1
|
Sutera P, Song Y, Shetty AC, English K, Van der Eecken K, Guler OC, Wang J, Cao Y, Bazyar S, Verbeke S, Van Dorpe J, Fonteyne V, De Laere B, Mishra M, Rana Z, Molitoris J, Ferris M, Kiess A, Song DY, DeWeese T, Pienta KJ, Barbieri C, Marchionni L, Ren L, Sawant A, Simone N, Berlin A, Onal C, Tran PT, Ost P, Deek MP. Genomic Determinants Associated with Modes of Progression and Patterns of Failure in Metachronous Oligometastatic Castration-sensitive Prostate Cancer. Eur Urol Oncol 2025; 8:111-118. [PMID: 38862340 DOI: 10.1016/j.euo.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/24/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Oligometastatic castration-sensitive prostate cancer (omCSPC) represents an early state in the progression of metastatic disease for which patients experience better outcomes in comparison to those with higher disease burden. Despite the generally more indolent nature, there is still much heterogeneity, with some patients experiencing a more aggressive clinical course unexplained by clinical features alone. Our aim was to investigate correlation of tumor genomics with the mode of progression (MOP) and pattern of failure (POF) following first treatment (metastasis-directed and/or systemic therapy) for omCSPC. METHODS We performed an international multi-institutional retrospective study of men treated for metachronous omCSPC who underwent tumor next-generation sequencing with at least 1 yr of follow-up after their first treatment. Descriptive MOP and POF results are reported with respect to the presence of genomic alterations in pathways of interest. MOP was defined as class I, long-term control (LTC; no radiographic progression at last follow-up), class II, oligoprogression (1-3 lesions), or class III, polyprogression (≥4 lesions). POF included the location of lesions at first failure. Genomic pathways of interest included TP53, ATM, RB1, BRCA1/2, SPOP, and WNT (APC, CTNNB1, RNF43). Genomic associations with MOP/POF were compared using χ2 tests. Exploratory analyses revealed that the COSMIC mutational signature and differential gene expression were also correlated with MOP/POF. Overall survival (OS) was calculated via the Kaplan-Meier method from the time of first failure. KEY FINDINGS AND CLINICAL IMPLICATIONS We included 267 patients in our analysis; the majority had either one (47%) or two (30%) metastatic lesions at oligometastasis. The 3-yr OS rate was significantly associated with MOP (71% for polyprogression vs 91% for oligoprogression; p = 0.005). TP53 mutation was associated with a significantly lower LTC rate (27.6% vs 42.3%; p = 0.04) and RB1 mutation was associated with a high rate of polyprogression (50% vs 19.9%; p = 0.022). Regarding POF, bone failure was significantly more common with tumors harboring TP53 mutations (44.8% vs25.9%; p = 0.005) and less common with SPOP mutations (7.1% vs 31.4%; p = 0.007). Visceral failure was more common with tumors harboring either WNT pathway mutations (17.2% vs 6.8%, p = 0.05) or SPOP mutations (17.9% vs 6.3%; p = 0.04). Finally, visceral and bone failures were associated with distinct gene-expression profiles. CONCLUSIONS AND CLINICAL IMPLICATIONS Tumor genomics provides novel insight into MOP and POF following treatment for metachronous omCSPC. Patients with TP53 and RB1 mutations have a higher likelihood of progression, and TP53, SPOP, and WNT pathway mutations may have a role in metastatic organotropism. PATIENT SUMMARY We evaluated cancer progression after a first treatment for metastatic prostate cancer with up to five metastases. We found that mutations in certain genes were associated with the location and extent of further metastasis in these patients.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keara English
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kim Van der Eecken
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Ozan Cem Guler
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| | - Jarey Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufeng Cao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Soha Bazyar
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sofie Verbeke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Valérie Fonteyne
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Bram De Laere
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium; Department of Radiation Oncology, Iridium Network, Antwerp, Belgium
| | - Mark Mishra
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Zaker Rana
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Jason Molitoris
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Matthew Ferris
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Ana Kiess
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christopher Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Cem Onal
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Piet Ost
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium.
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Zhao B, Ye DM, Li S, Zhang Y, Zheng Y, Kang J, Wang L, Zhao N, Ahmad B, Sun J, Yu T, Wu H. FMNL3 Promotes Migration and Invasion of Breast Cancer Cells via Inhibiting Rad23B-Induced Ubiquitination of Twist1. J Cell Physiol 2025; 240:e31481. [PMID: 39582466 DOI: 10.1002/jcp.31481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer is a heterogeneous malignant tumor, and its high metastasis rate depends on the abnormal activation of cell dynamics. Formin-like protein 3 (FMNL3) plays an important role in the formation of various cytoskeletons that participate in cell movement. The objective of this study was to explore the function of FMNL3 in breast cancer progression and endeavor to reveal the molecular mechanism of this phenomenon. We found that FMNL3 was abnormally highly expressed in aggressive breast cancer cells and tissues, and it significantly inhibited E-cadherin expression. FMNL3 could specifically interact with Twist1 rather than other epithelial-mesenchymal transition transcription factors (EMT-TFs). We also found that FMNL3 enhanced the repressive effect of Twist1 on CDH1 transcription in breast cancer cells. Further mechanism studies showed that FMNL3 suppressed the ubiquitin degradation of Twist1 by inhibiting the interaction between Twist1 and Rad23B, the ubiquitin transfer protein of Twist1. In vitro functional experiments, it was confirmed that FMNL3 promoted the migration and invasion of breast cancer cells by regulating Twist1. Furthermore, Twist1 could directly bind to the fmnl3 promoter to facilitate FMNL3 transcription. To conclude, this study indicated that FMNL3 acted as a pro-metastasis factor in breast cancer by promoting Twist1 stability to suppress CDH1 transcription.
Collapse
Affiliation(s)
- Binggong Zhao
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Dong-Man Ye
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Shujing Li
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Yong Zhang
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Yang Zheng
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Jie Kang
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Luhong Wang
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Nannan Zhao
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Bashir Ahmad
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Jing Sun
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Huijian Wu
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
3
|
Duan J, Fan D, Chen P, Xiang J, Xie X, Peng Y, Bai J, Li T, Li Y, Song H, Fu W, Zhang T, Xiao Y, Qi X, Hong W, Zhou J, He Y, Wu C, Zeng H, Bai H, Chen T, Yu W, Zhang Q. YTHDF3 Regulates the Degradation and Stability of m6A-Enriched Transcripts to Facilitate the Progression of Castration-Resistant Prostate Cancer. J Pineal Res 2024; 76:e13003. [PMID: 39143673 DOI: 10.1111/jpi.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
RNA N6-methyladenosine (m6A) readers mediate cancer progression. However, the functional role and potential mechanisms of the m6A readers in prostate cancer tumorigenicity remain to be elucidated. In this study, we demonstrate that YTHDF3 expression is elevated in castration-resistant prostate cancer (CRPC) and positively correlated to high grade, bone metastasis and poor survival. YTHDF3 expression promoted CRPC cell proliferation, epithelial to mesenchymal transition (EMT) and tumour progression. Mechanistically, YTHDF3 promoted the RNA degradation of SPOP and NXK3.1 but stabilized RNA expressions of TWIST1 and SNAI2 dependent on m6A to facilitate cell proliferation and EMT. Additionally, YTHDF3 expression enhanced AKT activity via degrading SPOP in an m6A-dependent manner. Importantly, we found that melatonin can compete with m6A to occupy the m6A-binding cage of YTHDF3, leading to inhibition of YTHFD3 and its target expressions as well as CRPC tumour growth. Our findings uncover an essential role of YTHDF3 in the progression of CRPC and highlight the role of melatonin in anti-CRPC activity.
Collapse
Affiliation(s)
- Juanjuan Duan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Daogui Fan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Pingping Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Xiang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Pathology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang, Guizhou, China
| | - Yuhui Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingdi Bai
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenli Fu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - ChangXue Wu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongmei Zeng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Bai
- Medical Laboratory Center, The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou, China
| | - Tengxiang Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Sivaganesh V, Ta TM, Peethambaran B. Pentagalloyl Glucose (PGG) Exhibits Anti-Cancer Activity against Aggressive Prostate Cancer by Modulating the ROR1 Mediated AKT-GSK3β Pathway. Int J Mol Sci 2024; 25:7003. [PMID: 39000112 PMCID: PMC11241829 DOI: 10.3390/ijms25137003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-β-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.
Collapse
Affiliation(s)
- Vignesh Sivaganesh
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA 19131, USA
| | - Tram M. Ta
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
| | - Bela Peethambaran
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
| |
Collapse
|
5
|
Chong ZX, Ho WY, Yeap SK. Decoding the tumour-modulatory roles of LIMK2. Life Sci 2024; 347:122609. [PMID: 38580197 DOI: 10.1016/j.lfs.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-β pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
6
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Feng S, Wei F, Shi H, Chen S, Wang B, Huang D, Luo L. Roles of salt‑inducible kinases in cancer (Review). Int J Oncol 2023; 63:118. [PMID: 37654200 PMCID: PMC10546379 DOI: 10.3892/ijo.2023.5566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Salt inducible kinases (SIKs) with three subtypes SIK1, SIK2 and SIK3, belong to the AMP‑activated protein kinase family. They are expressed ubiquitously in humans. Under normal circumstances, SIK1 regulates adrenocortical function in response to high salt or adrenocorticotropic hormone stimulation, SIK2 is involved in cell metabolism, controlling insulin signaling and gluconeogenesis and SIK3 coordinates with the mTOR complex, promoting cancer. The dysregulation of SIKs has been widely detected in various types of cancers. Based on most of the existing studies, SIK1 is mostly considered a tumor inhibitor, SIK2 and SIK3 are usually associated with tumor promotion. However, the functions of SIKs have shown contradictory in certain tumors, suggesting that SIKs cannot be simply classified as oncogenes or tumor suppressor genes. The present review provided a comprehensive summary of the roles of SIKs in the initiation and progression of different cancers, aiming to elucidate their clinical value and discuss potential strategies for targeting SIKs in cancer therapy.
