1
|
Ma Y, Lai P, Sha Z, Li B, Wu J, Zhou X, He C, Ma X. TME-responsive nanocomposite hydrogel with targeted capacity for enhanced synergistic chemoimmunotherapy of MYC-amplified osteosarcoma. Bioact Mater 2025; 47:83-99. [PMID: 39897587 PMCID: PMC11783017 DOI: 10.1016/j.bioactmat.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The oncogene MYC is one of the most commonly activated oncogenic proteins in human tumors, with nearly one-fourth of osteosarcoma showing MYC amplification and exhibiting the worst clinical outcomes. The clinical efficacy of single radiotherapy, chemotherapy, and immunotherapy for such osteosarcoma is poor, and the dysregulation of MYC amplification and immune-suppressive tumor microenvironment (TME) may be potential causes of anti-tumor failure. To address the above issues, we developed an injectable TME-responsive nanocomposite hydrogel to simultaneously deliver an effective MYC inhibitor (NHWD-870) and IL11Rα-targeted liposomes containing cisplatin-loaded MnO2 (Cis/Mn@Lipo-IL11). After in situ administration, NHWD-870 effectively degrades MYC and downregulates CCL2 and IL13 cytokines to trigger M1 type activation of macrophages. Meanwhile, targeted delivery of Cis/Mn@Lipo-IL11 reacts with excess intratumoral GSH to generate Mn2+ and thus inducing excess active oxygen species (ROS) production through Fenton-like reaction, along with cisplatin, thereby inducing immunogenic cell death (ICD) to promote dendritic cell maturation. Through synergistic regulation of MYC and ICD levels, the immune microenvironment was reshaped to enhance immune infiltration. In the osteosarcoma-bearing model, the nanocomposite hydrogel significantly enhanced tumor T cell infiltration, induced effective anti-tumor immunity and attenuated lung metastasis. Therefore, our results reveal a powerful strategy for targeted combination therapy of MYC-amplified osteosarcoma.
Collapse
Affiliation(s)
- Yichao Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peng Lai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhou Sha
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bing Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiangpeng Wu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
2
|
Takagi S, Nakajima M, Koike S, Takami M, Sugiura Y, Sakata S, Baba S, Takemoto A, Huang T, Seto Y, Saito M, Funauchi Y, Ae K, Takeuchi K, Fujita N, Katayama R. Frequent copy number gain of MCL1 is a therapeutic target for osteosarcoma. Oncogene 2025; 44:794-804. [PMID: 39663392 PMCID: PMC11913727 DOI: 10.1038/s41388-024-03251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor primarily affecting children and adolescents. The lack of progress in drug development for OS is partly due to unidentified actionable oncogenic drivers common to OS. In this study, we demonstrate that copy number gains of MCL1 frequently occur in OS, leading to vulnerability to therapies based on Mcl-1 inhibitors. Fluorescence in situ hybridization analysis of 41 specimens revealed MCL1 amplification in 46.3% of patients with OS. Genetic inhibition of MCL1 induced significant apoptosis in MCL1-amplified OS cells, and the pharmacological efficacy of Mcl-1 inhibitors was correlated with MCL1 copy numbers. Chromosome 1q21.2-3 region, where MCL1 is located, contains multiple genes related to the IGF-1R/PI3K pathway, including PIP5K1A, TARS2, OUTD7B, and ENSA, which also showed increased copy numbers in MCL1-amplified OS cells. Furthermore, combining Mcl-1 inhibitors with IGF-1R inhibitors resulted in synergistic cell death by overcoming drug tolerance conferred by the activation of IGF signaling and suppressed tumor growth in MCL1-amplified OS xenograft models. These results suggest that genomic amplification of MCL1 in the 1q21.2-3 region, which occurred in approximately half of OS patients, may serve as a predictive biomarker for the combination therapy with an Mcl-1 inhibitor and an IGF1R inhibitor.
Collapse
Affiliation(s)
- Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Mikako Nakajima
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Sumie Koike
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Miho Takami
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Yoshiya Sugiura
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Toho University Medical Center, Sakura Hospital, Sakura, Japan
| | - Seiji Sakata
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Satoko Baba
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tianyi Huang
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Seto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Masanori Saito
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
| | - Yuki Funauchi
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Department of Orthopedic Surgery, Institute of Science Tokyo, Tokyo, Japan
| | - Keisuke Ae
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | | | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Han Z, Chen G, Wang D. Emerging immunotherapies in osteosarcoma: from checkpoint blockade to cellular therapies. Front Immunol 2025; 16:1579822. [PMID: 40170852 PMCID: PMC11958959 DOI: 10.3389/fimmu.2025.1579822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
Osteosarcoma remains a highly aggressive bone malignancy with limited therapeutic options, necessitating novel treatment strategies. Immunotherapy has emerged as a promising approach, yet its efficacy in osteosarcoma is hindered by an immunosuppressive tumor microenvironment and resistance mechanisms. This review explores recent advancements in checkpoint blockade, cellular therapies, and combination strategies aimed at enhancing immune responses. We highlight key challenges, including tumor heterogeneity, poor immune infiltration, and the need for predictive biomarkers. By integrating immunotherapy with chemotherapy, radiotherapy, and targeted therapy, emerging approaches seek to improve treatment outcomes. This review provides a comprehensive analysis of the evolving landscape of osteosarcoma immunotherapy, offering insights into future directions and potential breakthroughs. Researchers and clinicians will benefit from understanding these developments, as they pave the way for more effective and personalized therapeutic strategies in osteosarcoma.
Collapse
Affiliation(s)
- Zhiwei Han
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guomin Chen
- Laboratory Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongchen Wang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Zhao W, Wang Y, Zhu J, Arya S, Huang G, Li S, Chen Q, Liu X, Yuan J, Jia J. Long non-coding RNA AC133552.2: biomarker and therapeutic target in osteosarcoma via PANoptosis gene screening. Sci Rep 2025; 15:9180. [PMID: 40097576 PMCID: PMC11914096 DOI: 10.1038/s41598-025-93167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Osteosarcoma, the most common primary bone cancer in children and adolescents, presents significant challenges, particularly in metastasis and recurrence, resulting in poor survival rates. This study explores the role of PANoptosis-a complex cell death mechanism involving pyroptosis, apoptosis, and necroptosis-in osteosarcoma by identifying relevant long non-coding RNAs (lncRNAs) and their prognostic significance. Bioinformatics analyses used RNA expression data from the GEO and TARGET databases to identify differentially expressed genes (DEGs) and PANoptosis-related genes (PRGs). Co-expression analysis revealed lncRNAs linked to PRGs, forming a risk prognostic model. Five PRGs and two lncRNAs were significantly associated with prognosis, with the model showing high predictive accuracy (AUC 0.876, 0.787, and 0.794 for 1, 3, and 5 years). Notably, lncRNA AC133552.2 was downregulated in osteosarcoma tissues, correlating with poor survival and reduced immune infiltration. Silencing AC133552.2 promoted cell proliferation and migration, while overexpression inhibited tumor growth and metastasis, confirmed in xenograft models. AC133552.2 emerges as a potential biomarker and therapeutic target, with future research needed to explore its molecular mechanisms and clinical application.
Collapse
Affiliation(s)
- Wenrui Zhao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, Jiangxi, China
| | - Yameng Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, Jiangxi, China
| | - Junchao Zhu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, Jiangxi, China
| | - Shahrzad Arya
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Guowen Huang
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, Jiangxi, China
| | - Shengqin Li
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, Jiangxi, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, Jiangxi, China.
| | - Jingyu Jia
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Wang K, Shi C, Liu L, Yan H, Wang D, Ding M, Tong J, He Y, Hu Y, Chen C, Cao D, Zhang F, Zheng X, Liu Z. Design, synthesis, and biological evaluation of Flavokavain B derivatives as potent TRF2 inhibitors for the treatment of Osteosarcoma. Eur J Med Chem 2025; 286:117279. [PMID: 39874631 DOI: 10.1016/j.ejmech.2025.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025]
Abstract
Telomere repeat-binding factor 2 (TRF2) is a crucial component of the shelterin complex, commonly overexpressed in osteosarcoma (OS) and positively correlated with its progression. To date, effective TRF2 inhibitors for in vivo applications remain limited. In this study, a series of Flavokavain B derivatives were designed and synthesized, and their TRF2 inhibition and antitumor activity were evaluated. Among the tested compounds, the active compound F2 showed remarkable inhibition of TRF2 expression, along with potent antiproliferative activity in U2OS and MG63 cells, with IC50 values of 5.28 μM and 1.52 μM, respectively. Moreover, F2 significantly suppressed OS cell proliferation and induced apoptosis by accelerating telomere shortening and loss due to TRF2 inhibition. Mechanically, F2 selectively inhibited TRF2 protein expression and telomeric localization by directly binding to the TRF2TRFH domain. Furthermore, F2 demonstrated strong antitumor efficacy with minimal toxicity in an MG63-derived xenograft mouse model. These findings demonstrate that F2 is a promising drug candidate for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Kun Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Changgui Shi
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Lu Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Hao Yan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Dalong Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Meiqing Ding
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Jiaying Tong
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Yeying He
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Yina Hu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Chaoyue Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Di Cao
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Fangjun Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.
| | - Xiaohui Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Zhao W, Meng H, Dai Z, Zhang L, Cheng Z, Song Y, Xu W, Wang Z, Tian K, Jiang Y, Sun W, Cai Z, Wang G, Hua Y. Prediction of Patients With High-Risk Osteosarcoma on the Basis of XGBoost Algorithm Using Transcriptome and Methylation Data From SGH-OS Cohort. JCO Precis Oncol 2025; 9:e2400732. [PMID: 40153688 DOI: 10.1200/po-24-00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 03/30/2025] Open
Abstract
PURPOSE Osteosarcoma (OS) is the most prevalent primary malignant bone sarcoma, characterized by its high rates of metastasis and mortality. In our previous multiomics analysis of the Shanghai General Hospital OS (SGH-OS) cohort, we identified four distinct OS subtypes, each with unique molecular characteristics and clinical outcomes. Of particular importance was the identification of the MYC-driven subtype, which exhibited the poorest prognosis and was referred to as high-risk OS. A diagnostic tool is needed for clinicians to identify high-risk OS in advance. The purpose of this study is to develop a classifier capable of accurately predicting the high-risk OS subtype using transcriptome and methylation data. METHODS In this study, using eXtreme Gradient Boosting (XGBoost) with Bayesian optimization, we developed a classification model by integrating transcriptome and methylation data from our internal SGH-OS cohort. We further validated the model's predictive performance with the external TARGET-OS cohort. RESULTS Using the XGBoost algorithm, we developed a classifier incorporating nine genes (ARHGAP9, CADM1, CPE, DUSP3, FGFR1, GALNT3, IGF2BP3, KIF26A, ZFP3). In our internal cohort, the classifier exhibited excellent predictive performance, with an area under the receiver operating characteristics curve (AUC) of 0.999 and an overall accuracy of 0.989. Furthermore, the classifier successfully stratified two groups with distinct survival outcomes in the external TARGET-OS cohort. Notably, our analysis revealed a positive correlation between IGF2BP3 and MYC signaling pathways, highlighting IGF2BP3 as a potential therapeutic target in high-risk OS. CONCLUSION Our classifier demonstrated excellent predictive performance in identifying patients with high-risk OS, offering the potential to enhance treatment decision making and optimize patient management strategies.
Collapse
Affiliation(s)
- Weisong Zhao
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Huanliang Meng
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhenwu Dai
- Jiangsu Simcere Diagnostics Co, Ltd Nanjing, PR China
- Nanjing Simcere Medical Laboratory Science Co, Ltd, Nanjing, PR China
- The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, PR China
| | - Lulu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhiwei Cheng
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunjie Song
- Jiangsu Simcere Diagnostics Co, Ltd Nanjing, PR China
- Nanjing Simcere Medical Laboratory Science Co, Ltd, Nanjing, PR China
- The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, PR China
| | - Wenyuan Xu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Kai Tian
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Yafei Jiang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
7
|
Wang J, Geller DS, Sun L, Tang X. Transforming osteosarcoma care: from historical milestones to precision medicine advances. Sci Bull (Beijing) 2025; 70:290-294. [PMID: 39676007 DOI: 10.1016/j.scib.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 10/21/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Jichuan Wang
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing 100041, China
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx 10471, USA
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaodong Tang
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing 100041, China.
| |
Collapse
|
8
|
Verdier E, Gaspar N, Marques Da Costa ME, Marchais A. SETDB1 amplification in osteosarcomas: Insights from its role in healthy tissues and other cancer types. Oncotarget 2025; 16:51-62. [PMID: 39945463 PMCID: PMC11823473 DOI: 10.18632/oncotarget.28688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Epigenetic modifications, which reversibly regulate gene expression without altering the DNA sequence, are increasingly described in the literature as essential elements in the processes leading to cancer development. SETDB1 regulates histone 3 (H3) K9 di- and trimethylation, promoting heterochromatin formation, and plays a key role in gene silencing. Epigenetic deregulation of SETDB1 expression appears to be involved in different cancers types, particularly in aggressive, relapsing or treatment-resistant subtypes. Despite advances in research, the full range of mechanisms through which this protein acts remains unclear; however, it is evident that SETDB1 has a pivotal role, particularly in the mesenchymal stem cells differentiation, tumor evasion and treatment resistance. Its role in genetically complex sarcomas, such as osteosarcoma, has not been fully explored, although recent Omics analyses suggest its presence and amplification in osteosarcoma. Given its involvement in osteoblastogenesis and adipogenesis, we discuss the potential of SETDB1 as a key target for new therapeutic strategies in osteosarcoma.
