1
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sase M, Sato T, Sato H, Miya F, Zhang S, Haeno H, Kajita M, Noguchi T, Mori Y, Ohteki T. Comparative analysis of tongue cancer organoids among patients identifies the heritable nature of minimal residual disease. Dev Cell 2025; 60:396-413.e6. [PMID: 39504967 DOI: 10.1016/j.devcel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/13/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
The relapse of tongue cancer (TC) after chemotherapy is caused by minimal residual disease (MRD), which is a few remaining cancer cells after chemotherapy. To understand the mechanism of MRD in TC, we created a library of TC organoids (TCOs) from 28 untreated TC patients at diverse ages and cancer stages. These TCOs reproduced the primary TC tissues both in vitro and in a xenograft model, and several TCO lines survived after cisplatin treatment (chemo-resistant TCOs). Of note, the chemo-resistant TCOs showed "heritable" embryonic diapause-like features before treatment and activation of the autophagy and cholesterol biosynthetic pathways. Importantly, inhibiting these pathways with specific inhibitors converted the chemo-resistant TCOs into chemo-sensitive TCOs. Conversely, autophagy activation with mTOR inhibitors conferred chemo-resistance on the chemo-sensitive TCOs. This unique model provides insights into the mechanism of MRD formation in TCs, leading to effective therapeutic approaches to reduce the recurrence of TC.
Collapse
Affiliation(s)
- Miwako Sase
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taku Sato
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School Graduate School of Medicine, Tokyo 113-8603, Japan
| | - Hajime Sato
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shicheng Zhang
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Hiroshi Haeno
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Mihoko Kajita
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan
| | - Tadahide Noguchi
- Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan.
| |
Collapse
|
3
|
Crissey MAS, Versace A, Bhardwaj M, Jain V, Liu S, Singh A, Beer LA, Tang HY, Villanueva J, Gimotty PA, Xu X, Amaravadi RK. Divergent effects of acute and chronic PPT1 inhibition in melanoma. Autophagy 2025; 21:394-406. [PMID: 39265628 PMCID: PMC11760279 DOI: 10.1080/15548627.2024.2403152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024] Open
Abstract
Macroautophagy/autophagy-lysosome function promotes growth and survival of cancer cells, making them attractive targets for cancer therapy. One intriguing lysosomal target is PPT1 (palmitoyl-protein thioesterase 1). PPT1 inhibitors derived from chloroquine block autophagy, have significant antitumor activity in preclinical models and are being developed for clinical trials. However, the role of PPT1 in tumorigenesis remains poorly understood. Here we report that in melanoma cells, acute siRNA or pharmacological PPT1 inhibition led to increased ferroptosis sensitivity and significant loss of viability, whereas chronic PPT1 knockout using CRISPR-Cas9 produced blunted ferroptosis that led to sustained viability and growth. Each mode of PPT1 inhibition produced lysosome-autophagy inhibition but distinct proteomic changes, demonstrating the complexity of cellular adaptation mechanisms. To determine whether total genetic loss of Ppt1 would affect tumorigenesis in vivo, we developed a Ppt1 conditional knockout mouse model. We then crossed it into the BrafCA, PtenloxP, Tyr:CreERT2 melanoma mouse model to investigate the impact of Ppt1 loss on tumorigenesis. Loss of Ppt1 had no impact on melanoma histology, time to tumor initiation, or survival of tumor-bearing mice. These results suggest that chemical PPT1 inhibitors produce different adaptations than genetic PPT1 inhibition, and additional studies are warranted to fully understand the mechanism of chloroquine derivatives that target PPT1 in cancer.Abbreviations: 4-HT: 4-hydroxytamoxifen; BRAF: B-Raf proto-oncogene, serine/threonine kinase; cKO: conditional knockout; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9; DC661: A specific PPT1 inhibitor; DMSO: dimethyl sulfoxide; Dox; doxycycline hyclate; Easi-CRISPR: efficient additions with ssDNA inserts-CRISPR; GNS561/ezurpimtrostat: A PPT1 inhibitor; Hug: human guide; iCas: inducible CRISPR-Cas9; KO: knockout; LC-MS/MS: Liquid chromatography-tandem mass spectrometry; LDLR: low density lipoprotein receptor; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NT: non-target; PTEN: phosphatase and tensin homolog; PPT1: palmitoyl-protein thioesterase 1; RSL3: RAS-selective lethal small molecule 3; SCRIB/SCRB1: scribble planar cell polarity protein; Tyr:CreERT2: tyrosinase-driven Cre recombinase fused with the tamoxifen-inducible mutant ligand binding domain of the human estrogen receptor; UGCG: UDP-glucose ceramide glucosyltransferase; WT: wild-type.
Collapse
Affiliation(s)
- Mary Ann S. Crissey
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Versace
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Bhardwaj
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shujing Liu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arpana Singh
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn A. Beer
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Biersack B, Nitzsche B, Höpfner M. Histone deacetylases in the regulation of cell death and survival mechanisms in resistant BRAF-mutant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:6. [PMID: 39935431 PMCID: PMC11810460 DOI: 10.20517/cdr.2024.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Small-molecule BRAF inhibitors (e.g., vemurafenib and dabrafenib) and MEK (MAPK/ERK) kinases inhibitors (e.g., trametinib) have distinctly improved the survival of patients suffering from BRAF-mutant cancers such as melanomas. However, the emergence of resistance to BRAF and MEK inhibitor-based melanoma therapy, as well as the reduced sensitivity of other BRAF-mutant cancers such as CRC, poses a considerable clinical problem. For instance, the reactivation of MAPK/ERK signaling hampering cell death induction mechanisms was responsible for BRAF inhibitor resistance, which can be correlated with distinct post-translational and epigenetic processes. Histone deacetylases (HDACs) are prominent epigenetic drug targets and some HDAC inhibitors have already been clinically approved for the therapy of various blood cancers. In addition, several HDACs were identified, which also play a crucial role in the drug resistance of BRAF-mutant cancers. Consequently, inhibition of HDACs was described as a promising approach to overcome resistance. This review summarizes the influence of HDACs (Zn2+-dependent HDACs and NAD+-dependent sirtuins) on BRAF-mutant cancers and BRAF inhibitor resistance based on upregulated survival mechanisms and the prevention of tumor cell death. Moreover, it outlines reasonable HDAC-based strategies to circumvent BRAF-associated resistance mechanisms based on downregulated cell death mechanisms.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Bayreuth 95440, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| |
Collapse
|
5
|
Li Z, Zhang Y, Lei J, Wu Y. Autophagy in oral cancer: Promises and challenges (Review). Int J Mol Med 2024; 54:116. [PMID: 39422076 PMCID: PMC11518578 DOI: 10.3892/ijmm.2024.5440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Yao Zhang
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
6
|
Guo QH, Jian LY, Hu Y, Wang S. A comprehensive and systematic review on Curcumin as a promising candidate for the inhibition of melanoma growth: From pre-clinical evidence to molecular mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156073. [PMID: 39515103 DOI: 10.1016/j.phymed.2024.156073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Melanoma, a highly malignant skin tumor, can develop systemic metastases during the early stage. Several studies of melanoma animal models indicate that curcumin, a natural plant extract, inhibits melanoma growth through various mechanisms. To evaluate the relationships among different experimental conditions, curcumin itself, its derivatives, and special formulations, it is necessary to conduct a systematic review and meta-analysis. PURPOSE This meta-analysis aims to evaluate the potential of Curcumin as a drug for inhibiting the growth of melanoma and to determine the optimal dosage range and treatment duration for Curcumin administration. METHODS A systematic search of studies published from inception to December 2023 was conducted across six databases (PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang Data, and VIP). Methodological quality was assessed using SYRCLE's RoB tool. Study heterogeneity was assessed using Cochran's Q test and I2 statistics. Publication bias risk was evaluated using a funnel plot. All analyses were performed using R (version 4.3.3). Additionally, three-dimensional effect analysis and machine learning techniques were utilized to determine the optimal dosage range and treatment duration for Curcumin administration. RESULTS Forty studies involving 989 animals were included. The results demonstrated that, relative to the control group, administration of Curcumin resulted in a significant reduction in tumor volume. [SMD=-3.44; 95 % CI (-4.25, -2.63); P<0.01; I2 = 79 %] and tumor weight [SMD=-1.93; 95 % CI (-2.41, -1.45); P<0.01; I2 = 75 %]. Additionally, Curcumin demonstrated a significant capacity to decrease the number of lung tumor nodules and microangiogenesis, as well as to extend survival time, in animal models. The results from three-dimensional effect analysis and machine learning emphasize that the optimal dosage range for Curcumin is 25-50 mg/kg, with an intervention duration of 10-20 days. CONCLUSION Curcumin can inhibit the growth of melanoma, and the dose-response relationship is not linear. However, further large-scale animal and clinical studies are required to confirm these conclusions.