Collapse
Affiliation(s)
- Shenghui Feng
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fangyi Wei
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haoran Shi
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shen Chen
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bangqi Wang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Gruss MJ, O’Callaghan C, Donnellan M, Corsi AK. A Twist-Box domain of the C. elegans Twist homolog, HLH-8, plays a complex role in transcriptional regulation. Genetics 2023; 224:iyad066. [PMID: 37067863 PMCID: PMC10411555 DOI: 10.1093/genetics/iyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
TWIST1 is a basic helix-loop-helix (bHLH) transcription factor in humans that functions in mesoderm differentiation. TWIST1 primarily regulates genes as a transcriptional repressor often through TWIST-Box domain-mediated protein-protein interactions. The TWIST-Box also can function as an activation domain requiring 3 conserved, equidistant amino acids (LXXXFXXXR). Autosomal dominant mutations in TWIST1, including 2 reported in these conserved amino acids (F187L and R191M), lead to craniofacial defects in Saethre-Chotzen syndrome (SCS). Caenorhabditis elegans has a single TWIST1 homolog, HLH-8, that functions in the differentiation of the muscles responsible for egg laying and defecation. Null alleles in hlh-8 lead to severely egg-laying defective and constipated animals due to defects in the corresponding muscles. TWIST1 and HLH-8 share sequence identity in their bHLH regions; however, the domain responsible for the transcriptional activity of HLH-8 is unknown. Sequence alignment suggests that HLH-8 has a TWIST-Box LXXXFXXXR motif; however, its function also is unknown. CRISPR/Cas9 genome editing was utilized to generate a domain deletion and several missense mutations, including those analogous to SCS patients, in the 3 conserved HLH-8 amino acids to investigate their functional role. The TWIST-Box alleles did not phenocopy hlh-8 null mutants. The strongest phenotype detected was a retentive (Ret) phenotype with late-stage embryos in the hermaphrodite uterus. Further, GFP reporters of HLH-8 downstream target genes (arg-1::gfp and egl-15::gfp) revealed tissue-specific, target-specific, and allele-specific defects. Overall, the TWIST-Box in HLH-8 is partially required for the protein's transcriptional activity, and the conserved amino acids contribute unequally to the domain's function.
Collapse
Affiliation(s)
- Michael J Gruss
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Colleen O’Callaghan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Molly Donnellan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Ann K Corsi
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| |
Collapse
|
9
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Kobelyatskaya AA, Pudova EA, Katunina IV, Snezhkina AV, Fedorova MS, Pavlov VS, Kotelnikova AO, Nyushko KM, Alekseev BY, Krasnov GS, Kudryavtseva AV. Transcriptome Profiling of Prostate Cancer, Considering Risk Groups and the TMPRSS2-ERG Molecular Subtype. Int J Mol Sci 2023; 24:ijms24119282. [PMID: 37298233 DOI: 10.3390/ijms24119282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Molecular heterogeneity in prostate cancer (PCa) is one of the key reasons underlying the differing likelihoods of recurrence after surgical treatment in individual patients of the same clinical category. In this study, we performed RNA-Seq profiling of 58 localized PCa and 43 locally advanced PCa tissue samples obtained as a result of radical prostatectomy on a cohort of Russian patients. Based on bioinformatics analysis, we examined features of the transcriptome profiles within the high-risk group, including within the most commonly represented molecular subtype, TMPRSS2-ERG. The most significantly affected biological processes in the samples were also identified, so that they may be further studied in the search for new potential therapeutic targets for the categories of PCa under consideration. The highest predictive potential was found with the EEF1A1P5, RPLP0P6, ZNF483, CIBAR1, HECTD2, OGN, and CLIC4 genes. We also reviewed the main transcriptome changes in the groups at intermediate risk of PCa-Gleason Score 7 (groups 2 and 3 according to the ISUP classification)-on the basis of which the LPL, MYC, and TWIST1 genes were identified as promising additional prognostic markers, the statistical significance of which was confirmed using qPCR validation.
Collapse
Affiliation(s)
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V Katunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav S Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Kirill M Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
11
|
Sutera P, Deek MP, Van der Eecken K, Shetty AC, Chang JH, Hodges T, Song Y, Verbeke S, Van Dorpe J, Fonteyne V, De Laere B, Mishra M, Rana Z, Molitoris J, Ferris M, Ross A, Schaeffer E, Roberts N, Song DY, DeWeese T, Pienta KJ, Antonarakis ES, Ost P, Tran PT. WNT Pathway Mutations in Metachronous Oligometastatic Castration-Sensitive Prostate Cancer. Int J Radiat Oncol Biol Phys 2023; 115:1095-1101. [PMID: 36708787 PMCID: PMC10443895 DOI: 10.1016/j.ijrobp.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE WNT signaling is a cellular pathway that has been implicated in the development and progression of prostate cancer. Oligometastatic castration-sensitive prostate cancer (omCSPC) represents a unique state of disease in which metastasis-directed therapy (MDT) has demonstrated improvement in progression-free survival. Herein, we investigate the clinical implications of genomic alterations in the WNT signaling cascade in men with omCSPC. METHODS AND MATERIALS We performed an international multi-institutional retrospective study of 277 men with metachronous omCSPC who underwent targeted DNA sequencing of their primary/metastatic tumor. Patients were classified by presence or absence of pathogenic WNT pathway mutations (in the genes APC, RNF43, and CTNNB1). Pearson χ2 and Mann-Whitney U tests were used to determine differences in clinical factors between genomic strata. Kaplan-Meier survival curves were generated for radiographic progression-free survival and overall survival, stratified according to WNT pathway mutation status. RESULTS A pathogenic WNT pathway mutation was detected in 11.2% of patients. Patients with WNT pathway mutations were more likely to have visceral metastases (22.6% vs 2.8%; P < .01) and less likely to have regional lymph node metastases (29.0% vs 50.4%; P = .02). At time of oligometastasis, these patients were treated with MDT alone (33.9%), MDT + limited course of systemic therapy (20.6%), systemic therapy alone (22.4%), or observation (defined as no treatment for ≥6 months after metastatic diagnosis). Multivariable cox regression demonstrated WNT pathway mutations associated with significantly worse overall survival (hazard ratio, 3.87; 95% confidence interval, 1.25-12.00). CONCLUSIONS Somatic WNT pathway alterations are present in approximately 11% of patients with omCSPC and are associated with an increased likelihood of visceral metastases. Although these patients have a worse natural history, they may benefit from MDT.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Kim Van der Eecken
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jin Hee Chang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Theresa Hodges
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sofie Verbeke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Valérie Fonteyne
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Medical Epidemiology, Biostatistics Karolinska Institute, Stockholm, Sweden
| | - Mark Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zaker Rana
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley Ross
- Department of Urology, Northwestern University, Chicago, Illinois
| | - Edward Schaeffer
- Department of Urology, Northwestern University, Chicago, Illinois
| | - Nicholas Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Iridium Network, Antwerp, Belgium.