Collapse
Affiliation(s)
- Elodie Verdier
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Nathalie Gaspar
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Maria Eugenia Marques Da Costa
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Antonin Marchais
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
9
|
Oyama T, Brashears CB, Rathore R, Benect-Hamilton H, Caldwell KE, Dirckx N, Hawkins WG, Van Tine BA. PHGDH inhibition and FOXO3 modulation drives PUMA-dependent apoptosis in osteosarcoma. Cell Death Dis 2025; 16:89. [PMID: 39934141 DOI: 10.1038/s41419-025-07378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Osteosarcoma is a bone cancer that has been found to be metabolically dependent on the conversion of glucose to serine through the rate-limiting enzyme 3-phosphoglycerate dehydrogenase (PHGDH). The upregulation of PHGDH has been correlated with poor patient survival, and the inhibition of the serine synthesis pathway using targeted small-molecule inhibition of PHGDH induces a rapid metabolic adaptation that prevents cell death due to pro-survival signaling through the mammalian target of rapamycin complex 1 (mTORC1) pathway. Here, PHGDH inhibition in combination with mTORC1 signaling modulation for the treatment of osteosarcoma was evaluated. When combined with PHGDH inhibition, several non-rapalog inhibitors of mTORC1 activated Forkhead box O (FOXO) transcription factor 3 (FOXO3), a transcription factor associated with various cellular processes driving apoptosis. The activation of FOXO3 led to transcriptional activation of the pro-apoptotic gene p53 upregulated modulator of apoptosis (PUMA), inducing apoptosis when combined with PHGDH inhibition. These data suggest a path for the clinical development of PHGDH inhibitors in conjunction with mTORC1 pathway modulators in osteosarcoma.
Collapse
Affiliation(s)
- Toshinao Oyama
- Department of Medicine, Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Caitlyn B Brashears
- Department of Medicine, Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Richa Rathore
- Department of Medicine, Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Heather Benect-Hamilton
- Department of Medicine, Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Katharine E Caldwell
- Department of Surgery, Division of Hepatobiliary Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Naomi Dirckx
- Department of Orthopedics, Washington University in St. Louis, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Division of Hepatobiliary Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| | - Brian A Van Tine
- Department of Medicine, Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, St. Louis, MO, USA.
- Department of Pediatric Hematology/Oncology, St Louis Children's Hospital, St Louis, MO, USA.
| |
Collapse
|
10
|
Outani H, Ikegami M, Imura Y, Nakai S, Takami H, Kotani Y, Inoue A, Okada S. Age-related genomic alterations and chemotherapy sensitivity in osteosarcoma: insights from cancer genome profiling analyses. Int J Clin Oncol 2025; 30:397-406. [PMID: 39688743 PMCID: PMC11785636 DOI: 10.1007/s10147-024-02673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Osteosarcoma, the most common primary bone malignancy, has a complex genetic basis and two incidence peaks. In younger patients, the standard treatment involves wide surgical resection combined with adjuvant chemotherapy; however, the role of chemotherapy in elderly patients remains controversial. The aims of this study were to investigate genetic differences between younger and elderly patients with osteosarcoma and to identify genetic signatures associated with chemotherapy response. METHODS Genetic alterations were analyzed using cancer genome profiling data for 204 patients with osteosarcoma obtained from the Center for Cancer Genomics and Advanced Therapeutics. RESULTS The mutation spectrum was consistent with previous results for osteosarcoma. CCNE1, MCL1, MYC, and RB1 alterations were significantly associated with a younger age, while CDK4, CDKN2A, CDKN2B, H3F3A, KMT2D, MDM2, RAC1, and SETD2 alterations were significantly associated with an older age. Age, unsupervised clustering of gene alterations, and MYC amplifications were significantly associated with the response to ifosfamide. Notably, both clustered mutation signatures and MYC amplification were correlated with age. CONCLUSIONS These findings suggest that distinct oncogenic mechanisms contribute to differential sensitivity to chemotherapy in younger and elderly patients. Cancer genome profiling may aid in chemotherapy selection, and its early implementation is recommended to optimize treatment strategies.
Collapse
Affiliation(s)
- Hidetatsu Outani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, Japan.
| | - Masachika Ikegami
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infection Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yoshinori Imura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, Japan
| | - Sho Nakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, Japan
| | - Haruna Takami
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, Japan
| | - Yuki Kotani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, Japan
| | - Akitomo Inoue
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, Japan
| |
Collapse
|
11
|
Eigenbrood J, Wong N, Mallory P, Pereira J, Morris-II DW, Beck JA, Cronk JC, Sayers CM, Mendez M, Kaiser L, Galindo J, Singh J, Cardamone A, Pore M, Kelly M, LeBlanc AK, Cotter J, Kaplan RN, McEachron TA. Spatial profiling identifies regionally distinct microenvironments and targetable immunosuppressive mechanisms in pediatric osteosarcoma pulmonary metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.631350. [PMID: 39896512 PMCID: PMC11785069 DOI: 10.1101/2025.01.22.631350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Osteosarcoma is the most common malignant bone tumor in young patients and remains a significant clinical challenge, particularly in the context of metastatic disease. Despite extensive documentation of genomic alterations in osteosarcoma, studies detailing the immunosuppressive mechanisms within the metastatic osteosarcoma microenvironment are lacking. Our objective was to characterize the spatial transcriptional landscape of metastatic osteosarcoma to reveal these immunosuppressive mechanisms and identify promising therapeutic targets. Here, we performed spatial transcriptional profiling on a cohort of osteosarcoma pulmonary metastases from pediatric patients. We reveal a conserved spatial gene expression pattern resembling a foreign body granuloma, characterized by peripheral inflammatory signaling, fibrocollagenous encapsulation, lymphocyte exclusion, and peritumoral macrophage accumulation. We also show that the intratumoral microenvironment of these lesions lack inflammatory signaling. Additionally, we identified CXCR4 as an actionable immunomodulatory target that bridges both the intratumoral and extratumoral microenvironments and highlights the spatial heterogeneity and complexity of this pathway. Collectively, this study reveals that metastatic osteosarcoma specimens are comprised of multiple regionally distinct immunosuppressive microenvironments.
Collapse
Affiliation(s)
- Jason Eigenbrood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Current Address: University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
- These authors contributed equally to this manuscript
| | - Nathan Wong
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- These authors contributed equally to this manuscript
| | - Paul Mallory
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Janice Pereira
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Douglass W Morris-II
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica A Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James C Cronk
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Monica Mendez
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Linus Kaiser
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Julie Galindo
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jatinder Singh
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Ashley Cardamone
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Milind Pore
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Kelly
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Troy A McEachron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
12
|
Espejo Valle-Inclan J, De Noon S, Trevers K, Elrick H, van Belzen IAEM, Zumalave S, Sauer CM, Tanguy M, Butters T, Muyas F, Rust AG, Amary F, Tirabosco R, Giess A, Sosinsky A, Elgar G, Flanagan AM, Cortés-Ciriano I. Ongoing chromothripsis underpins osteosarcoma genome complexity and clonal evolution. Cell 2025; 188:352-370.e22. [PMID: 39814020 DOI: 10.1016/j.cell.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/05/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025]
Abstract
Osteosarcoma is the most common primary cancer of the bone, with a peak incidence in children and young adults. Using multi-region whole-genome sequencing, we find that chromothripsis is an ongoing mutational process, occurring subclonally in 74% of osteosarcomas. Chromothripsis generates highly unstable derivative chromosomes, the ongoing evolution of which drives the acquisition of oncogenic mutations, clonal diversification, and intra-tumor heterogeneity across diverse sarcomas and carcinomas. In addition, we characterize a new mechanism, termed loss-translocation-amplification (LTA) chromothripsis, which mediates punctuated evolution in about half of pediatric and adult high-grade osteosarcomas. LTA chromothripsis occurs when a single double-strand break triggers concomitant TP53 inactivation and oncogene amplification through breakage-fusion-bridge cycles. It is particularly prevalent in osteosarcoma and is not detected in other cancers driven by TP53 mutation. Finally, we identify the level of genome-wide loss of heterozygosity as a strong prognostic indicator for high-grade osteosarcoma.
Collapse
Affiliation(s)
| | - Solange De Noon
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Katherine Trevers
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Hillary Elrick
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Ianthe A E M van Belzen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Sonia Zumalave
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Mélanie Tanguy
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | - Thomas Butters
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Alistair G Rust
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Fernanda Amary
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Roberto Tirabosco
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Adam Giess
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | | | - Greg Elgar
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK.