Collapse
Affiliation(s)
- Qi-Hao Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Ling-Yan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yihan Hu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| | - Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
7
|
Fokken C, Silbern I, Shomroni O, Pan KT, Ryazanov S, Leonov A, Winkler N, Urlaub H, Griesinger C, Becker D. Interfering with aggregated α-synuclein in advanced melanoma leads to a major upregulation of MHC class II proteins. Melanoma Res 2024; 34:393-407. [PMID: 38950202 PMCID: PMC11361348 DOI: 10.1097/cmr.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 07/03/2024]
Abstract
Melanoma is the most serious and deadly form of skin cancer and with progression to advanced melanoma, the intrinsically disordered protein α-synuclein is upregulated to high levels. While toxic to dopaminergic neurons in Parkinson's disease, α-synuclein is highly beneficial for primary and metastatic melanoma cells. To gain detailed insights into this exact opposite role of α-synuclein in advanced melanoma, we performed proteomic studies of high-level α-synuclein-expressing human melanoma cell lines that were treated with the diphenyl-pyrazole small-molecule compound anle138b, which binds to and interferes with the oligomeric structure of α-synuclein. We also performed proteomic and transcriptomic studies of human melanoma xenografts that were treated systemically with the anle138b compound. The results reveal that interfering with oligomerized α-synuclein in the melanoma cells in these tumor xenografts led to a substantial upregulation and expression of major histocompatibility complex proteins, which are pertinent to enhancing anti-melanoma immune responses.
Collapse
Affiliation(s)
- Claudia Fokken
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences
- Bioanalytics Research Group, Institute of Clinical Chemistry, University Medical Center Göttingen
| | - Orr Shomroni
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences
| | - Sergey Ryazanov
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences
| | - Andrei Leonov
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences
| | - Nadine Winkler
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences
- Bioanalytics Research Group, Institute of Clinical Chemistry, University Medical Center Göttingen
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August-University Göttingen
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Zimmerman SM, Suh E, Smith SR, Souroullas GP. Stat3-mediated Atg7 expression regulates anti-tumor immunity in mouse melanoma. Cancer Immunol Immunother 2024; 73:218. [PMID: 39235510 PMCID: PMC11377374 DOI: 10.1007/s00262-024-03804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Epigenetic modifications to DNA and chromatin control oncogenic and tumor-suppressive mechanisms in melanoma. Ezh2, the catalytic component of the Polycomb Repressive Complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by Ezh2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models, we further investigated the role of pathways downstream of Ezh2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of a wild-type or Ezh2Y641F epigenetic state. We found that the Atg7 locus is controlled by multiple Ezh2 and Stat3 binding sites, Atg7 expression is dependent on Stat3 expression, and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8 + T cells in Ezh2Y641F melanomas and reduced myelosuppressive cell infiltration in the tumor microenvironment, particularly in Ezh2WT melanomas, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.
Collapse
Affiliation(s)
- Sarah M Zimmerman
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Erin Suh
- University of Georgia, Athens, GA, USA
| | - Sofia R Smith
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - George P Souroullas
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Ma L, Yu J, Fu Y, He X, Ge S, Jia R, Zhuang A, Yang Z, Fan X. The dual role of cellular senescence in human tumor progression and therapy. MedComm (Beijing) 2024; 5:e695. [PMID: 39161800 PMCID: PMC11331035 DOI: 10.1002/mco2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yidian Fu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaoyu He
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Zhi Yang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
10
|
Liu X, Zhou C, Cheng B, Xiong Y, Zhou Q, Wan E, He Y. Genipin promotes the apoptosis and autophagy of neuroblastoma cells by suppressing the PI3K/AKT/mTOR pathway. Sci Rep 2024; 14:20231. [PMID: 39215133 PMCID: PMC11364629 DOI: 10.1038/s41598-024-71123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the underlying function and mechanism of genipin in neuroblastoma (NB). Using flow cytometry analysis and cytotoxicity tests, in vitro studies were conducted to assess the effects of genipin on the SK-N-SH cell line. The mechanism of action of genipin was explored through immunofluorescence staining, Western blotting, and caspase-3 activity assays. In addition, we also created a xenograft tumour model to investigate the effects of genipin in vivo. This research confirmed that genipin suppressed cell viability, induced apoptosis, and promoted autophagy, processes that are likely linked to the inhibition of the PI3K/AKT/mTOR signalling pathway. Autophagy inhibition increases the sensitivity of SK-N-SH cells to genipin. Furthermore, combination treatment with a PI3K inhibitor enhanced the therapeutic efficacy of genipin. These results highlight the potential of genipin as a candidate drug for the treatment of NB.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
- Science and Technology Innovation Centre, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary Research, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Can Zhou
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Boli Cheng
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yan Xiong
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Qin Zhou
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Enyu Wan
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yun He
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
11
|
Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy 2024; 20:1700-1711. [PMID: 38497492 PMCID: PMC11262229 DOI: 10.1080/15548627.2024.2330261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-β: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
12
|
Guo JY, White E. Role of Tumor Cell Intrinsic and Host Autophagy in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041539. [PMID: 38253423 PMCID: PMC11216174 DOI: 10.1101/cshperspect.a041539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Macroautophagy (autophagy hereafter) is an intracellular nutrient scavenging pathway induced by starvation and other stressors whereby cellular components such as organelles are captured in double-membrane vesicles (autophagosomes), whereupon their contents are degraded through fusion with lysosomes. Two main purposes of autophagy are to recycle the intracellular breakdown products to sustain metabolism and survival during starvation and to eliminate damaged or excess cellular components to suppress inflammation and maintain homeostasis. In contrast to most normal cells and tissues in the fed state, tumor cells up-regulate autophagy to promote their growth, survival, and malignancy. This tumor-cell-autonomous autophagy supports elevated metabolic demand and suppresses tumoricidal activation of the innate and adaptive immune responses. Tumor-cell-nonautonomous (e.g., host) autophagy also supports tumor growth by maintaining essential tumor nutrients in the circulation and tumor microenvironment and by suppressing an antitumor immune response. In the setting of cancer therapy, autophagy is a resistance mechanism to chemotherapy, targeted therapy, and immunotherapy. Thus, tumor and host autophagy are protumorigenic and autophagy inhibition is being examined as a novel therapeutic approach to treat cancer.
Collapse
Affiliation(s)
- Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey 08544, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey 08544, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08903, USA
| |
Collapse
|
13
|
Zimmerman SM, Suh E, Smith SR, Souroullas GP. Stat3-mediated Atg7 expression enhances anti-tumor immunity in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598284. [PMID: 38915518 PMCID: PMC11195126 DOI: 10.1101/2024.06.10.598284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Epigenetic modifications to DNA and chromatin control oncogenic and tumor suppressive mechanisms in melanoma. EZH2, the catalytic component of the Polycomb repressive complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2 Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by EZH2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models we further investigated the role of pathways downstream of EZH2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of an Ezh2 Y641F epigenetic state. We found that expression of Atg7 is largely dependent on Stat3 expression and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8+ T cells and reduced myelosuppressive cell infiltration in the tumor microenvironment, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.
