US) structured and stored in the Tempus database. Demographics, clinical characteristics, molecular subtype, treatment history, and survival outcomes were assessed according to strict qualitative criteria. RNA sequencing and clinical data were used to predict molecular subtypes and signaling pathway enrichment. RESULTS The clinical abstraction cohort (n = 4000) mirrored the demographics and clinical characteristics of patients with breast cancer in the US, indicating feasibility for RWE generation. Among patients who were human epidermal growth factor receptor 2-positive (HER2+), 74.2% received anti-HER2 therapy, with ∼70% starting within 3 months of a positive test result. Most non-treated patients were early stage. In this RWD set, 31.7% of patients with HER2+ immunohistochemistry (IHC) had discordant fluorescence in situ hybridization results recorded. Among patients with multiple HER2 IHC results at diagnosis, 18.6% exhibited intra-test discordance. Through development of a whole-transcriptome model to predict IHC receptor status in the molecular sequenced cohort (n = 400), molecular subtypes were resolved for all patients (n = 36) with equivocal HER2 statuses from abstracted test results. Receptor-related signaling pathways were differentially enriched between clinical molecular subtypes. CONCLUSIONS RWD in the Tempus database mirrors the overall population of patients with breast cancer in the US. These results suggest that real-time, RWD analyses are feasible in a large, highly heterogeneous database. Furthermore, molecular data may aid deficiencies and discrepancies observed from breast cancer RWD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mark D Pegram
- Stanford Comprehensive Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Sarah L Sammons
- Department of Medicine, Duke University Medical Center, Duke University, Durham, NC
| | | | | |
Collapse
|
30
|
Mir MA, Qayoom H, Mehraj U, Nisar S, Bhat B, Wani NA. Targeting Different Pathways Using Novel Combination Therapy in Triple Negative Breast Cancer. Curr Cancer Drug Targets 2021; 20:586-602. [PMID: 32418525 DOI: 10.2174/1570163817666200518081955] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer accounting for 15-20% of cases and is defined by the lack of hormonal receptors viz., estrogen receptor (ER), progesterone receptor (PR) and expression of human epidermal growth receptor 2 (HER2). Treatment of TNBC is more challenging than other subtypes of breast cancer due to the lack of markers for the molecularly targeted therapies (ER, PR, and HER-2/ Neu), the conventional chemotherapeutic agents are still the mainstay of the therapeutic protocols of its patients. Despite, TNBC being more chemo-responsive than other subtypes, unfortunately, the initial good response to the chemotherapy eventually turns into a refractory drug-resistance. Using a monotherapy for the treatment of cancer, especially high-grade tumors like TNBC, is mostly worthless due to the inherent genetic instability of tumor cells to develop intrinsic and acquired resistance. Thus, a cocktail of two or more drugs with different mechanisms of action is more effective and could successfully control the disease. Furthermore, combination therapy reveals more, or at least the same, effectiveness with lower doses of every single agent and decreases the likelihood of chemoresistance. Herein, we shed light on the novel combinatorial approaches targeting PARP, EGFR, PI3K pathway, AR, and wnt signaling, HDAC, MEK pathway for efficient treatment of high-grade tumors like TNBC and decreasing the onset of resistance.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Basharat Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Nissar A Wani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
31
|
Yao Y, Chai X, Gong C, Zou L. WT1 inhibits AML cell proliferation in a p53-dependent manner. Cell Cycle 2021; 20:1552-1560. [PMID: 34288813 DOI: 10.1080/15384101.2021.1951938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
WT1 has been reported to function as an oncogene and a tumor suppressor in acute myeloid leukemia (AML). The molecular mechanisms have not yet been fully elucidated. Here, we report that p53, served as a tumor suppressor, plays a critical role in regulating the function of WT1 in AML. For details, we performed a meta-analysis on 1131 AML cases, showing that WT1 gene mutation and TP53 gene exhibited a mutually exclusive predisposition in AML. p53 can be recruited to the promoter region of WT1's target genes to modulate their expression by physically interacting with WT1. The AML-derived p53 mutation (p53R248Q) can disrupt the interaction between WT1 and p53, resulting in the loss of modulation of WT1's target genes. Furthermore, wild-type p53 maintained the anti-proliferation activity of WT1 in AML cells. In contrast, WT1 promoted AML cell proliferation in the absence of p53 (or mutated p53). In conclusion, we demonstrated a novel explanation of the controversial function of WT1 in AML. These results provided a mechanism by which WT1 inhibited AML cell proliferation in a p53-dependent manner.