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
13
|
Gao Z, Chen S, Ye W. Cuproptosis related lncRNA signature as a prognostic and therapeutic biomarker in osteosarcoma immunity. Sci Rep 2025; 15:221. [PMID: 39747262 PMCID: PMC11696132 DOI: 10.1038/s41598-024-84024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Osteosarcoma is one of the most common malignant bone tumours in children. In this study, we aimed to construct a cuproptosis-related lncRNAs signature to predict the prognosis and immune landscape of osteosarcoma patients. Databases from TARGET were used to acquire osteosarcoma patient datasets, which included clinical information and RNA sequencing data. Cuproptosis-related lncRNAs was obtained by correlation analysis. Through univariate Cox regression analysis, prognosis-related lncRNAs were obtained. We used nonnegative matrix factorization clustering to identify potential molecular subgroups with different cuproptosis-related lncRNA expression patterns. The least absolute shrinkage and selection operator algorithm and multivariate Cox regression analysis were used to construct the prognostic signature. The ESTIMATE algorithm, Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes were applied to explore the underlying mechanisms in the immune landscape of osteosarcoma. We used gene set enrichment analysis to compare the different enrichments in the high-risk group and the low-risk group. Furthermore, we predicted the response to targeted drugs in patients with different risk groups. Using multivariable analysis, we developed a risk scoring model based on 7 long noncoding RNAs and calculated two molecular subgroups from osteosarcoma patients from the database. There is a better immune microenvironment in the low-risk group compared to the high-risk group. At the same time, the gene functional enrichment analysis based on the differently expressed genes obtained by grouping showed they were mainly related to immunity, indicating that cuproptosis-related lncRNAs may affect the prognosis of osteosarcoma by regulating immunity. Moreover, these patients in high-risk group were more susceptible to targeted drugs than the low-risk group. We identified a cuproptosis-related lncRNA prognostic signature for osteosarcoma and showed a close connection in terms of immunity. Moreover, we provided some potential targeted drugs for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Ziwei Gao
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Siqi Chen
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wei Ye
- Department of Gastroenterology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Li X, Chen Q, Zhao D, Tan J, Liao R, Gu Y, Zhu J, Zhang H, Xie J, Chen L. ACSL4 accelerates osteosarcoma progression via modulating TGF-β/Smad2 signaling pathway. Mol Cell Biochem 2025; 480:549-562. [PMID: 38564125 PMCID: PMC11695466 DOI: 10.1007/s11010-024-04975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/24/2024] [Indexed: 04/04/2024]
Abstract
Osteosarcoma (OS) is a malignant bone sarcoma arising from mesenchymal stem cells. The biological role of Acyl-CoA synthetase long-chain family member 4 (ACSL4), recently identified as an oncogene in numerous tumor types, remains largely unclear in OS. In this study, we investigated the expression of ACSL4 in OS tissues using immunohistochemistry staining (IHC) staining of a human tissue microarray and in OS cells by qPCR assay. Our findings revealed a significant up-regulation of ACSL4 in both OS tissues and cells. To further understand its biological effects, we conducted a series of loss-of-function experiments using ACSL4-depleted MNNG/HOS and U-2OS cell lines, focusing on OS cell proliferation, migration, and apoptosis in vitro. Our results demonstrated that ACSL4 knockdown remarkably suppressed OS cell proliferation, arrested cells in the G2 phase, induced cell apoptosis, and inhibited cell migration. Additionally, a subcutaneous xenograft mice model was established to validate the in vivo impact of ACSL4, revealing ACSL4 silencing impaired tumor growth in the OS xenograft mice. Additionally, we discovered that ACSL4 could regulate the phosphorylation level of Smad2 through cooperative interactions, and treatment with a TGF-β inhibitor weakened the promoting effects of ACSL4 overexpression. In short, ACSL4 regulated OS progression by modulating TGF-β/Smad2 signaling pathway. These findings underscore ACSL4 as a promising therapeutic target for OS patients and contribute novel insights into the pathogenesis of OS.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qianfen Chen
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Duo Zhao
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Jianshi Tan
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Rongbo Liao
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Yurong Gu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China
| | - Jinwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China
| | - Huying Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China
| | - Jian Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China
| | - Lu Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
15
|
Anderson CJ, Yang H, Parsons J, Ahrens WA, Jagosky MH, Hsu JH, Patt JC, Kneisl JS, Steuerwald NM. Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation. Clin Orthop Relat Res 2025; 483:39-48. [PMID: 38905450 PMCID: PMC11658723 DOI: 10.1097/corr.0000000000003161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND A liquid biopsy is a test that evaluates the status of a disease by analyzing a sample of bodily fluid, most commonly blood. In recent years, there has been progress in the development and clinical application of liquid biopsy methods to identify blood-based, tumor-specific biomarkers for many cancer types. However, the implementation of these technologies to aid in the treatment of patients who have a sarcoma remains behind other fields of cancer medicine. For this study, we chose to evaluate a sarcoma liquid biopsy based on circulating tumor DNA (ctDNA). All human beings have normal cell-free DNA (cfDNA) circulating in the blood. In contrast with cfDNA, ctDNA is genetic material present in the blood stream that is derived from a tumor. ctDNA carries the unique genomic fingerprint of the tumor with changes that are not present in normal circulating cfDNA. A successful ctDNA liquid biopsy must be able to target these tumor-specific genetic alterations. For instance, epidermal growth factor receptor (EGFR) mutations are common in lung cancers, and ctDNA liquid biopsies are currently in clinical use to evaluate the status of disease in patients who have a lung cancer by detecting EGFR mutations in the blood. As opposed to many carcinomas, sarcomas do not have common recurrent mutations that could serve as the foundation to a ctDNA liquid biopsy. However, many sarcomas have structural changes to their chromosomes, including gains and losses of portions or entire chromosomes, known as copy number alterations (CNAs), that could serve as a target for a ctDNA liquid biopsy. Murine double minute 2 (MDM2) amplification in select lipomatous tumors or parosteal osteosarcoma is an example of a CNA due to the presence of extra copies of a segment of the long arm of chromosome 12. Since a majority of sarcomas demonstrate a complex karyotype with numerous CNAs, a blood-based liquid biopsy strategy that searches for these CNAs may be able to detect the presence of sarcoma ctDNA. Whole-genome sequencing (WGS) is a next-generation sequencing technique that evaluates the entire genome. The depth of coverage of WGS refers to how detailed the sequencing is, like higher versus lower power on a microscope. WGS can be performed with high-depth sequencing (that is, > 60×), which can detect individual point mutations, or low-depth sequencing (that is, 0.1× to 5×), referred to as low-passage whole-genome sequencing (LP-WGS), which may not detect individual mutations but can detect structural chromosomal changes including gains and losses (that is, CNAs). While similar strategies have shown favorable early results for specific sarcoma subtypes, LP-WGS has not been evaluated for applicability to the broader population of patients who have a sarcoma. QUESTIONS/PURPOSES Does an LP-WGS liquid biopsy evaluating for CNAs detect ctDNA in plasma samples from patients who have sarcomas representing a variety of histologic subtypes? METHODS This was a retrospective study conducted at a community-based, tertiary referral center. Nine paired (plasma and formalin-fixed paraffin-embedded [FFPE] tissue) and four unpaired (plasma) specimens from patients who had a sarcoma were obtained from a commercial biospecimen bank. Three control specimens from individuals who did not have cancer were also obtained. The paired and unpaired specimens from patients who had a sarcoma represented a variety of sarcoma histologic subtypes. cfDNA was extracted, amplified, and quantified. Libraries were prepared, and LP-WGS was performed using a NextSeq 500 next-generation sequencing machine at a low depth of sequencing coverage (∼1×). The ichorCNA bioinformatics algorithm, which was designed to detect CNAs from low-depth genomic sequencing data, was used to analyze the data. In contrast with the gold standard for diagnosis in the form of histopathologic analysis of a tissue sample, this test does not discriminate between sarcoma subtypes but detects the presence of tumor-derived CNAs within the ctDNA in the blood that should not be present in a patient who does not have cancer. The liquid biopsy was positive for the detection of cancer if the ichorCNA algorithm detected the presence of ctDNA. The algorithm was also used to quantitatively estimate the percent ctDNA within the cfDNA. The concentration of ctDNA was then calculated from the percent ctDNA relative to the total concentration of cfDNA. The CNAs of the paired FFPE tissue and plasma samples were graphically visualized using aCNViewer software. RESULTS This LP-WGS liquid biopsy detected ctDNA in 9 of 13 of the plasma specimens from patients with a sarcoma. The other four samples from patients with a sarcoma and all serum specimens from patients without cancer had no detectable ctDNA. Of those 9 patients with positive liquid biopsy results, the percent ctDNA ranged from 6% to 11%, and calculated ctDNA quantities were 0.04 to 5.6 ng/mL, which are levels to be expected when ctDNA is detectable. CONCLUSION In this small pilot study, we were able to detect sarcoma ctDNA with an LP-WGS liquid biopsy searching for CNAs in the plasma of most patients who had a sarcoma representing a variety of histologic subtypes. CLINICAL RELEVANCE These results suggest that an LP-WGS liquid biopsy evaluating for CNAs to identify ctDNA may be more broadly applicable to the population of patients who have a sarcoma than previously reported in studies focusing on specific subtypes. Large prospective clinical trials that gather samples at multiple time points during the process of diagnosis, treatment, and surveillance will be needed to further assess whether this technique can be clinically useful. At our institution, we are in the process of developing a large prospective clinical trial for this purpose.
Collapse
Affiliation(s)
- Colin J. Anderson
- Musculoskeletal Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - HsihTe Yang
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Judy Parsons
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Will A. Ahrens
- Carolina Pathology Group, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Megan H. Jagosky
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Johann H. Hsu
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Joshua C. Patt
- Musculoskeletal Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Jeffrey S. Kneisl
- Musculoskeletal Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Nury M. Steuerwald
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| |
Collapse
|
16
|
Li W, Wang L, Tian W, Ji W, Bing D, Wang Y, Xu B, Feng J, Zhang P, Liang H, Gu Y, Yang B. SNRNP70 regulates the splicing of CD55 to promote osteosarcoma progression. JCI Insight 2024; 9:e185269. [PMID: 39704173 DOI: 10.1172/jci.insight.185269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor, characterized by a high propensity for metastasis. Recent studies have highlighted the role of alternative splicing in cancer metastasis, although the precise mechanisms underlying aberrant splicing in OS invasion and metastasis remain unclear. Here, we analyzed consistently differentially expressed genes and differentially alternative splicing events between primary and metastatic OS to identify potential genes associated with OS progression. U1 small nuclear ribonucleoprotein 70K (SNRNP70) emerged as both differentially expressed and spliced, with elevated SNRNP70 levels correlating with poor prognosis in pateints with OS. Functional experiments demonstrated that SNRNP70 overexpression enhanced the proliferation and metastasis of OS cells in vitro, while its depletion reduced these capabilities in vivo. Mechanistically, SNRNP70 directly interacted with CD55, modulating its alternative splicing and promoting tumor progression in OS. Additionally, metastatic OS samples exhibited increased infiltration of resting immune cells, and single-cell RNA sequencing revealed communication between SNRNP70-expressing osteoblastic cells and macrophages via the ADGRE5/CD55 signaling pathway. Overall, our results showed that SNRNP70 knockdown inhibited OS progression, which was associated with the splicing of CD55, indicating SNRNP70 as a promising target for OS treatment.
Collapse
Affiliation(s)
- Wenyue Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Linzhu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases, College of Pharmacy, Harbin Medical University, Heilongjiang Province, China
| | - Wen Tian
- Bone and Soft Tissue Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Weihang Ji
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases, College of Pharmacy, Harbin Medical University, Heilongjiang Province, China
| | - Danyang Bing
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases, College of Pharmacy, Harbin Medical University, Heilongjiang Province, China
| | - Yan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases, College of Pharmacy, Harbin Medical University, Heilongjiang Province, China
| | - Bingqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases, College of Pharmacy, Harbin Medical University, Heilongjiang Province, China
| | - Jiayue Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases, College of Pharmacy, Harbin Medical University, Heilongjiang Province, China
| | - Peng Zhang
- Bone and Soft Tissue Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases, College of Pharmacy, Harbin Medical University, Heilongjiang Province, China
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Baofeng Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases, College of Pharmacy, Harbin Medical University, Heilongjiang Province, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| |
Collapse
|
17
|
Dhir A, Hayashi M, Bodlak A, Oesterheld J, Loeb DM, Mascarenhas L, Isakoff MS, Sandler ES, Borinstein SC, Trucco M, Lagmay JP, Setty BA, Pratilas CA, Caywood E, Metts J, Yin H, Fridley B, Yin J, Laborde J, Reed DR, Adams DL, Wagner LM. Phase II Trial of Gemcitabine and Nab-Paclitaxel for Recurrent Osteosarcoma with Serial Monitoring Using Liquid Biopsy: A Report from the National Pediatric Cancer Foundation. Clin Cancer Res 2024; 30:5314-5322. [PMID: 39360936 DOI: 10.1158/1078-0432.ccr-24-1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE The combination of gemcitabine and docetaxel is often used to treat patients with recurrent osteosarcoma. Nab-paclitaxel has preclinical activity against osteosarcoma and is potentially less myelosuppressive than docetaxel. We conducted a prospective multi-institutional phase II trial combining gemcitabine and nab-paclitaxel for patients aged 12 to 30 years with recurrent osteosarcoma and measurable disease. PATIENTS AND METHODS A Simon's two-stage design was used to test a 4-month progression-free survival (PFS-4) of 10% vs. 35%. Patients received nab-paclitaxel 125 mg/m2 and gemcitabine 1,000 mg/m2 weekly × 3 in 4-week cycles. Immunohistochemical analysis of archival tissue and serial assessment of circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) using ultralow passage whole-genome sequencing were performed to identify potential biomarkers of response. RESULTS Eighteen patients received 56 total cycles (median 2, range 1-12). Two patients (11%) experienced confirmed partial response and six (33%) received >2 cycles. The PFS-4 was 28% (95% confidence interval, 13%-59%). Six patients required dose reductions and three patients were removed due to toxicities. All 18 patients had detectable CTCs and 10 had ctDNA identified. All eight patients with MYC amplification at study entry experienced disease progression. CONCLUSIONS Gemcitabine and nab-paclitaxel demonstrated similar clinical activity and toxicity compared to previous retrospective reports utilizing gemcitabine and docetaxel in patients with recurrent osteosarcoma. Serial analysis of CTC and ctDNA was feasible in this prospective multi-institution study and provides preliminary data on the use of these assays in patients with relapsed disease.