Collapse
Affiliation(s)
- Sarah M. Zimmerman
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Erin Suh
- University of Georgia, Athens, GA
| | - Sofia R. Smith
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - George P. Souroullas
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
14
|
Tedesco G, Santarosa M, Maestro R. Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). Int J Oncol 2024; 64:57. [PMID: 38606507 PMCID: PMC11087037 DOI: 10.3892/ijo.2024.5645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conserved catabolic process that controls organelle quality, removes misfolded or abnormally aggregated proteins and is part of the defense mechanisms against intracellular pathogens. Autophagy contributes to the suppression of tumor initiation by promoting genome stability, cellular integrity, redox balance and proteostasis. On the other hand, once a tumor is established, autophagy can support cancer cell survival and promote epithelial‑to‑mesenchymal transition. A growing number of molecules involved in autophagy have been identified. In addition to their key canonical activity, several of these molecules, such as ATG5, ATG12 and Beclin‑1, also exert autophagy‑independent functions in a variety of biological processes. The present review aimed to summarize autophagy‑independent functions of molecules of the autophagy machinery and how the activity of these molecules can influence signaling pathways that are deregulated in cancer progression.
Collapse
Affiliation(s)
- Giulia Tedesco
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| |
Collapse
|
15
|
Liu B, Yao X, Shang Y, Dai J. The multiple roles of autophagy in uveal melanoma and the microenvironment. J Cancer Res Clin Oncol 2024; 150:121. [PMID: 38467935 PMCID: PMC10927889 DOI: 10.1007/s00432-023-05576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults, and effective clinical treatment strategies are still lacking. Autophagy is a lysosome-dependent degradation system that can encapsulate abnormal proteins, damaged organelles. However, dysfunctional autophagy has multiple types and plays a complex role in tumorigenicity depending on many factors, such as tumor stage, microenvironment, signaling pathway activation, and application of autophagic drugs. METHODS A systematic review of the literature was conducted to analyze the role of autophagy in UM, as well as describing the development of autophagic drugs and the link between autophagy and the tumor microenvironment. RESULTS In this review, we summarize current research advances regarding the types of autophagy, the mechanisms of autophagy, the application of autophagy inhibitors or agonists, autophagy and the tumor microenvironment. Finally, we also discuss the relationship between autophagy and UM. CONCLUSION Understanding the molecular mechanisms of how autophagy differentially affects tumor progression may help to design better therapeutic regimens to prevent and treat UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Dalle Carbonare L, Minoia A, Vareschi A, Piritore FC, Zouari S, Gandini A, Meneghel M, Elia R, Lorenzi P, Antoniazzi F, Pessoa J, Zipeto D, Romanelli MG, Guardavaccaro D, Valenti MT. Exploring the Interplay of RUNX2 and CXCR4 in Melanoma Progression. Cells 2024; 13:408. [PMID: 38474372 PMCID: PMC10930675 DOI: 10.3390/cells13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Alberto Gandini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy; (A.G.); (F.A.)
| | - Mirko Meneghel
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Rossella Elia
- Department of Medicine, University of Verona, 37134 Verona, Italy;
| | - Pamela Lorenzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy; (A.G.); (F.A.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | | | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| |
Collapse
|
18
|
Shirbhate E, Singh V, Mishra A, Jahoriya V, Veerasamy R, Tiwari AK, Rajak H. Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer. Mini Rev Med Chem 2024; 24:1449-1468. [PMID: 38343053 DOI: 10.2174/0113895575287242240129120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024]
Abstract
Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
19
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
20
|
Niederberger E, Möller M, Mungo E, Hass M, Wilken-Schmitz A, Manderscheid C, Möser CV, Geisslinger G. Distinct molecular mechanisms contribute to the reduction of melanoma growth and tumor pain after systemic and local depletion of alpha-Synuclein in mice. FASEB J 2023; 37:e23287. [PMID: 37930651 DOI: 10.1096/fj.202301489r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Epidemiological studies show a coincidence between Parkinson's disease (PD) and malignant melanoma. It has been suggested that this relationship is due, at least in part, to modulation of alpha-Synuclein (αSyn/Snca). αSyn oligomers accumulate in PD, which triggers typical PD symptoms, and in malignant melanoma, which increases the proliferation of tumor cells. In addition, αSyn contributes to non-motor symptoms of PD, including pain. In this study, we investigated the role of αSyn in melanoma growth and melanoma-induced pain in a mouse model using systemic and local depletion of αSyn. B16BL6 wild-type as well as αSyn knock-down melanoma cells were inoculated into the paws of αSyn knock-out mice and wild-type mice, respectively. Tumor growth and tumor-induced pain hypersensitivity were assessed over a period of 21 days. Molecular mechanisms were analyzed by RT-PCR and Western Blot in tumors, spinal cord, and sciatic nerve. Our results indicate that both global and local ablation of Snca contribute to reduced tumor growth and to a reduction of tumor-induced mechanical allodynia, though mechanisms contributing to these effects differ. While injection of wild-type cells in Snca knock-out mice strongly increased the immune response in the tumor, local Snca knock-down decreased autophagy mechanisms and the inflammatory reaction in the tumor. In conclusion, a knockdown of αSyn might constitute a promising approach to inhibiting the progression of melanoma and reducing tumor-induced pain.
Collapse
Affiliation(s)
- Ellen Niederberger
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine & Pharmacology ITMP, Frankfurt am Main, Germany
| | - Moritz Möller
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Eleonora Mungo
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Michelle Hass
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Annett Wilken-Schmitz
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Christine Manderscheid
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Christine V Möser
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine & Pharmacology ITMP, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine & Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Lee S, Son JY, Lee J, Cheong H. Unraveling the Intricacies of Autophagy and Mitophagy: Implications in Cancer Biology. Cells 2023; 12:2742. [PMID: 38067169 PMCID: PMC10706449 DOI: 10.3390/cells12232742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential lysosome-mediated degradation pathway that maintains cellular homeostasis and viability in response to various intra- and extracellular stresses. Mitophagy is a type of autophagy that is involved in the intricate removal of dysfunctional mitochondria during conditions of metabolic stress. In this review, we describe the multifaceted roles of autophagy and mitophagy in normal physiology and the field of cancer biology. Autophagy and mitophagy exhibit dual context-dependent roles in cancer development, acting as tumor suppressors and promoters. We also discuss the important role of autophagy and mitophagy within the cancer microenvironment and how autophagy and mitophagy influence tumor host-cell interactions to overcome metabolic deficiencies and sustain the activity of cancer-associated fibroblasts (CAFs) in a stromal environment. Finally, we explore the dynamic interplay between autophagy and the immune response in tumors, indicating their potential as immunomodulatory targets in cancer therapy. As the field of autophagy and mitophagy continues to evolve, this comprehensive review provides insights into their important roles in cancer and cancer microenvironment.