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
12
|
Zhao B, Huo W, Yu X, Shi X, Lv L, Yang Y, Kang J, Li S, Wu H. USP13 promotes breast cancer metastasis through FBXL14-induced Twist1 ubiquitination. Cell Oncol (Dordr) 2023; 46:717-733. [PMID: 36732432 DOI: 10.1007/s13402-023-00779-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Epithelial-to-mesenchymal transition (EMT) is an important cause of high mortality in breast cancer. Twist1 is one of the EMT transcription factors (EMT-TFs) with a noticeably short half-life, which is regulated by proteasome degradation pathways. Recent studies have found that USP13 stabilizes several specific oncogenic proteins. As yet, however, the relationship between Twist1 and USP13 has not been investigated. METHODS Co-Immunoprecipitation, GST-pulldown, Western blot, qRT-PCR and immunofluorescence assays were used to investigate the role of USP13 in de-ubiquitination of Twist1. Chromatin immunoprecipitation and Luciferase reporter assays were used to investigate the role of Twist1 in inhibiting USP13 reporter transcription. Scratch wound healing, cell migration and invasion assays, and a mouse lung metastases assay were used to investigate the roles of USP13 and Twist1 in promoting breast cancer metastasis. RESULTS We found that Twist1 can be de-ubiquitinated by USP13. In addition, we found that the protein levels of Twist1 dose-dependently increased with USP13 overexpression, while USP13 knockdown resulted in a decreased expression of endogenous Twist1. We also found that USP13 can directly interact with Twist1 and specifically cleave the K48-linked polyubiquitin chains of Twist1 induced by FBXL14. We found that the effect of USP13 in promoting the migration and invasion capacities of breast cancer cells can at least partly be achieved through its regulation of Twist1, while Twist1 can inhibit the transcriptional activity of USP13. CONCLUSIONS Our data indicate that an interplay between Twist1 and USP13 can form a negative physiological feedback loop. Our findings show that USP13 may play an essential role in breast cancer metastasis by regulating Twist1 and, as such, provide a potential target for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Wei Huo
- Central Hospital affiliated to Dalian University of Technology, Dalian, China
| | - Xiaomin Yu
- Central Hospital affiliated to Dalian University of Technology, Dalian, China
| | - Xiaoxia Shi
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| |
Collapse
|
13
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
14
|
Saitoh M. Epithelial–Mesenchymal Transition by Synergy between Transforming Growth Factor-β and Growth Factors in Cancer Progression. Diagnostics (Basel) 2022; 12:diagnostics12092127. [PMID: 36140527 PMCID: PMC9497767 DOI: 10.3390/diagnostics12092127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) plays a crucial role in appropriate embryonic development, as well as wound healing, organ fibrosis, and cancer progression. During cancer progression, EMT is associated with the invasion, metastasis, and generation of circulating tumor cells and cancer stem cells, as well as resistance to chemo- and radiation therapy. EMT is induced by several transcription factors, known as EMT transcription factors (EMT-TFs). In nearly all cases, EMT-TFs appear to be regulated by growth factors or cytokines and extracellular matrix components. Among these factors, transforming growth factor (TGF)-β acts as the key mediator for EMT during physiological and pathological processes. TGF-β can initiate and maintain EMT by activating intracellular/intercellular signaling pathways and transcriptional factors. Recent studies have provided new insights into the molecular mechanisms underlying sustained EMT in aggressive cancer cells, EMT induced by TGF-β, and crosstalk between TGF-β and growth factors.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi 409-3898, Japan
| |
Collapse
|
15
|
Shi YX, Sun ZW, Jia DL, Wang HB. Autophagy deficiency promotes lung metastasis of prostate cancer via stabilization of TWIST1. Clin Transl Oncol 2022; 24:1403-1412. [PMID: 35133601 DOI: 10.1007/s12094-022-02786-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE The role of autophagy in prostate cancer metastasis remains controversial, and the effects of the autophagy-related gene ATG5 on prostate cancer metastasis are poorly understood. This study aims to explore the effects of ATG5 on prostate cancer metastasis and its molecular mechanism. METHODS The metastatic characteristics of LNCaP and DU145 cells were assessed by NOD/SCID mouse experiments, western blot, transwell assay, and wound-healing assay. Double membrane autophagic vesicle observation and the adenovirus-expressing mCherry-GFP-LC3B fusion protein were used to assess the autophagic characteristics of LNCaP and DU145 cells. The role of p62 in the accumulation of TWIST1 was confirmed by western blot under different conditions. The lentivirus particles of shATG5, NOD/SCID mice experiments, western blot, transwell assay, and wound-healing assay were used to confirm the role of ATG5 in TWIST1 accumulation and prostate cancer cell metastasis. RESULTS We identified a stabilizing effect of p62 on TWIST1 in the autophagic regulation of EMT and prostate cancer metastasis. The loss of ATG5 in DU145 cells resulted in autophagy deficiency and p62 accumulation, which stabilized TWIST1 and increased the TWIST1 level in prostate cancer cells, and eventually promoted EMT and metastasis. In comparison, LNCaP cells with regular ATG5 expression and autophagy status retained remarkable epithelial cell characteristics and had limited metastatic characteristics. Similar results were also found in wild-type LNCaP cells and LNCaP cells with stable ATG5 interference. CONCLUSIONS Our research revealed ATG5-mediated autophagy as a key mechanism that controls the metastasis of prostate cancer by regulating p62 abundance and TWIST1 stabilization.
Collapse
Affiliation(s)
- Y X Shi
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University, No. 129 Hehua Road, Jining, Shandong, China.,Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, Shandong, China
| | - Z W Sun
- Institute of Life Sciences, Chongqing Medical University, No. 1 Yixue Yuan Road, Chongqing, China
| | - D L Jia
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University, No. 129 Hehua Road, Jining, Shandong, China.,Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, Shandong, China
| | - H B Wang
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University, No. 129 Hehua Road, Jining, Shandong, China. .,Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, Shandong, China.
| |
Collapse
|
16
|
Physical Forces in Glioblastoma Migration: A Systematic Review. Int J Mol Sci 2022; 23:ijms23074055. [PMID: 35409420 PMCID: PMC9000211 DOI: 10.3390/ijms23074055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
The invasive capabilities of glioblastoma (GBM) define the cancer’s aggressiveness, treatment resistance, and overall mortality. The tumor microenvironment influences the molecular behavior of cells, both epigenetically and genetically. Current forces being studied include properties of the extracellular matrix (ECM), such as stiffness and “sensing” capabilities. There is currently limited data on the physical forces in GBM—both relating to how they influence their environment and how their environment influences them. This review outlines the advances that have been made in the field. It is our hope that further investigation of the physical forces involved in GBM will highlight new therapeutic options and increase patient survival. A search of the PubMed database was conducted through to 23 March 2022 with the following search terms: (glioblastoma) AND (physical forces OR pressure OR shear forces OR compression OR tension OR torsion) AND (migration OR invasion). Our review yielded 11 external/applied/mechanical forces and 2 tumor microenvironment (TME) forces that affect the ability of GBM to locally migrate and invade. Both external forces and forces within the tumor microenvironment have been implicated in GBM migration, invasion, and treatment resistance. We endorse further research in this area to target the physical forces affecting the migration and invasion of GBM.
Collapse
|
17
|
Wu Z, Zou X, Xu Y, Zhou F, Kuai R, Li J, Yang D, Chu Y, Peng H. Ajuba transactivates N-cadherin expression in colorectal cancer cells through interaction with Twist. J Cell Mol Med 2021; 25:8006-8014. [PMID: 34173718 PMCID: PMC8358848 DOI: 10.1111/jcmm.16731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Ajuba is a multiple LIM domain‐containing protein and functions as a transcriptional coregulator to modulate many gene expressions in various cellular processes. Here, we describe that the LIM domain of Ajuba interacts with Twist, and the Twist box is a pivotal motif for the interaction. Biologically, Ajuba enhances transcription of target gene N‐cadherin as an obligate coactivator of Twist. The enhancement is achieved by binding to the E‐box element within N‐cadherin promoter as revealed by luciferase reporter and chromatin immunoprecipitation assays. Mechanistic investigation demonstrates that Ajuba recruits CBP and Twist to form a ternary complex at the Twist target promoter region and concomitantly enhances histone acetylation at these sites. These findings identify that Twist is a new interacting protein of Ajuba and Ajuba/Twist/CBP ternary complex may be a potential treatment strategy for Twist‐related tumour metastasis.
Collapse
Affiliation(s)
- Zhaoxia Wu
- Digestive Endoscopy Center, Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuqun Zou
- Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Xu
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fengli Zhou
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rong Kuai
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji Li
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daming Yang
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimin Chu
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haixia Peng
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhen G, Guo Q, Li Y, Wu C, Zhu S, Wang R, Guo XE, Kim BC, Huang J, Hu Y, Dan Y, Wan M, Ha T, An S, Cao X. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat Commun 2021; 12:1706. [PMID: 33731712 PMCID: PMC7969741 DOI: 10.1038/s41467-021-21948-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2021] [Indexed: 01/18/2023] Open
Abstract
Our incomplete understanding of osteoarthritis (OA) pathogenesis has significantly hindered the development of disease-modifying therapy. The functional relationship between subchondral bone (SB) and articular cartilage (AC) is unclear. Here, we found that the changes of SB architecture altered the distribution of mechanical stress on AC. Importantly, the latter is well aligned with the pattern of transforming growth factor beta (TGFβ) activity in AC, which is essential in the regulation of AC homeostasis. Specifically, TGFβ activity is concentrated in the areas of AC with high mechanical stress. A high level of TGFβ disrupts the cartilage homeostasis and impairs the metabolic activity of chondrocytes. Mechanical stress stimulates talin-centered cytoskeletal reorganization and the consequent increase of cell contractile forces and cell stiffness of chondrocytes, which triggers αV integrin-mediated TGFβ activation. Knockout of αV integrin in chondrocytes reversed the alteration of TGFβ activation and subsequent metabolic abnormalities in AC and attenuated cartilage degeneration in an OA mouse model. Thus, SB structure determines the patterns of mechanical stress and the configuration of TGFβ activation in AC, which subsequently regulates chondrocyte metabolism and AC homeostasis.