Collapse
Affiliation(s)
- Yiyun Yao
- Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xingxing Chai
- Department of Hematology, The Second People's Hospital of Lianyungang City, Jiangsu 222000, China
| | - Chen Gong
- Department of Geriatric Medicine, The Second People's Hospital of Lianyungang City, Jiangsu 222000, China
| | - Lifang Zou
- Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
32
|
Umar SM, Patra S, Kashyap A, Dev J R A, Kumar L, Prasad CP. Quercetin Impairs HuR-Driven Progression and Migration of Triple Negative Breast Cancer (TNBC) Cells. Nutr Cancer 2021; 74:1497-1510. [PMID: 34278888 DOI: 10.1080/01635581.2021.1952628] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the present study, we have explored the prognostic value of HuR gene as well as protein in breast cancers. Furthermore, we have also investigated the HuR therapeutic relevance in TNBCs, which is an aggressive breast cancer subtype. Using an online meta-analysis tool, we found that HuR protein overexpression positively correlates with reduced overall survival of TNBC patients (p = 0.028). Furthermore, we demonstrated that the TNBC breast cancer cell lines i.e., MDA-MB-231 and MDA-MB-468 are good model systems to study HuR protein, as they both exhibit a significant amount of cytoplasmic HuR (active form). Quercetin treatment significantly inhibited the cytoplasmic HuR in both TNBC cell lines. By using specific HuR siRNA, we established that quercetin-mediated inhibition of adhesion and migration of TNBC cells is dependent on HuR. Upon analyzing adhesion proteins i.e., β-catenin and CD44, we found that quercetin mediated effect on TNBC adhesion and migration was through the HuR-β-catenin axis and CD44, independently. Overall, the present results demonstrate that elevated HuR levels are associated with TNBC progression and relapse, and the ability of quercetin to inhibit cytoplasmic HuR protein provides a rationale for using it as an anticancer agent for the treatment of aggressive TNBCs.Supplemental data for this article is available online at at 10.1080/01635581.2021.1952628.
Collapse
Affiliation(s)
| | - Sushmita Patra
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | - Akanksha Kashyap
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | | | - Lalit Kumar
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | | |
Collapse
|
33
|
Anchang CG, Xu C, Raimondo MG, Atreya R, Maier A, Schett G, Zaburdaev V, Rauber S, Ramming A. The Potential of OMICs Technologies for the Treatment of Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22147506. [PMID: 34299122 PMCID: PMC8306614 DOI: 10.3390/ijms22147506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel diseases and inflammatory arthritis (e.g., rheumatoid arthritis, psoriatic arthritis), are marked by increasing worldwide incidence rates. Apart from irreversible damage of the affected tissue, the systemic nature of these diseases heightens the incidence of cardiovascular insults and colitis-associated neoplasia. Only 40–60% of patients respond to currently used standard-of-care immunotherapies. In addition to this limited long-term effectiveness, all current therapies have to be given on a lifelong basis as they are unable to specifically reprogram the inflammatory process and thus achieve a true cure of the disease. On the other hand, the development of various OMICs technologies is considered as “the great hope” for improving the treatment of IMIDs. This review sheds light on the progressive development and the numerous approaches from basic science that gradually lead to the transfer from “bench to bedside” and the implementation into general patient care procedures.
Collapse
Affiliation(s)
- Charles Gwellem Anchang
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Cong Xu
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Maria Gabriella Raimondo
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Raja Atreya
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany;
| | - Andreas Maier
- Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Vasily Zaburdaev
- Max-Planck-Zentrum für Physik und Medizin, 91054 Erlangen, Germany;
- Department of Biology, Mathematics in Life Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Simon Rauber
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Andreas Ramming
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
- Correspondence: ; Tel.: +49-9131-8543048; Fax: +49-9131-8536448
| |
Collapse
|
34
|
Kaleem M, Perwaiz M, Nur SM, Abdulrahman AO, Ahmad W, Al-Abbasi FA, Kumar V, Kamal MA, Anwar F. Epigenetics of Triple-negative breast cancer via natural compounds. Curr Med Chem 2021; 29:1436-1458. [PMID: 34238140 DOI: 10.2174/0929867328666210707165530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial-to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF-2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s and KLK12 mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in treatment of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maryam Perwaiz
- Department of Sciences, University of Toronto. Mississauga. Canada
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
35
|
Ulhaka K, Kanokwiroon K, Khongkow M, Bissanum R, Khunpitak T, Khongkow P. The Anticancer Effects of FDI-6, a FOXM1 Inhibitor, on Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:6685. [PMID: 34206484 PMCID: PMC8269391 DOI: 10.3390/ijms22136685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) presents an important clinical challenge, as it does not respond to endocrine therapies or other available targeting agents. FOXM1, an oncogenic transcriptional factor, has reported to be upregulated and associated with poor clinical outcomes in TNBC patients. In this study, we investigated the anti-cancer effects of FDI-6, a FOXM1 inhibitor, as well as its molecular mechanisms, in TNBC cells. Two TNBC cell lines, MDA-MB-231 and HS578T, were used in this study. The anti-cancer activities of FDI-6 were evaluated using various 2D cell culture assays, including Sulforhodamine B (SRB), wound healing, and transwell invasion assays together with 3D spheroid assays, mimicking real tumour structural properties. After treatment with FDI-6, the TNBC cells displayed a significant inhibition in cell proliferation, migration, and invasion. Increased apoptosis was also observed in the treated cells. In addition, we found that FDI-6 lead to the downregulation of FOXM1 and its key oncogenic targets, including CyclinB1, Snail, and Slug. Interestingly, we also found that the FDI-6/Doxorubicin combination significantly enhanced the cytotoxicity and apoptotic properties, suggesting that FDI-6 might improve chemotherapy treatment efficacy and reduce unwanted side effects. Altogether, FDI-6 exhibited promising anti-tumour activities and could be developed as a newly effective treatment for TNBC.
