1
|
Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q, Zhou JL. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer 2024; 23:229. [PMID: 39395984 PMCID: PMC11470719 DOI: 10.1186/s12943-024-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
2
|
Ai JY, Liu CF, Zhang W, Rao GW. Current status of drugs targeting PDGF/PDGFR. Drug Discov Today 2024; 29:103989. [PMID: 38663580 DOI: 10.1016/j.drudis.2024.103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/30/2024]
Abstract
As an important proangiogenic factor, platelet-derived growth factor (PDGF) and its receptor PDGFR are highly expressed in a variety of tumors, fibrosis, cardiovascular and neurodegenerative diseases. Targeting the PDGF/PDGFR pathway is therefore a promising therapeutic strategy. At present, a variety of PDGF/PDGFR targeted drugs with potential therapeutic effects have been developed, mainly including PDGF agonists, inhibitors targeting PDGFR and proteolysis targeting chimera (PROTACs). This review clarifies the structure, biological function and disease correlation of PDGF and PDGFR, and it discusses the current status of PDGFR-targeted drugs, so as to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
3
|
Huang X, Liu Y, Chen J, Zheng H, Ding Y, He Z. Therapeutic Drug Monitoring of Imatinib and N-Desmethyl Imatinib in Chronic Myeloid Leukemia Patients Using LC-MS/MS in a Cohort Study. J Clin Pharmacol 2023; 63:1438-1447. [PMID: 37563838 DOI: 10.1002/jcph.2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Imatinib is an oral tyrosine kinase inhibitor (TKI) and first-line therapy for patients with chronic myeloid leukemia (CML). There is a positive correlation between serum imatinib concentrations and treatment response. However, the specific relationship between the blood concentration of imatinib and its influencing factors remains unclear. This study collected basic information from 102 patients using imatinib as first-line treatment for CML. Further, we analyzed the individual differences in imatinib concentration and explored its influencing factors. Through intra-day and inter-day precision studies, we found that the precision for the imatinib assay methodology was within ±13% and that the recovery rate was above 85%. There is notable individual variation in the blood concentration of imatinib; the recommended treatment concentration is 860-1500 ng/mL, with only 41.40% of patients achieving this concentration. Also, there was a negative correlation between age and imatinib trough concentration (Ctrough ), as is observed between age and N-desmethyl imatinib. Moreover, compared with the adolescent group, the serum imatinib Ctrough for groups aged 17-47 and 48-68 years was significantly reduced. Further analysis shows that imatinib Ctrough values reaching therapeutic concentrations (59%) increased dramatically for patients with CML aged 17-47 years. Moreover, groups dosed with 400 mg/day resulted in therapeutic imatinib concentrations for 68% of patients with CML, which was the best performance. The established method was validated, with acceptable accuracy, precision, linearity, and stability, as required, and then successfully applied to the therapeutic drug monitoring of imatinib. Age, dose, and metabolites can influence the imatinib concentration and its therapeutic effect in patients with CML.
Collapse
Affiliation(s)
- Xiaoxing Huang
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiwei Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Ding
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Voltà-Durán E, Alba-Castellón L, Serna N, Casanova I, López-Laguna H, Gallardo A, Sánchez-Chardi A, Villaverde A, Unzueta U, Vázquez E, Mangues R. High-precision targeting and destruction of cancer-associated PDGFR-β + stromal fibroblasts through self-assembling, protein-only nanoparticles. Acta Biomater 2023; 170:543-555. [PMID: 37683965 DOI: 10.1016/j.actbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The need for more effective and precision medicines for cancer has pushed the exploration of new materials appropriate for drug delivery and imaging, and alternative receptors for targeting. Among the most promising strategies, finding suitable cell surface receptors and targeting agents for cancer-associated platelet derived growth factor receptor β (PDGFR-β)+ stromal fibroblasts is highly appealing. As a neglected target, this cell type mechanically and biologically supports the growth, progression, and infiltration of solid tumors in non-small cell lung, breast, pancreatic, and colorectal cancers. We have developed a family of PDGFR-β-targeted nanoparticles based on biofabricated, self-assembling proteins, upon hierarchical and iterative selective processes starting from four initial candidates. The modular protein PDGFD-GFP-H6 is well produced in recombinant bacteria, resulting in structurally robust oligomeric particles that selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. Upon in vivo administration, these GFP-carrying protein nanoparticles precisely accumulate in tumor tissues and enlighten them for IVIS observation. When GFP is replaced by a microbial toxin, selective tumor tissue destruction is observed associated with a significant reduction in tumor volume growth. The presented data validate the PDGFR-β/PDGFD pair as a promising toolbox for targeted drug delivery in the tumor microenvironment and oligomeric protein nanoparticles as a powerful instrument to mediate highly selective biosafe targeting in cancer through non-cancer cells. STATEMENT OF SIGNIFICANCE: We have developed a transversal platform for nanoparticle-based drug delivery into cancer-associated fibroblasts. This is based on the engineered modular protein PDGFD-GFP-H6 that spontaneously self-assemble and selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. In vivo, these protein nanoparticles accumulate in tumor and when incorporating a microbial toxin, they destroy tumor tissues with a significant reduction in tumor volume, in absence of side toxicities. The data presented here validate the PDGFR-β/PDGFD pair as a fully versatile toolbox for targeted drug delivery in the tumor microenvironment intended as a synergistic treatment.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Lorena Alba-Castellón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain.
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Alberto Gallardo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain.
| |
Collapse
|
5
|
Li L, Wu D, Qin X, Mi LZ. PDGF-D Prodomain Differentially Inhibits the Biological Activities of PDGF-D and PDGF-B. J Mol Biol 2022; 434:167709. [PMID: 35777468 DOI: 10.1016/j.jmb.2022.167709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
As a member of PDGF/VEGF (Platelet-derived growth factor/ Vascular endothelial growth factor) growth factors, PDGF-D regulates blood vessel development, wound healing, innate immunity, and organogenesis. Unlike PDGF-A and PDGF-B, PDGF-D has an additional CUB (Complement C1r/C1s, Uegf, Bmp1) domain at the N-terminus of its growth factor domain, and thus it is secreted in a latent, inactive complex, which needs to be proteolytically activated for its biological activities. However, how the CUB domain contributes to the latency and activation of the growth factor remains elusive. In this study, we modeled the dimeric structure of PDGF-D pro-complex and studied the inhibitory functions of PDGF-D prodomain on PDGF-B and PDGF-D signaling. In our model, the growth factor domain of PDGF-D forms a VEGF-D-like dimer through their β1 and β3 interactions. The hinge and CUB domains of PDGF-D bind at the opposite sides of the growth factor domain and exclude the PDGFR-β (PDGF Receptor β) D2 and D3 domains from recognizing the growth factor. In addition, we verified that PDGF-D prodomain could inhibit both PDGF-B and PDGF-D mediated PDGFR-β transphosphorylation in a dose-dependent manner. However, PDGF-D prodomain could only inhibit the proliferation of NIH 3T3 cells stimulated by PDGF-D but not by PDGF-B, indicating its differential inhibitory activities toward PDGF-B and PDGF-D signaling.