Collapse
Affiliation(s)
- Gehua Zhen
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Qiaoyue Guo
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Yusheng Li
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Chuanlong Wu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Shouan Zhu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Ruomei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Byoung Choul Kim
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, Baltimore, MD, USA
| | - Jessie Huang
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Dan
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, Baltimore, MD, USA
| | - Steven An
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
20
|
Babaei G, Aziz SGG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 2020; 133:110909. [PMID: 33227701 DOI: 10.1016/j.biopha.2020.110909] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/29/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and Cancer stem-like cells (CSCs) are major factors contributing to the metastasis of cancer cells. Consequently, the signaling pathways involved in both processes are appropriate therapeutic targets in the treatment of metastasis. Autophagy is another process that has recently attracted the attention of many researchers; depending on the type of cancer and tissue and the stage of cancer, this process can play a dual role in the development of cancer cells. Studies on cancer cells have shown that different signaling pathways are involved in all three processes, namely, cancer stem cells, autophagy, and EMT. The purpose of this study was to investigate and elucidate the relationship between the effective signaling pathways in all three processes, which could play an effective role in determining appropriate therapeutic goals.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Nasrin Zare Zavieyh Jaghi
- Department of Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
| |
Collapse
|
21
|
Rajabi F, Liu-Bordes WY, Pinskaya M, Dominika F, Kratassiouk G, Pinna G, Nanni S, Farsetti A, Gespach C, Londoño-Vallejo A, Groisman I. CPEB1 orchestrates a fine-tuning of miR-145-5p tumor-suppressive activity on TWIST1 translation in prostate cancer cells. Oncotarget 2020; 11:4155-4168. [PMID: 33227047 PMCID: PMC7665230 DOI: 10.18632/oncotarget.27806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022] Open
Abstract
TWIST1 is a basic helix-loop-helix transcription factor, and one of the master Epithelial-to-Mesenchymal Transition (EMT) regulators. We show that tumor suppressor miR-145-5p controls TWIST1 expression in an immortalized prostate epithelial cell line and in a tumorigenic prostate cancer-derived cell line. Indeed, shRNA-mediated miR-145-5p silencing enhanced TWIST1 expression and induced EMT-associated malignant properties in these cells. However, we discovered that the translational inhibitory effect of miR-145-5p on TWIST1 is lost in 22Rv1, another prostate cancer cell line that intrinsically expresses high levels of the CPEB1 cytoplasmic polyadenylation element binding protein. This translational regulator typically reduces TWIST1 translation efficiency by shortening the TWIST1 mRNA polyA tail. However, our results indicate that the presence of CPEB1 also interferes with the binding of miR-145-5p to the TWIST1 mRNA 3′UTR. Mechanistically, CPEB1 binding to its first cognate site either directly hampers the access to the miR-145-5p response element or redirects the cleavage/polyadenylation machinery to an intermediate polyadenylation site, resulting in the elimination of the miR-145-5p binding site. Taken together, our data support the notion that the tumor suppressive activity of miR-145-5p on TWIST1 translation, consequently on EMT, self-renewal, and migration, depends on the CPEB1 expression status of the cancer cell. A preliminary prospective study using clinical samples suggests that reconsidering the relative status of miR-145-5p/TWIST1 and CPEB1 in the tumors of prostate cancer patients may bear prognostic value.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Telomeres and Cancer Laboratory, CNRS, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Win-Yan Liu-Bordes
- Telomeres and Cancer Laboratory, CNRS, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Marina Pinskaya
- Non-Coding RNA, Epigenetic and Genome Fluidity, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Foretek Dominika
- Non-Coding RNA, Epigenetic and Genome Fluidity, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Gueorgui Kratassiouk
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), Gif-sur-Yvette, France
| | - Guillaume Pinna
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), Gif-sur-Yvette, France
| | - Simona Nanni
- Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonella Farsetti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Christian Gespach
- Sorbonne Université, Inserm U938, Team TGFβ Signaling in Cellular Plasticity and Cancer, Centre de Recherche Saint-Antoine, Paris, France
| | - Arturo Londoño-Vallejo
- Telomeres and Cancer Laboratory, CNRS, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Irina Groisman
- Telomeres and Cancer Laboratory, CNRS, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| |
Collapse
|
22
|
Cheaito K, Bahmad HF, Jalloul H, Hadadeh O, Msheik H, El-Hajj A, Mukherji D, Al-Sayegh M, Abou-Kheir W. Epidermal Growth Factor Is Essential for the Maintenance of Novel Prostate Epithelial Cells Isolated From Patient-Derived Organoids. Front Cell Dev Biol 2020; 8:571677. [PMID: 33195205 PMCID: PMC7658326 DOI: 10.3389/fcell.2020.571677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related mortality and morbidity among males worldwide. Deciphering the biological mechanisms and molecular pathways involved in PCa pathogenesis and progression has been hindered by numerous technical limitations mainly attributed to the limited number of cell lines available, which do not recapitulate the diverse phenotypes of clinical disease. Indeed, PCa has proven problematic to establish as cell lines in culture due to its heterogeneity which remains a challenge, despite the various in vitro and in vivo model systems available. Growth factors have been shown to play a central role in the complex regulation of cell proliferation among hormone sensitive tumors, such as PCa. Here, we report the isolation and characterization of novel patient-derived prostate epithelial (which we named as AUB-PrC) cells from organoids culture system. We also assessed the role of epidermal growth factor (EGF) in culturing those cells. We profiled the AUB-PrC cells isolated from unaffected and tumor patient samples via depicting their molecular and epithelial lineage features through immunofluorescence staining and quantitative real-time PCR (qRT-PCR), as well as through functional assays and transcriptomic profiling through RNA sequencing. In addition, by optimizing a previously established prostate organoids culture system, we were able to grow human prostate epithelial cells using growth medium and EGF only. With these data collected, we were able to gain insight at the molecular architecture of novel human AUB-PrC cells, which might pave the way for deciphering the mechanisms that lead to PCa development and progression, and ultimately improving prognostic abilities and treatments.
Collapse
Affiliation(s)
- Katia Cheaito
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Albert El-Hajj
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Wang YA, Sfakianos J, Tewari AK, Cordon-Cardo C, Kyprianou N. Molecular tracing of prostate cancer lethality. Oncogene 2020; 39:7225-7238. [PMID: 33046797 DOI: 10.1038/s41388-020-01496-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023]
Abstract
Prostate cancer is diagnosed mostly in men over the age of 50 years, and has favorable 5-year survival rates due to early cancer detection and availability of curative surgical management. However, progression to metastasis and emergence of therapeutic resistance are responsible for the majority of prostate cancer mortalities. Recent advancement in sequencing technologies and computational capabilities have improved the ability to organize and analyze large data, thus enabling the identification of novel biomarkers for survival, metastatic progression and patient prognosis. Large-scale sequencing studies have also uncovered genetic and epigenetic signatures associated with prostate cancer molecular subtypes, supporting the development of personalized targeted-therapies. However, the current state of mainstream prostate cancer management does not take full advantage of the personalized diagnostic and treatment modalities available. This review focuses on interrogating biomarkers of prostate cancer progression, including gene signatures that correspond to the acquisition of tumor lethality and those of predictive and prognostic value in progression to advanced disease, and suggest how we can use our knowledge of biomarkers and molecular subtypes to improve patient treatment and survival outcomes.
Collapse
Affiliation(s)
- Yuanshuo Alice Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carlos Cordon-Cardo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
24
|
Papasotiriou I, Apostolou P, Ntanovasilis DA, Parsonidis P, Osmonov D, Jünemann KP. Study and detection of potential markers for predicting metastasis into lymph nodes in prostate cancer. Biomark Med 2020; 14:1317-1327. [PMID: 32799659 DOI: 10.2217/bmm-2020-0372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Hormone-refractory prostate carcinoma has a different cell surface protein profile than hormone-sensitive prostate carcinoma, which provides migration ability and interactions with organs/tissues. Detection and association of these proteins with lymph node metastasis via lymphadenectomy might be beneficial for patients. Gene expression analysis in hormone-refractory and hormone-sensitive commercial cancer cell lines was performed and, after co-cultivation with osteoblasts or endothelial cells, knockdown experiments followed to validate potential biomarkers. "Myeloid-associated differentiation markers, myosin 1b and phosphatidylinositol-4-phosphate-5-kinase type 1 alpha are implicated in metastasis", their knockdown altered the expression of key regulators of endothelial-mesenchymal transition, invasion, motility and migration. In primary prostate tumors, these genes could be an indicator for future metastasis into lymph nodes.
Collapse
Affiliation(s)
| | | | | | | | - Daniar Osmonov
- Department of Urology & Pediatric Urology, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Klaus-Peter Jünemann
- Department of Urology & Pediatric Urology, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
25
|
Yuan XH, Zhang P, Yu TT, Huang HK, Zhang LL, Yang CM, Tan T, Yang SD, Luo XJ, Luo JY. Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/β-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. Am J Transl Res 2020; 12:5381-5398. [PMID: 33042426 PMCID: PMC7540099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Osteosarcoma (OS) is the most common type of primary bone cancer. Even with advances in early diagnosis and aggressive treatment, the overall prognosis for OS remains to be further elevated. Lycorine was an isoquinoline alkaloid mainly existed in the bulb of lyco salvia miltiorrhiza and was shown to inhibit several types of cancer. In the present study, we investigated the anti-OS activity of lycorine and the possible underlying mechanism. We found that lycorine inhibited cell proliferation of human OS cells while had lower cytotoxcity against normal cells, and triggered cell cycle arrest at the G1/S transition. Moreover, we validated that lycorine promoted apoptosis via death receptor pathway and mitochondrial pathway, suppressed migration and invasion by reversing epithelial mesenchymal transition (EMT) and suppressing the degradation of extracellular matrix (ECM) in vitro. In addition, orthotopic implantation model of 143B OS cells further confirmed that lycorine suppressed OS growth and lung metastasis in vivo. Mechanically, lycorine reduced the protein level of β-catenin and its' downstream molecule c-Myc. Furthermore, lycorine also decreased the phosphorylation of ERK1/2 and AKT. Together, our results reveal that lycorine may inhibit tumor growth of OS cells possibly through suppressing Wnt/β-catenin, ERK1/2 and PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiao-Hui Yuan
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Ping Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Ting-Ting Yu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Hua-Kun Huang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Lu-Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Chun-Mei Yang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Tao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Sheng-Dong Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Xiao-Ji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Jin-Yong Luo
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| |
Collapse
|
26
|
Pierce CJ, Simmons JL, Broit N, Karunarathne D, Ng MF, Boyle GM. BRN2 expression increases anoikis resistance in melanoma. Oncogenesis 2020; 9:64. [PMID: 32632141 PMCID: PMC7338542 DOI: 10.1038/s41389-020-00247-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Melanoma tumors are highly heterogeneous, comprising of many cell populations that vary in their potential for growth and invasion. Differential transcription factor expression contributes to these phenotypic traits. BRN2, a member of the POU domain family of transcription factors is thought to play important roles in melanoma invasion and metastasis. However, the function of BRN2 during the metastatic process of melanoma remains largely unknown. We therefore investigated the effect of BRN2 expression in melanoma cells with no or low constitutive expression using a doxycycline-inducible system. Induction of BRN2 expression led to reduced proliferation and partial resistance to an inhibitor of mutated BRAF. Whole-genome profiling analysis revealed novel targets and signaling pathway changes related to prevention of cell death induced by detachment from the extracellular matrix, known as anoikis resistance. Further investigation confirmed increased survival of BRN2-expressing cell lines in non-adherent conditions. Functionally, expression of BRN2 promoted induction of c-MET levels as well as increased phosphorylation of STAT3. Treatment with crizotinib, a c-MET inhibitor, decreased cellular viability of BRN2-expressing cells under non-adherent conditions to death by anoikis. Alternative inhibitors of c-MET showed similar results. These results highlight the importance of a largely overlooked transcription factor in the progression and metastasis of melanoma, and may suggest a strategy to target BRN2-expressing cells resistant to therapy and cell death by anoikis.