Collapse
Affiliation(s)
- Karan Ulhaka
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.U.); (T.K.)
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Rassanee Bissanum
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
| | - Thanaporn Khunpitak
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.U.); (T.K.)
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
| | - Pasarat Khongkow
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.U.); (T.K.)
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
36
|
O’Shaughnessy J, McIntyre K, Wilks S, Ma L, Block M, Andorsky D, Danso M, Locke T, Scales A, Wang Y. Efficacy and Safety of Weekly Paclitaxel With or Without Oral Alisertib in Patients With Metastatic Breast Cancer: A Randomized Clinical Trial. JAMA Netw Open 2021; 4:e214103. [PMID: 33877311 PMCID: PMC8058641 DOI: 10.1001/jamanetworkopen.2021.4103] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
IMPORTANCE Elevated expression of AURKA adversely affects prognosis in estrogen receptor (ER)-positive and ERBB2 (formerly HER2)-negative and triple-negative breast cancer and is associated with resistance to taxanes. OBJECTIVE To compare paclitaxel alone vs paclitaxel plus alisertib in patients with ER-positive and ERBB2-negative or triple-negative metastatic breast cancer (MBC). DESIGN, SETTING, AND PARTICIPANTS In this randomized clinical trial conducted with the US Oncology Network, participants were randomized to intravenous (IV) paclitaxel 90 mg/m2 on days 1, 8, and 15 on a 28-day cycle or IV paclitaxel 60 mg/m2 on days 1, 8, and 15 plus oral alisertib 40 mg twice daily on days 1 to 3, 8 to 10, and 15 to 17 on a 28-day cycle. Stratification was by prior neo or adjuvant taxane and by line of metastatic therapy. Eligible patients were those who had undergone endocrine therapy, 0 or 1 prior chemotherapy regimens for MBC, more than 12 months treatment-free interval from neo or adjuvant taxane therapy, and with measurable or evaluable lytic bone-disease. Data were analyzed from March 2019 through May 2019. MAIN OUTCOMES AND MEASURES The main outcome was progression-free survival (PFS) with secondary end points of overall survival (OS), overall response rate, clinical benefit rate, safety, and analysis of archival breast cancer tissues for molecular markers associated with benefit from alisertib. RESULTS A total of 174 patients were randomized, including with 86 randomized to paclitaxel and 88 patients randomized to paclitaxel plus alisertib, and 169 patients received study treatment. The final cohort included 139 patients with a median (interquartile range [IQR]) age of 62 (27-84) years with ER-positive and ERBB2-negative MBC, with 70 randomized to paclitaxel and 69 randomized to paclitaxel plus alisertib. The TNBC cohort closed with only 35 patients enrolled due to slow accrual and were not included in efficacy analyses. The median (IQR) follow-up was 22 (10.6-25.1) months, and median (IQR) PFS was 10.2 (3.8-15.7) months with paclitaxel plus alisertib vs 7.1 (3.8-10.6) months with paclitaxel alone (HR, 0.56; 95% CI, 0.37-0.84; P = .005). Median (IQR) OS was 26.3 (12.4-37.2) months for patients who received paclitaxel plus alisertib vs 25.1 (11.0-31.4) months for paclitaxel alone (HR, 0.89; 95% CI, 0.58-1.38; P = .61). Grade 3 or 4 adverse events occurred in 56 patients (84.8%) receiving paclitaxel plus alisertib vs 34 patients (48.6%) receiving paclitaxel alone. The main grade 3 or 4 adverse events with paclitaxel plus alisertib vs paclitaxel alone were neutropenia (50 patients [59.5%] vs 14 patients [16.4%]), anemia (8 patients [9.5%] vs 1 patient [1.2%]), diarrhea (9 patients [10.7%] vs 0 patients), and stomatitis or oral mucositis (13 patients [15.5%] vs 0 patients). One patient receiving paclitaxel plus alisertib died of sepsis. CONCLUSIONS AND RELEVANCE This randomized clinical trial found that the addition of oral alisertib to a reduced dose of weekly paclitaxel significantly improved PFS compared with paclitaxel alone, and toxic effects with paclitaxel plus alisertib were manageable with alisertib dose reduction. These data support further evaluation of alisertib in patients with ER-positive, ERBB2-negative MBC. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02187991.