Collapse
Affiliation(s)
- Linli Li
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Dan Wu
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Xiaohong Qin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.
| | - Li-Zhi Mi
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
6
|
Klose K, Packeiser EM, Granados-Soler JL, Hewicker-Trautwein M, Murua Escobar H, Nolte I. Evaluation of the therapeutic potential of masitinib and expression of its specific targets c-Kit, PDGFR-α, PDGFR-β, and Lyn in canine prostate cancer cell lines. Vet Comp Oncol 2022; 20:641-652. [PMID: 35384248 DOI: 10.1111/vco.12817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Canine prostate cancer is classified into adenocarcinoma, transitional cell carcinoma with prostatic involvement, and mixed forms. Early metastatic spread leads to poor prognosis and limited treatment options. Masitinib is approved for the treatment of canine mast cell tumours and inhibits tyrosine kinase c-Kit, tyrosine-protein kinase Lyn (Lyn), and platelet-derived growth factor receptors alpha and beta (PDGFR-α, PDGFR-β), which are known to be expressed in canine prostate cancer. The aim of this study was to evaluate masitinib in an in vitro model consisting of cell lines from primary prostate adenocarcinoma, the associated lymph node metastasis of the same patient, and transitional cell carcinoma. To assess the suitability of the model system, the targets of masitinib were investigated by immunocytochemistry in the cell lines and by immunohistochemistry in the respective formalin-fixed, paraffin-embedded (FFPE) original neoplastic tissue. After exposure to masitinib, cell viability, cell count, apoptosis induction, and protein expression of c-Kit, Lyn, PDGFR-α, and PDGFR-β were assessed. To hedge the efficacy, two application protocols of masitinib (single application or 12-h double-dose regimen) were compared. Immunocytochemical and immunohistochemical analysis revealed increased Lyn, PDGFR-α, and PDGFR-β expression in cell lines and FFPE original neoplastic tissue compared to healthy prostate tissue. Masitinib exposure increased apoptosis, while the cell counts and cell viability decreased in a dose- and application interval-dependent manner, with increased impact in the 12-h double-dose regimen. These in vitro effects of masitinib in canine prostate cancer and associated metastasis support further in vivo research and modifications of the clinical treatment protocol in future studies.
Collapse
Affiliation(s)
- Katharina Klose
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | - Hugo Murua Escobar
- Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, University of Rostock, Rostock, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
7
|
Kim HR, Jin HS, Eom YB. Metabolite Genome-Wide Association Study for Indoleamine 2,3-Dioxygenase Activity Associated with Chronic Kidney Disease. Genes (Basel) 2021; 12:1905. [PMID: 34946851 PMCID: PMC8701662 DOI: 10.3390/genes12121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) causes progressive damage to kidney function with increased inflammation. This process contributes to complex amino acid changes. Indoleamine 2,3-dioxygenase (IDO) has been proposed as a new biomarker of CKD in previous studies. In our research, we performed a metabolite genome-wide association study (mGWAS) to identify common and rare variants associated with IDO activity in a Korean population. In addition, single-nucleotide polymorphisms (SNPs) selected through mGWAS were further analyzed for associations with the estimated glomerular filtration rate (eGFR) and CKD. A total of seven rare variants achieved the genome-wide significance threshold (p < 1 × 10-8). Among them, four genes (TNFRSF19, LOC105377444, LOC101928535, and FSTL5) associated with IDO activity showed statistically significant associations with eGFR and CKD. Most of these rare variants appeared specifically in an Asian geographic region. Furthermore, 15 common variants associated with IDO activity were detected in this study and five novel genes (RSU1, PDGFD, SNX25, LOC107984031, and UBASH3B) associated with CKD and eGFR were identified. This study discovered several loci for IDO activity via mGWAS and provided insight into the underlying mechanisms of CKD through association analysis with CKD. To the best of our knowledge, this is the first study to suggest a genetic link between IDO activity and CKD through comparative and integrated analysis.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Chungnam, Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Chungnam, Korea
| |
Collapse
|
8
|
Yamasaki K, Mukai S, Nagai T, Nakahara K, Fujii M, Terada N, Ohno A, Sato Y, Toda Y, Kataoka H, Kamoto T. Matriptase-Induced Phosphorylation of MET is Significantly Associated with Poor Prognosis in Invasive Bladder Cancer; an Immunohistochemical Analysis. Int J Mol Sci 2018; 19:ijms19123708. [PMID: 30469509 PMCID: PMC6321379 DOI: 10.3390/ijms19123708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte growth factor (HGF) plays an important role in cancer progression via phosphorylation of MET (c-met proto-oncogene product, receptor of HGF). HGF-zymogen (pro-HGF) must be processed for activation by HGF activators including matriptase, which is a type II transmembrane serine protease and the most efficient activator. The enzymatic activity is tightly regulated by HGF activator inhibitors (HAIs). Dysregulated pro-HGF activation (with upregulated MET phosphorylation) is reported to promote cancer progression in various cancers. We retrospectively analyzed the expression of matriptase, phosphorylated-MET (phospho-MET) and HAI-1 in tumor specimens obtained from patients with invasive bladder cancer by immunohistochemistry. High expression of phospho-MET and increased expression of matriptase were significantly associated with poor prognosis, and high matriptase/low HAI-1 expression showed poorer prognosis. Furthermore, high expression of matriptase tended to correlate with phosphorylation of MET. Increased expression of matriptase may induce the ligand-dependent activation of MET, which leads to poor prognosis in patients with invasive bladder cancer.