Collapse
Affiliation(s)
- Carly J Pierce
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jacinta L Simmons
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Natasa Broit
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Deshapriya Karunarathne
- Molecular Immunology Group, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mei Fong Ng
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
27
|
Khatiwada P, Kannan A, Malla M, Dreier M, Shemshedini L. Androgen up-regulation of Twist1 gene expression is mediated by ETV1. PeerJ 2020; 8:e8921. [PMID: 32296610 PMCID: PMC7151753 DOI: 10.7717/peerj.8921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Twist1, a basic helix-loop-helix transcription factor that regulates a number of genes involved in epithelial-to-mesenchymal transition (EMT), is upregulated in prostate cancer. Androgen regulation of Twist1 has been reported in a previous study. However, the mechanism of androgen regulation of the Twist1 gene is not understood because the Twist1 promoter lacks androgen receptor (AR)-responsive elements. Previous studies have shown that the Twist1 promoter has putative binding sites for PEA3 subfamily of ETS transcription factors. Our lab has previously identified Ets Variant 1 (ETV1), a member of the PEA3 subfamily, as a novel androgen-regulated gene that is involved in prostate cancer cell invasion through unknown mechanism. In view of these data, we hypothesized that androgen-activated AR upregulates Twist1 gene expression via ETV1. Our data confirmed the published work that androgen positively regulates Twist1 gene expression and further showed that this positive effect was directed at the Twist1 promoter. The positive effect of androgen on Twist1 gene expression was abrogated upon disruption of AR expression by siRNA or of AR activity by Casodex. More importantly, our data show that disruption of ETV1 leads to significant decrease in both androgen-mediated upregulation as well as basal level of Twist1, which we are able to rescue upon re-expression of ETV1. Indeed, we are able to show that ETV1 mediates the androgen upregulation of Twist1 by acting on the proximal region of Twist1 promoter. Additionally, our data show that Twist1 regulates prostate cancer cell invasion and EMT, providing a possible mechanism by which ETV1 mediates prostate cancer cell invasion. In conclusion, in this study we report Twist1 as an indirect target of AR and androgen regulation through ETV1.
Collapse
Affiliation(s)
- Prabesh Khatiwada
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Archana Kannan
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Mamata Malla
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Megan Dreier
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
28
|
TWIST1 Heterodimerization with E12 Requires Coordinated Protein Phosphorylation to Regulate Periostin Expression. Cancers (Basel) 2019; 11:cancers11091392. [PMID: 31540485 PMCID: PMC6770789 DOI: 10.3390/cancers11091392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022] Open
Abstract
Diffuse invasion into adjacent brain matter by glioblastoma (GBM) is largely responsible for their dismal prognosis. Previously, we showed that the TWIST1 (TW) bHLH transcription factor and its regulated gene periostin (POSTN) promote invasive phenotypes of GBM cells. Since TW functional effects are regulated by phosphorylation and dimerization, we investigated how phosphorylation of serine 68 in TW regulates TW dimerization, POSTN expression, and invasion in glioma cells. Compared with wild-type TW, the hypophosphorylation mutant, TW(S68A), impaired TW heterodimerization with the E12 bHLH transcription factor and cell invasion in vitro but had no effect on TW homodimerization. Overexpression of TW:E12 forced dimerization constructs (FDCs) increased glioma cell invasion and upregulated pro-invasive proteins, including POSTN, in concert with cytoskeletal reorganization. By contrast, TW:TW homodimer FDCs inhibited POSTN expression and cell invasion in vitro. Further, phosphorylation of analogous PXSP phosphorylation sites in TW:E12 FDCs (TW S68 and E12 S139) coordinately regulated POSTN and PDGFRa mRNA expression. These results suggested that TW regulates pro-invasive phenotypes in part through coordinated phosphorylation events in TW and E12 that promote heterodimer formation and regulate downstream targets. This new mechanistic understanding provides potential therapeutic strategies to inhibit TW-POSTN signaling in GBM and other cancers.
Collapse
|
29
|
Hsieh SL, Hsieh S, Lai PY, Wang JJ, Li CC, Wu CC. Carnosine Suppresses Human Colorectal Cell Migration and Intravasation by Regulating EMT and MMP Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:477-494. [PMID: 30909731 DOI: 10.1142/s0192415x19500241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carnosine is an endogenous dipeptide found in the vertebrate skeletal muscles that is usually obtained through the diet. To investigate the mechanism by which carnosine regulates the migration and intravasation of human colorectal cancer (CRC) cells, we used cultured HCT-116 cells as an experimental model in this study. We examined HCT-116 cell migratory and intravasive abilities and expression of epithelial-mesenchymal transition (EMT)-associated molecules and matrix metalloproteinases (MMPs) after carnosine treatment. The results showed that both migration and invasion were inhibited in cells treated with carnosine. We found significant decreases in Twist-1 protein levels and increases in E-cadherin protein levels in HCT-116 cells after carnosine exposure. Although plasminogen activator (uPA) and MMP-9 mRNA and protein levels were decreased, TIMP-1 mRNA and protein levels were increased. Furthermore, the cytosolic levels of phosphorylated I κ B (p-I κ B) and NF- κ B DNA-binding activity were reduced after carnosine treatment. These results indicate that carnosine inhibits the migration and intravasation of human CRC cells. The regulatory mechanism may occur by suppressing NF- κ B activity and modulating MMP and EMT-related gene expression in HCT-116 cells.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- * Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - ShuChen Hsieh
- † Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Po-Yu Lai
- * Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jyh-Jye Wang
- ‡ Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
| | - Chien-Chun Li
- § Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Chung Wu
- ¶ Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| |
Collapse
|
30
|
Kim U, Kim CY, Lee JM, Oh H, Ryu B, Kim J, Park JH. Phloretin Inhibits the Human Prostate Cancer Cells Through the Generation of Reactive Oxygen Species. Pathol Oncol Res 2019; 26:977-984. [PMID: 30937835 DOI: 10.1007/s12253-019-00643-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Phloretin is a flavonoid with known anticancer activities. However, we do not fully understand how phloretin mitigates prostate cancer on the molecular level. In the present study, we examined changes in proliferation, colony formation, and migration after phloretin treatment in human prostate cancer cells PC3 and DU145. We measured reactive oxygen species (ROS) and gene expression. Phloretin increased ROS and suppressed cell proliferation, migration, and colony formation in both cell lines. Additionally, phloretin treatment increased oxidative stress, as demonstrated through lower antioxidant enzymes (catalase, SOD2, Gpx1, Gpx3). In addition, their regulator CISD2 decreased in expression. We also found that increased ROS significantly downregulated multiple components of the Wnt/β-catenin signaling pathway (β-catenin, TCF4, FoxA2, c-Myc) and Twist1. Thus, anticancer activity of phloretin against human prostate cancer cells occurs through generating ROS to influence Wnt/β-catenin signaling. The results of this study suggest that phloretin has a therapeutic effect on prostate cancer in vitro, inhibiting the proliferation and migration of cancer cell lines PC3 and DU145. The mechanism of phloretin appears to be increasing ROS production. We thus recommend phloretin as a promising anticancer therapeutic agent.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis. Cancers (Basel) 2019; 11:cancers11040434. [PMID: 30934773 PMCID: PMC6521153 DOI: 10.3390/cancers11040434] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Research in the last decade has clearly revealed a critical role of prostate cancer stem cells (PCSCs) in prostate cancer (PC). Prostate stem cells (PSCs) reside in both basal and luminal layers, and are the target cells of oncogenic transformation, suggesting a role of PCSCs in PC initiation. Mutations in PTEN, TP53, and RB1 commonly occur in PC, particularly in metastasis and castration-resistant PC. The loss of PTEN together with Ras activation induces partial epithelial–mesenchymal transition (EMT), which is a major mechanism that confers plasticity to cancer stem cells (CSCs) and PCSCs, which contributes to metastasis. While PTEN inactivation leads to PC, it is not sufficient for metastasis, the loss of PTEN concurrently with the inactivation of both TP53 and RB1 empower lineage plasticity in PC cells, which substantially promotes PC metastasis and the conversion to PC adenocarcinoma to neuroendocrine PC (NEPC), demonstrating the essential function of TP53 and RB1 in the suppression of PCSCs. TP53 and RB1 suppress lineage plasticity through the inhibition of SOX2 expression. In this review, we will discuss the current evidence supporting a major role of PCSCs in PC initiation and metastasis, as well as the underlying mechanisms regulating PCSCs. These discussions will be developed along with the cancer stem cell (CSC) knowledge in other cancer types.