Collapse
Affiliation(s)
- Joyce O’Shaughnessy
- Baylor University Medical Center, Dallas, Texas
- Texas Oncology, Dallas
- US Oncology, Houston, Texas
| | | | - Sharon Wilks
- Texas Oncology, Dallas
- US Oncology, Houston, Texas
| | - Ling Ma
- US Oncology, Houston, Texas
- Rocky Mountain Cancer Centers, Lakewood, Colorado
| | - Margaret Block
- US Oncology, Houston, Texas
- Nebraska Cancer Specialists, Omaha
| | - David Andorsky
- US Oncology, Houston, Texas
- Rocky Mountain Cancer Centers, Boulder, Colorado
| | - Michael Danso
- US Oncology, Houston, Texas
- Virginia Oncology Associates, Norfolk
| | | | | | | |
Collapse
|
37
|
Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021; 64:2382-2418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, but an effective targeted therapy has not been well-established so far. Considering the lack of effective targets, where do we go next in the current TNBC drug development? A promising intervention for TNBC might lie in de novo small-molecule drugs that precisely target different molecular characteristics of TNBC. However, an ideal single-target drug discovery still faces a huge challenge. Alternatively, other new emerging strategies, such as dual-target drug, drug repurposing, and combination strategies, may provide new insight into the improvement of TNBC therapeutics. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in TNBC therapy, including single-target drugs, dual-target drugs, as well as drug repurposing and combination strategies that will together shed new light on the future directions targeting TNBC vulnerabilities with small-molecule drugs for future therapeutic purposes.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leiming Wang
- The Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Minas TZ, Kiely M, Ajao A, Ambs S. An overview of cancer health disparities: new approaches and insights and why they matter. Carcinogenesis 2021; 42:2-13. [PMID: 33185680 PMCID: PMC7717137 DOI: 10.1093/carcin/bgaa121] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer health disparities remain stubbornly entrenched in the US health care system. The Affordable Care Act was legislation to target these disparities in health outcomes. Expanded access to health care, reduction in tobacco use, uptake of other preventive measures and cancer screening, and improved cancer therapies greatly reduced cancer mortality among women and men and underserved communities in this country. Yet, disparities in cancer outcomes remain. Underserved populations continue to experience an excessive cancer burden. This burden is largely explained by health care disparities, lifestyle factors, cultural barriers, and disparate exposures to carcinogens and pathogens, as exemplified by the COVID-19 epidemic. However, research also shows that comorbidities, social stress, ancestral and immunobiological factors, and the microbiome, may contribute to health disparities in cancer risk and survival. Recent studies revealed that comorbid conditions can induce an adverse tumor biology, leading to a more aggressive disease and decreased patient survival. In this review, we will discuss unanswered questions and new opportunities in cancer health disparity research related to comorbid chronic diseases, stress signaling, the immune response, and the microbiome, and what contribution these factors may have as causes of cancer health disparities.
Collapse
Affiliation(s)
- Tsion Zewdu Minas
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maeve Kiely
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anuoluwapo Ajao
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Hu LS, Wang L, Hawkins-Daarud A, Eschbacher JM, Singleton KW, Jackson PR, Clark-Swanson K, Sereduk CP, Peng S, Wang P, Wang J, Baxter LC, Smith KA, Mazza GL, Stokes AM, Bendok BR, Zimmerman RS, Krishna C, Porter AB, Mrugala MM, Hoxworth JM, Wu T, Tran NL, Swanson KR, Li J. Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma. Sci Rep 2021; 11:3932. [PMID: 33594116 PMCID: PMC7886858 DOI: 10.1038/s41598-021-83141-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor-a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA. .,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA. .,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| | - Lujia Wang
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Jennifer M Eschbacher
- Department of Pathology, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Kyle W Singleton
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Pamela R Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Kamala Clark-Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Christopher P Sereduk
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,Department of Cancer Biology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Panwen Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Junwen Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Leslie C Baxter