Collapse
Affiliation(s)
- Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Takahiro Nagai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Kozue Nakahara
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Masato Fujii
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Akinobu Ohno
- Section of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Yuichiro Sato
- Section of Diagnostic Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Yoshinobu Toda
- Department of Clinical Laboratory Science, Tenri Health Care University, Nara 632-0018, Japan.
| | - Hiroaki Kataoka
- Oncopathology and Regenerative Biology Section, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| |
Collapse
|
9
|
Lu L, Fu X, Li Z, Qiu Y, Li W, Zhou Z, Xue W, Wang Y, Jin M, Zhang M. Platelet-derived growth factor receptor alpha (PDGFRα) is overexpressed in NK/T-cell lymphoma and mediates cell survival. Biochem Biophys Res Commun 2018; 504:525-531. [PMID: 30201265 DOI: 10.1016/j.bbrc.2018.08.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022]
Abstract
Nasal-type natural killer/T-cell lymphoma (NKTCL) is a subtype of non-Hodgkin lymphoma (NHL) that is clinically aggressive and has a poor prognosis. Platelet-derived growth factor receptors (PDGFRs) and their ligands (PDGFs) play important roles in angiogenesis, cancer cell proliferation, survival, migration and poor prognosis in various tumours. However, the significance of PDGFRs in NKTCL remains unknown. Herein, the present study aimed to investigate the important role of PDGFRα in pathogenesis, progression and prognisis of NKTCL. Firstly, we performed immunohistochemical staining, qRT-PCR and western blotting to determine PDGFRα expression in formalin-fixed, paraffin-embedded tissue sections from 78 NKTCL cases and in cell lines. Secondly, correlations between PDGFRα expression and NKTCL clinical parameters and prognosis were analysed. Moreover, a biological assessment of PDGFRα blockade in two NKTCL cell lines was conducted through proliferation assay, cell-cycle evaluation and apoptosis detection by flow cytometry analyses. Furthermore, we detected in vivo activity of imatinib in mouse model of NKTCL. We found that the expression of PDGFRα was significantly higher in NKTCL tissues compared to the reactive lymphoid hyperplasia of the nasopharynx (P = 0.028). High PDGFRα expression was strongly associated with a high LDH level (P = 0.028) and III-IV stage (P = 0.013). NKTCL patients with high PDGFRα expression displayed a reduced median overall survival time and progression-free survival time when compared with those with low PDGFRα expression (P = 0.011, P = 0.005, respectively). Cox multivariate analysis showed that III-IV stage (P = 0.024) and high PDGFRα expression (P = 0.003) were independent prognostic factors in NKTCL patients. Biological assessment assays in two NKTCL cell lines revealed that a specific PDGFR antagonist, imatinib, inhibited cell viability, blocked cell cycle progression at G0/G1 stage and induced apoptosis. Similarly, the in vivo assay showed that imatinib delayed mouse model tumour growth. In conclusion, NKTCL tumour cells have prominent PDGFRα expression, which can serve as a candidate prognostic marker. PDGFR antagonists have significant biological effect on NKTCL and may be useful therapeutic agents for treatment of NKTCL.
Collapse
Affiliation(s)
- Lisha Lu
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xiaorui Fu
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zhaoming Li
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yajuan Qiu
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Weiming Li
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zhiyuan Zhou
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Weili Xue
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yingjun Wang
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Mengyuan Jin
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Mingzhi Zhang
- Lymphoma Diagnosis and Treatment Center, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
10
|
Skarmoutsos A, Skarmoutsos I, Katafigiotis I, Tataki E, Giagini A, Alamanis C, Anastasiou I, Angelou A, Duvdevani M, Sitaras N, Constantinides C. Detecting Novel Urine Biomarkers for the Early Diagnosis of Prostate Cancer: Platelet Derived Growth Factor-BB as a Possible New Target. Curr Urol 2018; 12:13-19. [PMID: 30374275 DOI: 10.1159/000447225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction Although the prostate specific antigen revolutionized the diagnosis of prostate cancer (PCa), it has its limitations. We prospectively examined the potential use of the platelet-derived growth factor-BB (PDGF-BB) as a urine biomarker for the early diagnosis of PCa. Materials and Methods The urine samples of 118 patients were collected after a prostatic massage and all the patients subsequently underwent ultrasound-guided transrectal biopsy. PDGF-BB was detected in the urine by enzyme-linked immunosorbent assay. Results Patients with PCa had greater levels of prostate specific antigen and PDGF-BB. Receiver operating characteristic curve analysis showed that the optimal cut-of of PDGF-BB for the prediction of PCa was 1,504.9 with a sensitivity of 60% and a specificity of 51.3%. For a 100 unit increase in PDGF-BB, the likelihood for PCa increased about 4%. Conclusion PDGF-BB showed a significant predictive ability for PCa. Detection of PDGF-BB in urine with Elisa was easy and improved our diagnostic accuracy in the diagnosis of PCa.
Collapse
Affiliation(s)
| | - Ioannis Skarmoutsos
- First University Urology Clinic Laiko Hospital, University of Athens, Athens, Greece
| | - Ioannis Katafigiotis
- First University Urology Clinic Laiko Hospital, University of Athens, Athens, Greece.,Department of Urology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Elisavet Tataki
- First University Urology Clinic Laiko Hospital, University of Athens, Athens, Greece
| | - Athina Giagini
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Alamanis
- First University Urology Clinic Laiko Hospital, University of Athens, Athens, Greece
| | - Ioannis Anastasiou
- First University Urology Clinic Laiko Hospital, University of Athens, Athens, Greece
| | - Anastasios Angelou
- First University Urology Clinic Laiko Hospital, University of Athens, Athens, Greece
| | - Mordechai Duvdevani
- Department of Urology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Nikolaos Sitaras
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
11
|
Yamasaki K, Mukai S, Sugie S, Nagai T, Nakahara K, Kamibeppu T, Sakamoto H, Shibasaki N, Terada N, Toda Y, Kataoka H, Kamoto T. Dysregulated HAI-2 Plays an Important Role in Renal Cell Carcinoma Bone Metastasis through Ligand-Dependent MET Phosphorylation. Cancers (Basel) 2018; 10:cancers10060190. [PMID: 29890660 PMCID: PMC6025049 DOI: 10.3390/cancers10060190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
MET, a c-met proto-oncogene product and hepatocyte growth factor (HGF) receptor, is known to play an important role in cancer progression, including bone metastasis. In a previous study, we reported increased expression of MET and matriptase, a novel activator of HGF, in bone metastasis. In this study, we employed a mouse model of renal cell carcinoma (RCC) bone metastasis to clarify the significance of the HGF/MET signaling axis and the regulator of HGF activator inhibitor type-2 (HAI-2). Luciferase-transfected 786-O cells were injected into the left cardiac ventricle of mice to prepare the mouse model of bone metastasis. The formation of bone metastasis was confirmed by whole-body bioluminescent imaging, and specimens were extracted. Expression of HGF/MET-related molecules was analyzed. Based on the results, we produced HAI-2 stable knockdown 786-O cells, and analyzed invasiveness and motility. Expression of HGF and matriptase was increased in bone metastasis compared with the control, while that of HAI-2 was decreased. Furthermore, we confirmed increased phosphorylation of MET in bone metastasis. The expression of matriptase was upregulated, and both invasiveness and motility were increased significantly by knockdown of HAI-2. The significance of ligand-dependent MET activation in RCC bone metastasis is considered, and HAI-2 may be an important regulator in this system.