Collapse
Affiliation(s)
- Sunmi Lee
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
| | - Ji-Yoon Son
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
| | - Jinkyung Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Republic of Korea;
| | - Heesun Cheong
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Republic of Korea;
| |
Collapse
|
22
|
Ji H, Yuan L, Jiang W, Jiang Y, Jiang M, Sun X, Chen J. Bioinformatics analysis of immune cell infiltration patterns and potential diagnostic markers in atherosclerosis. Sci Rep 2023; 13:19821. [PMID: 37963970 PMCID: PMC10645850 DOI: 10.1038/s41598-023-47257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
This study aimed to investigate efficient diagnostic markers and molecular mechanisms of atherosclerosis and to analyze the role of immune infiltration through bioinformatics analysis. Expression profile datasets (GSE28829 and GSE43292) of patients with atherosclerosis and healthy controls were downloaded from the GEO database. Glutamine (GLN) metabolism-associated genes were obtained from the Molecular Signatures Database (MSigDB). The limma package in R was used to identify differentially expressed genes (DEGs). Significant modules were filtered using Weighted Gene Co-expression Network Analysis (WGCNA). MSigDB sets were subjected to Gene Set Enrichment Analysis and Gene Set Variation Analysis. The biological functions of DEGs were examined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. STRING and Cytoscape software were used to identify hub genes and functional modules through protein-protein interaction (PPI) network analysis. The xCell software was adopted to assess the composition patterns of immune and stromal cells. Correlation analyses were performed for key genes and immune cell subtypes. We identified 308 DEGs and GLN-associated genes. Functional enrichment analysis showed that these genes were strongly enriched in muscle contract, muscle tissue development, cutile fiber, mycobacterial, and actin binding. Enriched KEGG pathways comprised dilated cardiomyopathy, hypertrophic cardiomyopathy, and the cAMP signaling pathway. In the PPI network analysis, 27 genes were identified as hub genes. The area under the curve (AUC) values of 27 biomarkers were relatively high, indicating high diagnostic values. The atherosclerosis group exhibited a markedly higher degree of infiltration than the control group. This study identified 27 GLN-associated genes as potential biomarkers for the diagnosis of atherosclerosis. It provides a new perspective on immune responses that facilitates exploration of the molecular mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Haigang Ji
- Department of Cardiovascular Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Ling Yuan
- Department of Cardiovascular Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Wenbo Jiang
- Department of Cardiovascular Medicine, Suqian Hospital Affiliated to Nanjing University of Chinese Medicine, Suqian, 223800, China
| | - Yinke Jiang
- Department of Cardiovascular Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Mengke Jiang
- Department of Cardiovascular Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Xuemei Sun
- Department of Cardiovascular Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Jing Chen
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| |
Collapse
|
23
|
Yamamoto K, Iwadate D, Naito E, Tateishi K, Fujishiro M. Autophagy as a critical driver of metabolic adaptation, therapeutic resistance, and immune evasion of cancer. Curr Opin Biotechnol 2023; 84:103012. [PMID: 39492353 DOI: 10.1016/j.copbio.2023.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2024]
Abstract
Autophagy is a well-conserved intracellular degradation pathway. Besides its physiological role in normal cells, autophagy is activated in various cancer types and protects cancer cells from stresses such as nutrient deprivation, therapeutic insults, and antitumor immunity. Autophagy in cancer cells as well as normal cells in the host supports tumor metabolism, allowing for tumor growth under a nutrient-limited tumor microenvironment. Autophagy also protects cancer cells from treatments such as radiation therapy, cytotoxic chemotherapy, and targeted therapy. Though the roles of autophagy in antitumor immunity are complex and highly context-dependent, accumulating evidence now supports the role of autophagy in mediating immunotherapy resistance. Based on these preclinical findings, multiple clinical trials are currently ongoing to test the therapeutic efficacy of autophagy inhibition in cancer. Here, we review recent findings on the tumor-promoting roles of autophagy in cancer and discuss advances in therapeutic approaches that target autophagy in cancer.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Dosuke Iwadate
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Naito
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki city, Kanagawa 216-8511 Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
24
|
Xu JY, Fan JX, Hu M, Zeng J. Microorganism-regulated autophagy in gastrointestinal cancer. PeerJ 2023; 11:e16130. [PMID: 37786582 PMCID: PMC10541808 DOI: 10.7717/peerj.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
Gastrointestinal cancer has always been one of the most urgent problems to be solved, and it has become a major global health issue. Microorganisms in the gastrointestinal tract regulate normal physiological and pathological processes. Accumulating evidence reveals the role of the imbalance in the microbial community during tumorigenesis. Autophagy is an important intracellular homeostatic process, where defective proteins and organelles are degraded and recycled under stress. Autophagy plays a dual role in tumors as both tumor suppressor and tumor promoter. Many studies have shown that autophagy plays an important role in response to microbial infection. Here, we provide an overview on the regulation of the autophagy signaling pathway by microorganisms in gastrointestinal cancer.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Chongqing Normal University, Chongqing, China
| | | | - Min Hu
- Chongqing Normal University, Chongqing, China
| | - Jun Zeng
- Chongqing Normal University, Chongqing, China
| |
Collapse
|
25
|
Tian Z, Hua X, Zhu J, Li P, Chen R, Li X, Li T, Zhou C, Huang C. ATG7 upregulation contributes to malignant transformation of human bronchial epithelial cells by B[a]PDE via DNMT3B protein degradation and miR-494 promoter methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115273. [PMID: 37480691 DOI: 10.1016/j.ecoenv.2023.115273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Lung cancer primarily arises from exposure to various environmental factors, particularly airborne pollutants. Among the various lung carcinogens, benzo(a)pyrene and its metabolite B[a]PDE are the strongest ones that actively contribute to lung cancer development. ATG7 is an E1-like activating enzyme and contributes to activating autophagic responses in mammal cells. However, the potential alterations of ATG7 and its role in B[a]PDE-caused lung carcinogenesis remain unknown. Here, we found that B[a]PDE exposure promoted ATG7 expression in mouse lung tissues, while B[a]PDE exposure resulted in ATG7 induction in human normal bronchial epithelial cells. Our studies also demonstrated a significant correlation between high ATG7 expression levels and poor overall survival in lung cancer patients. ATG7 knockdown significantly repressed Beas-2B cell transformation upon B[a]PDE exposure, and such promotive effect of ATG7 on cell transformation mediated the p27 translation inhibition. Further studies revealed that miR-373 inhibition was required to stabilize ATG7 mRNA, therefore increasing ATG7 expression following B[a]PDE exposure, while ATG7 induction led to the autophagic degradation of the DNA methyltransferase 3 Beta (DNMT3B) protein, in turn promoted miR-494 transcription via its promoter region methylation status suppression. We also found that the miR-494 upregulation inhibited p27 protein translation and promoted bronchial epithelial cell transformation via its directly targeting p27 mRNA 3'-UTR region. Current studies, to the best of our knowledge, are for the first time to identify that ATG7 induction and its mediated autophagy is critical for B[a]PDE-induced transformation of human normal epithelial cells.
Collapse
Affiliation(s)
- Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Medicine. Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Key Laboratory of Chest Cancer, Shandong University, The Second Hospital of Shandong University, Jinan, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Junlan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Medicine. Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peiwei Li
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, 250033 China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Medicine. Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Medicine. Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Medicine. Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chengfan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Medicine. Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
26
|
Adaku N, Ostendorf BN, Mei W, Tavazoie SF. Apolipoprotein E2 Stimulates Protein Synthesis and Promotes Melanoma Progression and Metastasis. Cancer Res 2023; 83:3013-3025. [PMID: 37335131 PMCID: PMC10740391 DOI: 10.1158/0008-5472.can-23-1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
The secreted lipid transporter apolipoprotein E (APOE) plays important roles in atherosclerosis and Alzheimer's disease and has been implicated as a suppressor of melanoma progression. The APOE germline genotype predicts human melanoma outcomes, with APOE4 and APOE2 allele carriers exhibiting prolonged and reduced survival, respectively, relative to APOE3 homozygotes. While the APOE4 variant was recently shown to suppress melanoma progression by enhancing antitumor immunity, further work is needed to fully characterize the melanoma cell-intrinsic effects of APOE variants on cancer progression. Using a genetically engineered mouse model, we showed that human germline APOE genetic variants differentially modulate melanoma growth and metastasis in an APOE2>APOE3>APOE4 manner. The low-density lipoprotein receptor-related protein 1 (LRP1) receptor mediated the cell-intrinsic effects of APOE variants on melanoma progression. Protein synthesis was a tumor cell-intrinsic process differentially modulated by APOE variants, with APOE2 promoting translation via LRP1. These findings reveal a gain-of-function role for the APOE2 variant in melanoma progression, which may aid in predicting melanoma patient outcomes and understanding the protective effect of APOE2 in Alzheimer's disease. SIGNIFICANCE APOE germline variants impact melanoma progression through disparate mechanisms, such as the protein synthesis-promoting function of the APOE2 variant, indicating that germline genetic variants are causal contributors to metastatic outcomes.