- Department of Neuropsychology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Kris A Smith
- Department of Neurosurgery, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Gina L Mazza
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Ashley M Stokes
- Department of Imaging Research, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Bernard R Bendok
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Richard S Zimmerman
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Chandan Krishna
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Alyx B Porter
- Department of Neuro-Oncology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Maciej M Mrugala
- Department of Neuro-Oncology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Joseph M Hoxworth
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Teresa Wu
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| | - Nhan L Tran
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,Department of Cancer Biology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.,Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jing Li
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| |
Collapse
|
40
|
Identification of candidate genes encoding tumor-specific neoantigens in early- and late-stage colon adenocarcinoma. Aging (Albany NY) 2021; 13:4024-4044. [PMID: 33428592 PMCID: PMC7906157 DOI: 10.18632/aging.202370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
Colon adenocarcinoma (COAD) is one of the most common gastrointestinal malignant tumors and is characterized by a high mortality rate. Here, we integrated whole-exome and RNA sequencing data from The Cancer Genome Atlas and investigated the mutational spectra of COAD-overexpressed genes to define clinically relevant diagnostic/prognostic signatures and to unmask functional relationships with both tumor-infiltrating immune cells and regulatory miRNAs. We identified 24 recurrently mutated genes (frequency > 5%) encoding putative COAD-specific neoantigens. Five of them (NEB, DNAH2, ABCA12, CENPF and CELSR1) had not been previously reported as COAD biomarkers. Through machine learning-based feature selection, four early-stage-related (COL11A1, TG, SOX9, and DNAH2) and four late-stage-related (COL11A1, SOX9, TG and BRCA2) candidate neoantigen-encoding genes were selected as diagnostic signatures. They respectively showed 100% and 97% accuracy in predicting early- and late-stage patients, and an 8-gene signature had excellent prognostic performance predicting disease-free survival (DFS) in COAD patients. We also found significant correlations between the 24 candidate neoantigen genes and the abundance and/or activation status of 22 tumor-infiltrating immune cell types and 56 regulatory miRNAs. Our novel neoantigen-based signatures may improve diagnostic and prognostic accuracy and help design targeted immunotherapies for COAD treatment.
Collapse
|
41
|
Arauz RF, Byun JS, Tandon M, Sinha S, Kuhn S, Taylor S, Zingone A, Mitchell KA, Pine SR, Gardner K, Perez-Stable EJ, Napoles AM, Ryan BM. Whole-Exome Profiling of NSCLC Among African Americans. J Thorac Oncol 2020; 15:1880-1892. [PMID: 32931935 PMCID: PMC7704928 DOI: 10.1016/j.jtho.2020.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Lung cancer incidence is higher among African Americans (AAs) compared with European Americans (EAs) in the United States, especially among men. Although significant progress has been made profiling the genomic makeup of lung cancer in EAs, AAs continue to be underrepresented. Our objective was to chart the genome-wide landscape of somatic mutations in lung cancer tumors from AAs. METHODS In this study, we used the whole-exome sequencing of 82 tumor and noninvolved tissue pairs from AAs. Patients were selected from an ongoing case-control study conducted by the National Cancer Institute and the University of Maryland. RESULTS Among all samples, we identified 178 significantly mutated genes (p < 0.05), five of which passed the threshold for false discovery rate (p < 0.1). In lung adenocarcinoma (LUAD) tumors, mutation rates in STK11 (p = 0.05) and RB1 (p = 0.008) were significantly higher in AA LUAD tumors (25% and 13%, respectively) compared with The Cancer Genome Atlas EA samples (14% and 4%, respectively). In squamous cell carcinomas, mutation rates in STK11 (p = 0.002) were significantly higher among AA (8%) than EA tumors from The Cancer Genome Atlas (1%). Integrated somatic mutation data with CIBERSORT (Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts) data analysis revealed LUAD tumors from AAs carrying STK11 mutations have decreased interferon signaling. CONCLUSIONS Although a considerable degree of the somatic mutation landscape is shared between EAs and AAs, discrete differences in mutation frequency in potentially important oncogenes and tumor suppressors exist. A better understanding of the molecular basis of lung cancer in AA patients and leveraging this information to guide clinical interventions may help reduce disparities.