Collapse
Affiliation(s)
- Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Satoru Sugie
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Takahiro Nagai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Kozue Nakahara
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Toyoharu Kamibeppu
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Hiromasa Sakamoto
- Department of Urology, Faculty of Medicine, University of Kyoto, Kyoto 606-8507, Japan.
| | - Noboru Shibasaki
- Department of Urology, Faculty of Medicine, University of Kyoto, Kyoto 606-8507, Japan.
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Yoshinobu Toda
- Department of Clinical Laboratory Science, Tenri Health Care University, Nara 632-0018, Japan.
| | - Hiroaki Kataoka
- Oncopathology and Regenerative Biology Section, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| |
Collapse
|
12
|
D'Arcangelo D, Facchiano F, Nassa G, Stancato A, Antonini A, Rossi S, Senatore C, Cordella M, Tabolacci C, Salvati A, Tarallo R, Weisz A, Facchiano AM, Facchiano A. PDGFR-alpha inhibits melanoma growth via CXCL10/IP-10: a multi-omics approach. Oncotarget 2018; 7:77257-77275. [PMID: 27764787 PMCID: PMC5363585 DOI: 10.18632/oncotarget.12629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma is the most aggressive skin-cancer, showing high mortality at advanced stages. Platelet Derived Growth Factor Receptor-alpha (PDGFR-alpha) potently inhibits melanoma- and endothelium-proliferation and its expression is significantly reduced in melanoma-biopsies, suggesting that melanoma progression eliminates cells expressing PDGFR-alpha. In the present study transient overexpression of PDGFR-alpha in endothelial (HUVEC) and melanoma (SKMel-28, A375, Preyer) human-cells shows strong anti-proliferative effects, with profound transcriptome and miRNome deregulation. PDGFR-alpha overexpression strongly affects expression of 82 genes in HUVEC (41 up-, 41 down-regulated), and 52 genes in SKMel-28 (43 up-, 9 down-regulated). CXCL10/IP-10 transcript showed up to 20 fold-increase, with similar changes detectable at the protein level. miRNA expression profiling in cells overexpressing PDGFR-alpha identified 14 miRNAs up- and 40 down-regulated, with miR-503 being the most down-regulated (6.4 fold-reduction). miR-503, miR-630 and miR-424 deregulation was confirmed by qRT-PCR. Interestingly, the most upregulated transcript (i.e., CXCL10/IP-10) was a validated miR-503 target and CXCL10/IP-10 neutralization significantly reverted the anti-proliferative action of PDGFR-alpha, and PDGFR-alpha inhibition by Dasatinb totally reverted the CXCL10/IP10 induction, further supporting a functional interplay of these factors. Finally, integration of transcriptomics and miRNomics data highlighted several pathways affected by PDGFR-alpha. This study demonstrates for the first time that PDGFR-alpha strongly inhibits endothelial and melanoma cells proliferation in a CXCL10/IP-10 dependent way, via miR-503 down-regulation.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Francesco Facchiano
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery,University of Salerno, Baronissi (SA), Italy.,Genomix4Life srl, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Andrea Stancato
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Annalisa Antonini
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Stefania Rossi
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Senatore
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Cordella
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery,University of Salerno, Baronissi (SA), Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery,University of Salerno, Baronissi (SA), Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery,University of Salerno, Baronissi (SA), Italy
| | | | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| |
Collapse
|
13
|
Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 2018; 283:16-44. [PMID: 28940884 DOI: 10.1111/joim.12690] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet-derived growth factor (PDGF) isoforms and their receptors have important roles during embryogenesis, particularly in the development of various mesenchymal cell types in different organs. In the adult, PDGF stimulates wound healing and regulates tissue homeostasis. However, overactivity of PDGF signalling is associated with malignancies and other diseases characterized by excessive cell proliferation, such as fibrotic conditions and atherosclerosis. In certain tumours, genetic or epigenetic alterations of the genes for PDGF ligands and receptors drive tumour cell proliferation and survival. Examples include the rare skin tumour dermatofibrosarcoma protuberance, which is driven by autocrine PDGF stimulation due to translocation of a PDGF gene, and certain gastrointestinal stromal tumours and leukaemias, which are driven by constitute activation of PDGF receptors due to point mutations and formation of fusion proteins of the receptors, respectively. Moreover, PDGF stimulates cells in tumour stroma and promotes angiogenesis as well as the development of cancer-associated fibroblasts, both of which promote tumour progression. Inhibitors of PDGF signalling may thus be of clinical usefulness in the treatment of certain tumours.
Collapse
Affiliation(s)
- C-H Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - B Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Satow R, Inagaki S, Kato C, Shimozawa M, Fukami K. Identification of zinc finger protein of the cerebellum 5 as a survival factor of prostate and colorectal cancer cells. Cancer Sci 2017; 108:2405-2412. [PMID: 29024195 PMCID: PMC5715345 DOI: 10.1111/cas.13419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Identification of specific drug targets is very important for cancer therapy. We recently identified zinc finger protein of the cerebellum 5 (ZIC5) as a factor that promotes melanoma aggressiveness by platelet-derived growth factor D (PDGFD) expression. However, its roles in other cancer types remain largely unknown. Here we determined the roles of ZIC5 in prostate cancer (PCa) and colorectal cancer (CRC) cells. Results showed that ZIC5 was highly expressed in CRC and dedifferentiated PCa tissues, whereas little expression was observed in relevant normal tissues. Knockdown of ZIC5 decreased proliferation of several PCa and CRC cell lines with induction of cell death. ZIC5 knockdown significantly suppressed PDGFD expression transcriptionally, and PDGFD suppression also decreased proliferation of PCa and CRC cell lines. In addition, suppression of ZIC5 or PDGFD expression decreased levels of phosphorylated focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) which are associated with PCa and CRC aggressiveness. Furthermore, knockdown of ZIC5 or PDGFD enhanced death of PCa and CRC cells induced by the anti-cancer drugs docetaxel or oxaliplatin, respectively. These results suggest that ZIC5 and PDGFD promote survival of PCa and CRC cells by enhancing FAK and STAT3 activity, and that the roles of ZIC5 are consistent across several cancer types.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Shota Inagaki
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chiaki Kato
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Makoto Shimozawa
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
15
|
Kazlauskas A. PDGFs and their receptors. Gene 2017; 614:1-7. [PMID: 28267575 DOI: 10.1016/j.gene.2017.03.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/28/2023]
Abstract
The platelet-derived growth factor (PDGF)/PDGFR receptor (PDGFR) family is essential for a vast array of physiological processes such as migration and proliferation of percityes that contribute to the formation and proper function of blood vessels. While ligand-dependent de-repression of the PDGFR's kinase activity is the major mode by which the PDGFR is activated, there are additional mechanisms to activate PDGFRs. Deregulated PDGFR activity contributes to various pathological conditions, and hence the PDGF/PDGFR family members are viable therapeutic targets. An increased appreciation of which PDGFR contributes to pathology, biomarkers that indicate the amplitude and mode of activation, and receptor-specific antagonists are necessary for the development of next-generation therapies that target the PDGF/PDGFR family.