Collapse
|
32
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
33
|
Xie ZC, Huang JC, Zhang LJ, Gan BL, Wen DY, Chen G, Li SH, Yan HB. Exploration of the diagnostic value and molecular mechanism of miR‑1 in prostate cancer: A study based on meta‑analyses and bioinformatics. Mol Med Rep 2018; 18:5630-5646. [PMID: 30365107 PMCID: PMC6236292 DOI: 10.3892/mmr.2018.9598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) remains a principal issue to be addressed in male cancer-associated mortality. Therefore, the present study aimed to examine the clinical value and associated molecular mechanism of microRNA (miR)-1 in PCa. A meta-analysis was conducted to evaluate the diagnosis of miR-1 in PCa via Gene Expression Omnibus and ArrayExpress datasets, The Cancer Genome Atlas miR-1 expression data and published literature. It was identified that expression of miR-1 was significantly downregulated in PCa. Decreased miR-1 expression possessed moderate diagnostic value, with area under the curve, sensitivity, specificity and odds ratio values at 0.73, 0.77, 0.57 and 4.60, respectively. Using bioinformatics methods, it was revealed that a number of pathways, including the ‘androgen receptor signaling pathway’, ‘androgen receptor activity’, ‘transcription factor binding’ and ‘protein processing in the endoplasmic reticulum’, were important in PCa. A total of seven hub genes, including phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccin ocarboxamide synthase (PAICS), cadherin 1 (CDH1), SRC proto-oncogene, non-receptor tyrosine kinase, twist family bHLH transcription factor 1 (TWIST1), ZW10 interacting kinetochore protein (ZWINT), PCNA clamp associated factor (KIAA0101) and androgen receptor, among which, five (PAICS, CDH1, TWIST1, ZWINT and KIAA0101) were significantly upregulated and negatively correlated with miR-1, were identified as key miR-1 target genes in PCa. Additionally, it was investigated whether miR-1 and its hub genes were associated with clinical features, including age, tumor status, residual tumor, lymph node metastasis, pathological T stage and prostate specific antigen level. Collectively the results suggest that miR-1 may be involved in the progression of PCa, and consequently be a promising diagnostic marker. The ‘androgen receptor signaling pathway’, ‘androgen receptor activity’, ‘transcription factor binding’ and ‘protein processing in the endoplasmic reticulum’ may be crucial interactive pathways in PCa. Furthermore, PAICS, CDH1, TWIST1, ZWINT and KIAA0101 may serve as crucial miR-1 target genes in PCa.
Collapse
Affiliation(s)
- Zu-Cheng Xie
- Department of Urological Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Urological Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bin-Liang Gan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Sheng-Hua Li
- Department of Urological Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Biao Yan
- Department of Urological Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
34
|
Reduced graphene oxide triggered epithelial-mesenchymal transition in A549 cells. Sci Rep 2018; 8:15188. [PMID: 30315228 PMCID: PMC6185964 DOI: 10.1038/s41598-018-33414-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Graphene and its derivatives have exhibited wide potential applications in electronics, structural engineering and medicine. However, over utilization and untreated discharge may cause its distribution into environmental as well as biological chain, which raised the concerns of potential health risk as a potential hazard. Accumulating evidence has demonstrated that graphene derivatives induce lung fibrosis in vivo, so overall goal of this study was to explore the molecular mechanisms underlying the pulmonary fibrotic responses of reduced graphene oxide (rGO), using in vitro assays. Epithelial-mesenchymal transition (EMT) has profound effect on development of pulmonary fibrosis. Herein, we evaluated the EMT effect of rGO samples on A549 cells. Firstly, rGO penetrated through the A549 cells membrane into the cytosol by endocytosis and located in late endosome and/or lysosomes observed via transmission electron microscopy (TEM), and were well tolerant by cells. Secondly, rGO promoted the cell migration and invasion capacities at lower doses (below 10 μg/ml), but significantly inhibited the capacities at 20 μg/ml. Moreover, rGO-induced EMT were evidenced by decreased expression of epithelial marker like E-cadherin, β-catenin, Smad4 and increased expression of mesenchymal markers like Vimentin, VEGF-B, TWIST1. Based on our findings, it is supposed that rGO can effectively induce EMT through altering epithelial–mesenchymal transition markers in A549 cells.
Collapse
|
35
|
AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling. Urol Oncol 2018; 36:472.e11-472.e20. [DOI: 10.1016/j.urolonc.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
|
36
|
Qian YY, Shi YY, Lu SH, Yang T, Zhao XY, Yan Y, Li WY, Liu YQ. Extracts of Celastrus Orbiculatus Inhibit Cancer Metastasis by Down-regulating Epithelial-Mesenchymal Transition in Hypoxia-Induced Human Hepatocellular Carcinoma Cells. Chin J Integr Med 2018; 25:334-341. [PMID: 30046956 DOI: 10.1007/s11655-018-2562-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To evaluate the effects of Celastrus Orbiculatus extracts (COE) on metastasis in hypoxia-induced hepatocellular carcinoma cells (HepG2) and to explore the underlying molecular mechanisms. METHODS The effect of COE (160, 200 and 240 µ g/mL) on cell viability, scratch-wound, invasion and migration were studied by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide (MTT), scratch-wound and transwell assays, respectively. CoCl2 was used to establish a hypoxia model in vitro. Effects of COE on the expressions of E-cadherin, vimentin and N-cadherin were investigated with Western blot and immunofluorescence analysis, respectively. RESULTS COE inhibited proliferation and metastasis of hypoxia-induced hepatocellular carcinoma cells in a dose-dependent manner (P<0.01). Furthermore, the expression of epithelial-mesenchymal transition (EMT) related markers were also remarkably suppressed in a dose-dependent manner (P<0.01). In addition, the upstream signaling pathways, including the hypoxia-inducible factor 1 α (Hif-1 α) and Twist1 were suppressed by COE. Additionally, the Hif-1 α inhibitor 3-5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), potently suppressed cell invasion and migration as well as expression of EMT in hypoxia-induced HepG2 cells. Similarly, the combined treatment with COE and YC-1 showed a synergistic effect (P<0.01) compared with the treatment with COE or YC-1 alone in hypoxia-induced HepG2 cells. CONCLUSIONS COE significantly inhibited the tumor metastasis and EMT by suppressing Hif-1 α/Twist1 signaling pathway in hypoxia-induced HepG2 cell. Thus, COE might have potential effect to inhibit the progression of HepG2 in the context of tumor hypoxia.
Collapse
Affiliation(s)
- Ya-Yun Qian
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu Province, 225001, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, China.
| | - You-Yang Shi
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Song-Hua Lu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Ting Yang
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Xue-Yu Zhao
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Yan Yan
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Wen-Yuan Li
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Yan-Qing Liu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| |
Collapse
|
37
|
Prostate-Derived Ets Factor (PDEF) Inhibits Metastasis by Inducing Epithelial/Luminal Phenotype in Prostate Cancer Cells. Mol Cancer Res 2018; 16:1430-1440. [DOI: 10.1158/1541-7786.mcr-18-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
|
38
|
Tang H, Massi D, Hemmings BA, Mandalà M, Hu Z, Wicki A, Xue G. AKT-ions with a TWIST between EMT and MET. Oncotarget 2018; 7:62767-62777. [PMID: 27623213 PMCID: PMC5308764 DOI: 10.18632/oncotarget.11232] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.
Collapse
Affiliation(s)
- Huifang Tang
- Department of Pharmacology, Zhejiang University School of Basic Medical Sciences, Hangzhou, China
| | - Daniela Massi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Brian A Hemmings
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mario Mandalà
- Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Zhengqiang Hu
- Department of Pharmacology, Zhejiang University School of Basic Medical Sciences, Hangzhou, China
| | - Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Gongda Xue
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Chengye W, Yu T, Ping S, Deguang S, Keyun W, Yan W, Rixin Z, Rui L, Zhenming G, Mingliang Y, Liming W. Metformin reverses bFGF-induced epithelial-mesenchymal transition in HCC cells. Oncotarget 2017; 8:104247-104257. [PMID: 29262637 PMCID: PMC5732803 DOI: 10.18632/oncotarget.22200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Metformin had exerted important inhibitory effects in multiple cancers. However, the correlation between metformin and hepatocellular carcinoma (HCC) metastasis, and the relevant mechanisms are still unclear. By quantitative proteomics analysis technique, we found metformin could suppress FGF signalling significantly. In FGF signalling basic fibroblast growth factor (bFGF) is a crucial member, it initially binds to its receptors, the complex of bFGF and receptors activate FGF signallings, and promote many cancers progressions. When treating HCC cell lines HepG2 and Huh7 with bFGF, we observed the cells exhibited epithelial mesenchymal transition (EMT) and these cells metastasis potential was enhanced dramaticlly. However, when treating with metformin and bFGF together, EMT and metastasis induced by bFGF could be inhibited in these cells. Furthermore, bFGF could activate AKT/GSK-3β signalling, sequentially decrease the interaction between GSK-3β and Twist1 and decrease ubiquitination of Twist1 leading to Twist1 degradation reducing. While metformin could repress the bFGF-mediated activation in AKT/GSK-3β signalling, inhibition on interaction between GSK-3β and Twist1, enhancement of Twist1 stability. Taken together, our findings suggested that metformin had prominent negative effects on bFGF-induced EMT and metastasis in HCC cells.
