1
|
Ji S, Cao L, Gao J, Du Y, Ye Z, Lou X, Liu F, Zhang Y, Xu J, Shi X, Wang H, Li P, Li Y, Chen H, Yang Z, Gao S, Zhang W, Huang D, Ni S, Wei M, Wang F, Wang Y, Ding T, Jing D, Fan G, Gong Z, Lu R, Qin Y, Chen J, Xu X, Wang P, Zhang B, Ding L, Robles AI, Rodriguez H, Chang DK, Hruban RH, Gao D, Gao D, Jin G, Zhou H, Wu J, Yu X. Proteogenomic characterization of non-functional pancreatic neuroendocrine tumors unravels clinically relevant subgroups. Cancer Cell 2025; 43:776-796.e14. [PMID: 40185092 DOI: 10.1016/j.ccell.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/27/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
The majority of neuroendocrine neoplasms in pancreas are non-functional pancreatic neuroendocrine tumors (NF-PanNETs), which exhibit a high occurrence of distant metastases with limited therapeutic options. Here, we perform a comprehensive molecular characterization of 108 NF-PanNETs through integrative analysis of genomic, transcriptomic, proteomic, and phosphoproteomic profiles. Proteogenomic analysis provides functional insights into the genomic driver alterations of NF-PanNETs, revealing a potential mediator of MEN1 alterations using Men1-conditional knockout mice. Machine-learning-based modeling uncovers a three-protein signature as an independent prognostic factor, which is validated by an independent external cohort. Proteomic and phosphoproteomic-based stratification identifies four subtypes with distinct molecular characteristics, immune microenvironments, and clinicopathological features. Drug screening using patient-derived tumor organoids identifies cyclin-dependent kinase (CDK) 5 and Calcium Voltage-Gated Channel Subunit Alpha1 D (CACNA1D) as ubiquitous and subtype-specific targets, respectively, with in vivo validation using xenograft models. Together, our proteogenomic analyses illustrate a comprehensive molecular landscape of NF-PanNETs, revealing biological insights and therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lihua Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Gao
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Du
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Fen Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yehan Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Penghao Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yikai Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Hongxu Chen
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhicheng Yang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Dan Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Shujuan Ni
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Fei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Tian Ding
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Zhiyun Gong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Renquan Lu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Jie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Ralph H Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daming Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China.
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jianmin Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
2
|
Matyasovska N, Valkova N, Gala M, Bendikova S, Abdulhamed A, Palicka V, Renwick N, Čekan P, Paul E. Deep sequencing reveals distinct microRNA-mRNA signatures that differentiate pancreatic neuroendocrine tumor from non-diseased pancreas tissue. BMC Cancer 2025; 25:669. [PMID: 40217502 PMCID: PMC11987397 DOI: 10.1186/s12885-025-14043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Only a limited number of biomarkers guide personalized management of pancreatic neuroendocrine tumors (PanNETs). Transcriptome profiling of microRNA (miRs) and mRNA has shown value in segregating PanNETs and identifying patients more likely to respond to treatment. Because miRs are key regulators of mRNA expression, we sought to integrate expression data from both RNA species into miR-mRNA interaction networks to advance our understanding of PanNET biology. METHODS We used deep miR/mRNA sequencing on six low-grade/high-risk, well-differentiated PanNETs compared with seven non-diseased tissues to identify differentially expressed miRs/mRNAs. Then we crossed a list of differentially expressed mRNAs with a list of in silico predicted mRNA targets of the most and least abundant miRs to generate high probability miR-mRNA interaction networks. RESULTS Gene ontology and pathway analyses revealed several miR-mRNA pairs implicated in cellular processes and pathways suggesting perturbed neuroendocrine function (miR-7 and Reg family genes), cell adhesion (miR-216 family and NLGN1, NCAM1, and CNTN1; miR-670 and the claudins, CLDN1 and CLDN2), and metabolic processes (miR-670 and BCAT1/MPST; miR-129 and CTH). CONCLUSION These novel miR-mRNA interaction networks identified dysregulated pathways not observed when assessing mRNA alone and provide a foundation for further investigation of their utility as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- N Matyasovska
- MultiplexDX, s.r.o, Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - N Valkova
- MultiplexDX, s.r.o, Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - M Gala
- MultiplexDX, s.r.o, Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - S Bendikova
- MultiplexDX, s.r.o, Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - A Abdulhamed
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - V Palicka
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Neil Renwick
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, USA.
| | - Pavol Čekan
- MultiplexDX, s.r.o, Comenius University Science Park, Bratislava, Slovakia.
- MultiplexDX, Inc, Rockville, MD, USA.
| | - Evan Paul
- MultiplexDX, s.r.o, Comenius University Science Park, Bratislava, Slovakia.
- MultiplexDX, Inc, Rockville, MD, USA.
| |
Collapse
|
3
|
Zhang K. Molecular Classification and Characterization of Noninsulinoma: Ready for Prime Time in Clinical Practice? Int J Surg Pathol 2025:10668969251327748. [PMID: 40156271 DOI: 10.1177/10668969251327748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Pancreatic neuroendocrine tumors are a heterogeneous group of rare clinical tumors, which can be classified into functional pancreatic neuroendocrine tumor (insulinoma is the most common) and noninsulinoma. Insulinoma and noninsulinoma have different mutation profiles. In noninsulinoma, ATRX/DAXX mutation is associated with alternative lengthening of telomeres-positive phenotype and positively correlated with poor prognosis. Copy number variation is also a prognostic marker for a high risk of recurrence. Scholars have used epigenetics as well as a multiomics approach (combining epigenetics, metabolomics, proteomics, etc) to molecularly type noninsulinoma, and there are huge differences in molecular expression and patient prognosis between different groups. In this manuscript, we summarize the published studies that utilized genome, epigenome, transcriptome, and proteome data to classify noninsulinoma.
Collapse
Affiliation(s)
- Kaijian Zhang
- Pathology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Tacelli M, Gentiluomo M, Biamonte P, Castano JP, Berković MC, Cives M, Kapitanović S, Marinoni I, Marinovic S, Nikas I, Nosáková L, Pedraza-Arevalo S, Pellè E, Perren A, Strosberg J, Campa D, Capurso G. Pancreatic neuroendocrine neoplasms (pNENs): Genetic and environmental biomarkers for risk of occurrence and prognosis. Semin Cancer Biol 2025; 112:112-125. [PMID: 40158764 DOI: 10.1016/j.semcancer.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are rare and heterogeneous tumors arising from neuroendocrine cells, representing approximately 10 % of all Gastro-Entero-Pancreatic neuroendocrine neoplasms. While most pNENs are sporadic, a subset is associated with genetic syndromes such as multiple endocrine neoplasia type 1 (MEN1) or von Hippel-Lindau disease (VHL). pNENs are further classified into functioning and non-functioning tumors, with distinct clinical behaviors, prognoses, and treatment approaches. This review explores genetic and environmental biomarkers that influence the risk, prognosis, and therapeutic responses in pNENs. The epidemiology of pNENs reveals an increasing incidence, primarily due to advancements in imaging techniques. Genetic factors play a pivotal role, with germline mutations in MEN1, VHL, and other genes contributing to familial pNENs. Somatic mutations, including alterations in the mTOR pathway and DNA maintenance genes such as DAXX and ATRX, are critical in sporadic pNENs. These mutations, along with epigenetic dysregulation and transcriptomic alterations, underpin the diverse clinical and molecular phenotypes of pNENs. Emerging evidence suggests that epigenetic changes, including DNA methylation profiles, can stratify pNEN subtypes and predict disease progression. Environmental and lifestyle factors, such as diabetes, smoking, and chronic pancreatitis, have been linked to an increased risk of sporadic pNENs. While the association between these factors and tumor progression is still under investigation, their potential role in influencing therapeutic outcomes warrants further study. Advances in systemic therapies, including somatostatin analogs, mTOR inhibitors, and tyrosine kinase inhibitors, have improved disease management. Biomarkers such as Ki-67, somatostatin receptor expression, and O6-methylguanine-DNA methyltransferase (MGMT) status are being evaluated for their predictive value. Novel approaches, including the use of circulating biomarkers (NETest, circulating tumor cells, and ctDNA) and polygenic risk scores, offer promising avenues for non-invasive diagnosis and monitoring. Despite these advancements, challenges remain, including the need for large, well-annotated datasets and validated biomarkers. Future research should integrate multi-omics approaches and leverage liquid biopsy technologies to refine diagnostic, prognostic, and therapeutic strategies. Interdisciplinary collaborations and global consortia are crucial for overcoming current limitations and translating research findings into clinical practice. These insights hold promise for improving prevention, early detection, and tailored treatments, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Matteo Tacelli
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Biamonte
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Justo P Castano
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Maja Cigrovski Berković
- Department for Sport and Exercise Medicine, Faculty of Kinesiology University of Zagreb, Zagreb 10000, Croatia
| | - Mauro Cives
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb 10000, Croatia
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Sonja Marinovic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb 10000, Croatia
| | - Ilias Nikas
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - Lenka Nosáková
- Clinic of Internal Medicine - Gastroenterology, JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Bratislava, Slovakia
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Eleonora Pellè
- Department of GI Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jonathan Strosberg
- Department of GI Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
5
|
Jannin A, Dabo-Niang S, Cao CD, Descat A, Espiard S, Cardot-Bauters C, Vantyghem MC, Chevalier B, Goossens JF, Marsac B, Vandel J, Dominguez S, Caiazzo R, Pattou F, Marciniak C, El Amrani M, Van Seuningen I, Jonckheere N, Dessein AF, Coppin L. Identification of metabolite biomarkers for pancreatic neuroendocrine tumours using a metabolomic approach. Eur J Endocrinol 2025; 192:466-480. [PMID: 40105057 DOI: 10.1093/ejendo/lvaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/23/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
IMPORTANCE Metabolic flexibility, a key hallmark of cancer, reflects aberrant tumour changes associated with metabolites. The metabolic plasticity of pancreatic neuroendocrine tumours (pNETs) remains largely unexplored. Notably, the heterogeneity of pNETs complicates their diagnosis, prognosis, and therapeutic management. OBJECTIVE Here, we compared the plasma metabolomic profiles of patients with pNET and non-cancerous individuals to understand metabolic dysregulation. DESIGN, SETTING, PARTICIPANTS, INTERVENTION AND MEASURE Plasma metabolic profiles of 76 patients with pNETs and 38 non-cancerous individuals were analyzed using LC-MS/MS and FIA-MS/MS (Biocrates AbsoluteIDQ p180 kit). Statistical analyses, including univariate and multivariate methods, were performed along with the generation of receiver operating characteristic (ROC) curves for metabolomic signature identification. RESULTS Compared with non-cancerous individuals, patients with pNET exhibited elevated levels of phosphoglyceride metabolites and reduced acylcarnitine levels, indicating an upregulation of fatty acid oxidation (FAO), which is crucial for the energy metabolism of pNET cells and one-carbon metabolism metabolites. Elevated glutamate levels and decreased lipid metabolite levels have been observed in patients with metastatic pNETs. Patients with the germline MEN1 mutations showed lower amino acid metabolites and FAO, with increased metabolites related to leucine catabolism and lipid metabolism, compared to non-MEN1 mutated patients. The highest area under the ROC curve was observed in patients with pNET harbouring MEN1 mutations. CONCLUSION AND RELEVANCE This study highlights the distinct plasma metabolic signatures of pNETs, including the critical role of FAO and elevated glutamate levels in metastasis, supporting the energy and biosynthetic needs of rapidly proliferating tumour cells. Mapping of these dysregulated metabolites may facilitate the identification of new therapeutic targets for pNETs management.