Collapse
Affiliation(s)
- Aditi Dhir
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders Children's Hospital Colorado, Aurora, Colorado
| | - Avery Bodlak
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders Children's Hospital Colorado, Aurora, Colorado
| | - Javier Oesterheld
- Cancer and Blood Disorders Program, Atrium Health Levine Children's Hospital, Charlotte, North Carolina
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Leo Mascarenhas
- Cedar-Sinai Medical Center, Guerin Children's and Cedar-Sinai Cancer, Los Angeles, California
| | - Michael S Isakoff
- Division of Hematology/Oncology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Eric S Sandler
- Division of Hematology/Oncology, Nemours Children's Health, Jacksonville, Florida
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matteo Trucco
- Department of Pediatric Hematology-Oncology and BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Joanne P Lagmay
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Shands Childrens Hospital, University of Florida, Gainesville, Florida
| | - Bhuvana A Setty
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Christine A Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Emi Caywood
- Division of Hematology/Oncology, Nemours Children's Health, Jacksonville, Florida
| | - Jonathan Metts
- Sarcoma Department, Moffitt Cancer Center, Tampa, Florida
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Peterburg, Florida
| | - Hong Yin
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Brooke Fridley
- Health Services and Outcomes Research, Children's Mercy Hospital, Kansas City, Missouri
| | - Jun Yin
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Jose Laborde
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Damon R Reed
- Moffitt Cancer Center, Department of Individualized Cancer Management, Tampa, Florida
| | | | - Lars M Wagner
- Division of Pediatric Hematology/Oncology, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
Frankenbach-Désor T, Niesner I, Ahmed P, Dürr HR, Klein A, Knösel T, Gospos J, McGovern JA, Hutmacher DW, Holzapfel BM, Mayer-Wagner S. Tissue-engineered patient-derived osteosarcoma models dissecting tumour-bone interactions. Cancer Metastasis Rev 2024; 44:8. [PMID: 39592467 PMCID: PMC11599440 DOI: 10.1007/s10555-024-10218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor, primarily affecting children and young adults. For these young patients, the current treatment options for osteosarcoma impose considerable constraints on daily life with significant morbidity and a low survival rate. Despite ongoing research efforts, the 5-year survival rate of first-diagnosed patients without metastases has not changed in the past four decades. The demand for novel treatments is currently still unmet, in particular for effective second-line therapy. Therefore, there is an urgent need for advanced preclinical models and drug-testing platforms that take into account the complex disease characteristics, the high heterogeneity of the tumour and the interactions with the bone microenvironment. In this review, we provide a comprehensive overview about state-of-the-art tissue-engineered and patient-specific models for osteosarcoma. These sophisticated platforms for advanced therapy trials aim to improve treatment outcomes for future patients by modelling the patient's disease state in a more accurate and complex way, thus improving the quality of preclinical research studies.
Collapse
Affiliation(s)
- Tina Frankenbach-Désor
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Isabella Niesner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Parveen Ahmed
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Hans Roland Dürr
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Klein
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-Universität (LMU) Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Jonathan Gospos
- Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacqui A McGovern
- Centre for Biomedical Technologies, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Boris M Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
19
|
Suehara Y, Kitada R, Kamio S, Ogura K, Iwata S, Kobayashi E, Kawai A, Khosaka S. Analysis of cancer multigene panel testing for osteosarcoma in pediatric and adults using the center for cancer genomics and advanced therapeutics database in Japan. J Orthop Sci 2024:S0949-2658(24)00209-4. [PMID: 39562182 DOI: 10.1016/j.jos.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor. Despite advances in multimodal chemotherapy, prognosis for metastatic or recurrent OS remains poor. Next-generation sequencing (NGS) can uncover new therapeutic options by identifying potentially targetable alterations. This study analyzed NGS data from the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database in Japan, comparing findings with the Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) data from the United States. METHODS We sequenced tumor and/or germline DNA from 223 high-grade OS samples using the FoundationOne® CDx or OncoGuideTM NCC Oncopanel System, and the FoundationOne® Liquid CDx for multigene panel testing (2019-2023). Genomic alterations were interpreted using the Cancer Knowledge Database (CKDB), with potentially actionable genetic events categorized into A-F levels. RESULTS Analysis of 223 high-grade OS samples revealed 1684 somatic mutations in 167 genes and 1114 copy number alterations in 89 genes. Potentially actionable alterations were identified in 94 patients (42.2 %) at CKDB Levels A-C. These included 2 cases with NTRK fusions (0.9 %; Level A), one case with TMB-high (0.4 %; Level A), 3 with ERBB amplifications (1.3 %; Level B), and 88 cases (39.5 %) with alterations such as CDK4 amplification, PTEN deletion/mutation, and others (Level C). Co-occurring amplifications of KIT, KDR, and PDGFRA at the 4q12 locus were found in 8 cases (3.6 %), while VEGFA and CCND3 co-amplifications at the 6p12-21 locus were seen in 33 cases (14.8 %). These gene amplifications, also reported in US studies, are targetable by multi-kinase inhibitors, although the C-CAT cohort's profiles differed from US cohorts like MSK-IMPACT. CONCLUSIONS Precision medicine for rare tumors still poses challenges. In this Japanese cohort, 42.2 % of high-grade OSs had potentially actionable alterations per CKDB. Concurrent gene amplifications of KIT, KDR, and PDGFRA at 4q12, and VEGFA and CCND3 at 6p12-21, might offer promising therapeutic options for patients with recurrent/metastatic OS resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Yoshiyuki Suehara
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Kamio
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ogura
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Shinji Khosaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
20
|
Tang N, Deng W, Wu Y, Deng Z, Wu X, Xiong J, Zhao Q. Single-Cell Spatial-Temporal Analysis of ZNF451 in Mediating Drug Resistance and CD8 + T Cell Dysfunction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0530. [PMID: 39534688 PMCID: PMC11555180 DOI: 10.34133/research.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin is widely used to treat osteosarcoma, but recurrent cases often develop resistance, allowing the disease to progress and complicating clinical management. This study aimed to elucidate the immune microenvironment of osteosarcoma, providing insights into the mechanisms of recurrence and identifying potential therapeutic strategies. By analyzing multiple single-cell and bulk RNA-sequencing datasets, we discovered that the SUMOylation-related gene ZNF451 promotes osteosarcoma recurrence and alters its immune microenvironment. ZNF451 was found to importantly enhance the growth, migration, and invasion of resistant cells while also reducing their sensitivity to cisplatin and lowering their apoptosis rate. Moreover, our data indicated that ZNF451 plays a crucial role in bone resorption and epithelial-mesenchymal transition. ZNF451 also regulates CD8+ T cell function, leading to their exhaustion and transition to the CD8T.EXH state. Additionally, β-cryptoxanthin has been identified as a potential therapeutic agent that inhibits osteosarcoma progression by targeting ZNF451. In summary, these findings highlight the critical role of ZNF451 in promoting osteosarcoma progression and underscore its potential as a therapeutic target and biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Woding Deng
- Xiangya School of Medicine,
Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery,
First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School,
University of South China, Hengyang, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jianbin Xiong
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology,
Liuzhou People’s Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Department of Hematology,
The Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
21
|
Xu P, Yuan J, Li K, Wang Y, Wu Z, Zhao J, Li T, Wu T, Miao X, He D, Cheng X. Development and validation of a novel endoplasmic reticulum stress-related lncRNAs signature in osteosarcoma. Sci Rep 2024; 14:25590. [PMID: 39462063 PMCID: PMC11513957 DOI: 10.1038/s41598-024-76841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma (OS) is a cancerous tumor, and its development is greatly influenced by long non-coding RNA (lncRNA). Endoplasmic reticulum stress (ERS) is an essential biological defense process in cells and contributes to the progression of tumors. However, the exact mechanisms remain elusive. This study aims to develop a signature of lncRNAs associated with ERS in OS. This signature will guide the prognosis prediction and the determination of appropriate treatment strategies. The UCSC Xena database collected transcriptional and clinical data of OS and muscle, after identifying ERS differentially expressed genes, we utilized correlation analysis to determine the endoplasmic reticulum stress lncRNAs (ERLs). The Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analysis were utilized to develop an ERLs signature. To clarify the fundamental mechanisms controlling gene expression in low and high-risk groups, Gene Set Variation Analysis (GSVA) were conducted. In addition, the distinction between the two groups regarding drug sensitivity and immune-related activity was investigated to determine the immunotherapy effects. Utilizing RT-qPCR, the expression of model lncRNAs in OS cell lines was ascertained. The functional analysis of LINC02298 was carried out through in vitro experiments and pan-cancer analysis. This study successfully constructed an ERLs prognostic signature for OS, which comprised 5 lncRNAs (AC023157.3, AL031673.1, LINC02298, LINC02328, SNHG26). The risk signature predicted overall survival in patients with OS and was confirmed by assessing the validation and whole cohorts. Further, it was discovered that individuals classified as high-risk displayed suppressed immune activation, decreased infiltration of immune cells, and decreased responsiveness to immunotherapy. The RT-qPCR showed that the constructed risk prognosis model is reliable. Experimental validation has demonstrated that LINC02298 can promote OS cells' invasion, migration, and proliferation. In addition, LINC02298 exhibited significant differential expression in many types of cancer. Moreover, LINC02298 is an important biomarker in a variety of tumors. This study established a novel ERLs signature, which successfully predicted the prognosis of OS. The function of LINC02298 in OS was elucidated via in vitro experiments. Therefore, it offers new opportunities for predicting the clinical prognosis of OS and establishes the basis for targeted therapy in OS.
Collapse
Affiliation(s)
- Peichuan Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Kaihui Li
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Yameng Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Zhiwen Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Jiangminghao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Tao Li
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Tianlong Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xinxin Miao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Dingwen He
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China.
| |
Collapse
|
22
|
Maqueda JJ, De Feo A, Scotlandi K. Evaluating Circulating Biomarkers for Diagnosis, Prognosis, and Tumor Monitoring in Pediatric Sarcomas: Recent Advances and Future Directions. Biomolecules 2024; 14:1306. [PMID: 39456239 PMCID: PMC11506719 DOI: 10.3390/biom14101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Pediatric sarcomas present a significant challenge in oncology. There is an urgent need for improved therapeutic strategies for high-risk patients and better management of long-term side effects for those who survive the disease. Liquid biopsy is emerging as a promising tool to optimize treatment in these patients by offering non-invasive, repeatable assessments of disease status. Circulating biomarkers can provide valuable insights into tumor genetics and treatment response, potentially facilitating early diagnosis and dynamic disease monitoring. This review examines the potential of liquid biopsies, focusing on circulating biomarkers in the most common pediatric sarcomas, i.e., osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma. We also highlight the current research efforts and the necessary advancements required before these technologies can be widely adopted in clinical practice.
Collapse
Affiliation(s)
- Joaquín J. Maqueda
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (K.S.)
| | | | | |
Collapse
|
23
|
Lizardo MM, Hughes C, Huang YZ, Shyp T, Delaidelli A, Zhang HF, Shaool SS, Renner AF, Burwag F, Sayles LC, Lee AG, Sweet-Cordero A, Sorensen PH. Pharmacologic Inhibition of EIF4A Blocks NRF2 Synthesis to Prevent Osteosarcoma Metastasis. Clin Cancer Res 2024; 30:4464-4481. [PMID: 39078310 PMCID: PMC11443218 DOI: 10.1158/1078-0432.ccr-24-1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE Effective therapies for metastatic osteosarcoma (OS) remain a critical unmet need. Targeting mRNA translation in metastatic OS offers a promising option, as selective translation drives the synthesis of cytoprotective proteins under harsh microenvironmental conditions to facilitate metastatic competence. EXPERIMENTAL DESIGN We assessed the expression levels of eukaryotic translation factors in OS, revealing the high expression of the eukaryotic initiation factor 4A1 (EIF4A1). Using a panel of metastatic OS cell lines and patient-derived xenograft (PDX) models, EIF4A1 inhibitors were evaluated for their ability to block proliferation and reduce survival under oxidative stress, mimicking harsh conditions of the lung microenvironment. Inhibitors were also evaluated for their antimetastatic activity using the ex vivo pulmonary metastasis assay and in vivo metastasis models. Proteomics was performed to catalog which cytoprotective proteins or pathways were affected by EIF4A1 inhibition. RESULTS CR-1-31B, a rocaglate-based EIF4A1 inhibitor, exhibited nanomolar cytotoxicity against all metastatic OS models tested. CR-1-31B exacerbated oxidative stress and apoptosis when OS cells were co-treated with tert-butylhydroquinone, a chemical oxidative stress inducer. CR-1-31B potently inhibited OS growth in the pulmonary metastasis assay model and in experimental and spontaneous models of OS lung metastasis. Proteomic analysis revealed that tert-butylhydroquinone-mediated upregulation of the NRF2 antioxidant factor was blocked by co-treatment with CR-1-31B. Genetic inactivation of NRF2 phenocopied the antimetastatic activity of CR-1-31B. Finally, the clinical-grade EIF4A1 phase-1-to-2 inhibitor, zotatifin, similarly blocked NRF2 synthesis and the OS metastatic phenotype. CONCLUSIONS Collectively, our data reveal that pharmacologic targeting of EIF4A1 is highly effective in blocking OS metastasis by blunting the NRF2 antioxidant response.