Collapse
Affiliation(s)
- Nneoma Adaku
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Benjamin N. Ostendorf
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
27
|
Valentini E, Di Martile M, Brignone M, Di Caprio M, Manni I, Chiappa M, Sergio I, Chiacchiarini M, Bazzichetto C, Conciatori F, D'Aguanno S, D'Angelo C, Ragno R, Russillo M, Colotti G, Marchesi F, Bellone ML, Dal Piaz F, Felli MP, Damia G, Del Bufalo D. Bcl-2 family inhibitors sensitize human cancer models to therapy. Cell Death Dis 2023; 14:441. [PMID: 37460459 DOI: 10.1038/s41419-023-05963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marica Di Caprio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michela Chiappa
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Bazzichetto
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Conciatori
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Michelangelo Russillo
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Francesco Marchesi
- Hematology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Bellone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
28
|
Fratta E, Giurato G, Guerrieri R, Colizzi F, Dal Col J, Weisz A, Steffan A, Montico B. Autophagy in BRAF-mutant cutaneous melanoma: recent advances and therapeutic perspective. Cell Death Discov 2023; 9:202. [PMID: 37386023 DOI: 10.1038/s41420-023-01496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Macroautophagy, hereafter referred to as autophagy, represents a highly conserved catabolic process that maintains cellular homeostasis. At present, the role of autophagy in cutaneous melanoma (CM) is still controversial, since it appears to be tumor-suppressive at early stages of malignant transformation and cancer-promoting during disease progression. Interestingly, autophagy has been found to be often increased in CM harboring BRAF mutation and to impair the response to targeted therapy. In addition to autophagy, numerous studies have recently conducted in cancer to elucidate the molecular mechanisms of mitophagy, a selective form of mitochondria autophagy, and secretory autophagy, a process that facilitates unconventional cellular secretion. Although several aspects of mitophagy and secretory autophagy have been investigated in depth, their involvement in BRAF-mutant CM biology has only recently emerged. In this review, we aim to overview autophagy dysregulation in BRAF-mutant CM, along with the therapeutic advantages that may arise from combining autophagy inhibitors with targeted therapy. In addition, the recent advances on mitophagy and secretory autophagy involvement in BRAF-mutant CM will be also discussed. Finally, since a number of autophagy-related non-coding RNAs (ncRNAs) have been identified so far, we will briefly discussed recent advances linking ncRNAs to autophagy regulation in BRAF-mutant CM.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, 84131, Salerno, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
29
|
Assi M, Kimmelman AC. Impact of context-dependent autophagy states on tumor progression. NATURE CANCER 2023; 4:596-607. [PMID: 37069394 PMCID: PMC10542907 DOI: 10.1038/s43018-023-00546-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
Macroautophagy is a cellular quality-control process that degrades proteins, protein aggregates and damaged organelles. Autophagy plays a fundamental role in cancer where, in the presence of stressors (for example, nutrient starvation, hypoxia, mechanical pressure), tumor cells activate it to degrade intracellular substrates and provide energy. Cell-autonomous autophagy in tumor cells and cell-nonautonomous autophagy in the tumor microenvironment and in the host converge on mechanisms that modulate metabolic fitness, DNA integrity and immune escape and, consequently, support tumor growth. In this Review, we will discuss insights into the tumor-modulating roles of autophagy in different contexts and reflect on how future studies using physiological culture systems may help to understand the complexity and open new therapeutic avenues.
Collapse
Affiliation(s)
- Mohamad Assi
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA.
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
30
|
Jain V, Singh MP, Amaravadi RK. Recent advances in targeting autophagy in cancer. Trends Pharmacol Sci 2023; 44:290-302. [PMID: 36931971 PMCID: PMC10106406 DOI: 10.1016/j.tips.2023.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Autophagy is a cellular homeostasis mechanism that fuels the proliferation and survival of advanced cancers by degrading and recycling organelles and proteins. Preclinical studies have identified that within an established tumor, tumor cell autophagy and host cell autophagy conspire to support tumor growth. A growing body of evidence suggests that autophagy inhibition can augment the efficacy of chemotherapy, targeted therapy, or immunotherapy to enhance tumor shrinkage. First-generation autophagy inhibition trials in cancer using the lysosomal inhibitor hydroxychloroquine (HCQ) have produced mixed results but have guided the way for the development of more potent and specific autophagy inhibitors in clinical trials. In this review, we will discuss the role of autophagy in cancer, newly discovered molecular mechanisms of the autophagy pathway, the effects of autophagy modulation in cancer and host cells, and novel autophagy inhibitors that are entering clinical trials.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahendra Pal Singh
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Matarrese P, Vona R, Ascione B, Cittadini C, Tocci A, Mileo AM. Tumor Microenvironmental Cytokines Drive NSCLC Cell Aggressiveness and Drug-Resistance via YAP-Mediated Autophagy. Cells 2023; 12:cells12071048. [PMID: 37048121 PMCID: PMC10093141 DOI: 10.3390/cells12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.
Collapse
Affiliation(s)
- Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Barbara Ascione
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Camilla Cittadini
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| |
Collapse
|
32
|
Roy A, Chakraborty AR, Nomanbhoy T, DePamphilis ML. PIP5K1C phosphoinositide kinase deficiency distinguishes PIKFYVE-dependent cancer cells from non-malignant cells. Autophagy 2023:1-21. [PMID: 36803256 PMCID: PMC10392749 DOI: 10.1080/15548627.2023.2182594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Although PIKFYVE phosphoinositide kinase inhibitors can selectively eliminate PIKFYVE-dependent human cancer cells in vitro and in vivo, the basis for this selectivity has remained elusive. Here we show that the sensitivity of cells to the PIKFYVE inhibitor WX8 is not linked to PIKFYVE expression, macroautophagic/autophagic flux, the BRAFV600E mutation, or ambiguous inhibitor specificity. PIKFYVE dependence results from a deficiency in the PIP5K1C phosphoinositide kinase, an enzyme required for conversion of phosphatidylinositol-4-phosphate (PtdIns4P) into phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2/PIP2), a phosphoinositide associated with lysosome homeostasis, endosome trafficking, and autophagy. PtdIns(4,5)P2 is produced via two independent pathways. One requires PIP5K1C; the other requires PIKFYVE and PIP4K2C to convert PtdIns3P into PtdIns(4,5)P2. In PIKFYVE-dependent cells, low concentrations of WX8 specifically inhibit PIKFYVE in situ, thereby increasing the level of its substrate PtdIns3P while suppressing PtdIns(4,5)P2 synthesis and inhibiting lysosome function and cell proliferation. At higher concentrations, WX8 inhibits both PIKFYVE and PIP4K2C in situ, which amplifies these effects to further disrupt autophagy and induce cell death. WX8 did not alter PtdIns4P levels. Consequently, inhibition of PIP5K1C in WX8-resistant cells transformed them into sensitive cells, and overexpression of PIP5K1C in WX8-sensitive cells increased their resistance to WX8. This discovery suggests that PIKFYVE-dependent cancers could be identified clinically by low levels of PIP5K1C and treated with PIKFYVE inhibitors.