Collapse
Affiliation(s)
- Arnaud Jannin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, CHU Lille, 2 Avenue Oscar Lambret, Lille F-59000, France
- CHU Lille, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, Lille F-59000, France
| | - Sophie Dabo-Niang
- Univ. Lille, CNRS, UMR 8524-Laboratoire Paul Painlevé, Inria-MODAL, Lille F-59000, France
| | - Christine Do Cao
- CHU Lille, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, Lille F-59000, France
| | - Amandine Descat
- Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille F-59000, France
| | - Stéphanie Espiard
- CHU Lille, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, Lille F-59000, France
| | - Catherine Cardot-Bauters
- CHU Lille, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, Lille F-59000, France
| | - Marie-Christine Vantyghem
- CHU Lille, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, Lille F-59000, France
- Department of Endocrinology, Univ. Lille, U1190 Translational Research for Diabetes, INSERM, Institut Pasteur de Lille, Lille F-59000, France
- Univ. Lille, European Genomic Institute for Diabetes, Lille F-59000, France
| | | | - Jean François Goossens
- Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille F-59000, France
| | - Benjamin Marsac
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Lille F-59000, France
- University of Rouen Normandie, Normandie Univ, Department of Bioinformatics, Rouen F-76000, France
| | - Jimmy Vandel
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Lille F-59000, France
| | - Sophie Dominguez
- Hemato-Oncology Department, Lille Catholic Hospitals, Lille Catholic University, 59000 Lille, France
| | - Robert Caiazzo
- Department of Endocrinology, Univ. Lille, U1190 Translational Research for Diabetes, INSERM, Institut Pasteur de Lille, Lille F-59000, France
- Univ. Lille, European Genomic Institute for Diabetes, Lille F-59000, France
- CHU Lille, Department of General and Endocrine Surgery, Lille University Hospital, Lille F-59000, France
| | - François Pattou
- Department of Endocrinology, Univ. Lille, U1190 Translational Research for Diabetes, INSERM, Institut Pasteur de Lille, Lille F-59000, France
- Univ. Lille, European Genomic Institute for Diabetes, Lille F-59000, France
- CHU Lille, Department of General and Endocrine Surgery, Lille University Hospital, Lille F-59000, France
| | - Camille Marciniak
- Department of Endocrinology, Univ. Lille, U1190 Translational Research for Diabetes, INSERM, Institut Pasteur de Lille, Lille F-59000, France
- Univ. Lille, European Genomic Institute for Diabetes, Lille F-59000, France
- CHU Lille, Department of General and Endocrine Surgery, Lille University Hospital, Lille F-59000, France
| | - Medhi El Amrani
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, CHU Lille, 2 Avenue Oscar Lambret, Lille F-59000, France
- CHU Lille, Department of Digestive Surgery and Transplantation, Lille University Hospital, Lille F-59000, France
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, CHU Lille, 2 Avenue Oscar Lambret, Lille F-59000, France
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, CHU Lille, 2 Avenue Oscar Lambret, Lille F-59000, France
| | - Anne-Frédérique Dessein
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, CHU Lille, 2 Avenue Oscar Lambret, Lille F-59000, France
| | - Lucie Coppin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Department of Endocrinology, Diabetes, Endocrine-oncology and Metabolism, CHU Lille, 2 Avenue Oscar Lambret, Lille F-59000, France
| |
Collapse
|
6
|
Valizadeh A, Veenhuis RT, Bradley BA, Xu K. Transcriptomic Alterations Induced by Tetrahydrocannabinol in SIV/HIV Infection: A Systematic Review. Int J Mol Sci 2025; 26:2598. [PMID: 40141240 PMCID: PMC11942185 DOI: 10.3390/ijms26062598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Given the high prevalence of cannabis use among people with HIV (PWH) and its potential to modulate immune responses and reduce inflammation, this systematic review examines preclinical evidence on how tetrahydrocannabinol (THC), a key compound in cannabis, affects gene and micro-RNA expression in simian immunodeficiency virus (SIV)-infected macaques and HIV-infected human cells. Through a comprehensive search, 19 studies were identified, primarily involving SIV-infected macaques, with a pooled sample size of 176, though methodological quality varied across the studies. Pathway analysis of differentially expressed genes (DEGs) and miRNAs associated with THC revealed enrichment in pathways related to inflammation, epithelial cell proliferation, and adhesion. Notably, some DEGs were targets of the differentially expressed miRNAs, suggesting that epigenetic regulation may contribute to THC's effects on gene function. These findings indicate that THC may help mitigate chronic immune activation in HIV infection by altering gene and miRNA expression, suggesting its potential immunomodulatory role. However, the evidence is constrained by small sample sizes and inconsistencies across studies. Further research employing advanced methodologies and larger cohorts is essential to confirm THC's potential as a complementary therapy for PWH and fully elucidate the underlying mechanisms, which could inform targeted interventions to harness its immunomodulatory effects.
Collapse
Affiliation(s)
- Amir Valizadeh
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Brooklyn A. Bradley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
7
|
Fernandez-Cuesta L, Alcala N, Mathian E, Derks J, Thirlwell C, Dayton T, Marinoni I, Perren A, Walter T, Foll M. Basic science and translational implications of current knowledge on neuroendocrine tumors. J Clin Invest 2025; 135:e186702. [PMID: 40026252 DOI: 10.1172/jci186702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Neuroendocrine tumors (NETs) are a diverse group of malignancies that can occur in various organs, with a notable prevalence in the lungs and gastrointestinal tract, which are the focus of this Review. Although NETs are rare in individual organs, their incidence has increased over recent decades, highlighting the urgent need for current classification systems to evolve by incorporating recent advances in the understanding of NET biology. Several omics studies have revealed molecular subtypes, which, when integrated into existing classification frameworks, may provide more clinically relevant insights for patients with NETs. This Review examines recent progress in elucidating the biology of NETs, with a particular emphasis on the tumor microenvironment and cells of origin. The existence of different cells of origin, which may contribute to distinct molecular groups, along with profiles of immune infiltration - despite being generally low - could explain the emergence of more aggressive cases and the potential for metastatic progression. Given the molecular heterogeneity of NETs and the diversity of their microenvironments and different cells of origin, there is an urgent need to develop morphomolecular classification systems. Such systems would make it possible to better characterize tumor progression, identify new therapeutic targets, and, ultimately, guide the development of personalized therapies.
Collapse
Affiliation(s)
- Lynnette Fernandez-Cuesta
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Nicolas Alcala
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Emilie Mathian
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jules Derks
- Department of Pulmonary Medicine, Erasmus MC Cancer institute, University Medical Center, Rotterdam, Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Talya Dayton
- European Molecular Biology Laboratory Barcelona, Tissue Biology and Disease Modeling, Barcelona, Spain
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Thomas Walter
- Service d'Oncologie Médicale, Groupement Hospitalier Centre, Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Matthieu Foll
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
8
|
van T Veld BR, Hackeng WM, Luchini C, Brosens LAA, Dreijerink KMA. Clinical Relevance of ATRX/DAXX Gene Mutations and ALT in Functioning Pancreatic Neuroendocrine Tumors. Endocr Pathol 2025; 36:3. [PMID: 39954168 PMCID: PMC11829919 DOI: 10.1007/s12022-025-09848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Functioning pancreatic neuroendocrine tumors (PanNETs) represent a subset of PanNETs that cause symptoms due to hormonal activity. Insulinoma is the most common functioning PanNET type. Mutations in the alpha thalassemia/mental retardation X-linked (ATRX) and death domain-associated protein (DAXX) genes result in genomic instability. ATRX/DAXX mutations and associated alternative lengthening of telomeres (ALT) are common in non-functioning PanNETs and associated with aggressive tumor behavior. Recent reports have shown that ATRX/DAXX mutations and ALT are also present in functioning PanNETs. In this review, we summarize the literature addressing ATRX/DAXX mutations and ALT in functioning PanNETs and discuss the clinical relevance with regard to distinguishing aggressive and indolent functioning tumors. ATRX/DAXX gene mutations and/or ALT have been reported in insulinoma, glucagonoma, gastrinoma, VIPoma and calcitoninoma. In insulinoma, the presence of ATRX/DAXX mutations and ALT are associated with aggressive behavior and could therefore be used as prognostic biomarkers. Although ATRX/DAXX mutation and ALT assessment may currently not be the standard of care in routine diagnostic pathology practice, the use of DAXX/ATRX immunohistochemistry at least can be encouraged not only for non-functioning but also for functioning PanNETs.
Collapse
Affiliation(s)
- Brenna R van T Veld
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology and ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen M A Dreijerink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Ciobanu OA, Herlea V, Milanesi E, Dobre M, Fica S. miRNA profile in pancreatic neuroendocrine tumors: Preliminary results. Sci Prog 2025; 108:368504251326864. [PMID: 40152231 PMCID: PMC11952036 DOI: 10.1177/00368504251326864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Our understanding of the pathophysiology of pancreatic neuroendocrine tumors (PanNETs) remains incomplete, largely due to their historically underestimated incidence and the perception of these tumors as rare and slow-growing cancers. Additionally, conventional reliance on histological examination alone is gradually being supplemented by the exploration and introduction of molecular biomarkers, such as microRNAs (miRNAs). As miRNAs modulate the expression of multiple genes and pathways involved in the tumorigenesis of PanNETs, these biomarkers hold considerable promise for diagnosis and prognosis applications. In this study, we aimed to identify miRNAs as tissue markers associated with the diagnosis of PanNETs. METHODS We conducted a case-control study including: 7 PanNETs and 19 nontumoral pancreatic tissues obtained from Romanian patients. The samples underwent miRNA profiling via quantitative RT-PCR to assess the expression of 84 miRNAs. Our results were compared with those obtained by reanalyzing a public dataset. Furthermore, we structured our miRNA expression data according to their targeted mRNAs and their roles in signaling pathways. RESULTS Fourteen miRNAs (miR-1, miR-133a-3p, miR-210-3p, miR-7-5p, miR-10a-5p, miR-92b-3p, miR-132-3p, miR-221-3p, miR-29b-3p, miR-107, miR-103a-3p, let-7b-5p, miR-148a-3p, and miR-202-3p) were identified as differentially expressed by comparing PanNETs with pancreatic nontumoral tissues, with six miRNAs (miR-7-5p, miR-92b-3p, miR-29b-3p, miR-107, miR-103a-3p, and miR-148a-3p) also found in the public dataset analyzed. Bioinformatic analysis revealed that the 14 identified miRNAs target 17 genes. Reanalyzing two public gene expression datasets, five of these genes have been found differentially expressed in PanNET compared to controls. CONCLUSIONS Our preliminary results, albeit limited by a small sample size, highlighted a specific miRNA expression pattern able to distinguish tumoral from normal pancreatic tissue. The diagnostic performance of these miRNAs, matching with circulating miRNAs and validated in more homogeneous and large cohorts, could represent a starting point for improving the diagnostic accuracy of PanNETs.
Collapse
Affiliation(s)
- Oana A Ciobanu
- Department of Endocrinology and Diabetes, Elias Hospital, Bucharest, Romania
- Department of Endocrinology and Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Vlad Herlea
- Fundeni Clinical Institute, Bucharest, Romania
- Department of Pathological Anatomy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular, Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Dobre
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Simona Fica
- Department of Endocrinology and Diabetes, Elias Hospital, Bucharest, Romania
- Department of Endocrinology and Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
10
|
Greenberg JA, Shah Y, Ivanov NA, Marshall T, Kulm S, Williams J, Tran C, Scognamiglio T, Heymann JJ, Lee-Saxton YJ, Egan C, Majumdar S, Min IM, Zarnegar R, Howe J, Keutgen XM, Fahey TJ, Elemento O, Finnerty BM. Developing a Predictive Model for Metastatic Potential in Pancreatic Neuroendocrine Tumor. J Clin Endocrinol Metab 2024; 110:263-274. [PMID: 38817124 PMCID: PMC11651689 DOI: 10.1210/clinem/dgae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
CONTEXT Pancreatic neuroendocrine tumors (PNETs) exhibit a wide range of behavior from localized disease to aggressive metastasis. A comprehensive transcriptomic profile capable of differentiating between these phenotypes remains elusive. OBJECTIVE Use machine learning to develop predictive models of PNET metastatic potential dependent upon transcriptomic signature. METHODS RNA-sequencing data were analyzed from 95 surgically resected primary PNETs in an international cohort. Two cohorts were generated with equally balanced metastatic PNET composition. Machine learning was used to create predictive models distinguishing between localized and metastatic tumors. Models were validated on an independent cohort of 29 formalin-fixed, paraffin-embedded samples using NanoString nCounter®, a clinically available mRNA quantification platform. RESULTS Gene expression analysis identified concordant differentially expressed genes between the 2 cohorts. Gene set enrichment analysis identified additional genes that contributed to enriched biologic pathways in metastatic PNETs. Expression values for these genes were combined with an additional 7 genes known to contribute to PNET oncogenesis and prognosis, including ARX and PDX1. Eight specific genes (AURKA, CDCA8, CPB2, MYT1L, NDC80, PAPPA2, SFMBT1, ZPLD1) were identified as sufficient to classify the metastatic status with high sensitivity (87.5-93.8%) and specificity (78.1-96.9%). These models remained predictive of the metastatic phenotype using NanoString nCounter® on the independent validation cohort, achieving a median area under the receiving operating characteristic curve of 0.886. CONCLUSION We identified and validated an 8-gene panel predictive of the metastatic phenotype in PNETs, which can be detected using the clinically available NanoString nCounter® system. This panel should be studied prospectively to determine its utility in guiding operative vs nonoperative management.