Collapse
Affiliation(s)
- Rony F Arauz
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jung S Byun
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, Bethesda, Maryland; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Mayank Tandon
- CCR Collaborative Bioinformatics Resource CCBR, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sanju Sinha
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Skyler Kuhn
- CCR Collaborative Bioinformatics Resource CCBR, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sheryse Taylor
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Khadijah A Mitchell
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sharon R Pine
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Kevin Gardner
- National Institute of Minority Health and Health Disparities, Bethesda, Maryland; Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, New York
| | | | - Anna M Napoles
- National Institute of Minority Health and Health Disparities, Bethesda, Maryland
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
42
|
Rachmi E, Purnomo BB, Endharti AT, Fitri LE. Identification of afzelin potential targets in inhibiting triple-negative breast cancer cell migration using reverse docking. Porto Biomed J 2020; 5:e095. [PMID: 33283065 PMCID: PMC7710241 DOI: 10.1097/j.pbj.0000000000000095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) tends to be aggressive and metastatic, characteristics attributable to its cellular migration capabilities. Afzelin is a chemical compound with anti-metastatic potentials. This study aimed to predict proteins involved in TNBC cell migration which could be inhibited by afzelin. METHODS The protein database was constructed from the Kyoto Encyclopedia of Genes and Genomes pathways collection which related to cell motility, then screened for druggability using SuperTarget and Therapeutic Target Database. The involvement of druggable proteins in the TNBC metastasis process was investigated through existing publications in The National Center for Biotechnology Information PubMed database. Inhibitory potential of afzelin toward target proteins was compared to the proteins' known-inhibitor, using the reverse docking method. RESULTS Ten proteins identified as potential targets of afzelin, with the top 3 being ERK2, KRas, and FAK, respectively. Afzelin's 3-O-rhamnoside group played a dominant role in forming hydrogen bonds with the target proteins. Further analysis with STRING suggested that afzelin might be able to inhibit chemotaxis and haptotaxis of TNBC cells. CONCLUSIONS Afzelin was predicted to inhibit TNBC cell motility, by targeting ERK2, KRas, and FAK activation.
Collapse
Affiliation(s)
- Eva Rachmi
- Department of Anatomy, Medical Faculty, Universitas Mulawarman, Samarinda
| | - Basuki Bambang Purnomo
- Department of Urology, Medical Faculty, Universitas Brawijaya/dr. Saiful Anwar General Hospital
| | - Agustina Tri Endharti
- Doctoral Program in Medical Science, Medical Faculty, Universitas Brawijaya
- Department of Parasitology, Medical Faculty, Universitas Brawijaya, Malang, Indonesia
| | - Loeki Enggar Fitri
- Doctoral Program in Medical Science, Medical Faculty, Universitas Brawijaya
- Department of Parasitology, Medical Faculty, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
43
|
Zhang S, Ma F, Xie X, Shen Y. Prognostic value of long non-coding RNAs in triple negative breast cancer: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020; 99:e21861. [PMID: 32925722 PMCID: PMC7489686 DOI: 10.1097/md.0000000000021861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer. Accumulating evidence showed long non-coding RNAs (lncRNAs) are abnormally expressed in TNBC and could be valuable prognostic tools for TNBC patients. This study aims to research the prognostic value of lncRNAs in TNBC, using the meta-analysis method. METHODS We performed a detailed literature search on Pubmed, Scopus, and Web of Science for studies on the prognostic value of lncRNAs in TNBC. The meta-analysis method was used to determine the relationship between lncRNAs expression and survival of TNBC patients. RESULTS A total of 2803 TNBC patients and 24 lncRNAs from 27 different articles were included in the present study. Subgroup analysis demonstrated that overexpression of lncRNAs in a group that is upregulated in TBNC showed a significant association with poor overall survival (HR = 1.86, 95%CI = 1.45-2.27, I = 41.9%) and disease-free survival (HR = 1.85, 95%CI = 1.37-2.33, I = 0%). Conversely, overexpression of lncRNAs in a downregulation group was markedly related to good overall survival (HR = 0.60, 95%CI = 0.43-0.77, I = 28.6%). Moreover, expression of lncRNA SNHG12, MALAT1, HOTAIR, HIF1A-AS2, HULC, LINC00096, ZEB2-AS1, LUCAT1, and LINC000173 showed a marked correlation with positive lymph node metastasis (LNM), while lncRNA MIR503HG, GAS5, TCONS_l2_00002973 showed the opposite effect. High expression level of MALAT1, HIF1A-AS2, HULC, LINC00096, ADPGK-AS1, ZEB2-AS1, LUCAT1 were positively correlated with distant metastasis (DM), while lncRNA MIR503HG showed the opposite effect. In addition, the mechanisms of lncRNAs in TNBC were summarized. CONCLUSIONS This meta-analysis demonstrated that abnormally expressed lncRNA were significantly associated with the survival of TNBC patients and may serve as biomarkers and therapeutic targets for TNBC prognosis.