Collapse
Affiliation(s)
- Michael M Lizardo
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Christopher Hughes
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Yue Z Huang
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Taras Shyp
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Annalena F Renner
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Farez Burwag
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Leanne C Sayles
- Helen Diller Family Comprehensive Cancer Program, University of California San Francisco, San Francisco, California
| | - Alex G Lee
- Helen Diller Family Comprehensive Cancer Program, University of California San Francisco, San Francisco, California
| | - Alejandro Sweet-Cordero
- Helen Diller Family Comprehensive Cancer Program, University of California San Francisco, San Francisco, California
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
25
|
Fei X, Li Z, Pan Z, Liang Y, Tan C, Cheng D, Yang Q. Avermectin B1 mediates antitumor activity and induces autophagy in osteosarcoma through the AMPK/ULK1 signaling pathway. Cancer Chemother Pharmacol 2024; 94:599-613. [PMID: 39235611 PMCID: PMC11438708 DOI: 10.1007/s00280-024-04695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor in children and adolescents. Conventional chemotherapy remains unsatisfactory due to drug toxicity and resistance issues. Therefore, there is an urgent need to develop more effective treatments for advanced osteosarcoma. In the current study, we focused on evaluating the anticancer efficacy of avermectin B1, a novel avermectin analog, against osteosarcoma cells. METHODS The half-inhibitory concentration of avermectin B1 was calculated in three osteosarcoma cell lines. Then, functional experiments were conducted to evaluate the effects of avermectin B1 on cell proliferation, the cell cycle, apoptosis and autophagy. Moreover, the AMPK/ULK1 signaling pathway was detected by Western blot assay. Finally, the in vivo effect of avermectin B1 on tumor growth and metastasis was investigated using the xenograft mouse model. To examine the role of the AMPK/ULK1 pathway, an AMPK-specific inhibitor (dorsomorphin) was used in combination with avermectin B1. RESULTS Avermectin B1 inhibited the proliferation of osteosarcoma cells in a dose-dependent manner based on CCK8 and colony formation assays. Then, it was found to inhibit migration and invasion by wound healing assay and cell migration and invasion assay. In addition, avermectin B1 induced osteosarcoma cell apoptosis and autophagy. In vivo, avermectin B1 effectively inhibited osteosarcoma cell growth and pulmonary metastasis. Mechanistically, avermectin B1 activated the AMPK/ULK1 pathway to exert antitumor activity in vitro and in vivo. Dorsomorphin significantly attenuated the Avermectin B1-induced antitumor activities. CONCLUSION Our study suggests that avermectin B1 is a potential agent to treat osteosarcoma cells through the AMPK/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Xiang Fei
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Zhaohui Li
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Zhen Pan
- Department of Orthopedics, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yonghui Liang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Chen Tan
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Dongdong Cheng
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China.
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
26
|
Kager L, Evans WE. Pharmacogenomics in Pediatric Oncology Research and Treatment. J Pediatr Pharmacol Ther 2024; 29:554-557. [PMID: 39411408 PMCID: PMC11472404 DOI: 10.5863/1551-6776-29.5.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Leo Kager
- Department of Pediatrics and Adolescent Medicine (LK), St. Anna Children’s Hospital, Medical University Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI) (LK), Vienna, Austria
| | - William E. Evans
- Department of Pharmaceutical Sciences (WEE), St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
27
|
Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer 2024; 23:192. [PMID: 39245737 PMCID: PMC11382402 DOI: 10.1186/s12943-024-02105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and young adults. Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades. Especially in metastatic or recurrent osteosarcoma, the survival rate is extremely unsatisfactory. The treatment of osteosarcoma urgently needs breakthroughs. In recent years, immunotherapy has achieved good therapeutic effects in various solid tumors. Due to the low immunogenicity and immunosuppressive microenvironment of osteosarcoma, immunotherapy has not yet been approved in osteosarcoma patients. However, immune-based therapies, including immune checkpoint inhibitors, chimeric antigen receptor T cells, and bispecfic antibodies are in active clinical development. In addition, other immunotherapy strategies including modified-NK cells/macrophages, DC vaccines, and cytokines are still in the early stages of research, but they will be hot topics for future study. In this review, we showed the functions of cell components including tumor-promoting and tumor-suppressing cells in the tumor microenvironment of osteosarcoma, and summarized the preclinical and clinical research results of various immunotherapy strategies in osteosarcoma, hoping to provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Yao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Xu Y, Ma Z, Wang Y, Zhang L, Ye J, Chen Y, Yuan Z. CuPCA: a web server for pan-cancer association analysis of large-scale cuproptosis-related genes. Database (Oxford) 2024; 2024:baae075. [PMID: 39231258 PMCID: PMC11373563 DOI: 10.1093/database/baae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Copper-induced cell death is a novel mechanism of cell death, which is defined as cuproptosis. The increasing level of copper can produce toxicity in cells and may cause the occurrence of cell death. Several previous studies have proved that cuproptosis has a tight association with various cancers. Thus, the discovery of relationships between cuproptosis-related genes (CRGs) and human cancers is of great importance. Pan-cancer analysis can efficiently help researchers find out the relationship between multiple cancers and target genes precisely and make various prognostic analyses on cancers and cancer patients. Pan-cancer web servers can provide researchers with direct results of pan-cancer prognostic analyses, which can greatly improve the efficiency of their work. However, to date, no web server provides pan-cancer analysis about CRGs. Therefore, we introduce the cuproptosis pan-cancer analysis database (CuPCA), the first database for various analysis results of CRGs through 33 cancer types. CuPCA is a user-friendly resource for cancer researchers to gain various prognostic analyses between cuproptosis and cancers. It provides single CRG pan-cancer analysis, multi-CRGs pan-cancer analysis, multi-CRlncRNA pan-cancer analysis, and mRNA-circRNA-lncRNA conjoint analysis. These analysis results can not only indicate the relationship between cancers and cuproptosis at both gene level and protein level, but also predict the conditions of different cancer patients, which include their clinical condition, survival condition, and their immunological condition. CuPCA procures the delivery of analyzed data to end users, which improves the efficiency of wide research as well as releases the value of data resources. Database URL: http://cupca.cn/.
Collapse
Affiliation(s)
- Yishu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhenshu Ma
- College of Computer Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Long Zhang
- College of Art, Beijing Forestry University, Beijing 100083, China
| | - Jiaming Ye
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
29
|
Yan P, Wang J, Yue B, Wang X. Unraveling molecular aberrations and pioneering therapeutic strategies in osteosarcoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189171. [PMID: 39127243 DOI: 10.1016/j.bbcan.2024.189171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Osteosarcoma, a rare primary bone cancer, presents diverse molecular aberrations that underscore its complexity. Despite the persistent endeavors by researchers, the limited amelioration in the five-year survival rate indicates that current therapeutic strategies prove inadequate in addressing the clinical necessities. Advancements in molecular profiling have facilitated an enhanced comprehension of the biology of osteosarcoma, offering a promising outlook for treatment. There is an urgent need to develop innovative approaches to address the complex challenges of osteosarcoma, ultimately contributing to enhanced patient outcomes. This review explores the nexus between osteosarcoma and cancer predisposition syndromes, intricacies in its somatic genome, and clinically actionable alterations. This review covers treatment strategies, including surgery, chemotherapy, immune checkpoint inhibitors (ICIs), and tyrosine kinase inhibitors (TKIs). Innovative treatment modalities targeting diverse pathways, including multi-target tyrosine kinases, cell cycle, PI3K/mTOR pathway, and DNA damage repair (DDR), offer promising interventions. This review also covers promising avenues, including antibody-drug conjugates (ADCs) and immunotherapy strategies, such as cytokines, adoptive cellular therapy (ACT), ICIs, and cancer vaccines. This comprehensive exploration contributes to a holistic understanding, offering guidance for clinical applications to advance the management of osteosarcoma.
Collapse
Affiliation(s)
- Peng Yan
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China
| | - Jie Wang
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China
| | - Bin Yue
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China.
| | - Xinyi Wang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China.
| |
Collapse
|
30
|
Wu CC, Huang L, Zhang Z, Ju Z, Song X, Kolb EA, Zhang W, Gill J, Ha M, Smith MA, Houghton P, Morton CL, Kurmasheva R, Maris J, Mosse Y, Lu Y, Gorlick R, Futreal PA, Beird HC. Whole genome and reverse protein phase array landscapes of patient derived osteosarcoma xenograft models. Sci Rep 2024; 14:19891. [PMID: 39191826 PMCID: PMC11350124 DOI: 10.1038/s41598-024-69382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Osteosarcoma is the most common primary bone malignancy in children and young adults, and it has few treatment options. As a result, there has been little improvement in survival outcomes in the past few decades. The need for models to test novel therapies is especially great in this disease since it is both rare and does not respond to most therapies. To address this, an NCI-funded consortium has characterized and utilized a panel of patient-derived xenograft models of osteosarcoma for drug testing. The exomes, transcriptomes, and copy number landscapes of these models have been presented previously. This study now adds whole genome sequencing and reverse-phase protein array profiling data, which can be correlated with drug testing results. In addition, four additional osteosarcoma models are described for use in the research community.
Collapse
Affiliation(s)
- Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Licai Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongting Zhang
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Wendong Zhang
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Gill
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Health Informatics and Biostatistics, Yonsei University, Seoul, Korea
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Houghton
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | - John Maris
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yael Mosse
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Gorlick
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Oblinger JL, Wang J, Wetherell GD, Agarwal G, Wilson TA, Benson NR, Fenger JM, Fuchs JR, Kinghorn AD, Chang LS. Anti-tumor effects of the eIF4A inhibitor didesmethylrocaglamide and its derivatives in human and canine osteosarcomas. Sci Rep 2024; 14:19349. [PMID: 39164287 PMCID: PMC11335891 DOI: 10.1038/s41598-024-69171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Inhibition of translation initiation using eIF4A inhibitors like (-)-didesmethylrocaglamide [(-)-DDR] and (-)-rocaglamide [(-)-Roc] is a potential cancer treatment strategy as they simultaneously diminish multiple oncogenic drivers. We showed that human and dog osteosarcoma cells expressed higher levels of eIF4A1/2 compared with mesenchymal stem cells. Genetic depletion of eIF4A1 and/or 2 slowed osteosarcoma cell growth. To advance preclinical development of eIF4A inhibitors, we demonstrated the importance of (-)-chirality in DDR for growth-inhibitory activity. Bromination of DDR at carbon-5 abolished growth-inhibitory activity, while acetylating DDR at carbon-1 was tolerated. Like (-)-DDR, (±)-DDR, and (-)-Roc, (±)-DDR-acetate increased γH2A.X levels and induced G2/M arrest and apoptosis. Consistent with translation inhibition, these rocaglates decreased the levels of several mitogenic kinases, the STAT3 transcription factor, and the stress-activated protein kinase p38. However, phosphorylated p38 was greatly enhanced in treated cells, suggesting activation of stress response pathways. RNA sequencing identified RHOB as a top upregulated gene in both (-)-DDR- and (-)-Roc-treated osteosarcoma cells, but the Rho inhibitor Rhosin did not enhance the growth-inhibitory activity of (-)-DDR or (-)-Roc. Nonetheless, these rocaglates potently suppressed tumor growth in a canine osteosarcoma patient-derived xenograft model. These results suggest that these eIF4A inhibitors can be leveraged to treat both human and dog osteosarcomas.
Collapse
Affiliation(s)
- Janet L Oblinger
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Jack Wang
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Georgia D Wetherell
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - Tyler A Wilson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - Nicole R Benson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - Joelle M Fenger
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Ethos Veterinary Health and Ethos Discovery (501c3), Woburn, MA, 01801, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Departments of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Departments of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Departments of Pathology, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Green D, van Ewijk R, Tirtei E, Andreou D, Baecklund F, Baumhoer D, Bielack SS, Botchu R, Boye K, Brennan B, Capra M, Cottone L, Dirksen U, Fagioli F, Fernandez N, Flanagan AM, Gambarotti M, Gaspar N, Gelderblom H, Gerrand C, Gomez-Mascard A, Hardes J, Hecker-Nolting S, Kabickova E, Kager L, Kanerva J, Kester LA, Kuijjer ML, Laurence V, Lervat C, Marchais A, Marec-Berard P, Mendes C, Merks JH, Ory B, Palmerini E, Pantziarka P, Papakonstantinou E, Piperno-Neumann S, Raciborska A, Roundhill EA, Rutkauskaite V, Safwat A, Scotlandi K, Staals EL, Strauss SJ, Surdez D, Sys GM, Tabone MD, Toulmonde M, Valverde C, van de Sande MA, Wörtler K, Campbell-Hewson Q, McCabe MG, Nathrath M. Biological Sample Collection to Advance Research and Treatment: A Fight Osteosarcoma Through European Research and Euro Ewing Consortium Statement. Clin Cancer Res 2024; 30:3395-3406. [PMID: 38869831 PMCID: PMC11334773 DOI: 10.1158/1078-0432.ccr-24-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Osteosarcoma and Ewing sarcoma are bone tumors mostly diagnosed in children, adolescents, and young adults. Despite multimodal therapy, morbidity is high and survival rates remain low, especially in the metastatic disease setting. Trials investigating targeted therapies and immunotherapies have not been groundbreaking. Better understanding of biological subgroups, the role of the tumor immune microenvironment, factors that promote metastasis, and clinical biomarkers of prognosis and drug response are required to make progress. A prerequisite to achieve desired success is a thorough, systematic, and clinically linked biological analysis of patient samples, but disease rarity and tissue processing challenges such as logistics and infrastructure have contributed to a lack of relevant samples for clinical care and research. There is a need for a Europe-wide framework to be implemented for the adequate and minimal sampling, processing, storage, and analysis of patient samples. Two international panels of scientists, clinicians, and patient and parent advocates have formed the Fight Osteosarcoma Through European Research consortium and the Euro Ewing Consortium. The consortia shared their expertise and institutional practices to formulate new guidelines. We report new reference standards for adequate and minimally required sampling (time points, diagnostic samples, and liquid biopsy tubes), handling, and biobanking to enable advanced biological studies in bone sarcoma. We describe standards for analysis and annotation to drive collaboration and data harmonization with practical, legal, and ethical considerations. This position paper provides comprehensive guidelines that should become the new standards of care that will accelerate scientific progress, promote collaboration, and improve outcomes.