Collapse
Affiliation(s)
| | - Yajas Shah
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Nikolay A Ivanov
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teagan Marshall
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Scott Kulm
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Jelani Williams
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Catherine Tran
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jonas J Heymann
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yeon J Lee-Saxton
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Caitlin Egan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonali Majumdar
- Genomics Facility, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Irene M Min
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rasa Zarnegar
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - James Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Xavier M Keutgen
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Thomas J Fahey
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | | |
Collapse
|
11
|
Malnassy G, Ziolkowski L, Macleod KF, Oakes SA. The Integrated Stress Response in Pancreatic Development, Tissue Homeostasis, and Cancer. Gastroenterology 2024; 167:1292-1306. [PMID: 38768690 PMCID: PMC11570703 DOI: 10.1053/j.gastro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here, we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Leah Ziolkowski
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| | - Scott A Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
12
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation. J Pathol 2024; 264:357-370. [PMID: 39360347 DOI: 10.1002/path.6348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular may progress from a low/intermediate to a high-grade disease. The aim of this work was to understand the molecular mechanisms underlying metastatic progression as well as PanNET transformation from a low/intermediate to a high-grade disease. We performed multi-omics analysis (genome/exome sequencing, total RNA-sequencing and methylation array) of 32 longitudinal samples from six patients with metastatic low/intermediate grade PanNET. The clonal composition of tumour lesions and underlying phylogeny of each patient were determined with bioinformatics analyses. Findings were validated in post-alkylating chemotherapy samples from 24 patients with PanNET using targeted next generation sequencing. We validate the current PanNET evolutionary model with MEN1 inactivation that occurs very early in tumourigenesis. This was followed by pronounced genetic diversity on both spatial and temporal levels, with parallel and convergent tumour evolution involving the ATRX/DAXX and mechanistic target of the rapamycin (mTOR) pathways. Following alkylating chemotherapy treatment, some PanNETs developed mismatch repair deficiency and acquired a hypermutational phenotype. This was validated among 16 patients with PanNET who had high-grade progression after alkylating chemotherapy, of whom eight had a tumour mutational burden >50 (50%). In comparison, among the eight patients who did not show high-grade progression, 0 had a tumour mutational burden >50 (0%; odds ratio 'infinite', 95% confidence interval 1.8 to 'infinite', p = 0.02). Our findings contribute to broaden the understanding of metastatic/high-grade PanNETs and suggests that therapy driven disease evolution is an important hallmark of this disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - C Christofer Juhlin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Almlöf
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Section of Radiology, Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Liang Zhang
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Maluchenko A, Maksimov D, Antysheva Z, Krupinova J, Avsievich E, Glazova O, Bodunova N, Karnaukhov N, Feidorov I, Salimgereeva D, Voloshin M, Volchkov P. Molecular Basis of Pancreatic Neuroendocrine Tumors. Int J Mol Sci 2024; 25:11017. [PMID: 39456803 PMCID: PMC11507569 DOI: 10.3390/ijms252011017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (NETs) are rare well-differentiated neoplasms with limited therapeutic options and unknown cells of origin. The current classification of pancreatic neuroendocrine tumors is based on proliferative grading, and guides therapeutic strategies, however, tumors within grades exhibit profound heterogeneity in clinical manifestation and outcome. Manifold studies have highlighted intra-patient differences in tumors at the genetic and transcriptomic levels. Molecular classification might become an alternative or complementary basis for treatment decisions and reflect tumor biology, actionable cellular processes. Here, we provide a comprehensive review of genomic, transcriptomic, proteomic and epigenomic studies of pancreatic NETs to elucidate patterns shared between proposed subtypes that could form a foundation for new classification. We denote four NET subtypes with distinct molecular features, which were consistently reproduced using various omics technologies.
Collapse
Affiliation(s)
- Alesia Maluchenko
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Denis Maksimov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Zoia Antysheva
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Julia Krupinova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Ekaterina Avsievich
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Olga Glazova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Natalia Bodunova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Nikolay Karnaukhov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Ilia Feidorov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Diana Salimgereeva
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Mark Voloshin
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Pavel Volchkov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| |
Collapse
|
14
|
Tanaka A, Ogawa M, Zhou Y, Otani Y, Hendrickson RC, Miele MM, Li Z, Klimstra DS, Wang JY, Roehrl MH. Proteogenomic characterization of pancreatic neuroendocrine tumors uncovers hypoxia and immune signatures in clinically aggressive subtypes. iScience 2024; 27:110544. [PMID: 39206147 PMCID: PMC11350455 DOI: 10.1016/j.isci.2024.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) represent well-differentiated endocrine neoplasms with variable clinical outcomes. Predicting patient outcomes using the current tumor grading system is challenging. In addition, traditional systemic treatment options for PanNETs, such as somatostatin analogs or cytotoxic chemotherapies, are very limited. To address these issues, we characterized PanNETs using integrated proteogenomics and identified four subtypes. Two proteomic subtypes showed high recurrence rates, suggesting clinical aggressiveness that was missed by current classification. Hypoxia and inflammatory pathways were significantly enriched in the clinically aggressive subtypes. Detailed analyses revealed metabolic adaptation via glycolysis upregulation and oxidative phosphorylation downregulation under hypoxic conditions. Inflammatory signature analysis revealed that immunosuppressive molecules were enriched in immune hot tumors and might be immunotherapy targets. In this study, we characterized clinically aggressive proteomic subtypes of well-differentiated PanNETs and identified candidate therapeutic targets.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yihua Zhou
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- ICU Department, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yusuke Otani
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ronald C. Hendrickson
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew M. Miele
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S. Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Michael H. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Hong X, Zhang X, Jiang R, Qiao S, Wang W, Zhang H, Wang J, Yin B, Li F, Ling C, Wang X, Zhao Y, Wu K, Wu W. A cross-species transcriptomic analysis reveals a novel 2-dimensional classification system explaining the invasiveness heterogeneity of pancreatic neuroendocrine tumor. Cancer Lett 2024:217131. [PMID: 39048044 DOI: 10.1016/j.canlet.2024.217131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Pancreatic neuroendocrine tumors (PanNETs), the second most common type of primary pancreatic tumors, display notable heterogeneity in invasiveness. Current knowledge regarding genomic alterations, including DAXX/ATRX, MEN1 mutations, and copy number variations (CNVs), provides some insights into tumor invasiveness. However, the underlying reasons for the significant variation in invasiveness between insulinoma and other types of PanNETs remain unclear. To construct a comprehensive model for the stratification of prognosis, we employed analysis of both the well-established Rip1-Tag 2 (RT2) mouse model of PanNETs and human PanNETs with various functional types. Firstly, by applying single-cell and bulk RNA sequencing in PanNETs from different ages and strains of RT2 mice and human PanNETs, we introduced a 2-dimensional (2D) classification system. Based on the 2D classification system, human PanNETs were mainly classified as benign insulinomas or non-insulinomas subclusters. Non-insulinomas subtypes mainly included gastrinomas, glucagonomas, VIPomas, and NF-PanNETs, which all exhibited potential invasiveness. In addition, we discovered an enrichment of specific CNV patterns and mutations in corresponding human PanNET subclusters. Then we denoted somatic DAXX/ATRX as the 'second hit' and confounding factors for invasiveness. Finally, by combining the 2D system, DAXX/ATRX mutation status, and tumor diameter, a group of indolent PanNETs with minimal recurrence risk was identified. In conclusion, our current work constructed a comprehensive model to elucidate the heterogeneity of invasiveness in PanNETs and improve prognostic stratification.
Collapse
Affiliation(s)
- Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xingwu Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Rui Jiang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Sitan Qiao
- BGI-Shenzhen, Shenzhen, 518083, China; The Chinese University of Hong Kong, Shatin, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hao Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jingqiao Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Bohui Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | | | - Chao Ling
- The Laboratory of Clinical Genetics, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
16
|
Zhong Y, Tian Y, Wang Y, Bai J, Long Q, Yan L, Gong Z, Gao W, Tang Q. Small Extracellular Vesicle piR-hsa-30937 Derived from Pancreatic Neuroendocrine Neoplasms Upregulates CD276 in Macrophages to Promote Immune Evasion. Cancer Immunol Res 2024; 12:840-853. [PMID: 38572963 PMCID: PMC11217728 DOI: 10.1158/2326-6066.cir-23-0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The role of PIWI-interacting RNAs (piRNA) in small extracellular vesicles (sEV) derived from pancreatic neuroendocrine neoplasms (PNEN) in the tumor microenvironment (TME) remains unexplored. We used multiplex IHC to analyze the expression of CD68, CD276 (B7H3), and CD3 on PNEN. CD276+ tumor-associated macrophages (TAM) were more abundant in tumor tissues than nontumor tissues and negatively correlated with T-cell infiltration. Serum sEV piRNA sequencing was performed to identify piRNAs enriched in patients with PNEN. We then investigated the function and mechanism of sEV piR-hsa-30937 in the cross-talk between tumor cells and macrophages in the PNEN TME. PNEN-derived sEV piR-hsa-30937 targeted PTEN to activate the AKT pathway and drive CD276 expression. CD276+ macrophages inhibited T-cell proliferation and IFNγ production. piR-hsa-30937 knockdown and anti-CD276 treatment suppressed progression and metastasis in a preclinical model of PNEN by enhancing T-cell immunity. Thus, our data show that PNEN-derived sEV piR-hsa-30937 promotes CD276 expression in macrophages through the PTEN/AKT pathway and that CD276+ TAMs suppress T-cell antitumor immunity. sEV piR-hsa-30937 and CD276 are potential therapeutic targets for immunotherapy of PNEN.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Yan Wang
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili State, P.R. China.
| | - Jian’an Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Qin Long
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Zhihui Gong
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili State, P.R. China.
| | - Wei Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China.
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
17
|
Chouchane A, Kirchner P, Marinoni I, Sticová E, Jirásek T, Perren A. Pancreatic Neuroendocrine Microtumors (WHO 2022) Are Not Always Low-Grade Neoplasms: A Case with a Highly Increased Proliferation Rate. Endocr Pathol 2024; 35:147-153. [PMID: 38403790 PMCID: PMC11176210 DOI: 10.1007/s12022-024-09802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Traditionally considered non-functional low proliferative benign neuroendocrine proliferations measuring less than 5 mm, pancreatic (neuro)endocrine microadenomas are now classified as pancreatic neuroendocrine microtumors in the 2022 WHO classification of endocrine and neuroendocrine tumors. This case report discussed the features of an incidentally identified 4.7-mm glucagon-expressing pancreatic neuroendocrine microtumor with MEN1 mutation only, chromosomally stable and an epigenetic alpha-like phenotype. The tumor was associated with an unexplained increased proliferation rate in Ki-67 of 15%. There was no associated DAXX/ATRX deficiency. The presented case challenges the conventional thought of a low proliferative disease of the so-called "pancreatic neuroendocrine microadenomas" and provides additional support to the 2022 WHO classification that also requires grading of these neoplasms. Despite exhibiting molecular features of less aggressive behavior, the case also underscores the biological complexity of pancreatic neuroendocrine microtumors. By recognizing the heterogenous spectrum of neuroendocrine neoplasms, the current case also contributes to ongoing discussions on how to optimize the clinical management of such tumors.
Collapse
Affiliation(s)
- Aziz Chouchane
- Institute For Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Philipp Kirchner
- Institute For Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Ilaria Marinoni
- Institute For Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Eva Sticová
- Clinical and Transplant Pathology Centre, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomáš Jirásek
- Department of Pathology, Liberec Regional Hospital, Liberec, Czech Republic
| | - Aurel Perren
- Institute For Tissue Medicine and Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
18
|
Ye Z, Li Q, Hu Y, Hu H, Xu J, Guo M, Zhang W, Lou X, Wang Y, Gao H, Jing D, Fan G, Qin Y, Zhang Y, Chen X, Chen J, Xu X, Yu X, Liu M, Ji S. The stromal microenvironment endows pancreatic neuroendocrine tumors with spatially specific invasive and metastatic phenotypes. Cancer Lett 2024; 588:216769. [PMID: 38438098 DOI: 10.1016/j.canlet.2024.216769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-β expression in nearby tumor cells. Then, TGF-β promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.