Collapse
Affiliation(s)
- Ajit Roy
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Arup R Chakraborty
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Melvin L DePamphilis
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Pangilinan C, Xu X, Herlyn M, Liang C. Autophagy Paradox: Strategizing Treatment Modality in Melanoma. Curr Treat Options Oncol 2023; 24:130-145. [PMID: 36670319 PMCID: PMC9883356 DOI: 10.1007/s11864-023-01053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT The primordial autophagy process, originally identified as a starvation response in baker's yeast, has since been shown to have a wide spectrum of functions other than survival. In many cases, it is accepted that autophagy operates as a key tumor suppressor mechanism that protects cells from adverse environmental cues by enforcing homeostasis and maintaining the functional and structural integrity of organelles. Paradoxically, heightened states of autophagy are also seen in some cancers, leading to the prevailing view that the pro-survival aspect of autophagy might be hijacked by some tumors to promote their fitness and pathogenesis. Notably, recent studies have revealed a broad range of cell-autonomous autophagy in reshaping tumor microenvironment and maintaining lineage integrity and immune homeostasis, calling for a renewed understanding of autophagy beyond its classical roles in cell survival. Here, we evaluate the increasing body of literature that argues the "double-edged" consequences of autophagy manipulation in cancer therapy, with a particular focus on highly plastic and mutagenic melanoma. We also discuss the caveats that must be considered when evaluating whether autophagy blockade is the effector mechanism of some anti-cancer therapy particularly associated with lysosomotropic agents. If autophagy proteins are to be properly exploited as targets for anticancer drugs, their diverse and complex roles should also be considered.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Bhatt V, Lan T, Wang W, Kong J, Lopes EC, Wang J, Khayati K, Raju A, Rangel M, Lopez E, Hu ZS, Luo X, Su X, Malhotra J, Hu W, Pine SR, White E, Guo JY. Inhibition of autophagy and MEK promotes ferroptosis in Lkb1-deficient Kras-driven lung tumors. Cell Death Dis 2023; 14:61. [PMID: 36702816 PMCID: PMC9879981 DOI: 10.1038/s41419-023-05592-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
LKB1 and KRAS are the third most frequent co-mutations detected in non-small cell lung cancer (NSCLC) and cause aggressive tumor growth. Unfortunately, treatment with RAS-RAF-MEK-ERK pathway inhibitors has minimal therapeutic efficacy in LKB1-mutant KRAS-driven NSCLC. Autophagy, an intracellular nutrient scavenging pathway, compensates for Lkb1 loss to support Kras-driven lung tumor growth. Here we preclinically evaluate the possibility of autophagy inhibition together with MEK inhibition as a treatment for Kras-driven lung tumors. We found that the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and the MEK inhibitor Trametinib displays synergistic anti-proliferative activity in KrasG12D/+;Lkb1-/- (KL) lung cancer cells, but not in KrasG12D/+;p53-/- (KP) lung cancer cells. In vivo studies using tumor allografts, genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) showed anti-tumor activity of the combination of HCQ and Trametinib on KL but not KP tumors. We further found that the combination treatment significantly reduced mitochondrial membrane potential, basal respiration, and ATP production, while also increasing lipid peroxidation, indicative of ferroptosis, in KL tumor-derived cell lines (TDCLs) and KL tumors compared to treatment with single agents. Moreover, the reduced tumor growth by the combination treatment was rescued by ferroptosis inhibitor. Taken together, we demonstrate that autophagy upregulation in KL tumors causes resistance to Trametinib by inhibiting ferroptosis. Therefore, a combination of autophagy and MEK inhibition could be a novel therapeutic strategy to specifically treat NSCLC bearing co-mutations of LKB1 and KRAS.
Collapse
Affiliation(s)
- Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Taijin Lan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Wenping Wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jerry Kong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | | | - Jianming Wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Akash Raju
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Michael Rangel
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Enrique Lopez
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | | | - Xuefei Luo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pharmacology, Rutgers University, Piscataway, NJ, 08903, USA
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Pharmacology, Rutgers University, Piscataway, NJ, 08903, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, 08540, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, USA.
| |
Collapse
|
35
|
Khayati K, Bhatt V, Lan T, Alogaili F, wang W, Lopez E, Hu ZS, Gokhale S, Cassidy L, Narita M, Xie P, White E, Guo JY. Transient Systemic Autophagy Inhibition Is Selectively and Irreversibly Deleterious to Lung Cancer. Cancer Res 2022; 82:4429-4443. [PMID: 36156071 PMCID: PMC9722642 DOI: 10.1158/0008-5472.can-22-1039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023]
Abstract
Autophagy is a conserved catabolic process that maintains cellular homeostasis. Autophagy supports lung tumorigenesis and is a potential therapeutic target in lung cancer. A better understanding of the importance of tumor cell-autonomous versus systemic autophagy in lung cancer could facilitate clinical translation of autophagy inhibition. Here, we exploited inducible expression of Atg5 shRNA to temporally control Atg5 levels and to generate reversible tumor-specific and systemic autophagy loss mouse models of KrasG12D/+;p53-/- (KP) non-small cell lung cancer (NSCLC). Transient suppression of systemic but not tumor Atg5 expression significantly reduced established KP lung tumor growth without damaging normal tissues. In vivo13C isotope tracing and metabolic flux analyses demonstrated that systemic Atg5 knockdown specifically led to reduced glucose and lactate uptake. As a result, carbon flux from glucose and lactate to major metabolic pathways, including the tricarboxylic acid cycle, glycolysis, and serine biosynthesis, was significantly reduced in KP NSCLC following systemic autophagy loss. Furthermore, systemic Atg5 knockdown increased tumor T-cell infiltration, leading to T-cell-mediated tumor killing. Importantly, intermittent transient systemic Atg5 knockdown, which resembles what would occur during autophagy inhibition for cancer therapy, significantly prolonged lifespan of KP lung tumor-bearing mice, resulting in recovery of normal tissues but not tumors. Thus, systemic autophagy supports the growth of established lung tumors by promoting immune evasion and sustaining cancer cell metabolism for energy production and biosynthesis, and the inability of tumors to recover from loss of autophagy provides further proof of concept that inhibition of autophagy is a valid approach to cancer therapy. SIGNIFICANCE Transient loss of systemic autophagy causes irreversible damage to tumors by suppressing cancer cell metabolism and promoting antitumor immunity, supporting autophagy inhibition as a rational strategy for treating lung cancer. See related commentary by Gan, p. 4322.
Collapse
Affiliation(s)
- Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Taijin Lan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Fawzi Alogaili
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Wenping wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Enrique Lopez
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Zhixian Sherrie Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Liam Cassidy
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Masashi Narita
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ping Xie
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey 08540, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, USA
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors (ICIs) have revolutionized the treatment paradigm for patients with metastatic melanoma; however, there remains an unmet clinical need for alternative treatment options for those patients who are either intolerant or refractory to immunotherapy. Here we review the role and clinical efficacy of targeted therapies for BRAFV600 wild-type melanoma. RECENT FINDINGS Genomic analyses in BRAFV600 wild-type melanoma have previously identified driver mutations along the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)-AKT pathways that can be targeted with small molecule inhibitors. New drugs such as bispecific antibodies and antibody drug conjugates may have significant clinical activity even in rare subtypes of melanoma that are less responsive to ICIs. Historically, molecular-targeted therapies have modest clinical success in treating BRAFV600 wild-type melanoma; nevertheless, they may have a significant clinical role in select, genetically distinct groups of patients. Next-generation immunotherapies or immunomodulators may represent the latest breakthrough in the treatment of melanoma. Additional studies are needed to identify novel drug targets and synergistic drug combinations to expand treatment options and optimize clinical outcomes.
Collapse
|
37
|
Lin N, Lin J, Plosch T, Sun P, Zhou X. An Oxidative Stress-Related Gene Signature in Granulosa Cells Is Associated with Ovarian Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1070968. [PMID: 36466095 PMCID: PMC9713466 DOI: 10.1155/2022/1070968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Ovarian aging is associated with a decrease in fecundity. Increased oxidative stress of granulosa cells (GCs) is an important contributor. We thus asked whether there is an oxidative stress-related gene signature in GCs associated with ovarian aging. Public nonhuman primate (NHP) single-cell transcriptome was processed to identify GC cluster. Then, a GC signature for ovarian aging was established based on six oxidative stress-related differentially expressed genes (MAPK1, STK24, AREG, ATG7, ANXA1, and PON2). Receiver operating characteristic (ROC) analysis confirmed good discriminating capacity in both NHP single-cell and human bulk transcriptome datasets. Gene expression levels were investigated using qPCR in the human ovarian granulosa-like tumor cell line (KGN) and mouse GCs. In an oxidative stress model, KGN cells were treated with menadione (7.5 μM, 24 h) to induce oxidative stress, after which upregulation of MAPK1, STK24, ATG7, ANXA1, and PON2 and downregulation of AREG were observed (p < 0.05). In an aging model, KGN cells were continuously cultured for 3 months, leading to increased expressions of all genes (p < 0.05). In GCs of reproductively aged (8-month-old) Kunming mice, upregulated expression of Mapk1, Stk24, Atg7, and Pon2 and downregulated expression of Anxa1 and Areg were observed (p < 0.01). We therefore here identify a six-gene GC signature associated with oxidative stress and ovarian aging.