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Roelof van Ewijk
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Elisa Tirtei
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Dimosthenis Andreou
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria.
| | - Fredrik Baecklund
- Pediatric Oncology Unit, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel Baumhoer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| | - Stefan S. Bielack
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, United Kingdom.
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway.
| | - Bernadette Brennan
- Paediatric Oncology, Royal Manchester Children’s Hospital, Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom.
| | - Michael Capra
- Haematology/Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland.
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
| | - Uta Dirksen
- Pediatrics III, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Franca Fagioli
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Natalia Fernandez
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
| | - Adrienne M. Flanagan
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
- Histopathology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- U1015, Université Paris-Saclay, Villejuif, France.
| | - Hans Gelderblom
- Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Craig Gerrand
- Orthopaedic Oncology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Anne Gomez-Mascard
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.
- EQ ONCOSARC, CRCT Inserm/UT3, ERL CNRS, Toulouse, France.
| | - Jendrik Hardes
- Tumour Orthopaedics, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Stefanie Hecker-Nolting
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Edita Kabickova
- Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic.
| | - Leo Kager
- Pediatrics, St Anna Children’s Hospital, Medical University Vienna, Vienna, Austria.
- St Anna Children’s Cancer Research Institute, Vienna, Austria.
| | - Jukka Kanerva
- Hematology-Oncology and Stem Cell Transplantation, HUS Helsinki University Hospital, New Children’s Hospital, Helsinki, Finland.
| | - Lennart A. Kester
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Marieke L. Kuijjer
- Computational Biology and Systems Medicine Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
- Pathology, Leiden University Medical Center, Leiden, the Netherlands.
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Cyril Lervat
- Department of Pediatrics and AYA Oncology, Centre Oscar Lambret, Lille, France.
| | - Antonin Marchais
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Perrine Marec-Berard
- Institute of Hematology and Pediatric Oncology, Léon Bérard Center, Lyon, France.
| | - Cristina Mendes
- Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal.
| | - Johannes H.M. Merks
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Benjamin Ory
- School of Medicine, Nantes Université, Nantes, France.
| | - Emanuela Palmerini
- Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Orthopedico Rizzoli, Bologna, Italy.
| | - Pan Pantziarka
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
- Anticancer Fund, Meise, Belgium.
- The George Pantziarka TP53 Trust, London, United Kingdom.
| | - Evgenia Papakonstantinou
- Pediatric Hematology-Oncology, Ippokratio General Hospital of Thessaloniki, Thessaloniki, Greece.
| | | | - Anna Raciborska
- Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Warsaw, Poland.
| | - Elizabeth A. Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| | - Vilma Rutkauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.
| | - Akmal Safwat
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Eric L. Staals
- Orthopaedics and Trauma, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Sandra J. Strauss
- Department of Oncology, University College London Hospitals NHS Foundation Trust, UCL Cancer Institute, London, United Kingdom.
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland.
| | - Gwen M.L. Sys
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, Belgium.
| | - Marie-Dominique Tabone
- Department of Hematology and Oncology, A. Trousseau Hospital, Sorbonne University, APHP, Paris, France.
| | - Maud Toulmonde
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | - Claudia Valverde
- Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Spain.
| | | | - Klaus Wörtler
- Musculoskeletal Radiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Quentin Campbell-Hewson
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Martin G. McCabe
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom.
- The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Michaela Nathrath
- Children’s Cancer Research Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Pediatric Oncology, Klinikum Kassel, Kassel, Germany.
| |
Collapse
|
33
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
34
|
Hayashi N, Ono M, Fukada I, Yamazaki M, Sato N, Hosonaga M, Wang X, Kaneko K, Arakawa H, Habano E, Kuga A, Kataoka A, Ueki A, Kiyotani K, Tonooka A, Takeuchi K, Kogawa T, Kitano S, Takano T, Watanabe M, Mori S, Takahashi S. Addressing the knowledge gap in the genomic landscape and tailored therapeutic approaches to adolescent and young adult cancers. ESMO Open 2024; 9:103659. [PMID: 39137480 PMCID: PMC11369407 DOI: 10.1016/j.esmoop.2024.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Adolescents and young adults (AYAs) represent a small proportion of patients with cancer. The genomic profiles of AYA patients with cancer are not well-studied, and outcomes of genome-matched therapies remain largely unknown. PATIENTS AND METHODS We investigated differences between Japanese AYA and older adult (OA) patients in genomic alterations, therapeutic evidence levels, and genome-matched therapy usage by cancer type. We also assessed treatment outcomes. RESULTS AYA patients accounted for 8.3% of 876 cases. Microsatellite instability-high and/or tumor mutation burden was less common in AYA patients (1.4% versus 7.7% in OA; P = 0.05). However, BRCA1 alterations were more common in AYA patients with breast cancer (27.3% versus 1.7% in OA; P = 0.01), as were MYC alterations in AYA patients with colorectal cancer (23.5% versus 5.8% in OA; P = 0.02) and sarcoma (31.3% versus 3.4% in OA; P = 0.01). Genome-matched therapy use was similar between groups, with overall survival tending to improve in both. However, in AYA patients, the small number of patients prevented statistical significance. Comprehensive genomic profiling-guided genome-matched therapy yielded encouraging results, with progression-free survival of 9.0 months in AYA versus 3.7 months in OA patients (P = 0.59). CONCLUSION Our study suggests that tailored therapeutic approaches can benefit cancer patients regardless of age.
Collapse
Affiliation(s)
- N Hayashi
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - M Ono
- Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo.
| | - I Fukada
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - M Yamazaki
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - N Sato
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - M Hosonaga
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto, Tokyo
| | - X Wang
- Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - K Kaneko
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - H Arakawa
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - E Habano
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - A Kuga
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - A Kataoka
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto, Tokyo
| | - A Ueki
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - K Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Laboratory of Immunogenomics, The Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka
| | - A Tonooka
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - K Takeuchi
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - T Kogawa
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - S Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - T Takano
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto, Tokyo
| | - M Watanabe
- Total Care Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - S Mori
- Project for Development of Innovative Research on Cancer Therapeutics, The Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - S Takahashi
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| |
Collapse
|
35
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
36
|
Childs A, Gerrand C, Brennan B, Young R, Rankin KS, Parry M, Stevenson J, Flanagan AM, Taylor RM, Fern L, Heymann D, Vance F, Sherriff J, Singh S, Begum R, Forsyth SL, Reczko K, Sparksman K, Wilson W, Strauss SJ. A Prospective Observational Cohort Study for Newly Diagnosed Osteosarcoma Patients in the UK: ICONIC Study Initial Results. Cancers (Basel) 2024; 16:2351. [PMID: 39001413 PMCID: PMC11240498 DOI: 10.3390/cancers16132351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/16/2024] Open
Abstract
There has been little change to the standard treatment for osteosarcoma (OS) over the last 25 years and there is an unmet need to identify new biomarkers and novel therapeutic approaches if outcomes are to improve. Furthermore, there is limited evidence on the impact of OS treatment on patient-reported outcomes (PROs). ICONIC (Improving Outcomes through Collaboration in Osteosarcoma; NCT04132895) is a prospective observational cohort study recruiting newly diagnosed OS patients across the United Kingdom (UK) with matched longitudinal collection of clinical, biological, and PRO data. During Stage 1, which assessed the feasibility of recruitment and data collection, 102 patients were recruited at 22 sites with representation from patient groups frequently excluded in OS studies, including patients over 50 years and those with less common primary sites. The feasibility of collecting clinical and biological samples, in addition to PRO data, has been established and there is ongoing analysis of these data as part of Stage 2. ICONIC will provide a unique, prospective cohort of newly diagnosed OS patients representative of the UK patient population, with fully annotated clinical outcomes linked to molecularly characterised biospecimens, allowing for comprehensive analyses to better understand biology and develop new biomarkers and novel therapeutic approaches.
Collapse
Affiliation(s)
- Alexa Childs
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
| | - Craig Gerrand
- The Royal National Orthopaedic Hospital Trust, Brockley Hill, Stanmore HA7 4LP, UK
| | - Bernadette Brennan
- Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Robin Young
- Sheffield Teaching Hospitals NHS Foundation Trust, Weston Park Hospital, Whitham Road, Broomhall, Sheffield S10 2JF, UK
| | - Kenneth S Rankin
- Newcastle Centre Cancer, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4AD, UK
| | - Michael Parry
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham B31 2AP, UK
| | - Jonathan Stevenson
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham B31 2AP, UK
| | - Adrienne M Flanagan
- The Royal National Orthopaedic Hospital Trust, Brockley Hill, Stanmore HA7 4LP, UK
- UCL Cancer Institute, London WC1E 6DD, UK
| | - Rachel M Taylor
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
| | - Lorna Fern
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
| | - Dominique Heymann
- Sarcoma Research Unit, Department of Oncology & Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Nantes Université, CNRS, UMR6286, US2B, Institut de Cancérologie de l'Ouest, 44800 Saint-Herblain, France
| | | | - Jenny Sherriff
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, UK
| | - Saurabh Singh
- Centre for Medical Imaging, University College London, London WC1E 6BT, UK
| | - Rubina Begum
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Sharon L Forsyth
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Krystyna Reczko
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Kate Sparksman
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - William Wilson
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Sandra J Strauss
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
- UCL Cancer Institute, London WC1E 6DD, UK
| |
Collapse
|
37
|
Lietz CE, Newman ET, Kelly AD, Xiang DH, Zhang Z, Ramavenkat N, Bowers JJ, Lozano-Calderon SA, Ebb DH, Raskin KA, Cote GM, Choy E, Nielsen GP, Vlachos IS, Haibe-Kains B, Spentzos D. A dynamic microRNA profile that tracks a chemotherapy resistance phenotype in osteosarcoma. Implications for novel therapeutics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309087. [PMID: 38946948 PMCID: PMC11213079 DOI: 10.1101/2024.06.19.24309087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Osteosarcoma is a rare primary bone tumor for which no significant therapeutic advancement has been made since the late 1980s despite ongoing efforts. Overall, the five-year survival rate remains about 65%, and is much lower in patients with tumors unresponsive to methotrexate, doxorubicin, and cisplatin therapy. Genetic studies have not revealed actionable drug targets, but our group, and others, have reported that epigenomic biomarkers, including regulatory RNAs, may be useful prognostic tools for osteosarcoma. We tested if microRNA (miRNA) transcriptional patterns mark the transition from a chemotherapy sensitive to resistant tumor phenotype. Small RNA sequencing was performed using 14 patient matched pre-chemotherapy biopsy and post-chemotherapy resection high-grade osteosarcoma frozen tumor samples. Independently, small RNA sequencing was performed using 14 patient matched biopsy and resection samples from untreated tumors. Separately, miRNA specific Illumina DASL arrays were used to assay an independent cohort of 65 pre-chemotherapy biopsy and 26 patient matched post-chemotherapy resection formalin fixed paraffin embedded (FFPE) tumor samples. mRNA specific Illumina DASL arrays were used to profile 37 pre-chemotherapy biopsy and five post-chemotherapy resection FFPE samples, all of which were also used for Illumina DASL miRNA profiling. The National Cancer Institute Therapeutically Applicable Research to Generate Effective Treatments dataset, including PCR based miRNA profiling and RNA-seq data for 86 and 93 pre-chemotherapy tumor samples, respectively, was also used. Paired differential expression testing revealed a profile of 17 miRNAs with significantly different transcriptional levels following chemotherapy. Genes targeted by the miRNAs were differentially expressed following chemotherapy, suggesting the miRNAs may regulate transcriptional networks. Finally, an in vitro pharmacogenomic screen using miRNAs and their target transcripts predicted response to a set of candidate small molecule therapeutics which potentially reverse the chemotherapy resistance phenotype and synergize with chemotherapy in otherwise treatment resistant tumors. Importantly, these novel therapeutic targets are distinct from targets identified by a similar pharmacogenomic analysis of previously published prognostic miRNA profiles from pre chemotherapy biopsy specimens.