Collapse
Affiliation(s)
- Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Yuheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Haifeng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Muzi Guo
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Fuentes ME, Lu X, Flores NM, Hausmann S, Mazur PK. Combined deletion of MEN1, ATRX and PTEN triggers development of high-grade pancreatic neuroendocrine tumors in mice. Sci Rep 2024; 14:8510. [PMID: 38609433 PMCID: PMC11014914 DOI: 10.1038/s41598-024-58874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of tumors that exhibit an unpredictable and broad spectrum of clinical presentations and biological aggressiveness. Surgical resection is still the only curative therapeutic option for localized PanNET, but the majority of patients are diagnosed at an advanced and metastatic stage with limited therapeutic options. Key factors limiting the development of new therapeutics are the extensive heterogeneity of PanNETs and the lack of appropriate clinically relevant models. In that context, genomic sequencing of human PanNETs revealed recurrent mutations and structural alterations in several tumor suppressors. Here, we demonstrated that combined loss of MEN1, ATRX, and PTEN, tumor suppressors commonly mutated in human PanNETs, triggers the development of high-grade pancreatic neuroendocrine tumors in mice. Histopathological evaluation and gene expression analyses of the developed tumors confirm the presence of PanNET hallmarks and significant overlap in gene expression patterns found in human disease. Thus, we postulate that the presented novel genetically defined mouse model is the first clinically relevant immunocompetent high-grade PanNET mouse model.
Collapse
Affiliation(s)
- Mary Esmeralda Fuentes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Xiaoyin Lu
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Natasha M Flores
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Simone Hausmann
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Lai TY, Chiang TC, Lee CY, Kuo TC, Wu CH, Chen YI, Hu CM, Maskey M, Tang SC, Jeng YM, Tien YW, Lee EYHP, Lee WH. Unraveling the impact of cancer-associated fibroblasts on hypovascular pancreatic neuroendocrine tumors. Br J Cancer 2024; 130:1096-1108. [PMID: 38341509 PMCID: PMC10991442 DOI: 10.1038/s41416-023-02565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Pancreatic neuroendocrine tumors (PNETs) with low microvessel density and fibrosis often exhibit clinical aggressiveness. Given the contribution of cancer-associated fibroblasts (CAFs) to the hypovascular fibrotic stroma in pancreatic ductal adenocarcinoma, investigating whether CAFs play a similar role in PNETs becomes imperative. In this study, we investigated the involvement of CAFs in PNETs and their effects on clinical outcomes. METHODS We examined 79 clinical PNET specimens to evaluate the number and spatial distribution of α-smooth muscle actin (SMA)-positive cells, which are indicative of CAFs. Then, the findings were correlated with clinical outcomes. In vitro and in vivo experiments were conducted to assess the effects of CAFs (isolated from clinical specimens) on PNET metastasis and growth. Additionally, the role of the stromal-cell-derived factor 1 (SDF1)-AGR2 axis in mediating communication between CAFs and PNET cells was investigated. RESULTS αSMA-positive and platelet-derived growth factor-α-positive CAFs were detected in the hypovascular stroma of PNET specimens. A higher abundance of α-SMA-positive CAFs within the PNET stroma was significantly associated with a higher level of clinical aggressiveness. Notably, conditioned medium from PNET cells induced an inflammatory phenotype in isolated CAFs. These CAFs promoted PNET growth and metastasis. Mechanistically, PNET cells secreted interleukin-1, which induced the secretion of SDF1 from CAFs. This cascade subsequently elevated AGR2 expression in PNETs, thereby promoting tumor growth and metastasis. The downregulation of AGR2 in PNET cells effectively suppressed the CAF-mediated promotion of PNET growth and metastasis. CONCLUSION CAFs drive the growth and metastasis of aggressive PNETs. The CXCR4-SDF1 axis may be a target for antistromal therapy in the treatment of PNET. This study clarifies mechanisms underlying PNET aggressiveness and may guide future therapeutic interventions targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Ting-Yu Lai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsai-Chen Chiang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Hui Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Manjit Maskey
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Shiue-Cheng Tang
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Eva Y-H P Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
Bräutigam K, Chouchane A, Konukiewitz B, Perren A. [Practical application of immunohistochemistry in pancreatic neuroendocrine neoplasms : Tips and pitfalls]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:35-41. [PMID: 38175232 PMCID: PMC10827836 DOI: 10.1007/s00292-023-01276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
Pancreatic neuroendocrine neoplasms (PanNEN) are rather rare entities. Morphology, combined with immunohistochemistry, allows typing and grading, thereby leading therapeutic decisions. Depending on tumor stage and differential diagnosis, a broad diagnostic panel may be required. The present work summarizes the minimal diagnostic, prognostic, and predictive markers in PanNEN.Markers of choice for defining a neuroendocrine phenotype are synaptophysin, chromogranin A, and INSM1. The proliferation fraction Ki67 is indispensable for grading, while p53 and Rb1 can help in the differentiation from neuroendocrine carcinoma (NEC). Transcription factors, such as cdx2, TTF‑1, and Islet‑1, can indicate the site of a primary tumor in the setting of a cancer of unknown primary (CUP). DAXX/ATRX immunohistochemistry has mainly prognostic value. Molecular pathology studies currently have little practical value in the diagnosis of PanNEN.An important pitfall in routine diagnostics is the wide spectrum of differential diagnoses mimicking neuroendocrine neoplasms. An expanded immunohistochemical panel is strongly recommended in case of doubt.
Collapse
Affiliation(s)
- Konstantin Bräutigam
- Institut für Gewebemedizin und Pathologie, Universität Bern, Murtenstr. 31, 3008, Bern, Schweiz
| | - Aziz Chouchane
- Institut für Gewebemedizin und Pathologie, Universität Bern, Murtenstr. 31, 3008, Bern, Schweiz
| | - Björn Konukiewitz
- Institut für Pathologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
| | - Aurel Perren
- Institut für Gewebemedizin und Pathologie, Universität Bern, Murtenstr. 31, 3008, Bern, Schweiz.
| |
Collapse
|
22
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The Evolutionary History of Metastatic Pancreatic Neuroendocrine Tumours Reveals a Therapy Driven Route to High-Grade Transformation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24300723. [PMID: 38313278 PMCID: PMC10836126 DOI: 10.1101/2024.01.08.24300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular, show frequent progression from a low/intermediate to a high-grade disease. To understand the molecular mechanisms underlying this phenomenon, we performed multi-omics analysis of 32 longitudinal samples from six metastatic PanNET patients. Following MEN1 inactivation, PanNETs exhibit genetic heterogeneity on both spatial and temporal dimensions with parallel and convergent tumuor evolution involving the ATRX/DAXX and mTOR pathways. Following alkylating chemotherapy treatment, some PanNETs develop mismatch repair deficiency and acquire a hypermutator phenotype. This DNA hypermutation phenotype was only found in cases that also showed transformation into a high-grade PanNET. Overall, our findings contribute to broaden the understanding of metastatic PanNET, and suggests that therapy driven disease evolution is an important hallmark of this disease.
Collapse
|
23
|
Ruz-Caracuel I, Pedraza-Arevalo S, Alonso-Gordoa T, Molina-Cerrillo J, Earl J, Sainz B. Everything you ever wanted to know about cancer stem cells in neuroendocrine neoplasms but were afraid to ask. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2024; 4:e240006. [PMID: 39822777 PMCID: PMC11737516 DOI: 10.1530/eo-24-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
While the role of cancer stem cells (CSCs) in tumorigenesis, chemoresistance, metastasis, and relapse has been extensively studied in solid tumors, such as adenocarcinomas or sarcomas, the same cannot be said for neuroendocrine neoplasms (NENs). While lagging, CSCs have been described in numerous NENs, including gastrointestinal and pancreatic NENs (PanNENs), and they have been found to play critical roles in tumor initiation, progression, and treatment resistance. However, it seems that there is still skepticism regarding the role of CSCs in NENs, even in light of studies that support the CSC model in these tumors and the therapeutic benefits of targeting them. For example, in lung neuroendocrine carcinoids, a high percentage of CSCs have been found in atypical carcinoids, suggesting the presence of CSCs in these cancers. In PanNENs, CSCs marked by aldehyde dehydrogenases or CD90 have been identified, and targeting CSCs with inhibitors of molecular pathways has shown therapeutic potential. Overall, while evidence exists for the presence of CSCs in NENs, either the CSC field has neglected NENs or the NEN field has not fully embraced the CSC model. Both might apply and/or may be a consequence of the fact that NENs are a relatively rare and heterogeneous tumor entity, with confusing histology and nomenclature to match. Regardless, this review intends to summarize our current knowledge of CSCs in NENs and highlight the importance of understanding the role of CSCs in the biology of these rare tumors, with a special focus on developing targeted therapies to improve patients' outcomes.
Collapse
Affiliation(s)
- Ignacio Ruz-Caracuel
- Pathology Department, Hospital
Universitario Ramón y Cajal, Madrid,
Spain
- Molecular Pathology of Cancer
Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación
Sanitaria (IRYCIS), Madrid,
Spain
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research
Institute of Córdoba (IMIBIC), Cordoba,
Spain
- Department of Cell Biology,
Physiology, and Immunology, University of Córdoba,
Cordoba, Spain
- Reina Sofía University
Hospital (HURS), Cordoba,
Spain
| | - Teresa Alonso-Gordoa
- Molecular Pathology of Cancer
Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación
Sanitaria (IRYCIS), Madrid,
Spain
- Medical Oncology Department,
Hospital Universitario Ramón y Cajal, Madrid,
Spain
| | | | - Julie Earl
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
- Biomarkers and Personalized
Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal
de Investigación Sanitaria (IRYCIS), Madrid,
Spain
| | - Bruno Sainz
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
- Biomarkers and Personalized
Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal
de Investigación Sanitaria (IRYCIS), Madrid,
Spain
- Department of Cancer, Instituto
de Investigaciones Biomédicas (IIBm) Sols-Morreale
(CSIC-UAM), Madrid, Spain
| |
Collapse
|
24
|
Jannin A, Dessein AF, Do Cao C, Vantyghem MC, Chevalier B, Van Seuningen I, Jonckheere N, Coppin L. Metabolism of pancreatic neuroendocrine tumors: what can omics tell us? Front Endocrinol (Lausanne) 2023; 14:1248575. [PMID: 37908747 PMCID: PMC10613989 DOI: 10.3389/fendo.2023.1248575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Reprogramming of cellular metabolism is now a hallmark of tumorigenesis. In recent years, research on pancreatic neuroendocrine tumors (pNETs) has focused on genetic and epigenetic modifications and related signaling pathways, but few studies have been devoted to characterizing the metabolic profile of these tumors. In this review, we thoroughly investigate the metabolic pathways in pNETs by analyzing the transcriptomic and metabolomic data available in the literature. Methodology We retrieved and downloaded gene expression profiles from all publicly available gene set enrichments (GSE43797, GSE73338, and GSE117851) to compare the differences in expressed genes based on both the stage and MEN1 mutational status. In addition, we conducted a systematic review of metabolomic data in NETs. Results By combining transcriptomic and metabolomic approaches, we have identified a distinctive metabolism in pNETs compared with controls without pNETs. Our analysis showed dysregulations in the one-carbon, glutathione, and polyamine metabolisms, fatty acid biosynthesis, and branched-chain amino acid catabolism, which supply the tricarboxylic acid cycle. These targets are implicated in pNET cell proliferation and metastasis and could also have a prognostic impact. When analyzing the profiles of patients with or without metastasis, or with or without MEN1 mutation, we observed only a few differences due to the scarcity of published clinical data in the existing research. Consequently, further studies are now necessary to validate our data and investigate these potential targets as biomarkers or therapeutic solutions, with a specific focus on pNETs.