Collapse
Affiliation(s)
- Nuan Lin
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, Netherlands
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiazhe Lin
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Torsten Plosch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, Netherlands
| | - Pingnan Sun
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
38
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Zhang X, Li H, Liu C, Yuan X. Role of ROS‑mediated autophagy in melanoma (Review). Mol Med Rep 2022; 26:303. [PMID: 35946460 PMCID: PMC9434998 DOI: 10.3892/mmr.2022.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer with the poorest prognosis and its pathogenesis has yet to be fully elucidated. As key factors that regulate cellular homeostasis, both reactive oxygen species (ROS) and autophagy are involved in the development of melanoma, from melanomagenesis to progression and drug resistance. However, the interaction between ROS and autophagy in the etiology and treatment of melanoma is not well characterized. The present review examined the production of ROS and the role of oxidative stress in melanoma, and summarized the role of ROS‑mediated autophagy in melanomagenesis and melanoma cell fate decision following treatment with various anticancer drugs. The present findings may lead to a better understanding of the pathogenesis and progression of melanoma, and suggest promising treatment options for this disease.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Huaijun Li
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Chengxiang Liu
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xingxing Yuan
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
40
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
41
|
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19:619-636. [PMID: 36045302 PMCID: PMC9428886 DOI: 10.1038/s41571-022-00668-4] [Citation(s) in RCA: 365] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer. The entry of cells into senescence can act as a barrier to tumorigenesis; however, in certain contexts senescent malignant and non-malignant cells can acquire pro-tumorigenic properties. The authors of this Review discuss the cell-intrinsic and cell-extrinsic mechanisms involved in both the antitumorigenic and tumour-promoting roles of senescent cells, and describe the potential of various senolytic and senomorphic therapeutic approaches in oncology. Cellular senescence is a natural barrier to tumorigenesis; senescent cells are widely detected in premalignant lesions from patients with cancer. Cellular senescence is induced by anticancer therapy and can contribute to some treatment-related adverse events (TRAEs). Senescent cells exert both protumorigenic and antitumorigenic effects via cell-autonomous and paracrine mechanisms. Pharmacological modulation of senescence-associated phenotypes has the potential to improve therapy efficacy and reduce the incidence of TRAEs.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Johannes Kepler University, Linz, Austria.,Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.,Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
42
|
Brown H, Chung M, Üffing A, Batistatou N, Tsang T, Doskocil S, Mao W, Willbold D, Bast RC, Lu Z, Weiergräber OH, Kritzer JA. Structure-Based Design of Stapled Peptides That Bind GABARAP and Inhibit Autophagy. J Am Chem Soc 2022; 144:14687-14697. [PMID: 35917476 PMCID: PMC9425296 DOI: 10.1021/jacs.2c04699] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LC3/GABARAP family of proteins is involved in nearly every stage of autophagy. Inhibition of LC3/GABARAP proteins is a promising approach to blocking autophagy, which sensitizes advanced cancers to DNA-damaging chemotherapy. Here, we report the structure-based design of stapled peptides that inhibit GABARAP with nanomolar affinities. Small changes in staple structure produced stapled peptides with very different binding modes and functional differences in LC3/GABARAP paralog selectivity, ranging from highly GABARAP-specific to broad inhibition of both subfamilies. The stapled peptides exhibited considerable cytosolic penetration and resistance to biological degradation. They also reduced autophagic flux in cultured ovarian cancer cells and sensitized ovarian cancer cells to cisplatin. These small, potent stapled peptides represent promising autophagy-modulating compounds that can be developed as novel cancer therapeutics and novel mediators of targeted protein degradation.
Collapse
Affiliation(s)
- Hawley Brown
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Mia Chung
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Alina Üffing
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Tiffany Tsang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Samantha Doskocil
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Weiqun Mao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Oliver H Weiergräber
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
43
|
Sun N, Tian Y, Chen Y, Guo W, Li C. Metabolic rewiring directs melanoma immunology. Front Immunol 2022; 13:909580. [PMID: 36003368 PMCID: PMC9393691 DOI: 10.3389/fimmu.2022.909580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma results from the malignant transformation of melanocytes and accounts for the most lethal type of skin cancers. In the pathogenesis of melanoma, disordered metabolism is a hallmark characteristic with multiple metabolic paradigms involved in, e.g., glycolysis, lipid metabolism, amino acid metabolism, oxidative phosphorylation, and autophagy. Under the driving forces of oncogenic mutations, melanoma metabolism is rewired to provide not only building bricks for macromolecule synthesis and sufficient energy for rapid proliferation and metastasis but also various metabolic intermediates for signal pathway transduction. Of note, metabolic alterations in tumor orchestrate tumor immunology by affecting the functions of surrounding immune cells, thereby interfering with their antitumor capacity, in addition to the direct influence on tumor cell intrinsic biological activities. In this review, we first introduced the epidemiology, clinical characteristics, and treatment proceedings of melanoma. Then, the components of the tumor microenvironment, especially different populations of immune cells and their roles in antitumor immunity, were reviewed. Sequentially, how metabolic rewiring contributes to tumor cell malignant behaviors in melanoma pathogenesis was discussed. Following this, the proceedings of metabolism- and metabolic intermediate-regulated tumor immunology were comprehensively dissertated. Finally, we summarized currently available drugs that can be employed to target metabolism to intervene tumor immunology and modulate immunotherapy.
Collapse
Affiliation(s)
- Ningyue Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuhan Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li, ; Weinan Guo,
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li, ; Weinan Guo,
| |
Collapse
|
44
|
Yu T, Ben S, Ma L, Jiang L, Chen S, Lin Y, Chen T, Li S, Zhu L. Genetic variants in autophagy-related gene ATG2B predict the prognosis of colorectal cancer patients receiving chemotherapy. Front Oncol 2022; 12:876424. [PMID: 35992821 PMCID: PMC9389459 DOI: 10.3389/fonc.2022.876424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Autophagy-related genes have a vital effect on colorectal cancer (CRC) by affecting genomic stability and regulating immune responses. However, the associations between genetic variants in autophagy-related genes and CRC outcomes for chemotherapy therapy remain unclear. The Cox regression model was used to evaluate the associations between single-nucleotide polymorphisms (SNPs) in autophagy-related genes and overall survival (OS) and progression-free survival (PFS) of CRC patients. The results were corrected by the false discovery rate (FDR) correction. We used the logistic regression model to investigate the associations of SNPs with the disease control rate (DCR) of patients. Gene expression analysis was explored based on an in-house dataset and other databases. The associations between gene expression and infiltrating immune cells were evaluated using the Tumor Immune Estimation Resource (TIMER) database. We observed that ATG2B rs17094017 A > T was significantly associated with increased OS (HR = 0.65, 95% CI = 0.50-0.86, P = 2.54×10-3), PFS (HR = 0.76, 95% CI = 0.62-0.93, P = 7.34×10-3), and DCR (OR = 0.60, 95% CI = 0.37-0.96, P = 3.31×10-2) of CRC patients after chemotherapy. The expression of ATG2B was down-expressed in CRC tissues than in adjacent normal tissues. Moreover, ATG2B expression influenced the infiltration of CD8+ T cells, CD4+ T cells, B cells, and T cell receptor signaling pathways, which may inhibit the occurrence of CRC by affecting the immune system. This study suggests that genetic variants in the autophagy-related gene ATG2B play a critical role in predicting the prognosis of CRC prognosis undergoing chemotherapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silu Chen
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| |
Collapse
|
45
|
Russell RC, Guan KL. The multifaceted role of autophagy in cancer. EMBO J 2022; 41:e110031. [PMID: 35535466 PMCID: PMC9251852 DOI: 10.15252/embj.2021110031] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a cellular degradative pathway that plays diverse roles in maintaining cellular homeostasis. Cellular stress caused by starvation, organelle damage, or proteotoxic aggregates can increase autophagy, which uses the degradative capacity of lysosomal enzymes to mitigate intracellular stresses. Early studies have shown a role for autophagy in the suppression of tumorigenesis. However, work in genetically engineered mouse models and in vitro cell studies have now shown that autophagy can be either cancer-promoting or inhibiting. Here, we summarize the effects of autophagy on cancer initiation, progression, immune infiltration, and metabolism. We also discuss the efforts to pharmacologically target autophagy in the clinic and highlight future areas for exploration.