Collapse
|
44
|
Venetis K, Invernizzi M, Sajjadi E, Curigliano G, Fusco N. Cellular immunotherapy in breast cancer: The quest for consistent biomarkers. Cancer Treat Rev 2020; 90:102089. [PMID: 32889360 DOI: 10.1016/j.ctrv.2020.102089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common malignancy in women worldwide, with a relatively high proportion of patients experiencing resistance to standard treatments. Cellular immunotherapy (CI), which is based on the extraction, modification, and re-infusion of the patient's immune cells, is showing promising results in these patients. Among CI possible approaches, adoptive cell therapy (ACT) and dendritic cell (DC) vaccination are the most comprehensively explored in both primary/translational research studies and clinical trials. ACT may include the use of tumor-infiltrating lymphocytes (TILs), T cell receptor (TCR)-, or chimeric antigen receptor (CAR)-engineered T-cells. There are indications suggesting that a biomarker-based approach might be beneficial in effectively selecting breast cancer patients for CI. Here, we sought to provide the current knowledge of CI in breast cancer, focusing on candidate biomarkers, ongoing clinical trials, limitations, and immediate future perspectives.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Ph.D. Program in Translational Medicine, University of Milan, 20133 Milan, Italy; Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Elham Sajjadi
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| |
Collapse
|
45
|
Cellular Mechanisms of Circulating Tumor Cells During Breast Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21145040. [PMID: 32708855 PMCID: PMC7404335 DOI: 10.3390/ijms21145040] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary site and travel in the blood stream. A higher number of CTCs increases the risk of breast cancer metastasis, and it is inversely associated with the survival rates of patients with breast cancer. Although the numbers of CTCs are generally low and the majority of CTCs die in circulation, the survival of a few CTCs can seed the development of a tumor at a secondary location. An increasing number of studies demonstrate that CTCs undergo modification in response to the dynamic biophysical environment in the blood due in part to fluid shear stress. Fluid shear stress generates reactive oxygen species (ROS), triggers redox-sensitive cell signaling, and alters the function of intracellular organelles. In particular, the mitochondrion is an important target organelle in determining the metastatic phenotype of CTCs. In healthy cells, mitochondria produce adenosine triphosphate (ATP) via oxidative phosphorylation in the electron transport chain, and during oxidative phosphorylation, they produce physiological levels of ROS. Mitochondria also govern death mechanisms such as apoptosis and mitochondrial permeability transition pore opening to, in order eliminate unwanted or damaged cells. However, in cancer cells, mitochondria are dysregulated, causing aberrant energy metabolism, redox homeostasis, and cell death pathways that may favor cancer invasiveness. In this review, we discuss the influence of fluid shear stress on CTCs with an emphasis on breast cancer pathology, then discuss alterations of cellular mechanisms that may increase the metastatic potentials of CTCs.
Collapse
|
46
|
Sala-Gaston J, Martinez-Martinez A, Pedrazza L, Lorenzo-Martín LF, Caloto R, Bustelo XR, Ventura F, Rosa JL. HERC Ubiquitin Ligases in Cancer. Cancers (Basel) 2020; 12:cancers12061653. [PMID: 32580485 PMCID: PMC7352365 DOI: 10.3390/cancers12061653] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
HERC proteins are ubiquitin E3 ligases of the HECT family. The HERC subfamily is composed of six members classified by size into large (HERC1 and HERC2) and small (HERC3-HERC6). HERC family ubiquitin ligases regulate important cellular processes, such as neurodevelopment, DNA damage response, cell proliferation, cell migration, and immune responses. Accumulating evidence also shows that this family plays critical roles in cancer. In this review, we provide an integrated view of the role of these ligases in cancer, highlighting their bivalent functions as either oncogenes or tumor suppressors, depending on the tumor type. We include a discussion of both the molecular mechanisms involved and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Rubén Caloto
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
- Correspondence:
| |
Collapse
|
47
|
Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells. Mol Med Rep 2020; 22:1213-1226. [PMID: 32627003 PMCID: PMC7339712 DOI: 10.3892/mmr.2020.11240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/28/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation associated with cancer is characterized by the production of different types of chemokines and cytokines. In cancer, numerous signaling pathways upregulate the expression levels of several cytokines and evolve cells to the neoplastic state. Therefore, targeting these signaling pathways through the inhibition of distinctive gene expression is a primary target for cancer therapy. The present study investigated the anticancer effects of the natural polyphenol gossypol (GOSS) in triple-negative breast cancer (TNBC) cells, the most aggressive breast cancer type with poor prognosis. GOSS effects were examined in two TNBC cell lines: MDA-MB-231 (MM-231) and MDA-MB-468 (MM-468), representing Caucasian Americans (CA) and African Americans (AA), respectively. The obtained IC50s revealed no significant difference between the two cell lines' response to the compound. However, the use of microarray assays for cytokine determination indicated the ability of GOSS to attenuate the expression levels of cancer-related cytokines in the two cell lines. Although GOSS did not alter CCL2 expression in MM-468 cells, it was able to cause 30% inhibition in TNF-α-stimulated MM-231 cells. Additionally, IL-8 was not altered by GOSS treatment in MM-231 cells, while its expression was inhibited by 60% in TNF-α-activated MM-468 cells. ELISA assays supported the microarray data and indicated that CCL2 expression was inhibited by 40% in MM-231 cells, and IL-8 expression was inhibited by 50% in MM-468 cells. Furthermore, in MM-231 cells, GOSS inhibited CCL2 release via the repression of IKBKE, CCL2 and MAPK1 gene expression. Additionally, in MM-468 cells, the compound downregulated the release of IL-8 through repressing IL-8, MAPK1, MAPK3, CCDC88A, STAT3 and PIK3CD gene expression. In conclusion, the data obtained in the present study indicate that the polyphenol compound GOSS may provide a valuable tool in TNBC therapy.