Collapse
Affiliation(s)
- Arnaud Jannin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- CHU Lille, Department of Endocrinology, Diabetology, and Metabolism, Lille, France
| | - Anne-Frédérique Dessein
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Christine Do Cao
- CHU Lille, Department of Endocrinology, Diabetology, and Metabolism, Lille, France
| | | | | | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Lucie Coppin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
25
|
Döring C, Peer K, Bankov K, Bollmann C, Ramaswamy A, Di Fazio P, Wild PJ, Bartsch DK. Whole-exome sequencing of calcitonin-producing pancreatic neuroendocrine neoplasms indicates a unique molecular signature. Front Oncol 2023; 13:1160921. [PMID: 37771441 PMCID: PMC10522832 DOI: 10.3389/fonc.2023.1160921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Calcitonin-producing pancreatic neuroendocrine neoplasms (CT-pNENs) are an extremely rare clinical entity, with approximately 60 cases reported worldwide. While CT-pNENs can mimic the clinical and diagnostic features of medullary thyroid carcinoma, their molecular profile is poorly understood. Methods Whole-exome sequencing (WES) was performed on tumor and corresponding serum samples of five patients with increased calcitonin serum levels and histologically validated calcitonin-positive CT-pNENs. cBioPortal analysis and DAVID gene enrichment analysis were performed to identify dysregulated candidate genes compared to control databases. Immunohistochemistry was used to detect the protein expression of MUC4 and MUC16 in CT-pNEN specimens. Results Mutated genes known in the literature in pNENs like MEN1 (35% of cases), ATRX (18-20% of cases) and PIK3CA (1.4% of cases) were identified in cases of CT-pNENs. New somatic SNVs in ATP4A, HES4, and CAV3 have not been described in CT- pNENs, yet. Pathogenic germline mutations in FGFR4 and DPYD were found in three of five cases. Mutations of CALCA (calcitonin) and the corresponding receptor CALCAR were found in all five tumor samples, but none of them resulted in protein sequelae or clinical relevance. All five tumor cases showed single nucleotide variations (SNVs) in MUC4, and four cases showed SNVs in MUC16, both of which were membrane-bound mucins. Immunohistochemistry showed protein expression of MUC4 in two cases and MUC16 in one case, and the liver metastasis of a third case was double positive for MUC4 and MUC16. The homologous recombination deficiency (HRD) score of all tumors was low. Discussion CT-pNENs have a unique molecular signature compared to other pNEN subtypes, specifically involving the FGFR4, DPYD, MUC4, MUC16 and the KRT family genes. However, a major limitation of our study was the relative small number of only five cases. Therefore, our WES data should be interpreted with caution and the mutation landscape in CT-pNENs needs to be verified by a larger number of patients. Further research is needed to explain differences in pathogenesis compared with other pNENs. In particular, multi-omics data such as RNASeq, methylation and whole genome sequencing could be informative.
Collapse
Affiliation(s)
- Claudia Döring
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katharina Peer
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Carmen Bollmann
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Annette Ramaswamy
- Institute of Pathology, Philipps-University Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Peter Johannes Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Detlef Klaus Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
26
|
Bourdeleau P, Couvelard A, Ronot M, Lebtahi R, Hentic O, Ruszniewski P, Cros J, de Mestier L. Spatial and temporal heterogeneity of digestive neuroendocrine neoplasms. Ther Adv Med Oncol 2023; 15:17588359231179310. [PMID: 37323185 PMCID: PMC10262621 DOI: 10.1177/17588359231179310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are initially monoclonal neoplasms that progressively become polyclonal, with very different genotypic and phenotypic characteristics leading to biological differences, including the Ki-67 proliferation index, morphology, or sensitivity to treatments. Whereas inter-patient heterogeneity has been well described, intra-tumor heterogeneity has been little studied. However, NENs present a high degree of heterogeneity, both spatially within the same location or between different lesions, and through time. This can be explained by the emergence of tumor subclones with different behaviors. These subpopulations can be distinguished by the Ki-67 index, but also by the expression of hormonal markers or by differences in the intensity of uptake on metabolic imaging, such as 68Ga-somatostatin receptor and Fluorine-18 fluorodeoxyglucose positron emission tomography. As these features are directly related to prognosis, it seems mandatory to move toward a standardized, improved selection of the tumor areas to be studied to be as predictive as possible. The temporal evolution of NENs frequently leads to changes in tumor grade over time, with impact on prognosis and therapeutic decision-making. However, there is no recommendation regarding systematic biopsy of NEN recurrence or progression, and which lesion to sample. This review aims to summarize the current state of knowledge, the main hypotheses, and the main implications regarding intra-tumor spatial and temporal heterogeneity in digestive NENs.
Collapse
Affiliation(s)
- Pauline Bourdeleau
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
| | - Anne Couvelard
- Department of Pathology, Beaujon/Bichat Hospitals (APHP.Nord), Université Paris-Cité, Clichy/Paris, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Maxime Ronot
- Department of Radiology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France, and Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Rachida Lebtahi
- Department of Nuclear Medicine, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Olivia Hentic
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
| | - Philippe Ruszniewski
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Jérôme Cros
- Department of Pathology, Beaujon/Bichat Hospitals (APHP.Nord), Université Paris-Cité, Clichy/Paris, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | | |
Collapse
|
27
|
Werle SD, Ikonomi N, Lausser L, Kestler AMTU, Weidner FM, Schwab JD, Maier J, Buchholz M, Gress TM, Kestler AMR, Kestler HA. A systems biology approach to define mechanisms, phenotypes, and drivers in PanNETs with a personalized perspective. NPJ Syst Biol Appl 2023; 9:22. [PMID: 37270586 DOI: 10.1038/s41540-023-00283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a rare tumor entity with largely unpredictable progression and increasing incidence in developed countries. Molecular pathways involved in PanNETs development are still not elucidated, and specific biomarkers are missing. Moreover, the heterogeneity of PanNETs makes their treatment challenging and most approved targeted therapeutic options for PanNETs lack objective responses. Here, we applied a systems biology approach integrating dynamic modeling strategies, foreign classifier tailored approaches, and patient expression profiles to predict PanNETs progression as well as resistance mechanisms to clinically approved treatments such as the mammalian target of rapamycin complex 1 (mTORC1) inhibitors. We set up a model able to represent frequently reported PanNETs drivers in patient cohorts, such as Menin-1 (MEN1), Death domain associated protein (DAXX), Tuberous Sclerosis (TSC), as well as wild-type tumors. Model-based simulations suggested drivers of cancer progression as both first and second hits after MEN1 loss. In addition, we could predict the benefit of mTORC1 inhibitors on differentially mutated cohorts and hypothesize resistance mechanisms. Our approach sheds light on a more personalized prediction and treatment of PanNET mutant phenotypes.
Collapse
Affiliation(s)
- Silke D Werle
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Ludwig Lausser
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
- Faculty of Computer Science, Technische Hochschule Ingolstadt, 85049, Ingolstadt, Germany
| | | | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Julia Maier
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
- Institute of Pathology, University Hospital Ulm, 89081, Ulm, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043, Marburg, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043, Marburg, Germany
| | | | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
28
|
Haidar M, Al Mahmasani L, Chehade L, Elias C, El Jebai M, Temraz S, Charafeddine M, Al Darazi M, Shamseddine A. Well-differentiated gastro-entero-pancreatic neuroendocrine tumors with positive FDG-PET/CT: a retrospective chart review. Nucl Med Commun 2023; 44:471-479. [PMID: 36897058 DOI: 10.1097/mnm.0000000000001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
PURPOSE Rarely, well-differentiated gastro-entero-pancreatic neuroendocrine tumors (GEP NETs) can have positive uptake on 18F-fluorodeoxyglucose-PET/computerized tomography ( 18 F-FDG-PET/CT), with or without a positive 68 Ga-PET/CT. We aim to evaluate the diagnostic role of 18 F-FDG-PET/CT in patients with well-differentiated GEP NETs. METHODS We retrospectively reviewed a chart of patients diagnosed with GEP NETs between 2014 and 2021, at the American University of Beirut Medical Center, who have low (G1; Ki-67 ≤2) or intermediate (G2; and Ki-67 >2-≤20) well-differentiated tumors with positive findings on FDG-PET/CT. The primary endpoint is progression-free survival (PFS) compared to historical control, and the secondary outcome is to describe their clinical outcome. RESULTS In total 8 out of 36 patients with G1 or G2 GEP NET met the inclusion criteria for this study. The median age was 60 years (range 51-75 years) and 75% were male. One patient (12.5%) had a G1 tumor whereas 7 (87.5%) had G2, and seven patients were stage IV. The primary tumor was intestinal in 62.5% of the patients and pancreatic in 37.5%. Seven patients had both 18 F-FDG-PET/CT and 68 Ga-PET/CT positive and one patient had a positive 18 F-FDG-PET/CT and negative 68 Ga-PET/CT. Median and mean PFS in patients positive for both 68 Ga-PET/CT and 18 F-FDG-PET/CT were 49.71 months and 37.5 months (95% CI, 20.7-54.3), respectively. PFS in these patients is lower than that reported in the literature for G1/G2 NETs with positive 68 Ga-PET/CT and negative FDG-PET/CT (37.5 vs. 71 months; P = 0.0217). CONCLUSION A new prognostic score that includes 18 F-FDG-PET/CT in G1/G2 GEP NETs could identify more aggressive tumors.
Collapse
Affiliation(s)
| | - Layal Al Mahmasani
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laudy Chehade
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Charbel Elias
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Sally Temraz
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maya Charafeddine
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Monita Al Darazi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
29
|
Guo Y, Tian C, Cheng Z, Chen R, Li Y, Su F, Shi Y, Tan H. Molecular and Functional Heterogeneity of Primary Pancreatic Neuroendocrine Tumors and Metastases. Neuroendocrinology 2023; 113:943-956. [PMID: 37232011 PMCID: PMC10614458 DOI: 10.1159/000530968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Treatment response to the standard therapy is low for metastatic pancreatic neuroendocrine tumors (PanNETs) mainly due to the tumor heterogeneity. We investigated the heterogeneity between primary PanNETs and metastases to improve the precise treatment. METHODS The genomic and transcriptomic data of PanNETs were retrieved from the Genomics, Evidence, Neoplasia, Information, Exchange (GENIE), and Gene Expression Omnibus (GEO) database, respectively. Potential prognostic effects of gene mutations enriched in metastases were investigated. Gene set enrichment analysis was performed to investigate the functional difference. Oncology Knowledge Base was interrogated for identifying the targetable gene alterations. RESULTS Twenty-one genes had significantly higher mutation rates in metastases which included TP53 (10.3% vs. 16.9%, p = 0.035) and KRAS (3.7% vs. 9.1%, p = 0.016). Signaling pathways related to cell proliferation and metabolism were enriched in metastases, whereas epithelial-mesenchymal transition (EMT) and TGF-β signaling were enriched in primaries. Gene mutations were highly enriched in metastases that had significant unfavorable prognostic effects included mutation of TP53 (p < 0.001), KRAS (p = 0.001), ATM (p = 0.032), KMT2D (p = 0.001), RB1 (p < 0.001), and FAT1 (p < 0.001). Targetable alterations enriched in metastases included mutation of TSC2 (15.5%), ARID1A (9.7%), KRAS (9.1%), PTEN (8.7%), ATM (6.4%), amplification of EGFR (6.0%), MET (5.5%), CDK4 (5.5%), MDM2 (5.0%), and deletion of SMARCB1 (5.0%). CONCLUSION Metastases exhibited a certain extent of genomic and transcriptomic diversity from primary PanNETs. TP53 and KRAS mutation in primary samples might associate with metastasis and contribute to a poorer prognosis. A high fraction of novel targetable alterations enriched in metastases deserves to be validated in advanced PanNETs.