Collapse
Affiliation(s)
- Andrius Kazlauskas
- Schepens Eye Research Institute, Massachusetts Eye and Ear Institute, 20 Staniford St, Boston, MA 02114, United States.
| |
Collapse
|
16
|
Kadivar A, Kamalidehghan B, Akbari Javar H, Karimi B, Sedghi R, Noordin MI. Antiproliferation effect of imatinib mesylate on MCF7, T-47D tumorigenic and MCF 10A nontumorigenic breast cell lines via PDGFR-β, PDGF-BB, c-Kit and SCF genes. Drug Des Devel Ther 2017; 11:469-481. [PMID: 28260860 PMCID: PMC5327915 DOI: 10.2147/dddt.s124102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent cancer molecular therapies are targeting main functional molecules to control applicable process of cancer cells. Attractive targets are established by receptor tyrosine kinases, such as platelet-derived growth factor receptors (PDGFRs) and c-Kit as mostly irregular signaling, which is due to either over expression or mutation that is associated with tumorigenesis and cell proliferation. Imatinib mesylate is a selective inhibitor of receptor tyrosine kinase, including PDGFR-β and c-Kit. In this research, we studied how imatinib mesylate would exert effect on MCF7 and T-47D breast cancer and MCF 10A epithelial cell lines, the gene and protein expression of PDGFR-β, c-Kit and their relevant ligands platelet-derived growth factor (PDGF)-BB and stem cell factor (SCF). The MTS assay was conducted in therapeutic relevant concentration of 2-10 µM for 96, 120 and 144 h treatment. In addition, apoptosis induction and cytostatic activity of imatinib mesylate were investigated with the terminal deoxynucleotidyl transferase dUTP nick end labeling TUNEL and cell cycle assays, respectively, in a time-dependent manner. Comparative real-time PCR and Western blot analysis were conducted to evaluate the expression and regulation of imatinib target genes and proteins. Our finding revealed that imatinib mesylate antiproliferation effect, apoptosis induction and cytostatic activity were significantly higher in breast cancer cell lines compared to MCF 10A. This effect might be due to the expression of PDGFR-β, PDGF-BB, c-Kit and SCF, which was expressed by all examined cell lines, except the T-47D cell line which was not expressed c-Kit. However, examined gene and proteins expressed more in cancer cell lines. Therefore, imatinib mesylate was more effective on them. It is concluded that imatinib has at least two potential targets in both examined breast cancer cell lines and can be a promising drug for targeted therapy to treat breast cancer.
Collapse
Affiliation(s)
- Ali Kadivar
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Benyamin Karimi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Reihaneh Sedghi
- Faculty of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | | |
Collapse
|
17
|
Chen J, Yuan W, Wu L, Tang Q, Xia Q, Ji J, Liu Z, Ma Z, Zhou Z, Cheng Y, Shu X. PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway. Oncotarget 2017; 8:9961-9973. [PMID: 28035069 PMCID: PMC5354784 DOI: 10.18632/oncotarget.14283] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Platelet-derived growth factor-D (PDGF-D) plays a crucial role in the progression of several cancers. However, its role in colorectal cancer (CRC) remains unclear. Our study showed that PDGF-D was highly expressed in CRC tissues and was positively associated with the clinicopathological features. Down-regulation of PDGF-D inhibited the tumor growth, migration and angiogenesis of SW480 cells in vitro and in vivo. Whereas up-regulation of PDGF-D promoted the malignant behaviors of HCT116 cells. Moreover, PDGF-D up-regulated the expression of Notch1 and Twist1 in CRC cells. In addition, PDGF-D expression promoted Epithelial to mesenchymal transition (EMT), which was accompanied with decreased E-cadherin and increased Vimentin expression. Consistently, PDGF-D, Notch1, and Twist1 are obviously up-regulated in transforming growth factor-beta 1 (TGF-β1) treated HCT116 cells. Since Notch1 and Twist1 play an important role in EMT and tumor progression, we examined whether there is a correlation between Notch1 and Twist1 in EMT status. Our results showed that up-regulation of Notch1 was able to rescue the effects of PDGF-D down-regulation on Twist1 expression in SW480 cells, whereas down-regulation of Notch1 reduced Twist1 expression in HCT116 cells. Furthermore, we found that Twist1 promoted EMT and aggressiveness of CRC cells. These results suggest that PDGF-D promotes tumor growth and aggressiveness of CRC, moreover, down-regulation of PDGF-D inactivates Notch1/Twist1 axis, which could reverse EMT and prevent CRC progression.
Collapse
Affiliation(s)
- Jinhuang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintong Ji
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifeng Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Satow R, Nakamura T, Kato C, Endo M, Tamura M, Batori R, Tomura S, Murayama Y, Fukami K. ZIC5 Drives Melanoma Aggressiveness by PDGFD-Mediated Activation of FAK and STAT3. Cancer Res 2016; 77:366-377. [PMID: 27671679 DOI: 10.1158/0008-5472.can-16-0991] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
Abstract
Insights into mechanisms of drug resistance could extend the efficacy of cancer therapy. To probe mechanisms in melanoma, we performed siRNA screening of genes that mediate the development of neural crest cells, from which melanocytes are derived. Here, we report the identification of ZIC5 as a mediator of melanoma drug resistance. ZIC5 is a transcriptional suppressor of E-cadherin expressed highly in human melanoma. ZIC5 enhanced melanoma cell proliferation, survival, drug resistance, in vivo growth and metastasis. Microarray analysis revealed that ZIC5 downstream signaling included PDGFD and FAK activation, which contributes to drug resistance by enhancing STAT3 activation. Silencing of ZIC5 or PDGFD enhanced the apoptotic effects of BRAF inhibition and blocked survival of melanoma cells resistant to BRAF inhibitors. Furthermore, inhibition of FAK or STAT3 suppressed expression of ZIC5, which was positively regulated by PDGFD, FAK, and STAT3 in a positive feedback loop. Taken together, our results identify ZIC5 and PDGFD as candidate therapeutic targets to overcome drug resistance in melanoma. Cancer Res; 77(2); 366-77. ©2016 AACR.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Hachioji-shi, Tokyo, Japan
| | - Tomomi Nakamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Chiaki Kato
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Miku Endo
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Mana Tamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Ryosuke Batori
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Shiori Tomura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Yumi Murayama
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan. .,AMED-CREST, Japan Agency for Medical Research and Development, Hachioji-shi, Tokyo, Japan
| |
Collapse
|
19
|
Chen SC, Kuo PL. Bone Metastasis from Renal Cell Carcinoma. Int J Mol Sci 2016; 17:ijms17060987. [PMID: 27338367 PMCID: PMC4926516 DOI: 10.3390/ijms17060987] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 12/22/2022] Open
Abstract
About one-third of patients with advanced renal cell carcinoma (RCC) have bone metastasis that are often osteolytic and cause substantial morbidity, such as pain, pathologic fracture, spinal cord compression and hypercalcemia. The presence of bone metastasis in RCC is also associated with poor prognosis. Bone-targeted treatment using bisphosphonate and denosumab can reduce skeletal complications in RCC, but does not cure the disease or improve survival. Elucidating the molecular mechanisms of tumor-induced changes in the bone microenvironment is needed to develop effective treatment. The “vicious cycle” hypothesis has been used to describe how tumor cells interact with the bone microenvironment to drive bone destruction and tumor growth. Tumor cells secrete factors like parathyroid hormone-related peptide, transforming growth factor-β and vascular endothelial growth factor, which stimulate osteoblasts and increase the production of the receptor activator of nuclear factor κB ligand (RANKL). In turn, the overexpression of RANKL leads to increased osteoclast formation, activation and survival, thereby enhancing bone resorption. This review presents a general survey on bone metastasis in RCC by natural history, interaction among the immune system, bone and tumor, molecular mechanisms, bone turnover markers, therapies and healthcare burden.