Collapse
Affiliation(s)
- Christopher E Lietz
- Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Erik T Newman
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - David H Xiang
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ziying Zhang
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Nikhil Ramavenkat
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Joshua J Bowers
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Santiago A Lozano-Calderon
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David H Ebb
- Division of Pediatric Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin A Raskin
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gregory M Cote
- Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Edwin Choy
- Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ioannis S Vlachos
- Harvard Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto M5G 2M9, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto M5G 1L7, Ontario, Canada
| | - Dimitrios Spentzos
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Oblinger J, Wang J, Wetherell G, Agarwal G, Wilson T, Benson N, Fenger J, Fuchs J, Kinghorn AD, Chang L. Anti-tumor Effects of the eIF4A Inhibitor Didesmethylrocaglamide and Its Derivatives in Human and Canine Osteosarcomas. RESEARCH SQUARE 2024:rs.3.rs-4494024. [PMID: 38947012 PMCID: PMC11213195 DOI: 10.21203/rs.3.rs-4494024/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Inhibition of translation initiation using eIF4A inhibitors like (-)-didesmethylrocaglamide [(-)-DDR] and (-)-rocaglamide [(-)-Roc] is a potential cancer treatment strategy as they simultaneously diminish multiple oncogenic drivers. We showed that human and dog osteosarcoma cells expressed high levels of eIF4A1/2, particularly eIF4A2. Genetic depletion of eIF4A1 and/or 2 slowed osteosarcoma cell growth. To advance preclinical development of eIF4A inhibitors, we demonstrated the importance of (-)-chirality in DDR for growth-inhibitory activity. Bromination of DDR at carbon-5 abolished growth-inhibitory activity, while acetylating DDR at carbon-1 was tolerated. Like DDR and Roc, DDR-acetate increased the γH2A.X levels and induced G2/M arrest and apoptosis. Consistent with translation inhibition, these rocaglates decreased the levels of several mitogenic kinases, the STAT3 transcription factor, and the stress-activated protein kinase p38. However, phosphorylated p38 was greatly enhanced in treated cells, suggesting activation of stress response pathways. RNA sequencing identified RHOB as a top upregulated gene in both DDR- and Roc-treated osteosarcoma cells, but the Rho inhibitor Rhosin did not enhance the growth-inhibitory activity of (-)-DDR or (-)-Roc. Nonetheless, these rocaglates potently suppressed tumor growth in a canine osteosarcoma patient-derived xenograft model. These results suggest that these eIF4A inhibitors can be leveraged to treat both human and dog osteosarcomas.
Collapse
Affiliation(s)
- Janet Oblinger
- Abigail Wexner Research Institute at Nationwide Children's Hospital
| | - Jack Wang
- Abigail Wexner Research Institute at Nationwide Children's Hospital
| | | | | | | | | | | | | | | | - Long Chang
- Abigail Wexner Research Institute at Nationwide Children's Hospital
| |
Collapse
|
39
|
Cai YM, Lu ZQ, Li B, Huang JY, Zhang M, Chen C, Fan LY, Ma QY, He CY, Chen SN, Jiang Y, Li YM, Ning CB, Zhang FW, Wang WZ, Liu YZ, Zhang H, Jin M, Wang XY, Han JX, Xiong Z, Cai M, Huang CQ, Yang XJ, Zhu X, Zhu Y, Miao XP, Zhang SK, Wei YC, Tian JB. Genome-wide enhancer RNA profiling adds molecular links between genetic variation and human cancers. Mil Med Res 2024; 11:36. [PMID: 38863031 PMCID: PMC11165858 DOI: 10.1186/s40779-024-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Dysregulation of enhancer transcription occurs in multiple cancers. Enhancer RNAs (eRNAs) are transcribed products from enhancers that play critical roles in transcriptional control. Characterizing the genetic basis of eRNA expression may elucidate the molecular mechanisms underlying cancers. METHODS Initially, a comprehensive analysis of eRNA quantitative trait loci (eRNAQTLs) was performed in The Cancer Genome Atlas (TCGA), and functional features were characterized using multi-omics data. To establish the first eRNAQTL profiles for colorectal cancer (CRC) in China, epigenomic data were used to define active enhancers, which were subsequently integrated with transcription and genotyping data from 154 paired CRC samples. Finally, large-scale case-control studies (34,585 cases and 69,544 controls) were conducted along with multipronged experiments to investigate the potential mechanisms by which candidate eRNAQTLs affect CRC risk. RESULTS A total of 300,112 eRNAQTLs were identified across 30 different cancer types, which exert their influence on eRNA transcription by modulating chromatin status, binding affinity to transcription factors and RNA-binding proteins. These eRNAQTLs were found to be significantly enriched in cancer risk loci, explaining a substantial proportion of cancer heritability. Additionally, tumor-specific eRNAQTLs exhibited high responsiveness to the development of cancer. Moreover, the target genes of these eRNAs were associated with dysregulated signaling pathways and immune cell infiltration in cancer, highlighting their potential as therapeutic targets. Furthermore, multiple ethnic population studies have confirmed that an eRNAQTL rs3094296-T variant decreases the risk of CRC in populations from China (OR = 0.91, 95%CI 0.88-0.95, P = 2.92 × 10-7) and Europe (OR = 0.92, 95%CI 0.88-0.95, P = 4.61 × 10-6). Mechanistically, rs3094296 had an allele-specific effect on the transcription of the eRNA ENSR00000155786, which functioned as a transcriptional activator promoting the expression of its target gene SENP7. These two genes synergistically suppressed tumor cell proliferation. Our curated list of variants, genes, and drugs has been made available in CancereRNAQTL ( http://canernaqtl.whu.edu.cn/#/ ) to serve as an informative resource for advancing this field. CONCLUSION Our findings underscore the significance of eRNAQTLs in transcriptional regulation and disease heritability, pinpointing the potential of eRNA-based therapeutic strategies in cancers.
Collapse
Affiliation(s)
- Yi-Min Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Cancer Epidemiology, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Ze-Qun Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Cancer Epidemiology, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Cancer Epidemiology, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jin-Yu Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lin-Yun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qian-Ying Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chun-Yi He
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuo-Ni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuan Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yan-Min Li
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Cai-Bo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fu-Wei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wen-Zhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yi-Zhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Yang Wang
- Department of Cancer Epidemiology, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jin-Xin Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Xiong
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao-Qun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiao-Jun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiao-Ping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Shao-Kai Zhang
- Department of Cancer Epidemiology, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Yong-Chang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Jian-Bo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Department of Cancer Epidemiology, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
40
|
Ferrena A, Zhang R, Wang J, Zheng XY, Göker B, Borjihan H, Chae SS, Lo Y, Zhao H, Schwartz E, Loeb D, Yang R, Geller D, Zheng D, Hoang B. Comprehensive single cell transcriptomics analysis of murine osteosarcoma uncovers Skp2 function in metastasis, genomic instability and immune activation and reveals additional target pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597347. [PMID: 38895216 PMCID: PMC11185585 DOI: 10.1101/2024.06.04.597347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Osteosarcoma (OS) is the most common primary pediatric bone malignancy. One promising new therapeutic target is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase responsible for ubiquitination and proteasome degradation of substrate p27, thus driving cellular proliferation. We have shown previously that knockout of Skp2 in an immunocompetent transgenic mouse model of OS improved survival, drove apoptosis, and induced tumor inflammation. Here, we applied single-cell RNA-sequencing (scRNA-seq) to study primary OS tumors derived from Osx-Cre driven conditional knockout of Rb1 and Trp53. We showed that murine OS models recapitulate the tumor heterogeneity and microenvironment complexity observed in patient tumors. We further compared this model with OS models with functional disruption of Skp2: one with Skp2 knockout and the other with the Skp2-p27 interaction disrupted (resulting in p27 overexpression). We found reduction of T cell exhaustion and upregulation of interferon activation, along with evidence of replicative and endoplasmic reticulum-related stress in the Skp2 disruption models, and showed that interferon induction was correlated with improved survival in OS patients. Additionally, our scRNA-seq analysis uncovered decreased activities of metastasis-related gene signatures in the Skp2-disrupted OS, which we validated by observation of a strong reduction in lung metastasis in the Skp2 knockout mice. Finally, we report several potential mechanisms of escape from targeting Skp2 in OS, including upregulation of Myc targets, DNA copy number amplification and overexpression of alternative E3 ligase genes, and potential alternative lineage activation. These mechanistic insights into OS tumor biology and Skp2 function suggest novel targets for new, synergistic therapies, while the data and our comprehensive analysis may serve as a public resource for further big data-driven OS research.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing, China
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing, China
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barlas Göker
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sung-Suk Chae
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Loeb
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
41
|
Nanda AS, Wu K, Irkliyenko I, Woo B, Ostrowski MS, Clugston AS, Sayles LC, Xu L, Satpathy AT, Nguyen HG, Alejandro Sweet-Cordero E, Goodarzi H, Kasinathan S, Ramani V. Direct transposition of native DNA for sensitive multimodal single-molecule sequencing. Nat Genet 2024; 56:1300-1309. [PMID: 38724748 PMCID: PMC11176058 DOI: 10.1038/s41588-024-01748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/08/2024] [Indexed: 05/23/2024]
Abstract
Concurrent readout of sequence and base modifications from long unamplified DNA templates by Pacific Biosciences of California (PacBio) single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90-99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000-50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.
Collapse
Affiliation(s)
- Arjun S Nanda
- Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Ke Wu
- Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Iryna Irkliyenko
- Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Brian Woo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Helen-Diller Cancer Center, San Francisco, CA, USA
| | - Megan S Ostrowski
- Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Andrew S Clugston
- Helen-Diller Cancer Center, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Leanne C Sayles
- Helen-Diller Cancer Center, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Lingru Xu
- Helen-Diller Cancer Center, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Gladstone-University of California, San Francisco Institute for Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Hao G Nguyen
- Helen-Diller Cancer Center, San Francisco, CA, USA
| | - E Alejandro Sweet-Cordero
- Helen-Diller Cancer Center, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Helen-Diller Cancer Center, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Sivakanthan Kasinathan
- Gladstone-University of California, San Francisco Institute for Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA.
- Division of Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Helen-Diller Cancer Center, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA.
| |
Collapse
|
42
|
Ma Y, Cong L, Shen W, Yang C, Ye K. Ferroptosis defense mechanisms: The future and hope for treating osteosarcoma. Cell Biochem Funct 2024; 42:e4080. [PMID: 38924104 DOI: 10.1002/cbf.4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Currently, challenges such as chemotherapy resistance, resulting from preoperative and postoperative chemotherapy, postoperative recurrence, and poor bone regeneration quality, are becoming increasingly prominent in osteosarcoma (OS) treatment. There is an urgent need to find more effective ways to address these issues. Ferroptosis is a novel form of iron-dependent programmed cell death, distinct from other forms of cell death. In this paper, we summarize how, through the three major defense systems of ferroptosis, not only can substances from traditional Chinese medicine, antitumor drugs, and nano-drug carriers induce ferroptosis in OS cells, but they can also be combined with immunotherapy, differentiation therapy, and other treatment modalities to significantly enhance chemotherapy sensitivity and inhibit tumor growth. Thus, ferroptosis holds great potential in treating OS, offering more choices and possibilities for future clinical interventions.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Liming Cong
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenxiang Shen
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Chunwang Yang
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
43
|
Mohr A, Marques Da Costa ME, Fromigue O, Audinot B, Balde T, Droit R, Abbou S, Khneisser P, Berlanga P, Perez E, Marchais A, Gaspar N. From biology to personalized medicine: Recent knowledge in osteosarcoma. Eur J Med Genet 2024; 69:104941. [PMID: 38677541 DOI: 10.1016/j.ejmg.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
High-grade osteosarcoma is the most common paediatric bone cancer. More than one third of patients relapse and die of osteosarcoma using current chemotherapeutic and surgical strategies. To improve outcomes in osteosarcoma, two crucial challenges need to be tackled: 1-the identification of hard-to-treat disease, ideally from diagnosis; 2- choosing the best combined or novel therapies to eradicate tumor cells which are resistant to current therapies leading to disease dissemination and metastasize as well as their favorable microenvironment. Genetic chaos, tumor complexity and heterogeneity render this task difficult. The development of new technologies like next generation sequencing has led to an improvement in osteosarcoma oncogenesis knownledge. This review summarizes recent biological and therapeutical advances in osteosarcoma, as well as the challenges that must be overcome in order to develop personalized medicine and new therapeutic strategies and ultimately improve patient survival.