Collapse
Affiliation(s)
- Yiying Guo
- Department of Integrative Oncology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chao Tian
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Cheng
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruao Chen
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanliang Li
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Su
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Huangying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
30
|
Li N, Jia X, Wang Z, Wang K, Qu Z, Chi D, Sun Z, Jiang J, Cui Y, Wang C. Characterization of anoikis-based molecular heterogeneity in pancreatic cancer and pancreatic neuroendocrine tumor and its association with tumor immune microenvironment and metabolic remodeling. Front Endocrinol (Lausanne) 2023; 14:1153909. [PMID: 37234801 PMCID: PMC10206226 DOI: 10.3389/fendo.2023.1153909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 05/28/2023] Open
Abstract
Background Accumulating evidence suggests that anoikis plays a crucial role in the onset and progression of pancreatic cancer (PC) and pancreatic neuroendocrine tumors (PNETs); nevertheless, the prognostic value and molecular characteristics of anoikis in cancers are yet to be determined. Materials and methods We gathered and collated the multi-omics data of several human malignancies using the TCGA pan-cancer cohorts. We thoroughly investigated the genomics and transcriptomics features of anoikis in pan-cancer. We then categorized a total of 930 patients with PC and 226 patients with PNETs into distinct clusters based on the anoikis scores computed through single-sample gene set enrichment analysis. We then delved deeper into the variations in drug sensitivity and immunological microenvironment between the various clusters. We constructed and validated a prognostic model founded on anoikis-related genes (ARGs). Finally, we conducted PCR experiments to explore and verify the expression levels of the model genes. Results Initially, we identified 40 differentially expressed anoikis-related genes (DE-ARGs) between pancreatic cancer (PC) and adjacent normal tissues based on the TCGA, GSE28735, and GSE62452 datasets. We systematically explored the pan-cancer landscape of DE-ARGs. Most DE-ARGs also displayed differential expression trends in various tumors, which were strongly linked to favorable or unfavorable prognoses of patients with cancer, especially PC. Cluster analysis successfully identified three anoikis-associated subtypes for PC patients and two anoikis-associated subtypes for PNETs patients. The C1 subtype of PC patients showed a higher anoikis score, poorer prognosis, elevated expression of oncogenes, and lower level of immune cell infiltration, whereas the C2 subtype of PC patients had the exact opposite characteristics. We developed and validated a novel and accurate prognostic model for PC patients based on the expression traits of 13 DE-ARGs. In both training and test cohorts, the low-risk subpopulations had significantly longer overall survival than the high-risk subpopulations. Dysregulation of the tumor immune microenvironment could be responsible for the differences in clinical outcomes between low- and high-risk groups. Conclusions These findings provide fresh insights into the significance of anoikis in PC and PNETs. The identification of subtypes and construction of models have accelerated the progress of precision oncology.
Collapse
Affiliation(s)
- Ning Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, Wafangdian Central Hospital, Dalian, Liaoning, China
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Xingqing Jia
- Department of Digestive, Jinan City People’s Hospital, Jinan, Shandong, China
| | - Zhong Wang
- Department of General Surgery, Wafangdian Central Hospital, Dalian, Liaoning, China
| | - Kaige Wang
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Zumin Qu
- Department of Pathology, Wafangdian Central Hospital, Dalian, Liaoning, China
| | - Dong Chi
- Department of General Surgery, Wafangdian Central Hospital, Dalian, Liaoning, China
| | - Zhubo Sun
- Department of General Surgery, Wafangdian Central Hospital, Dalian, Liaoning, China
| | - Jian Jiang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yougang Cui
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Changmiao Wang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
31
|
Cui Y, Yuan Q, Chen J, Jiang J, Guan H, Zhu R, Li N, Liu W, Wang C. Determination and characterization of molecular heterogeneity and precision medicine strategies of patients with pancreatic cancer and pancreatic neuroendocrine tumor based on oxidative stress and mitochondrial dysfunction-related genes. Front Endocrinol (Lausanne) 2023; 14:1127441. [PMID: 37223030 PMCID: PMC10200886 DOI: 10.3389/fendo.2023.1127441] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 05/25/2023] Open
Abstract
Background Mitochondria are significant both for cellular energy production and reactive oxygen/nitrogen species formation. However, the significant functions of mitochondrial genes related to oxidative stress (MTGs-OS) in pancreatic cancer (PC) and pancreatic neuroendocrine tumor (PNET) are yet to be investigated integrally. Therefore, in pan-cancer, particularly PC and PNET, a thorough assessment of the MTGs-OS is required. Methods Expression patterns, prognostic significance, mutation data, methylation rates, and pathway-regulation interactions were studied to comprehensively elucidate the involvement of MTGs-OS in pan-cancer. Next, we separated the 930 PC and 226 PNET patients into 3 clusters according to MTGs-OS expression and MTGs-OS scores. LASSO regression analysis was utilized to construct a novel prognostic model for PC. qRT-PCR(Quantitative real-time PCR) experiments were performed to verify the expression levels of model genes. Results The subtype associated with the poorest prognosis and lowerest MTGs-OS scores was Cluster 3, which could demonstrate the vital function of MTGs-OS for the pathophysiological processes of PC. The three clusters displayed distinct variations in the expression of conventional cancer-associated genes and the infiltration of immune cells. Similar molecular heterogeneity was observed in patients with PNET. PNET patients with S1 and S2 subtypes also showed distinct MTGs-OS scores. Given the important function of MTGs-OS in PC, a novel and robust MTGs-related prognostic signature (MTGs-RPS) was established and identified for predicting clinical outcomes for PC accurately. Patients with PC were separated into the training, internal validation, and external validation datasets at random; the expression profile of MTGs-OS was used to classify patients into high-risk (poor prognosis) or low-risk (good prognosis) categories. The variations in the tumor immune microenvironment may account for the better prognoses observed in high-risk individuals relative to low-risk ones. Conclusions Overall, our study for the first time identified and validated eleven MTGs-OS remarkably linked to the progression of PC and PNET, and elaborated the biological function and prognostic value of MTGs-OS. Most importantly, we established a novel protocol for the prognostic evaluation and individualized treatment for patients with PC.
Collapse
Affiliation(s)
- Yougang Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junhong Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jian Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hewen Guan
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ruiping Zhu
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ning Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, Wafangdian Central Hospital, Dalian, Liaoning, China
| | - Wenzhi Liu
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
32
|
Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Gracia-Navarro F, Alors-Pérez E, Pedraza-Arevalo S, Ibáñez-Costa A, Castaño JP. The uprise of RNA biology in neuroendocrine neoplasms: altered splicing and RNA species unveil translational opportunities. Rev Endocr Metab Disord 2023; 24:267-282. [PMID: 36418657 PMCID: PMC9685014 DOI: 10.1007/s11154-022-09771-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Neuroendocrine neoplasms (NENs) comprise a highly heterogeneous group of tumors arising from the diffuse neuroendocrine system. NENs mainly originate in gastrointestinal, pancreatic, and pulmonary tissues, and despite being rare, show rising incidence. The molecular mechanisms underlying NEN development are still poorly understood, although recent studies are unveiling their genomic, epigenomic and transcriptomic landscapes. RNA was originally considered as an intermediary between DNA and protein. Today, compelling evidence underscores the regulatory relevance of RNA processing, while new RNA molecules emerge with key functional roles in core cell processes. Indeed, correct functioning of the interrelated complementary processes comprising RNA biology, its processing, transport, and surveillance, is essential to ensure adequate cell homeostasis, and its misfunction is related to cancer at multiple levels. This review is focused on the dysregulation of RNA biology in NENs. In particular, we survey alterations in the splicing process and available information implicating the main RNA species and processes in NENs pathology, including their role as biomarkers, and their functionality and targetability. Understanding how NENs precisely (mis)behave requires a profound knowledge at every layer of their heterogeneity, to help improve NEN management. RNA biology provides a wide spectrum of previously unexplored processes and molecules that open new avenues for NEN detection, classification and treatment. The current molecular biology era is rapidly evolving to facilitate a detailed comprehension of cancer biology and is enabling the arrival of personalized, predictive and precision medicine to rare tumors like NENs.
Collapse
Affiliation(s)
- Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
33
|
Otto R, Detjen KM, Riemer P, Fattohi M, Grötzinger C, Rindi G, Wiedenmann B, Sers C, Leser U. Transcriptomic Deconvolution of Neuroendocrine Neoplasms Predicts Clinically Relevant Characteristics. Cancers (Basel) 2023; 15:cancers15030936. [PMID: 36765893 PMCID: PMC9913692 DOI: 10.3390/cancers15030936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are a rare yet diverse type of neoplasia whose precise clinical-pathological classification is frequently challenging. Since incorrect classifications can affect treatment decisions, additional tools which support the diagnosis, such as machine learning (ML) techniques, are critically needed but generally unavailable due to the scarcity of suitable ML training data for rare panNENs. Here, we demonstrate that a multi-step ML framework predicts clinically relevant panNEN characteristics while being exclusively trained on widely available data of a healthy origin. The approach classifies panNENs by deconvolving their transcriptomes into cell type proportions based on shared gene expression profiles with healthy pancreatic cell types. The deconvolution results were found to provide a prognostic value with respect to the prediction of the overall patient survival time, neoplastic grading, and carcinoma versus tumor subclassification. The performance with which a proliferation rate agnostic deconvolution ML model could predict the clinical characteristics was found to be comparable to that of a comparative baseline model trained on the proliferation rate-informed MKI67 levels. The approach is novel in that it complements established proliferation rate-oriented classification schemes whose results can be reproduced and further refined by differentiating between identically graded subgroups. By including non-endocrine cell types, the deconvolution approach furthermore provides an in silico quantification of panNEN dedifferentiation, optimizing it for challenging clinical classification tasks in more aggressive panNEN subtypes.
Collapse
Affiliation(s)
- Raik Otto
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- Correspondence: ; Tel.: +49-030-2093-3086
| | - Katharina M. Detjen
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany
| | - Pamela Riemer
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Melanie Fattohi
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany
| | - Guido Rindi
- Section of Anatomic Pathology, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Anatomic Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
34
|
Mo S, Zong L, Chen X, Ban X, Li M, Lu Z, Yu S, Chen J. Expression and Prognostic Value of B7 Family Immune Checkpoints in Pancreatic Neuroendocrine Tumors. Arch Pathol Lab Med 2023; 147:193-201. [PMID: 35671167 DOI: 10.5858/arpa.2021-0377-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
CONTEXT.— Pancreatic neuroendocrine tumors (PanNETs) are rare malignancies with heterogeneous clinical courses requiring novel prognosticators and therapies. B7 family molecules have an important role in various cancers; however, these have not been distinguished in PanNETs. OBJECTIVE.— To investigate the expression and clinical significance of programmed death ligand-1 (PD-L1), programmed death ligand-2 (PD-L2), B7 homolog 3 (B7-H3), B7 homolog 4 (B7-H4), and V-domain immunoglobulin suppressor of T-cell activation (VISTA) in 182 PanNETs (with a high proportion of functioning versus nonfunctioning PanNETs: 51% versus 49%). DESIGN.— Molecules were immunostained by using tissue microarrays from 182 patients with grade 1/2 PanNETs. VISTA-positive microvessel density (VISTA+ MVD) was evaluated in 4 high-power fields (HPFs) (×200) and mean count was calculated; immune cells with 1% or greater VISTA staining were considered positive. PD-L1 tumoral expression was considered positive in samples with 5% or more membranous staining. Tumoral VISTA, stromal PD-L1, PD-L2, B7-H3, and B7-H4 expression were deemed positive if any staining was observed. RESULTS.— VISTA+ MVD was high (≥10.8/HPF) in 45 patients (25%), while VISTA stained positively on immune and tumor cells in 121 (66%) and 0 patients, respectively. Positive PD-L1 tumoral and stromal expression was observed in 23 (13%) and 0 patients, with positive B7-H3 expression in 76 (42%) and 98 (54%) patients, respectively, in these cells; PD-L2 and B7-H4 were not detected. PD-L1 positivity rate was high in functioning PanNETs. Stromal B7-H3 and high VISTA+ MVD correlated with unfavorable clinicopathologic features. Moreover, high VISTA+ MVD was an independent predictor of shorter progression-free survival. CONCLUSIONS.— VISTA may serve as a prognosticator and immunotherapeutic target for patients with pancreatic neuroendocrine tumor (PanNET).
Collapse
Affiliation(s)
- Shengwei Mo
- From the Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Mo and Zong contributed equally to this work
| | - Liju Zong
- From the Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Mo and Zong contributed equally to this work
| | - Xianlong Chen
- From the Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinchao Ban
- From the Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Li
- From the Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhaohui Lu
- From the Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuangni Yu
- From the Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Chen
- From the Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
An Insight on Functioning Pancreatic Neuroendocrine Neoplasms. Biomedicines 2023; 11:biomedicines11020303. [PMID: 36830839 PMCID: PMC9953748 DOI: 10.3390/biomedicines11020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare neoplasms arising from islets of the Langerhans in the pancreas. They can be divided into two groups, based on peptide hormone secretion, functioning and nonfunctioning PanNENs. The first group is characterized by different secreted peptides causing specific syndromes and is further classified into subgroups: insulinoma, gastrinoma, glucagonoma, somatostatinoma, VIPoma and tumors producing serotonin and adrenocorticotrophic hormone. Conversely, the second group does not release peptides and is usually associated with a worse prognosis. Today, although the efforts to improve the therapeutic approaches, surgery remains the only curative treatment for patients with PanNENs. The development of high-throughput techniques has increased the molecular knowledge of PanNENs, thereby allowing us to understand better the molecular biology and potential therapeutic vulnerabilities of PanNENs. Although enormous advancements in therapeutic and molecular aspects of PanNENs have been achieved, there is poor knowledge about each subgroup of functioning PanNENs.Therefore, we believe that combining high-throughput platforms with new diagnostic tools will allow for the efficient characterization of the main differences among the subgroups of functioning PanNENs. In this narrative review, we summarize the current landscape regarding diagnosis, molecular profiling and treatment, and we discuss the future perspectives of functioning PanNENs.