Collapse
Affiliation(s)
- Wang Chengye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Tian Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Shao Ping
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Sun Deguang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Wang Keyun
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wang Yan
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhang Rixin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Liang Rui
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Gao Zhenming
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Ye Mingliang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wang Liming
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| |
Collapse
|
40
|
Haffner MC, Esopi DM, Chaux A, Gürel M, Ghosh S, Vaghasia AM, Tsai H, Kim K, Castagna N, Lam H, Hicks J, Wyhs N, Biswal Shinohara D, Hurley PJ, Simons BW, Schaeffer EM, Lotan TL, Isaacs WB, Netto GJ, De Marzo AM, Nelson WG, An SS, Yegnasubramanian S. AIM1 is an actin-binding protein that suppresses cell migration and micrometastatic dissemination. Nat Commun 2017; 8:142. [PMID: 28747635 PMCID: PMC5529512 DOI: 10.1038/s41467-017-00084-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/01/2017] [Indexed: 01/05/2023] Open
Abstract
A defining hallmark of primary and metastatic cancers is the migration and invasion of malignant cells. These invasive properties involve altered dynamics of the cytoskeleton and one of its major structural components β-actin. Here we identify AIM1 (absent in melanoma 1) as an actin-binding protein that suppresses pro-invasive properties in benign prostate epithelium. Depletion of AIM1 in prostate epithelial cells increases cytoskeletal remodeling, intracellular traction forces, cell migration and invasion, and anchorage-independent growth. In addition, decreased AIM1 expression results in increased metastatic dissemination in vivo. AIM1 strongly associates with the actin cytoskeleton in prostate epithelial cells in normal tissues, but not in prostate cancers. In addition to a mislocalization of AIM1 from the actin cytoskeleton in invasive cancers, advanced prostate cancers often harbor AIM1 deletion and reduced expression. These findings implicate AIM1 as a key suppressor of invasive phenotypes that becomes dysregulated in primary and metastatic prostate cancer. Invasion of malignant cells involves changes in cytoskeleton dynamics. Here the authors identify absent in melanoma 1 as an actin binding protein and show that it regulates cytoskeletal remodeling and cell migration in prostate epithelial cells, acting as a metastatic suppressor in cancer cells.
Collapse
Affiliation(s)
- Michael C Haffner
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - David M Esopi
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alcides Chaux
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Office of Scientific Research, Norte University, Asunción,, Paraguay
| | - Meltem Gürel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Susmita Ghosh
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Ajay M Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Harrison Tsai
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Kunhwa Kim
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hong Lam
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Hicks
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicolas Wyhs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | | | - Paula J Hurley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Brian W Simons
- Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Edward M Schaeffer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - William B Isaacs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - George J Netto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Steven S An
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA. .,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA. .,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA. .,Johns Hopkins Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
41
|
Malek R, Gajula RP, Williams RD, Nghiem B, Simons BW, Nugent K, Wang H, Taparra K, Lemtiri-Chlieh G, Yoon AR, True L, An SS, DeWeese TL, Ross AE, Schaeffer EM, Pienta KJ, Hurley PJ, Morrissey C, Tran PT. TWIST1-WDR5- Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis. Cancer Res 2017; 77:3181-3193. [PMID: 28484075 DOI: 10.1158/0008-5472.can-16-2797] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/03/2017] [Accepted: 04/19/2017] [Indexed: 12/22/2022]
Abstract
TWIST1 is a transcription factor critical for development that can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are coexpressed in mouse prostate and then silenced postnatally. Here we report that TWIST1 and HOXA9 coexpression are reactivated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to coenrichment of TWIST1 and WDR5 as well as increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter, which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacologic inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. Cancer Res; 77(12); 3181-93. ©2017 AACR.
Collapse
Affiliation(s)
- Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajendra P Gajula
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Russell D Williams
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Belinda Nghiem
- Department of Urology, University of Washington, Seattle, Washington
| | - Brian W Simons
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ghali Lemtiri-Chlieh
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arum R Yoon
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Lawrence True
- Department of Pathology, University of Washington, Seattle, Washington
| | - Steven S An
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward M Schaeffer
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paula J Hurley
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Roberts CM, Shahin SA, Loeza J, Dellinger TH, Williams JC, Glackin CA. Disruption of TWIST1-RELA binding by mutation and competitive inhibition to validate the TWIST1 WR domain as a therapeutic target. BMC Cancer 2017; 17:184. [PMID: 28283022 PMCID: PMC5345230 DOI: 10.1186/s12885-017-3169-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/04/2017] [Indexed: 11/15/2022] Open
Abstract
Background Most cancer deaths result from tumor cells that have metastasized beyond their tissue of origin, or have developed drug resistance. Across many cancer types, patients with advanced stage disease would benefit from a novel therapy preventing or reversing these changes. To this end, we have investigated the unique WR domain of the transcription factor TWIST1, which has been shown to play a role in driving metastasis and drug resistance. Methods In this study, we identified evolutionarily well-conserved residues within the TWIST1 WR domain and used alanine substitution to determine their role in WR domain-mediated protein binding. Co-immunoprecipitation was used to assay binding affinity between TWIST1 and the NFκB subunit p65 (RELA). Biological activity of this complex was assayed using a dual luciferase assay system in which firefly luciferase was driven by the interleukin-8 (IL-8) promoter, which is upregulated by the TWIST1-RELA complex. Finally, in order to inhibit the TWIST1-RELA interaction, we created a fusion protein comprising GFP and the WR domain. Cell fractionation and proteasome inhibition experiments were utilized to elucidate the mechanism of action of the GFP-WR fusion. Results We found that the central residues of the WR domain (W190, R191, E193) were important for TWIST1 binding to RELA, and for increased activation of the IL-8 promoter. We also found that the C-terminal 245 residues of RELA are important for TWIST1 binding and IL-8 promoter activation. Finally, we found the GFP-WR fusion protein antagonized TWIST1-RELA binding and downstream signaling. Co-expression of GFP-WR with TWIST1 and RELA led to proteasomal degradation of TWIST1, which could be inhibited by MG132 treatment. Conclusions These data provide evidence that mutation or inhibition of the WR domain reduces TWIST1 activity, and may represent a potential therapeutic modality. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cai M Roberts
- City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA.,Present address: Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | | | - Joana Loeza
- California State University, 5151 State University Drive, Los Angeles, CA, 90032, USA.,Present address: University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | | | | | | |
Collapse
|
43
|
Malek R, Wang H, Taparra K, Tran PT. Therapeutic Targeting of Epithelial Plasticity Programs: Focus on the Epithelial-Mesenchymal Transition. Cells Tissues Organs 2017; 203:114-127. [PMID: 28214899 DOI: 10.1159/000447238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/14/2022] Open
Abstract
Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into 3 groups: (1) extracellular inducers of EMT, (2) the transcription factors that orchestrate the EMT transcriptome, and (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT, such as the signal transduction pathways TGFβ, EFGR, and Axl-Gas6. We emphasize in more detail pathways that we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways, and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only 1 EMT-related process will be unsuccessful or only transiently successful. We suggest that with greater understanding of epithelial plasticity regulation, such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes.
Collapse
Affiliation(s)
- Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
44
|
Identification of TWIST-interacting genes in prostate cancer. SCIENCE CHINA-LIFE SCIENCES 2017; 60:386-396. [DOI: 10.1007/s11427-016-0262-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
45
|
Pei H, Li Y, Liu M, Chen Y. Targeting Twist expression with small molecules. MEDCHEMCOMM 2016; 8:268-275. [PMID: 30108743 DOI: 10.1039/c6md00561f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Twist, as one of the important embryonic transcription factors, regulates epithelial-mesenchymal transition (EMT) and migration in embryo formation and cancer development. Both Twist-1 and Twist-2 are rarely detectable in healthy adult tissues, but are frequently overexpressed in multiple kinds of human cancer tissues, such as breast, prostate, uterus, liver, melanoma, etc. Twist is considered as a crucial EMT inductor and correlated with carcinoma aggression, invasion and metastasis. In the past decades, in-depth investigation has been reported in terms of the role of Twist in cancers; in addition, several kinds of small molecules have played important roles in studying the effect of Twist on cancer development, suggesting that Twist can be regarded as one of the important potential targets for cancer treatment. Hence we provide a brief overview of Twist and several small molecules targeting its expression, highlighting the biological features that make it a charming target for cancer therapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Shanghai Key Laboratory of Regulatory Biology , The Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai , 200241 , China . ; ; Tel: +86 21 2420 6647
| | - Yunqi Li
- Shanghai Key Laboratory of Regulatory Biology , The Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai , 200241 , China . ; ; Tel: +86 21 2420 6647
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology , The Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai , 200241 , China . ; ; Tel: +86 21 2420 6647
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology , The Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai , 200241 , China . ; ; Tel: +86 21 2420 6647
| |
Collapse
|
46
|
Ni T, Li XY, Lu N, An T, Liu ZP, Fu R, Lv WC, Zhang YW, Xu XJ, Grant Rowe R, Lin YS, Scherer A, Feinberg T, Zheng XQ, Chen BA, Liu XS, Guo QL, Wu ZQ, Weiss SJ. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 2016; 18:1221-1232. [PMID: 27749822 DOI: 10.1038/ncb3425] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/16/2016] [Indexed: 12/17/2022]
Abstract
The zinc-finger transcription factor Snail1 is inappropriately expressed in breast cancer and associated with poor prognosis. While interrogating human databases, we uncovered marked decreases in relapse-free survival of breast cancer patients expressing high Snail1 levels in tandem with wild-type, but not mutant, p53. Using a Snail1 conditional knockout model of mouse breast cancer that maintains wild-type p53, we find that Snail1 plays an essential role in tumour progression by controlling the expansion and activity of tumour-initiating cells in preneoplastic glands and established tumours, whereas it is not required for normal mammary development. Growth and survival of preneoplastic as well as neoplastic mammary epithelial cells is dependent on the formation of a Snail1/HDAC1/p53 tri-molecular complex that deacetylates active p53, thereby promoting its proteasomal degradation. Our findings identify Snail1 as a molecular bypass that suppresses the anti-proliferative and pro-apoptotic effects exerted by wild-type p53 in breast cancer.