Collapse
Affiliation(s)
- Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
20
|
Paximadis P, Najy AJ, Snyder M, Kim HR. The interaction between androgen receptor and PDGF-D in the radiation response of prostate carcinoma. Prostate 2016; 76:534-42. [PMID: 26732854 PMCID: PMC6864751 DOI: 10.1002/pros.23135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine the functional relationship between androgen receptor (AR) and PDGF D as it relates to the radiation response of PTEN-null prostate cancer (PCa) cells and the effect of enzalutamide on these interactions. METHODS AND MATERIALS Using murine PTEN-null prostate epithelial cell line and human prostate carcinoma LNCaP (PTEN-mutant) models, nuclear and cytosolic AR levels were determined by immunoblot analysis and the transcriptional activity of nuclear AR was assessed by RT-PCR analysis of its target genes with or without irradiation. Cell survival was evaluated by clonogenic assay or sulforhodamine B (SRB) assay upon irradiation in the absence or presence of the AR antagonist enzalutamide. RESULTS PTEN loss resulted in upregulation of AR expression in a PDGF-D dependent manner and irradiation selectively increased the nuclear AR protein level and its activity in a murine cell model. When the functional significance of AR in cell survival was tested, treatment with enzalutamide resulted in radiosensitization of human LNCaP cells. Similarly to the murine model, PDGF-D overexpression increased the nuclear AR level and its transcriptional activity in LNCaP cells. PDGF-D over-expression was associated with radioresistance and enzalutamide treatment effectively reversed PDGF-D-mediated radioresistance in LNCaP cells. CONCLUSIONS We have demonstrated that AR, a target of the PTEN and PDGF D-downstream signaling program, contributes to radiation resistance in human PCa cells. In addition, this study suggests that anti-androgens such as enzalutamide may serve as radiation sensitizers for the treatment of PCa patients, particularly so in patients with loss of PTEN or overexpression of PDGF-D.
Collapse
Affiliation(s)
- Peter Paximadis
- Department of Oncology - Division of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Abdo J. Najy
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Michael Snyder
- Department of Oncology - Division of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Hyeong-Reh Kim
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
- Correspondence to: Hyeong-Reh Kim, Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201.
| |
Collapse
|
21
|
Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:462363. [PMID: 26504486 PMCID: PMC4609422 DOI: 10.1155/2015/462363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer.
Collapse
|
22
|
Hye Kim J, Gyu Park S, Kim WK, Song SU, Sung JH. Functional regulation of adipose-derived stem cells by PDGF-D. Stem Cells 2015; 33:542-56. [PMID: 25332166 DOI: 10.1002/stem.1865] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/20/2022]
Abstract
Platelet-derived growth factor-D (PDGF-D) was recently identified, and acts as potent mitogen for mesenchymal cells. PDGF-D also induces cellular transformation and promotes tumor growth. However, the functional role of PDGF-D in adipose-derived stem cells (ASCs) has not been identified. Therefore, we primarily investigated the autocrine and paracrine roles of PDGF-D in this study. Furthermore, we identified the signaling pathways and the molecular mechanisms involved in PDGF-D-induced stimulation of ASCs. It is of interest that PDGF-B is not expressed, but PDGF-D and PDGF receptor-β are expressed in ASCs. PDGF-D showed the strongest mitogenic effect on ASCs, and PDGF-D regulates the proliferation and migration of ASCs through the PI3K/Akt pathways. PDGF-D also increases the proliferation and migration of ASCs through generation of mitochondrial reactive oxygen species (mtROS) and mitochondrial fission. mtROS generation and fission were mediated by p66Shc phosphorylation, and BCL2-related protein A1 and Serpine peptidase inhibitor, clade E, member 1 mediated the proliferation and migration of ASCs. In addition, PDGF-D upregulated the mRNA expression of diverse growth factors such as vascular endothelial growth factor A, fibroblast growth factor 1 (FGF1), FGF5, leukemia inhibitory factor, inhibin, beta A, interleukin 11, and heparin-binding EGF-like growth factor. Therefore, the preconditioning of PDGF-D enhanced the hair-regenerative potential of ASCs. PDGF-D-induced growth factor expression was attenuated by a pharmacological inhibitor of mitogen-activated protein kinase pathway. In summary, PDGF-D is highly expressed by ASCs, where it acts as a potent mitogenic factor. PDGF-D also upregulates growth factor expression in ASCs. Therefore, PDGF-D can be considered a novel ASC stimulator, and used as a preconditioning agent before ASC transplantation.