Collapse
|
36
|
Tichet M, Wullschleger S, Chryplewicz A, Fournier N, Marcone R, Kauzlaric A, Homicsko K, Deak LC, Umaña P, Klein C, Hanahan D. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8 + T cells and reprogramming macrophages. Immunity 2023; 56:162-179.e6. [PMID: 36630914 DOI: 10.1016/j.immuni.2022.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Immunotherapies have shown remarkable, albeit tumor-selective, therapeutic benefits in the clinic. Most patients respond transiently at best, highlighting the importance of understanding mechanisms underlying resistance. Herein, we evaluated the effects of the engineered immunocytokine PD1-IL2v in a mouse model of de novo pancreatic neuroendocrine cancer that is resistant to checkpoint and other immunotherapies. PD1-IL2v utilizes anti-PD-1 as a targeting moiety fused to an immuno-stimulatory IL-2 cytokine variant (IL2v) to precisely deliver IL2v to PD-1+ T cells in the tumor microenvironment. PD1-IL2v elicited substantial infiltration by stem-like CD8+ T cells, resulting in tumor regression and enhanced survival in mice. Combining anti-PD-L1 with PD1-IL2v sustained the response phase, improving therapeutic efficacy both by reprogramming immunosuppressive tumor-associated macrophages and enhancing T cell receptor (TCR) immune repertoire diversity. These data provide a rationale for clinical trials to evaluate the combination therapy of PD1-IL2v and anti-PD-L1, particularly in immunotherapy-resistant tumors infiltrated with PD-1+ stem-like T cells.
Collapse
Affiliation(s)
- Mélanie Tichet
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, 1011 Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland
| | - Stephan Wullschleger
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| | - Agnieszka Chryplewicz
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rachel Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Krisztian Homicsko
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland; Department of Oncology, CHUV, 46 Rue Bugnon, 1011 Lausanne, Switzerland; Center for Personalized Oncology, CHUV, 46 Rue Bugnon, 1011 Lausanne, Switzerland
| | | | - Pablo Umaña
- Roche-Innovation Center Zurich, 8952 Schlieren, Switzerland
| | | | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, 1011 Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland.
| |
Collapse
|
37
|
The Use of PDX1 DNA Methylation to Distinguish Two Subtypes of Pancreatic Neuroendocrine Neoplasms with Different Prognoses. Cancers (Basel) 2022; 15:cancers15010160. [PMID: 36612156 PMCID: PMC9818131 DOI: 10.3390/cancers15010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) account for approximately 5% of all pancreatic tumors; thus, they constitute the second most common tumor type in the pancreas [...].
Collapse
|
38
|
Choi JH, Paik WH. Risk Stratification of Pancreatic Neuroendocrine Neoplasms Based on Clinical, Pathological, and Molecular Characteristics. J Clin Med 2022; 11:7456. [PMID: 36556070 PMCID: PMC9786745 DOI: 10.3390/jcm11247456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms consist of heterogeneous diseases. Depending on the novel features detected by various modern technologies, their classification and related prognosis predictions continue to change and develop. The role of traditional clinicopathological prognostic factors, including classification systems, is also being refined, and several attempts have been made to predict a more accurate prognosis through novel serum biomarkers, genetic factors, and epigenetic factors that have been identified through various state-of-the-art molecular techniques with multiomics sequencing. In this review article, the latest research results including the traditional approach to prognostic factors and recent advanced strategies for risk stratification of pancreatic neuroendocrine neoplasms based on clinical, pathological, and molecular characteristics are summarized. Predicting prognosis through multi-factorial assessments seems to be more efficacious, and prognostic factors through noninvasive methods are expected to develop further advances in liquid biopsy in the future.
Collapse
Affiliation(s)
| | - Woo Hyun Paik
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
39
|
Ungefroren H, Künstner A, Busch H, Franzenburg S, Luley K, Viol F, Schrader J, Konukiewitz B, Wellner UF, Meyhöfer SM, Keck T, Marquardt JU, Lehnert H. Differential Effects of Somatostatin, Octreotide, and Lanreotide on Neuroendocrine Differentiation and Proliferation in Established and Primary NET Cell Lines: Possible Crosstalk with TGF-β Signaling. Int J Mol Sci 2022; 23:ijms232415868. [PMID: 36555512 PMCID: PMC9781720 DOI: 10.3390/ijms232415868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
GEP-NETs are heterogeneous tumors originating from the pancreas (panNET) or the intestinal tract. Only a few patients with NETs are amenable to curative tumor resection, and for most patients, only palliative treatments to successfully control the disease or manage symptoms remain, such as with synthetic somatostatin (SST) analogs (SSAs), such as octreotide (OCT) or lanreotide (LAN). However, even cells expressing low levels of SST receptors (SSTRs) may exhibit significant responses to OCT, which suggests the possibility that SSAs signal through alternative mechanisms, e.g., transforming growth factor (TGF)-β. This signaling mode has been demonstrated in the established panNET line BON but not yet in other permanent (i.e., QGP) or primary (i.e., NT-3) panNET-derived cells. Here, we performed qPCR, immunoblot analyses, and cell counting assays to assess the effects of SST, OCT, LAN, and TGF-β1 on neuroendocrine marker expression and cell proliferation in NT-3, QGP, and BON cells. SST and SSAs were found to regulate a set of neuroendocrine genes in all three cell lines, with the effects of SST, mainly LAN, often differing from those of OCT. However, unlike NT-3 cells, BON cells failed to respond to OCT with growth arrest but paradoxically exhibited a growth-stimulatory effect after treatment with LAN. As previously shown for BON, NT-3 cells responded to TGF-β1 treatment with induction of expression of SST and SSTR2/5. Of note, the ability of NT-3 cells to respond to TGF-β1 with upregulation of the established TGF-β target gene SERPINE1 depended on cellular adherence to a collagen-coated matrix. Moreover, when applied to NT-3 cells for an extended period, i.e., 14 days, TGF-β1 induced growth suppression as shown earlier for BON cells. Finally, next-generation sequencing-based identification of microRNAs (miRNAs) in BON and NT-3 revealed that SST and OCT impact positively or negatively on the regulation of specific miRNAs. Our results suggest that primary panNET cells, such as NT-3, respond similarly as BON cells to SST, SSA, and TGF-β treatment and thus provide circumstantial evidence that crosstalk of SST and TGF-β signaling is not confined to BON cells but is a general feature of panNETs.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, D-23538 Lübeck, Germany
- Institute of Pathology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, D-24105 Kiel, Germany
- Correspondence:
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, D-23538 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, D-23538 Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, D-23538 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, D-23538 Lübeck, Germany
| | - Sören Franzenburg
- Institute for Clinical Molecular Biology, University of Kiel, D-24118 Kiel, Germany
| | - Kim Luley
- Clinic of Oncology, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, D-23538 Lübeck, Germany
| | - Fabrice Viol
- Medical Clinic and Policlinic, University Hospital Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Jörg Schrader
- Medical Clinic and Policlinic, University Hospital Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, D-24105 Kiel, Germany
| | - Ulrich F. Wellner
- Department of Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, D-23538 Lübeck, Germany
| | - Sebastian M. Meyhöfer
- Institute of Endocrinology and Diabetes, University of Lübeck, D-23538 Lübeck, Germany
- German Center of Diabetes Research, D-85764 Neuherberg, Germany
| | - Tobias Keck
- Department of Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, D-23538 Lübeck, Germany
| | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, D-23538 Lübeck, Germany
| | | |
Collapse
|
40
|
Greenberg J, Limberg J, Verma A, Kim D, Chen X, Lee YJ, Moore MD, Ullmann TM, Thiesmeyer JW, Loewenstein Z, Chen KJ, Egan CE, Stefanova D, Bareja R, Zarnegar R, Finnerty BM, Scognamiglio T, Du YCN, Elemento O, Fahey TJ, Min IM. Metastatic pancreatic neuroendocrine tumors feature elevated T cell infiltration. JCI Insight 2022; 7:160130. [PMID: 36301668 PMCID: PMC9746918 DOI: 10.1172/jci.insight.160130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are malignancies arising from the islets of Langerhans. Therapeutic options are limited for the over 50% of patients who present with metastatic disease. We aimed to identify mechanisms to remodel the PNET tumor microenvironment (TME) to ultimately enhance susceptibility to immunotherapy. The TMEs of localized and metastatic PNETs were investigated using an approach that combines RNA-Seq, cancer and T cell profiling, and pharmacologic perturbations. RNA-Seq analysis indicated that the primary tumors of metastatic PNETs showed significant activation of inflammatory and immune-related pathways. We determined that metastatic PNETs featured increased numbers of tumor-infiltrating T cells compared with localized tumors. T cells isolated from both localized and metastatic PNETs showed evidence of recruitment and antigen-dependent activation, suggestive of an immune-permissive microenvironment. A computational analysis suggested that vorinostat, a histone deacetylase inhibitor, may perturb the transcriptomic signature of metastatic PNETs. Treatment of PNET cell lines with vorinostat increased chemokine CCR5 expression by NF-κB activation. Vorinostat treatment of patient-derived metastatic PNET tissues augmented recruitment of autologous T cells, and this augmentation was substantiated in a mouse model of PNET. Pharmacologic induction of chemokine expression may represent a promising approach for enhancing the immunogenicity of metastatic PNET TMEs.
Collapse
Affiliation(s)
| | | | - Akanksha Verma
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and
| | - David Kim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and
| | | | | | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and
| | | | | |
Collapse
|
41
|
Guo Y, Jiang Y, Rose JB, Nagaraju GP, Jaskula-Sztul R, Hjelmeland AB, Beck AW, Chen H, Ren B. Protein Kinase D1 Signaling in Cancer Stem Cells with Epithelial-Mesenchymal Plasticity. Cells 2022; 11:3885. [PMID: 36497140 PMCID: PMC9739736 DOI: 10.3390/cells11233885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are extremely diverse and highly vascularized neoplasms that arise from endocrine cells in the pancreas. The pNETs harbor a subpopulation of stem cell-like malignant cells, known as cancer stem cells (CSCs), which contribute to intratumoral heterogeneity and promote tumor maintenance and recurrence. In this study, we demonstrate that CSCs in human pNETs co-express protein kinase PKD1 and CD44. We further identify PKD1 signaling as a critical pathway in the control of CSC maintenance in pNET cells. PKD1 signaling regulates the expression of a CSC- and EMT-related gene signature and promotes CSC self-renewal, likely leading to the preservation of a subpopulation of CSCs at an intermediate EMT state. This suggests that the PKD1 signaling pathway may be required for the development of a unique CSC phenotype with plasticity and partial EMT. Given that the signaling networks connected with CSC maintenance and EMT are complex, and extend through multiple levels of regulation, this study provides insight into signaling regulation of CSC plasticity and partial EMT in determining the fate of CSCs. Inhibition of the PKD1 pathway may facilitate the elimination of specific CSC subsets, thereby curbing tumor progression and metastasis.
Collapse
Affiliation(s)
- Yichen Guo
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yinan Jiang
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Bart Rose
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganji Purnachandra Nagaraju
- Department of Medicine, Division of Hematology and Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam W. Beck
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Herbert Chen
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bin Ren
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- GBS Biomedical Engineering Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
42
|
Lipid Metabolism and Homeostasis in Patients with Neuroendocrine Neoplasms: From Risk Factor to Potential Therapeutic Target. Metabolites 2022; 12:metabo12111057. [PMID: 36355141 PMCID: PMC9692415 DOI: 10.3390/metabo12111057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Lipid metabolism is known to be involved in tumorigenesis and disease progression in many common cancer types, including colon, lung, breast and prostate, through modifications of lipid synthesis, storage and catabolism. Furthermore, lipid alterations may arise as a consequence of cancer treatment and may have a role in treatment resistance. Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies with increasing incidence, whose mechanisms of cancer initiation and progression are far from being fully understood. Alterations of lipid metabolism may be common across various cancer types, but data about NENs are scattered and heterogeneous. Herein, we provide an overview of the relevant literature on lipid metabolism and alterations in NENs. The available evidence both in basic and clinical research about lipid metabolism in NENs, including therapeutic effects on lipid homeostasis, are summarized. Additionally, the potential of targeting the lipid profile in NEN therapy is also discussed, and areas for further research are proposed.