Collapse
|
48
|
Qu Z, Lin Y, Mok DKW, Bian Q, Tai WCS, Chen S. Arnicolide D Inhibits Triple Negative Breast Cancer Cell Proliferation by Suppression of Akt/mTOR and STAT3 Signaling Pathways. Int J Med Sci 2020; 17:1482-1490. [PMID: 32669950 PMCID: PMC7359397 DOI: 10.7150/ijms.46925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is a most dangerous breast cancer subtype. The naturally occurring sesquiterpene lactone, arnicolide D (AD), has proven effective against a variety of tumors, however, the inhibitory effects of AD against TNBC and the underlying mechanisms remain unclear. In the present study, two TNBC cell lines (MDA-MB-231 and MDA-MB-468) and an MDA-MB-231 xenograft mouse model were employed to investigate the anti-TNBC effects of AD in vitro and in vivo. Cell viability was assessed by MTT assay. Cell cycle arrest and apoptosis were analyzed by flow cytometry. Protein levels were determined by immunoblotting. In vitro studies demonstrated that AD significantly decreased cell viability, and induced G2/M cell cycle arrest and apoptosis. In vivo assays showed that oral administration of 25 or 50 mg/kg AD for 22 days led to a reduction of tumor weights by 24.7% or 41.0%, without appreciable side effects. Mechanistically, AD inhibited the activation of Akt/mTOR and STAT3 signaling pathways. Based on our findings, AD is a promising candidate for development as an adjunctive therapeutic drug for TNBC.
Collapse
Affiliation(s)
- Zhao Qu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
| | - Yushan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| | - Qingya Bian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - William Chi-Shing Tai
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
49
|
Zhang Y, Yan WT, Yang ZY, Li YL, Tan XN, Jiang J, Zhang Y, Qi XW. The role of WT1 in breast cancer: clinical implications, biological effects and molecular mechanism. Int J Biol Sci 2020; 16:1474-1480. [PMID: 32210734 PMCID: PMC7085227 DOI: 10.7150/ijbs.39958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Although Wilms' tumor gene 1 (WT1) was first cloned and identified as a tumor suppressor gene in nephroblastoma, subsequent studies have demonstrated that it can also play an oncogenic role in leukemia and various solid tumors. WT1 exerts biological functions with high tissue- and cell-specificity. This article reviews the relationship between WT1 and breast cancer from two aspects: (1) clinical application of WT1, including the relationship between expression of WT1 and prognosis of breast cancer patients, and its effectiveness as a target for comprehensive therapy of breast cancer; (2) the biological effects and molecular mechanisms of WT1 in the development and progression of breast cancer, including proliferation, apoptosis, invasion, and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Wen-Ting Yan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ze-Yu Yang
- Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400013, China
| | - Yan-Ling Li
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Jiang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
50
|
Li Y, Sandusky ZM, Vemula R, Zhang Q, Wu B, Fukuda S, Li M, Lannigan DA, O'Doherty GA. Regioselective Synthesis of a C-4'' Carbamate, C-6'' n-Pr Substituted Cyclitol Analogue of SL0101. Org Lett 2020; 22:1448-1452. [PMID: 32009414 DOI: 10.1021/acs.orglett.0c00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An asymmetric synthesis of two analogues of SL0101 (1) has been achieved. The effort is aimed at the discovery of inhibitors of the p90 ribosomal S6 kinase (RSK) with improved bioavailability. The route relies upon the use of the Taylor catalyst to regioselectively install C-3″ acetyl or carbamate functionality. This study led to the identification of a third-generation analogue of SL0101 with a C-4″ n-Pr-carbamate and a C-3″ acetate with improved RSK inhibitory activity.
Collapse
Affiliation(s)
- Yu Li
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Zachary M Sandusky
- Department of Pathology, Microbiology & Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Rajender Vemula
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Qi Zhang
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Bulan Wu
- Division of Natural Sciences, College of Natural & Applied Sciences , University of Guam , Mangilao , Guam 96923
| | - Shinji Fukuda
- Department of Pathology, Microbiology & Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center , Ehime University , Toon , Ehime 791-0295 , Japan.,Department of Biochemistry and Molecular Genetics , Ehime University Graduate School of Medicine , Toon , Ehime 791-0295 , Japan
| | - Mingzong Li
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Deborah A Lannigan
- Department of Pathology, Microbiology & Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States.,Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37232 , United States.,Department of Cell and Developmental Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|