Collapse
Affiliation(s)
- Ji Hye Kim
- College of Pharmacy, Yonsei University, Incheon, Korea
| | | | | | | | | |
Collapse
|
23
|
Najy AJ, Dyson G, Jena BP, Lin CY, Kim HRC. Matriptase activation and shedding through PDGF-D-mediated extracellular acidosis. Am J Physiol Cell Physiol 2015; 310:C293-304. [PMID: 26157007 DOI: 10.1152/ajpcell.00043.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
Activation of β-platelet-derived growth factor receptor (β-PDGFR) is associated with prostate cancer (PCa) progression and recurrence after prostatectomy. Analysis of the β-PDGFR ligands in PCa revealed association between PDGF-D expression and Gleason score as well as tumor stage. During the course of studying the functional consequences of PDGF ligand-specific β-PDGFR signaling in PCa, we discovered a novel function of PDGF-D for activation/shedding of the serine protease matriptase leading to cell invasion, migration, and tumorigenesis. The present study showed that PDGF-D, not PDGF-B, induces extracellular acidification, which correlates with increased matriptase activation. A cDNA microarray analysis revealed that PDGF-D/β-PDGFR signaling upregulates expression of the acidosis regulator carbonic anhydrase IX (CAIX), a classic target of the transcriptional factor hypoxia-inducible factor-1α (HIF-1α). Cellular fractionation displayed a strong HIF-1α nuclear localization in PDGF-D-expressing cells. Treatment of vector control or PDGF-B-expressing cells with the HIF-1α activator CoCl2 led to increased CAIX expression accompanied by extracellular acidosis and matriptase activation. Furthermore, the analysis of the CAFTD cell lines, variants of the BPH-1 transformation model, showed that increased PDGF-D expression is associated with enhanced HIF-1α activity, CAIX induction, cellular acidosis, and matriptase shedding. Importantly, shRNA-mediated knockdown of CAIX expression effectively reversed extracellular acidosis and matriptase activation in PDGF-D-transfected BPH-1 cells and in CAFTD variants that express endogenous PDGF-D at a high level. Taken together, these novel findings reveal a new paradigm in matriptase activation involving PDGF-D-specific signal transduction leading to extracellular acidosis.
Collapse
Affiliation(s)
- Abdo J Najy
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Gregory Dyson
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Chen-Yong Lin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Hyeong-Reh C Kim
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan;
| |
Collapse
|
24
|
Huang W, Kim HRC. Dynamic regulation of platelet-derived growth factor D (PDGF-D) activity and extracellular spatial distribution by matriptase-mediated proteolysis. J Biol Chem 2015; 290:9162-70. [PMID: 25678707 DOI: 10.1074/jbc.m114.610865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 01/17/2023] Open
Abstract
The oncogenic roles of PDGF-D and its proteolytic activator, matriptase, have been strongly implicated in human prostate cancer. Latent full-length PDGF-D (FL-D) consists of a CUB domain, a growth factor domain (GFD), and the hinge region in between. Matriptase processes the FL-D dimer into a GFD dimer (GFD-D) in a stepwise manner, involving generation of a hemidimer (HD), an intermediate product containing one FL-D subunit and one GFD subunit. Although the HD is a pro-growth factor that can be processed into the GFD-D by matriptase, the HD can also act as a dominant-negative ligand that prevents PDGF-B-mediated β-PDGF receptor activation in fibroblasts. The active GFD-D can be further cleaved into a smaller and yet inactive form if matriptase-mediated proteolysis persists. Through mutagenesis and functional analyses, we found that the R(340)R(341)GR(343)A (P4-P1/P1') motif within the GFD is the matriptase cleavage site through which matriptase can deactivate PDGF-D. Comparative sequence analysis based on the published crystal structure of PDGF-B predicted that the matriptase cleavage site R(340)R(341)GR(343)A is within loop III of the GFD, a critical structural element for its binding with the β-PDGF receptor. Interestingly, we also found that matriptase processing regulates the deposition of PDGF-D dimer species into the extracellular matrix (ECM) with increased binding from the FL-D dimer, to the HD, and to the GFD-D. Furthermore, we provide evidence that R(340)R(341)GR(343)A within the GFD is critical for PDGF-D deposition and binding to the ECM. In this study, we report a structural element crucial for the biological function and ECM deposition of PDGF-D and provide molecular insight into the dynamic functional interplay between the serine protease matriptase and PDGF-D.
Collapse
Affiliation(s)
- Wei Huang
- From the Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Hyeong-Reh Choi Kim
- From the Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
25
|
Matriptase and MET are prominently expressed at the site of bone metastasis in renal cell carcinoma: immunohistochemical analysis. Hum Cell 2014; 28:44-50. [PMID: 25186085 PMCID: PMC4286132 DOI: 10.1007/s13577-014-0101-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022]
Abstract
High MET expression in renal cell carcinoma (RCC) and MET activation in bone metastases are reportedly important in progression of several cancers. To find new treatment targets in bone metastasis, we immunohistochemically analyzed expression levels of MET and matriptase (specific cellular activator of hepatocyte growth factor). We obtained nephrectomy specimens from 17 RCC patients with metastasis, and bone metastases specimens from 7 RCC patients who underwent metastasectomies, and who were treated at our hospital between 2008 and 2012. We tested the samples with anti-human MET polyclonal antibody and anti-human matriptase polyclonal antibody, and compared postoperative overall survival (OS) rates between positive and negative groups. High MET expression was seen at primary sites in 8/17 (47 %) nephrectomy specimens, and 6/7 (86 %) bone specimens. Matriptase was expressed in 6/17 (35 %) nephrectomy specimens, and all 7 (100 %) bone specimens. Interestingly, matriptase was strongly expressed in osteoclasts of 5/7 bone specimens. Postoperative OS rate was significantly higher in the MET− group than the MET+ group. The high MET and matriptase expression seen in RCC cells in bone metastasis accompanied by matriptase expression in osteoclasts indicates their importance in bone metastasis.
Collapse
|
26
|
Cheng MF, Huang MS, Lin CS, Lin LH, Lee HS, Jiang JC, Hsia KT. Expression of matriptase correlates with tumour progression and clinical prognosis in oral squamous cell carcinoma. Histopathology 2014; 65:24-34. [PMID: 24382204 DOI: 10.1111/his.12361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022]
Abstract
AIMS To investigate the relationship of matriptase expression in oral squamous cell carcinoma (OSCC) to clinicopathological characteristics, patient survival and cell-invasive properties. METHODS AND RESULTS Matriptase expression in OSCC was evaluated by immunohistochemical staining, and its relationship to clinicopathological features and outcomes was assessed statistically. The shRNA-mediated stable knockdown of matriptase in OSCC cells was used to analyse cell proliferation, migration and invasion in vitro. Matriptase immunostaining score was correlated with histopathological grade, clinical stage, positive lymph node and distant metastasis, and higher matriptase immunostaining score was associated significantly with poor prognosis. Elevated matriptase expression in oral cancer cell lines was a significant promoter of oral cancer cell migration and invasion. CONCLUSIONS Matriptase expression correlates with tumour progression and invasive capability in OSCC and may be an adverse prognostic marker for this cancer.