Collapse
|
43
|
Medvedev KE, Savelyeva AV, Chen KS, Bagrodia A, Jia L, Grishin NV. Integrated Molecular Analysis Reveals 2 Distinct Subtypes of Pure Seminoma of the Testis. Cancer Inform 2022; 21:11769351221132634. [PMID: 36330202 PMCID: PMC9623390 DOI: 10.1177/11769351221132634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022] Open
Abstract
Objective Testicular germ cell tumors (TGCT) are the most common solid malignancy in adolescent and young men, with a rising incidence over the past 20 years. Overall, TGCTs are second in terms of the average life years lost per person dying of cancer, and clinical therapeutics without adverse long-term side effects are lacking. Platinum-based regimens for TGCTs have heterogeneous outcomes even within the same histotype that frequently leads to under- and over-treatment. Understanding of molecular differences that lead to diverse outcomes of TGCT patients may improve current treatment approaches. Seminoma is the most common subtype of TGCTs, which can either be pure or present in combination with other histotypes. Methods Here we conducted a computational study of 64 pure seminoma samples from The Cancer Genome Atlas, applied consensus clustering approach to their transcriptomic data and revealed 2 clinically relevant seminoma subtypes: seminoma subtype 1 and 2. Results Our analysis identified significant differences in pluripotency stage, activity of double stranded DNA breaks repair mechanisms, rates of loss of heterozygosity, and expression of lncRNA responsible for cisplatin resistance between the subtypes. Seminoma subtype 1 is characterized by higher pluripotency state, while subtype 2 showed attributes of reprograming into non-seminomatous TGCT. The seminoma subtypes we identified may provide a molecular underpinning for variable responses to chemotherapy and radiation. Conclusion Translating our findings into clinical care may help improve risk stratification of seminoma, decrease overtreatment rates, and increase long-term quality of life for TGCT survivors.
Collapse
Affiliation(s)
- Kirill E Medvedev
- Department of Biophysics, University of
Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna V Savelyeva
- Department of Urology, University of
Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of
Texas Southwestern Medical Center, Dallas, TX, USA
- Children’s Medical Center Research
Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of
Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Urology, University of
California San Diego Health, La Jolla, CA, USA
| | - Liwei Jia
- Department of Pathology, University of
Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Department of Biophysics, University of
Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University
of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
44
|
Shen X, Wang X, Lu X, Zhao Y, Guan W. Molecular biology of pancreatic neuroendocrine tumors: From mechanism to translation. Front Oncol 2022; 12:967071. [PMID: 36248960 PMCID: PMC9554633 DOI: 10.3389/fonc.2022.967071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are a group of heterogeneous tumors originated from progenitor cells. As these tumors are predominantly non-functional, most of them display asymptomatic characteristics, making it difficult to be realized from early onset. Therefore, patients with pNETs are usually diagnosed with metastatic disease or at a late disease stage. The relatively low incidence also limits our understanding of the biological background of pNETs, which largely impair the development of new effective drugs. The fact that up to 10% of pNETs develop in patients with genetic syndromes have promoted researchers to focus on the gene mutations and driver mutations in MEN1, DAXX/ATRX and mTOR signaling pathway genes have been implicated in disease development and progression. Recent advances in sequencing technologies have further enriched our knowledge of the complex molecular landscape of pNETs, pointing out crucial roles of genes in DNA damage pathways, chromosomal and telomere alterations and epigenetic dysregulation. These novel findings may not only benefit early diagnosis of pNETs, but also help to uncover tumor heterogeneity and shape the future of translational medical treatment. In this review, we focus on the current molecular biology of pNETs and decipher how these findings may translate into future development of targeted therapy.
Collapse
Affiliation(s)
- Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenxian Guan, ; Yang Zhao,
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- *Correspondence: Wenxian Guan, ; Yang Zhao,
| |
Collapse
|
45
|
Pozas J, Alonso-Gordoa T, Román MS, Santoni M, Thirlwell C, Grande E, Molina-Cerrillo J. Novel therapeutic approaches in GEP-NETs based on genetic and epigenetic alterations. Biochim Biophys Acta Rev Cancer 2022; 1877:188804. [PMID: 36152904 DOI: 10.1016/j.bbcan.2022.188804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies with distinct prognosis based on primary tumor localization, grade, stage and functionality. Surgery remains the only curative option in localized tumors, but systemic therapy is the mainstay of treatment for patients with advanced disease. For decades, the therapeutic landscape of GEP-NETs was limited to chemotherapy regimens with low response rates. The arrival of novel agents such as somatostatin analogues, peptide receptor radionuclide therapy, tyrosine kinase inhibitors or mTOR-targeted drugs, has changed the therapeutic paradigm of GEP-NETs. However, the efficacy of these agents is limited in time and there is scarce knowledge of optimal treatment sequencing. In recent years, massive parallel sequencing techniques have started to unravel the genomic intricacies of these tumors, allowing us to better understand the mechanisms of resistance to current treatments and to develop new targeted agents that will hopefully start an era for personalized treatment in NETs. In this review we aim to summarize the most relevant genomic aberrations and signaling pathways underlying GEP-NET tumorigenesis and potential therapeutic strategies derived from them.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | - Maria San Román
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | | | | | - Enrique Grande
- Medical Oncology Ddepartment. MD Anderson Cancer Center Madrid, 28033 Madrid, Spain
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain.
| |
Collapse
|
46
|
Qian W, Han L, Li W, Duan W, Ma Z, Ma Q, Wu Z, Wang Z. Calcium-sensing receptor expression in insulin-negative, intrapancreatic insulinoma. Br J Surg 2022; 109:1015-1016. [PMID: 35909304 PMCID: PMC10364768 DOI: 10.1093/bjs/znac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 08/02/2023]
Affiliation(s)
- Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreatic Disease Centre of Xi’an Jiaotong University, Xi'an, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreatic Disease Centre of Xi’an Jiaotong University, Xi'an, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreatic Disease Centre of Xi’an Jiaotong University, Xi'an, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreatic Disease Centre of Xi’an Jiaotong University, Xi'an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreatic Disease Centre of Xi’an Jiaotong University, Xi'an, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreatic Disease Centre of Xi’an Jiaotong University, Xi'an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Pancreatic Disease Centre of Xi’an Jiaotong University, Xi'an, China
| | - Zheng Wang
- Correspondence to: Zheng Wang, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China (e-mail: )
| |
Collapse
|
47
|
Hackeng WM, Assi HA, Westerbeke FHM, Brosens LAA, Heaphy CM. Prognostic and Predictive Biomarkers for Pancreatic Neuroendocrine Tumors. Surg Pathol Clin 2022; 15:541-554. [PMID: 36049835 DOI: 10.1016/j.path.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) represent a clinically challenging disease because these tumors vary in clinical presentation, natural history, and prognosis. Novel prognostic biomarkers are needed to improve patient stratification and treatment options. Several putative prognostic and/or predictive biomarkers (eg, alternative lengthening of telomeres, alpha-thalassemia/mental retardation, X-linked (ATRX)/Death Domain Associated Protein (DAXX) loss) have been independently validated. Additionally, recent transcriptomic and epigenetic studies focusing on endocrine differentiation have identified PanNET subtypes that display similarities to either α-cells or β-cells and differ in clinical outcomes. Thus, future prospective studies that incorporate genomic and epigenetic biomarkers are warranted and have translational potential for individualized therapeutic and surveillance strategies.
Collapse
Affiliation(s)
- Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Hussein A Assi
- Department of Medicine, Boston University School of Medicine, 820 Harrison Avenue, FGH 2011, Boston, MA 02118, USA
| | - Florine H M Westerbeke
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Christopher M Heaphy
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Room 444, Boston, MA 02118, USA; Department of Pathology & Laboratory Medicine, Boston University School of Medicine, 650 Albany Street, Room 444, Boston, MA 02118, USA.
| |
Collapse
|
48
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
49
|
Chiapponi C, Bruns CJ. [Modern molecular and imaging diagnostics in pancreatic neuroendocrine neoplasms]. CHIRURGIE (HEIDELBERG, GERMANY) 2022; 93:731-738. [PMID: 35913626 DOI: 10.1007/s00104-022-01645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE New molecular diagnostic and radiologic imaging techniques can be used to assess the extent, risk of recurrence, prognosis and response to treatment of pancreatic neuroendocrine neoplasms (pNENs). They therefore represent a decisive help in setting the indications for surgical treatment, especially in advanced stages. METHODS This article presents a narrative assessment of the options and evidence for modern molecular and radiologic imaging diagnostics of pNENs based on the current literature. RESULTS While circulating DNA, circulating tumor cells and microRNAs have not yet become established in everyday clinical practice, the current literature suggests a promising role for the so-called NETest. Recent studies demonstrated its possible importance for the surgical management of pNENs. Besides [68Ga]Ga-DOTA-SSA-PET and [18]FDG-PET, which remain the gold standards for imaging NENs, radiomics represent an exciting alternative to biopsies and will possibly play an increasingly important role in the future. DISCUSSION There are new promising alternatives to chromogranin A, which has been clinically widespread since the 1970s despite several drawbacks, to map the extent, risk of recurrence, prognosis and response to treatment of pancreatic pNENs. In terms of personalized medicine, modern molecular and radiological diagnostics should play an increasing role for indicating and planning surgical treatment and for follow-up in the future.
Collapse
Affiliation(s)
- Costanza Chiapponi
- Klinik für Allgemein‑, Viszeral‑, Tumor- und Transplantationschirurgie, Uniklinik Köln, Kerpenerstr. 62, 50937, Köln, Deutschland.
| | - Christiane J Bruns
- Klinik für Allgemein‑, Viszeral‑, Tumor- und Transplantationschirurgie, Uniklinik Köln, Kerpenerstr. 62, 50937, Köln, Deutschland
| |
Collapse
|
50
|
Xiao Y, Xu G, Cloyd JM, Du S, Mao Y, Pawlik TM. Predicting Novel Drug Candidates for Pancreatic Neuroendocrine Tumors via Gene Signature Comparison and Connectivity Mapping. J Gastrointest Surg 2022; 26:1670-1678. [PMID: 35508682 DOI: 10.1007/s11605-022-05337-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is a paucity of effective treatment options for advanced pancreatic neuroendocrine tumors (pNETs). Genome-wide analyses may allow for potential drugs to be identified based on differentially expressed genes (DEGs). METHODS Oligo microarray data of RNA expression profiling of pNETs and normal pancreas tissues were downloaded from the Gene Expression Omnibus. Functional and pathway enrichment information of the DEGs was obtained using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Corresponding homologous proteins were analyzed and potential therapeutic drugs for pNETs were identified using the Connectivity Map and Drug-Gene Interaction Database. RESULTS Assessment of raw data from 12,610 pNET genes demonstrated that 1082 and 380 genes were upregulated and downregulated, respectively, compared with normal pancreas tissue. Upregulated pathways were associated with nitrogen metabolism (i.e., GABAergic synapse, and graft-versus-host disease), whereas downregulated pathways included C-type leptin receptor signaling pathway, pertussis and AMPK signaling pathway. In particular, the protein-protein interaction analysis revealed 10 upregulated hub genes (DYNLL1, GNB5, GNB2, GNG4, GNAI2, GNAI1, HIST2H2BE, NUP107, NUP133, and SNAP25) and 10 downregulated hub genes (CXCL8, F2, CXCL2, GCG, SST, INS, GALR3, CCL20, ADRA2B, and CXCL6). Using the Drug-Gene Interaction Database, candidate drugs for pNETs treatment included 3 EGFR inhibitors (canertinib, erlotinib, WZ-4-145), as well as other cell-signaling pathway inhibitors such as AG-592, acarbose, lonidamine, azacytidine, rottlerin, and HU-211. CONCLUSION Using available genetic atlas data, potential drug candidates for treatment of pNETs were identified based on differentially expressed genes. These results may help focus efforts on identifying targeted agents with therapeutic efficacy to treat patients with pNETs.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jordan M Cloyd
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, 395 W. 12th Ave., Suite 670, Columbus, OH, USA
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, 395 W. 12th Ave., Suite 670, Columbus, OH, USA.
| |
Collapse
|