Collapse
Affiliation(s)
- Audrey Mohr
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | | | - Olivia Fromigue
- National Institute for Health and Medical Research (INSERM) U981, Gustave Roussy Institute, Villejuif, France
| | - Baptiste Audinot
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Thierno Balde
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Robin Droit
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Samuel Abbou
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Pierre Khneisser
- Department of medical Biology and Pathology, Gustave Roussy Institute, Villejuif, France
| | - Pablo Berlanga
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Esperanza Perez
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Antonin Marchais
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Nathalie Gaspar
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France.
| |
Collapse
|
44
|
Rademacher MJ, Faber ML, Bone KM, Medin JA, Schloemer NJ. Fate control engagement augments NK cell responses in LV/hu-IL-12 transduced sarcoma. Exp Mol Pathol 2024; 137:104898. [PMID: 38729059 DOI: 10.1016/j.yexmp.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION NK cells are an untapped resource for cancer therapy. Sarcomas transduced with lentiviruses to express human IL-12 are only cleared in mice bearing mature human NK cells. However, systemic inflammation limits IL-12 utilization. Fate control a.k.a. "suicide mechanisms" regulate unchecked systemic inflammation caused by cellular immunotherapies. Despite increasing utilization, there remains limited data on immune consequences or tumor-directed effects of fate control. OBJECTIVES We sought to engage the mutant thymidylate kinase (mTMPK) metabolic fate control system to regulate systemic inflammation and assess the impact on NK cell effector functions. METHODS Primary human sarcoma short-passage samples and cell lines were transduced with LV/hu-IL-12_mTMPK engineering expression of IL-12 and an AZT-associated fate control enzyme. We assessed transduced sarcoma responses to AZT engagement and subsequent modulation of NK cell functions as measured by inflammatory cytokine production and cytotoxicity. RESULTS AZT administration to transduced (LV/hu-IL-12_mTMPK) short-passage primary human sarcomas and human Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines, abrogated the robust expression of human IL-12. Fate control activation elicited a specific dose-dependent cytotoxic effect measured by metabolic activity (WST-1) and cell death (Incucyte). NK effector functions of IFN-γ and cytotoxic granule release were significantly augmented despite IL-12 abrogation. This correlated with preferentially induced expression of NK cell activation ligands. CONCLUSIONS mTMPK fate control engagement terminates transduced sarcoma IL-12 production and triggers cell death, but also augments an NK cell-mediated response coinciding with metabolic stress activating surface ligand induction. Fate control engagement could offer a novel immune activation method for NK cell-mediated cancer clearance.
Collapse
Affiliation(s)
- Mary Jo Rademacher
- Departments of Pediatrics; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L Faber
- Departments of Pediatrics; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kathleen M Bone
- Departments of Pathology; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey A Medin
- Departments of Pediatrics; Medical College of Wisconsin, Milwaukee, WI 53226, USA; Departments of Biochemisty; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nathan J Schloemer
- Departments of Pediatrics; Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
45
|
Yu R, Lu G, Cheng B, Li J, Jiang Q, Lan X. Construction and validation of a novel NAD + metabolism-related risk model for prognostic prediction in osteosarcoma. J Orthop Res 2024; 42:1086-1103. [PMID: 38047487 DOI: 10.1002/jor.25757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Currently, the prognosis of osteosarcoma (OS) remains discouraging, especially in elderly/metastatic OS patients. By impairing the antitumor effect of immune cells, tumor immune microenvironment (TIME) provides an environment conducive to tumor proliferation, which highly requires accelerated nicotinamide adenine dinucleotide (NAD+) metabolism for energy. Recently, many genes involved in the sustained production of NAD+ in malignant tumors have been verified to be possible prognostic indicators and therapeutic targets. Therefore, the current study was to probe into the association of NAD+ metabolism-related genes with TIME, immunotherapeutic response, and prognosis in OS. All OS data for the study were acquired from TARGET and GEO databases. In bioinformatics analysis, we performed Cox analysis, consensus clustering, principal component analysis, t-distributed stochastic neighbor embedding, uniform manifold approximation and projection, gene set enrichment analysis, gene set variation analysis, Lasso analysis, survival and ROC curves, nomogram, immune-related analysis, drug sensitivity analysis, and single-cell RNA sequencing (scRNA-seq) analysis. Cell transfection assay, RT-qPCR, western blot analysis, as well as cell wound healing, migration, and invasion assays were performed in vitro. Bioinformatics analysis identified A&B clusters and six NAD+ metabolism-related differentially expressed genes, constructed risk model and nomogram, and performed immune-related analysis, drug susceptibility analysis, and scRNA-seq analysis to inform the clinical treatment framework. In vitro experiment revealed that CBS and INPP1 can promote migration, proliferation as well as invasion of OS cells through TGF-β1/Smad2/3 pathway. Based on bioinformatics analysis and in vitro validation, this study confirmed that NAD+ metabolism affects TIME to suggest the prognosis of OS.
Collapse
Affiliation(s)
- Ronghui Yu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Gang Lu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Banghong Cheng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiqing Jiang
- Department of Orthopedics, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Xia Lan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
46
|
Wang B, Hu H, Wang X, Shao Z, Shi D, Wu F, Liu J, Zhang Z, Li J, Xia Z, Liu W, Wu Q. POLE2 promotes osteosarcoma progression by enhancing the stability of CD44. Cell Death Discov 2024; 10:177. [PMID: 38627379 PMCID: PMC11021398 DOI: 10.1038/s41420-024-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent primary malignancy of bone in children and adolescents. It is extremely urgent to develop a new therapy for OS. In this study, the GSE14359 chip from the GEO database was used to screen differentially expressed genes in OS. DNA polymerase epsilon 2 (POLE2) was confirmed to overexpress in OS tissues and cell lines by immunohistochemical staining, qPCR and Western blot. Knockdown of POLE2 inhibited the proliferation and migration of OS cells in vitro, as well as the growth of tumors in vivo, while the apoptosis rate was increased. Bioinformatics analysis revealed that CD44 and Rac signaling pathway were the downstream molecule and pathway of POLE2, which were inhibited by knockdown of POLE2. POLE2 reduced the ubiquitination degradation of CD44 by acting on MDM2. Moreover, knockdown of CD44 inhibited the tumor-promoting effects of POLE2 overexpression on OS cells. In conclusion, POLE2 augmented the expression of CD44 via inhibiting MDM2-mediated ubiquitination, and then activated Rac signaling pathway to influence the progression of OS, indicating that POLE2/CD44 might be potential targets for OS treatment.
Collapse
Affiliation(s)
- Baichuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Hongzhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Juan Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhidao Xia
- Institute of Life Sciences 2, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Weijian Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| | - Qiang Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| |
Collapse
|
47
|
Silver KI, Mannheimer JD, Saba C, Hendricks WPD, Wang G, Day K, Warrier M, Beck JA, Mazcko C, LeBlanc AK. Clinical, pathologic and molecular findings in 2 Rottweiler littermates with appendicular osteosarcoma. RESEARCH SQUARE 2024:rs.3.rs-4223759. [PMID: 38659878 PMCID: PMC11042397 DOI: 10.21203/rs.3.rs-4223759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Appendicular osteosarcoma was diagnosed and treated in a pair of littermate Rottweiler dogs, resulting in distinctly different clinical outcomes despite similar therapy within the context of a prospective, randomized clinical trial (NCI-COTC021/022). Histopathology, immunohistochemistry, mRNA sequencing, and targeted DNA hotspot sequencing techniques were applied to both dogs' tumors to define factors that could underpin their differential response to treatment. We describe the comparison of their clinical, histologic and molecular features, as well as those from a companion cohort of Rottweiler dogs, providing new insight into potential prognostic biomarkers for canine osteosarcoma.
Collapse
Affiliation(s)
| | | | | | - William P D Hendricks
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Guannan Wang
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Kenneth Day
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Manisha Warrier
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | | | | | | |
Collapse
|
48
|
Tao Y, Li L, Yang X, Yin S, Zhang Z, Wang H, Pu R, Wang Z, Zhang Q, Mu H, Wu C, He J, Yang L. Magnetic-driven hydrogel microrobots for promoting osteosarcoma chemo-therapy with synthetic lethality strategy. Front Chem 2024; 12:1386076. [PMID: 38638876 PMCID: PMC11024356 DOI: 10.3389/fchem.2024.1386076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
The advancements in the field of micro-robots for drug delivery systems have garnered considerable attention. In contrast to traditional drug delivery systems, which are dependent on blood circulation to reach their target, these engineered micro/nano robots possess the unique ability to navigate autonomously, thereby enabling the delivery of drugs to otherwise inaccessible regions. Precise drug delivery systems can improve the effectiveness and safety of synthetic lethality strategies, which are used for targeted therapy of solid tumors. MYC-overexpressing tumors show sensitivity to CDK1 inhibition. This study delves into the potential of Ro-3306 loaded magnetic-driven hydrogel micro-robots in the treatment of MYC-dependent osteosarcoma. Ro-3306, a specific inhibitor of CDK1, has been demonstrated to suppress tumor growth across various types of cancer. We have designed and fabricated this micro-robot, capable of delivering Ro-3306 precisely to tumor cells under the influence of a magnetic field, and evaluated its chemosensitizing effects, thereby augmenting the therapeutic efficacy and introducing a novel possibility for osteosarcoma treatment. The clinical translation of this method necessitates further investigation and validation. In summary, the Ro-3306-loaded magnetic-driven hydrogel micro-robots present a novel strategy for enhancing the chemosensitivity of MYC-dependent osteosarcoma, paving the way for new possibilities in future clinical applications.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Leike Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Shiyu Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Community Health Service Center, Shanghai, China
| | - Zhanxiang Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Ruochen Pu
- Shanghai Bone Tumor Institution, Shanghai, China
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
| | - Zongyi Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Chenqiong Wu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin He
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
49
|
Rey V, Tornín J, Alba-Linares JJ, Robledo C, Murillo D, Rodríguez A, Gallego B, Huergo C, Viera C, Braña A, Astudillo A, Heymann D, Szuhai K, Bovée JVMG, Fernández AF, Fraga MF, Alonso J, Rodríguez R. A personalized medicine approach identifies enasidenib as an efficient treatment for IDH2 mutant chondrosarcoma. EBioMedicine 2024; 102:105090. [PMID: 38547578 PMCID: PMC10990714 DOI: 10.1016/j.ebiom.2024.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).
Collapse
Affiliation(s)
- Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Juan Jose Alba-Linares
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Cristina Viera
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Alejandro Braña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Traumatology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab. Université de Nantes, 44805, Saint-Herblain, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustín F Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mario F Fraga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Alonso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
50
|
Wang G, Cui Z, Tian J, Li X, Tang W, Jing W, Li A, Zhang Y. Paucatalinone A from Paulownia Catalpifolia Gong Tong Elicits mitochondrial-mediated cancer cell death to combat osteosarcoma. Front Pharmacol 2024; 15:1367316. [PMID: 38590635 PMCID: PMC10999585 DOI: 10.3389/fphar.2024.1367316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
As the global cancer burden escalates, the search for alternative therapies becomes increasingly vital. Natural products, particularly plant-derived compounds, have emerged as promising alternatives to conventional cancer treatments due to their diverse bioactivities and favorable biosafety profiles. Here, we investigate Paucatalinone A, a newly discovered geranylated flavanone derived from the fruit of Paulownia Catalpifolia Gong Tong, notable for its significant anti-cancer properties. We revealed the capability of Paucatalinone A to induce apoptosis in osteosarcoma cells and deciphered its underlying mechanisms. Our findings demonstrate that Paucatalinone A substantially augments apoptosis, inhibits cell proliferation, and demonstrates a pronounced anti-tumor effect in a murine model of osteosarcoma. Mechanistically, Paucatalinone A disrupts calcium homeostasis and exacerbates intracellular reactive oxygen species accumulation, leading to mitochondrial impairment, cytoskeletal collapse, and caspase-dependent apoptotic cell death. This study underscores the potential of Paucatalinone A in initiating apoptosis in cancer cells and highlights the therapeutic efficacy of plant-derived agents in treating osteosarcoma, offering a viable approach for managing other intractable cancers.
Collapse
Affiliation(s)
- Ganyu Wang
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhiwei Cui
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jinqiu Tian
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xinyuan Li
- Department of Immunology, Shandong Provincial Key Laboratory of Infection Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenzhao Tang
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare Uncommon Diseases of Shandong Province, Jinan, China
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|