Collapse
Affiliation(s)
- Ming-Fang Cheng
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Histological and Clinical Pathology, Hualien Armed Forced General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Christensen M, Najy AJ, Snyder M, Movilla LS, Kim HRC. A critical role of the PTEN/PDGF signaling network for the regulation of radiosensitivity in adenocarcinoma of the prostate. Int J Radiat Oncol Biol Phys 2014; 88:151-8. [PMID: 24331662 DOI: 10.1016/j.ijrobp.2013.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE Loss or mutation of the phosphate and tensin homologue (PTEN) is a common genetic abnormality in prostate cancer (PCa) and induces platelet-derived growth factor D (PDGF D) signaling. We examined the role of the PTEN/PDGF axis on radioresponse using a murine PTEN null prostate epithelial cell model. METHODS AND MATERIALS PTEN wild-type (PTEN+/+) and PTEN knockout (PTEN-/-) murine prostate epithelial cell lines were used to examine the relationship between the PTEN status and radiosensitivity and also to modulate the PDGF D expression levels. PTEN-/- cells were transduced with a small hairpin RNA (shRNA) lentiviral vector containing either scrambled nucleotides (SCRM) or sequences targeted to PDGF D (shPDGF D). Tumorigenesis and morphogenesis of these cell lines were evaluated in vivo via subcutaneous injection of male nude mice and in vitro using Matrigel 3-dimensional (3D) culture. Effects of irradiation on clonogenic survival, cell migration, and invasion were measured with respect to the PTEN status and the PDGF D expression level. In addition, apoptosis and cell cycle redistribution were examined as potential mechanisms for differences seen. RESULTS PTEN-/- cells were highly tumorigenic in animals and effectively formed foci in 3D culture. Importantly, loss of PDGF D in these cell lines drastically diminished these phenotypes. Furthermore, PTEN-/- cells demonstrated increased clonogenic survival in vitro compared to PTEN+/+, and attenuation of PDGF D significantly reversed this radioresistant phenotype. PTEN-/- cells displayed greater migratory and invasive potential at baseline as well as after irradiation. Both the basal and radiation-induced migratory and invasive phenotypes in PTEN-/- cells required PDGF D expression. Interestingly, these differences were independent of apoptosis and cell cycle redistribution, as they showed no significant difference. CONCLUSIONS We propose that PDGF D represents a potentially promising target for PCa treatment resistance in the absence of PTEN function, and warrants further laboratory evaluation and clinical study.
Collapse
Affiliation(s)
- Michael Christensen
- Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan.
| | - Abdo J Najy
- Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan
| | - Michael Snyder
- Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan
| | - Lisa S Movilla
- Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan
| |
Collapse
|
28
|
Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal 2013; 11:97. [PMID: 24359404 PMCID: PMC3878225 DOI: 10.1186/1478-811x-11-97] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/11/2013] [Indexed: 01/15/2023] Open
Abstract
Platelet-derived growth factor (PDGF) isoforms and PDGF receptors have important functions in the regulation of growth and survival of certain cell types during embryonal development and e.g. tissue repair in the adult. Overactivity of PDGF receptor signaling, by overexpression or mutational events, may drive tumor cell growth. In addition, pericytes of the vasculature and fibroblasts and myofibroblasts of the stroma of solid tumors express PDGF receptors, and PDGF stimulation of such cells promotes tumorigenesis. Inhibition of PDGF receptor signaling has proven to useful for the treatment of patients with certain rare tumors. Whether treatment with PDGF/PDGF receptor antagonists will be beneficial for more common malignancies is the subject for ongoing studies.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for life laboratory, Uppsala University, Box 595SE-751 24 Uppsala, Sweden.
| |
Collapse
|
29
|
Deng D, Zhang D, Li Y, Achilefu S, Gu Y. Gold nanoparticles based molecular beacons for in vitro and in vivo detection of the matriptase expression on tumor. Biosens Bioelectron 2013; 49:216-21. [DOI: 10.1016/j.bios.2013.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/12/2022]
|
30
|
Electro-Acupuncture Treatment Improves Neurological Function Associated with Downregulation of PDGF and Inhibition of Astrogliosis in Rats with Spinal Cord Transection. J Mol Neurosci 2013; 51:629-35. [DOI: 10.1007/s12031-013-0035-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
31
|
Tyrosine Kinases in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
Wu Q, Hou X, Xia J, Qian X, Miele L, Sarkar FH, Wang Z. Emerging roles of PDGF-D in EMT progression during tumorigenesis. Cancer Treat Rev 2012; 39:640-6. [PMID: 23261166 DOI: 10.1016/j.ctrv.2012.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 12/12/2022]
Abstract
Platelet-derived growth factor-D (PDGF-D) signaling pathway has been reported to be involved in regulating various cellular processes, such as cell growth, apoptotic cell death, migration, invasion, angiogenesis and metastasis. Recently, multiple studies have shown that PDGF-D plays a critical role in governing epithelial-to-mesenchymal transition (EMT), although the underlying mechanism of PDGF-D-mediated acquisition of EMT is largely unclear. Therefore, this mini review will discuss recent advances in our understanding of the role of PDGF-D in the acquisition of EMT during tumorigenesis. Furthermore, we will summarize the function of chemical inhibitors and natural compounds that are known to inactivate PDGF-D signaling pathway, which leads to the reversal of EMT. In summary, inactivation of PDGF-D could be a novel strategy for achieving better treatment outcome of patients inflicted with cancers.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Han Y, Guo XH, Zheng QF, Zhu YL, Fan YY, Zhang XY. Down-regulation of platelet-derived growth factor-D expression blockades NF-κB pathway to inhibit cell proliferation and invasion as well as induce apoptosis in esophageal squamous cell carcinoma. Mol Biol Rep 2012. [PMID: 23187740 DOI: 10.1007/s11033-012-2328-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Substantial evidence has demonstrated that platelet-derived growth factor-D (PDGF-D) is tightly associated with the development and progression of tumors. However, its biological functions in esophageal squamous cell carcinoma (ESCC) remain to be delineated. In this study, we found that expressions of PDGF-D mRNA and protein in ESCC tissues and cells were significantly higher than that in normal esophageal epithelial tissues (P < 0.05), further investigation showed that PDGF-D protein level in EC1 cells was obviously higher than those in EC9706 and Eca109 cells (P < 0.05). Elevated PDGF-D level was closely associated with TNM staging, tumor differentiation and lymph node metastasis (P < 0.05), but not related to the patients' age and gender (P > 0.05). In addition, down-regulation of PDGF-D expression markedly inhibited proliferation, reduced invasion and induced apoptosis in EC1 cells. More importantly, reduced PDGF-D level evoked the down-regulation of p65 and p-IκBα proteins and elevation of IκBα protein of NF-κB pathway, accompanied with the decreases of bcl-2 and MMP-9 protein expressions and increases of bax protein level and caspase-3 activities. Correctively, our data suggest that PDGF-D plays pivotal roles in the development and progression of ESCC, and combinations with PDGF-D and NF-κB pathway may be effective and feasible molecular targets for therapy of ESCC.
Collapse
Affiliation(s)
- Yu Han
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Health Road, Weihui, 453100, Henan Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|