Collapse
Affiliation(s)
- Ryan C Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Hsu CH, Lee KJ, Chiu YH, Huang KC, Wang GS, Chen LP, Liao KW, Lin CS. The Lysosome in Malignant Melanoma: Biology, Function and Therapeutic Applications. Cells 2022; 11:1492. [PMID: 35563798 PMCID: PMC9103375 DOI: 10.3390/cells11091492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lysosomes are membrane-bound vesicles that play roles in the degradation and recycling of cellular waste and homeostasis maintenance within cells. False alterations of lysosomal functions can lead to broad detrimental effects and cause various diseases, including cancers. Cancer cells that are rapidly proliferative and invasive are highly dependent on effective lysosomal function. Malignant melanoma is the most lethal form of skin cancer, with high metastasis characteristics, drug resistance, and aggressiveness. It is critical to understand the role of lysosomes in melanoma pathogenesis in order to improve the outcomes of melanoma patients. In this mini-review, we compile our current knowledge of lysosomes' role in tumorigenesis, progression, therapy resistance, and the current treatment strategies related to lysosomes in melanoma.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Keng-Jung Lee
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 10617, Taiwan;
| | - Kuo-Ching Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Guo-Shou Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Lei-Po Chen
- Ph.D. Degree Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
47
|
Hirata AS, La Clair JJ, Jimenez PC, Costa-Lotufo LV, Fenical W. Preclinical Development of Seriniquinones as Selective Dermcidin Modulators for the Treatment of Melanoma. Mar Drugs 2022; 20:md20050301. [PMID: 35621952 PMCID: PMC9143531 DOI: 10.3390/md20050301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
The bioactive natural product seriniquinone was discovered as a potential melanoma drug, which was produced by the as-yet-undescribed marine bacterium of the rare genus Serinicoccus. As part of a long-term research program aimed at the discovery of new agents for the treatment of cancer, seriniquinone revealed remarkable in vitro activity against a diversity of cancer cell lines in the US National Cancer Institute 60-cell line screening. Target deconvolution studies defined the seriniquinones as a new class of melanoma-selective agents that act in part by targeting dermcidin (DCD). The targeted DCD peptide has been recently examined and defined as a “pro-survival peptide” in cancer cells. While DCD was first isolated from human skin and thought to be only an antimicrobial peptide, currently DCD has been also identified as a peptide associated with the survival of cancer cells, through what is believed to be a disulfide-based conjugation with proteins that would normally induce apoptosis. However, the significantly enhanced potency of seriniquinone was of particular interest against the melanoma cell lines assessed in the NCI 60-cell line panel. This observed selectivity provided a driving force that resulted in a multidimensional program for the discovery of a usable drug with a new anticancer target and, therefore, a novel mode of action. Here, we provided an overview of the discovery and development efforts to date.
Collapse
Affiliation(s)
- Amanda S. Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| | - Paula C. Jimenez
- Institute of Marine Science, Federal University of São Paulo, Santos 11070-100, Brazil;
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0204, USA
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| |
Collapse
|
48
|
Hernandez GA, Perera RM. Autophagy in cancer cell remodeling and quality control. Mol Cell 2022; 82:1514-1527. [PMID: 35452618 PMCID: PMC9119670 DOI: 10.1016/j.molcel.2022.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.
Collapse
Affiliation(s)
- Grace A Hernandez
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rushika M Perera
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
49
|
Taucher E, Mykoliuk I, Fediuk M, Smolle-Juettner FM. Autophagy, Oxidative Stress and Cancer Development. Cancers (Basel) 2022; 14:cancers14071637. [PMID: 35406408 PMCID: PMC8996905 DOI: 10.3390/cancers14071637] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy, as an important cellular repair mechanism, is important for the prevention of several diseases, including metabolic and neurologic disorders, and cancer. Hence, dysfunctional autophagy has been linked to these diseases, and in recent years researchers have tried to outline therapeutic targets in autophagy-related pathways as a treatment. With this review of the literature, we want to give an overview about the connection between oxidative stress, autophagy and cancer. Abstract Autophagy is an important cellular repair mechanism, aiming at sequestering misfolded and dysfunctional proteins and damaged cell organelles. Dysfunctions in the autophagy process have been linked to several diseases, like infectious and neurodegenerative diseases, type II diabetes mellitus and cancer. Living organisms are constantly subjected to some degree of oxidative stress, mainly induced by reactive oxygen and nitrogen species. It has been shown that autophagy is readily induced by reactive oxygen species (ROS) upon nutrient deprivation. In recent years, research has increasingly focused on outlining novel therapeutic targets related to the autophagy process. With this review of the literature, we want to give an overview about the link between autophagy, oxidative stress and carcinogenesis.
Collapse
Affiliation(s)
- Elisabeth Taucher
- Division of Pulmonology, Department of Internal Medicine, Medical University Graz, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-12183
| | - Iurii Mykoliuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Melanie Fediuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Freyja-Maria Smolle-Juettner
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| |
Collapse
|
50
|
Mehnert JM, Mitchell TC, Huang AC, Aleman TS, Kim BJ, Schuchter LM, Linette GP, Karakousis GC, Mitnick S, Giles L, Carberry M, Frey N, Kossenkov A, Groisberg R, Hernandez-Aya LF, Ansstas G, Silk AW, Chandra S, Sosman JA, Gimotty PA, Mick R, Amaravadi RK. BAMM (BRAF Autophagy and MEK Inhibition in Melanoma): A Phase I/II Trial of Dabrafenib, Trametinib, and Hydroxychloroquine in Advanced BRAFV600-mutant Melanoma. Clin Cancer Res 2022; 28:1098-1106. [PMID: 35022320 PMCID: PMC8923957 DOI: 10.1158/1078-0432.ccr-21-3382] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Autophagy is a resistance mechanism to BRAF/MEK inhibition in BRAFV600-mutant melanoma. Here we used hydroxychloroquine (HCQ) to inhibit autophagy in combination with dabrafenib 150 mg twice daily and trametinib 2 mg every day (D+T). PATIENTS AND METHODS We conducted a phase I/II clinical trial in four centers of HCQ + D+T in patients with advanced BRAFV600-mutant melanoma. The primary objectives were the recommended phase II dose (RP2D) and the one-year progression-free survival (PFS) rate of >53%. RESULTS Thirty-four patients were evaluable for one-year PFS rate. Patient demographics were as follows: elevated lactate dehydrogenase: 47%; stage IV M1c/M1d: 52%; prior immunotherapy: 50%. In phase I, there was no dose-limiting toxicity. HCQ 600 mg orally twice daily with D+T was the RP2D. The one-year PFS rate was 48.2% [95% confidence interval (CI), 31.0%-65.5%], median PFS was 11.2 months (95% CI, 5.4-16.9 months), and response rate (RR) was 85% (95% CI, 64%-95%). The complete RR was 41% and median overall survival (OS) was 26.5 months. In a patient with elevated LDH (n = 16), the RR was 88% and median PFS and OS were 7.3 and 22 months, respectively. CONCLUSIONS HCQ + D+T was well tolerated and produced a high RR but did not meet criteria for success for the one-year PFS rate. There was a high proportion of patients with pretreated and elevated LDH, an increasingly common demographic in patients receiving targeted therapy. In this difficult-to-treat population, the RR and PFS were encouraging. A randomized trial of D+T + HCQ or placebo in patients with BRAFV600-mutant melanoma with elevated LDH and previous immunotherapy is being conducted.
Collapse
Affiliation(s)
- Janice M. Mehnert
- Department of Medicine and Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
| | - Tara C. Mitchell
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander C. Huang
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tomas S. Aleman
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin J. Kim
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M. Schuchter
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gerald P. Linette
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giorgos C. Karakousis
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sheryl Mitnick
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lydia Giles
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Carberry
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noelle Frey
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Kossenkov
- Bioinformatics Facility, The Wistar Institute, Philadelphia, Pennsylvania
| | - Roman Groisberg
- Department of Medicine and Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
| | - Leonel F. Hernandez-Aya
- Department of Medicine and the Siteman Cancer Center, Washington University, St. Louis, Missouri
| | - George Ansstas
- Department of Medicine and the Siteman Cancer Center, Washington University, St. Louis, Missouri
| | - Ann W. Silk
- Department of Medicine and Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey
| | - Sunandana Chandra
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University, Evanston, Illinois
| | - Jeffrey A. Sosman
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University, Evanston, Illinois
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rosemarie Mick
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K. Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|