Collapse
Affiliation(s)
- Ting Ni
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Teng An
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Ping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Cong Lv
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Wei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - R Grant Rowe
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yong-Shun Lin
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Amanda Scherer
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tamar Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiao-Qi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Bao-An Chen
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 210009, China
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, The Dana-Farber Cancer Institute, Harvard School of Public Health, Harvard University, Boston, Massachusetts 02115, USA
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
47
|
Guo R, Qin Y, Shi P, Xie J, Chou M, Chen Y. IL-1β promotes proliferation and migration of gallbladder cancer cells via Twist activation. Oncol Lett 2016; 12:4749-4755. [PMID: 28105184 DOI: 10.3892/ol.2016.5254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/20/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence has revealed a correlation between chronic inflammation and gallbladder cancer (GBC). However, the underlying molecular mechanisms remain to be elucidated. In the present study, secretion of interleukin (IL)-1β was examined in tissues of GBC, chronic cholecystitis and normal gallbladder, as well as in the supernatant of GBC-SD, SGC996 and HIBEpiC cells. The effect of IL-1β on the proliferation and migration of GBC cell lines was also evaluated. In addition, the role of Twist in IL-1β-induced proliferation of GBC cells was also studied. It was observed that the level of IL-1β protein in normal gallbladder tissue was low, while it was significantly increased in GBC and chronic cholecystitis tissues. The level of IL-1β protein and mRNA in GBC-SD and SGC996 cells was markedly higher than those in HIBEpiC cells. Exogenous IL-1β promoted the proliferation of GBC-SD and SGC996 cells in vitro and in vivo, and also promoted migration in vitro. The level of Twist protein was significantly increased following treatment with exogenous IL-1β. In addition, gene silencing of Twist blocked IL-1β-induced proliferation and migration of GBC-SD and SGC996 cells. Taken together, these results indicate that IL-1β promotes proliferation and migration of GBC cells via Twist activation.
Collapse
Affiliation(s)
- Runsheng Guo
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Yiyu Qin
- Clinical College, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Peidong Shi
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Jinbi Xie
- Department of Gastroenterology, Jiading Central Hospital, Shanghai 201899, P.R. China
| | - Ming Chou
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 201705, P.R. China
| | - Yueyu Chen
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| |
Collapse
|
48
|
Lv T, Wang Q, Cromie M, Liu H, Tang S, Song Y, Gao W. Twist1-mediated 4E-BP1 regulation through mTOR in non-small cell lung cancer. Oncotarget 2016; 6:33006-18. [PMID: 26360779 PMCID: PMC4741745 DOI: 10.18632/oncotarget.5026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/31/2015] [Indexed: 01/16/2023] Open
Abstract
Twist1 overexpression corresponds with poor survival in non-small cell lung cancer (NSCLC), but the underlining mechanism is not clear. The objective of the present study was to investigate the tumorigenic role of Twist1 and its related molecular mechanisms in NSCLC. Twist1 was overexpressed in 34.7% of NSCLC patients. The survival rate was significantly lower in patients with high Twist1 expression than low expression (P < 0.05). Twist1 expression levels were higher in H1650 cells, but relatively lower in H1975 cells. H1650 with stable Twist1 knockdown, H1650shTw, demonstrated a significantly slower rate of wound closure; however, H1975 with stable Twist1 overexpression, H1975Over, had an increased motility velocity. A significant decrease in colony number and size was observed in H1650shTw, but a significant increase in colony number was found in H1975Over (P < 0.05). Tumor growth significantly decreased in mice implanted with H1650shTw compared to H1650 (P < 0.05). 4E-BP1 and p53 gene expressions were increased, but p-4E-BP1 and p-mTOR protein expressions were decreased in H1650shTw. However, 4E-BP1 gene expression was decreased, while p-4E-BP1 and p-mTOR protein expressions were increased in H1975Over. p-4E-BP1 was overexpressed in 24.0% of NSCLC patients. Survival rate was significantly lower in patients with high p-4E-BP1 expression than low p-4E-BP1 (P < 0.01). A significant correlation was found between Twist1 and p-4E-BP1 (P < 0.01). A total of 13 genes in RT-PCR array showed significant changes in H1650shTw. Altogether, Twist1 is correlated with p-4E-BP1 in predicting the prognostic outcome of NSCLC. Inhibition of Twist1 decreases p-4E-BP1 expression possibly through downregulating p-mTOR and increasing p53 expression in NSCLC.
Collapse
Affiliation(s)
- Tangfeng Lv
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States of America.,Department of Respiratory Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, China
| | - Qian Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States of America.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Meghan Cromie
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States of America
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, China
| | - Song Tang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States of America
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, China
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States of America
| |
Collapse
|
49
|
Yu Y, Zhao Y, Sun XH, Ge J, Zhang B, Wang X, Cao XC. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer. Oncotarget 2016; 6:34423-36. [PMID: 26460733 PMCID: PMC4741463 DOI: 10.18632/oncotarget.5406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) plays a pivotal role in breast cancer progression. We found that overexpression of miR-129-5p reversed EMT, whereas depletion of miR-129-5p induced EMT in breast cancer cells. We demonstrated that Twist1 is a direct target of miR-129-5p. Both Twist1 and Snail transcriptionally suppressed miR-129-5p expression. Levels of miR-129-5p were low in breast cancer tissues. miR-129-5p down-regulation correlated with advanced clinical stage and poor prognosis in patients with breast cancer. miR-129-5p expression negatively correlated with Twist1 and Snail expression. Thus, miR-129-5p down-regulation fosters EMT in breast cancer by increasing Twist1-Snail and activating a negative feedback loop.
Collapse
Affiliation(s)
- Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Ying Zhao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xiao-Hu Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jie Ge
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Bin Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| |
Collapse
|
50
|
Seisen T, Rouprêt M, Gomez F, Malouf GG, Shariat SF, Peyronnet B, Spano JP, Cancel-Tassin G, Cussenot O. A comprehensive review of genomic landscape, biomarkers and treatment sequencing in castration-resistant prostate cancer. Cancer Treat Rev 2016; 48:25-33. [PMID: 27327958 DOI: 10.1016/j.ctrv.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022]
Abstract
Hormone-naïve prostate cancer and its castration-resistant state (CRPC) are clinically and genetically heterogeneous diseases. From initiation of prostate carcinogenesis to its evolution towards therapeutic resistance, various combinations of genetic and epigenetic events occur. Schematically, progression to CRPC could be divided in two distinct pathways, either dependent or independent of the androgen receptor activity. Nevertheless, because the better knowledge of the genetic landscape of CRPC is under way, limited clinical applications are available at the moment, underlying the usefulness of prognostic and predictive biomarkers in daily practice. Despite the promising prognostic value of circulating tumor cells, no biomarker has been currently validated as a surrogate for overall survival in CRPC patients. Inversely, considerable interest has been generated with the recent finding of the splice variant AR-V7 that allows to predict resistance to abiraterone acetate and enzalutamide. However, other predictive biomarkers would be necessary to accurately guide personalized sequencing of CRPC treatment, which now includes numerous possibilities based on the six validated drugs, without accounting for those currently under investigation in the ongoing randomized controlled trials. As a consequence, only rational sequencing, which consists in choosing an agent that is not expected to have cross-resistance with previous therapy, can be currently advised.
Collapse
Affiliation(s)
- Thomas Seisen
- Academic Department of Urology of La Pitié-Salpétrière, Assistance-Publique Hôpitaux de Paris, Faculté de Médecine Pierre et Marie Curie, University Paris 6, 75013 Paris, France; Institut Universitaire de Cancérologie, Pierre et Marie Curie, University Paris 6, GRC n° 5, CeRePP/ONCOTYPE-URO, 75013 Paris, France
| | - Morgan Rouprêt
- Academic Department of Urology of La Pitié-Salpétrière, Assistance-Publique Hôpitaux de Paris, Faculté de Médecine Pierre et Marie Curie, University Paris 6, 75013 Paris, France; Institut Universitaire de Cancérologie, Pierre et Marie Curie, University Paris 6, GRC n° 5, CeRePP/ONCOTYPE-URO, 75013 Paris, France.
| | - Florie Gomez
- Department of Urology, CHC Liege, Liège, Belgium
| | - Gabriel G Malouf
- Academic Department of Medical Oncology of La Pitié-Salpétrière, Assistance-Publique Hôpitaux de Paris, Faculté de Médecine Pierre et Marie Curie, University Paris 6, GRC n° 5, ONCOTYPE-URO, 75013 Paris, France
| | - Shahrokh F Shariat
- Academic Department of Urology and Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Benoit Peyronnet
- Academic Department of Urology, CHU Rennes and University of Rennes, France
| | - Jean-Philippe Spano
- Academic Department of Medical Oncology of La Pitié-Salpétrière, Assistance-Publique Hôpitaux de Paris, Faculté de Médecine Pierre et Marie Curie, University Paris 6, GRC n° 5, ONCOTYPE-URO, 75013 Paris, France
| | - Géraldine Cancel-Tassin
- Institut Universitaire de Cancérologie, Pierre et Marie Curie, University Paris 6, GRC n° 5, CeRePP/ONCOTYPE-URO, 75013 Paris, France
| | - Olivier Cussenot
- Institut Universitaire de Cancérologie, Pierre et Marie Curie, University Paris 6, GRC n° 5, CeRePP/ONCOTYPE-URO, 75013 Paris, France; Academic Department of Urology of Tenon, Assistance-Publique Hôpitaux de Paris, Faculté de Médecine Pierre et Marie Curie, University Paris 6, 75013 Paris, France
| |
Collapse
|