1
|
Stomper J, Niroula A, Belizaire R, McConkey M, Bandaru TS, Ebert BL. Sex differences in DNMT3A-mutant clonal hematopoiesis and the effects of estrogen. Cell Rep 2025; 44:115494. [PMID: 40178977 DOI: 10.1016/j.celrep.2025.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Blood cancers are generally more common in males, and the prevalence of most mutations that drive clonal hematopoiesis and myeloid malignancies is higher in males. In contrast, hematopoietic DNMT3A mutations are more common in females. Among ∼450,000 participants in the UK Biobank, the prevalence of DNMT3A mutations and copy-number abnormalities is higher in females than males. In a murine model, Dnmt3a-mutant hematopoietic stem cells (HSCs) from unperturbed female mice had increased stemness gene expression compared to male and wild-type (WT) mice. Estrogen regulates HSCs, and we found that Dnmt3a mutations maintain stemness in the setting of estrogen-induced proliferative stress. Dnmt3a-mutant myeloid cells outcompeted WT cells under chronic estrogen treatment, an effect that was dependent on cell-intrinsic estrogen receptor alpha activity. Our studies indicate that estrogen might contribute to the female predominance of DNMT3A-mutant clonal hematopoiesis.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Abhishek Niroula
- Broad Institute, Cambridge, MA 02142, USA; Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden; SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tagore Sanketh Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Hamdan H, Siddon A, Ramia de Cap M, Germans S, Cantu MD, Fuda F, Vandergriff T, Aggarwal N, Weinberg OK. Investigation of NPM1 mutation frequency in cutaneous blastic plasmacytoid dendritic cell neoplasms. Hum Pathol 2025; 158:105766. [PMID: 40216030 DOI: 10.1016/j.humpath.2025.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Blastic plasmacytoid dendritic cell neoplasm (BPDCN) and acute myeloid leukemia (AML) show overlapping clinicopathological presentations, which makes it challenging to differentiate on a small skin biopsy. NPM1 mutations are the most common genetic lesions in AML, accounting for one third of cases and cause an aberrant cytoplasmic delocalization of NPM1 mutants, which can be detected by an immunohistochemical stain. Frequency of NPM1 mutations in BPDCN remains controversial. We aimed to investigate NPM1 mutations in cutaneous BPDCN cases and compare them with cutaneous NPM1 positive leukemia cutis cases. METHODS From a multi-institutional search, we identified and analyzed 13 cases of cutaneous BPDCN and 19 cases of cutaneous myeloid sarcoma (7 of which were primary leukemia cutis) with NPM1 mutations. We compared the clinical and pathological findings of these patients and identified distinguishing features between these groups. RESULTS BPDCN patients presented at an older age, with lower white blood cell count, higher hemoglobin level, and elevated platelets counts as compared to cutaneous myeloid sarcoma patients (p < 0.05). The bone marrow of patients in both groups was similarly involved at the time of diagnosis with no significant difference in rate; however, the percentage of involvement was significantly different among the two groups. Complex karyotype was more frequently seen in BPDCN patients (37.5 %) as compared with 15.7 % of cutaneous myeloid sarcoma patients (p < 0.05). Mutational profile differed among the two groups with absence of NPM1 mutations in BPDCN cases. Comparison of co-mutations detected in both groups revealed that BPDCN cases were significantly enriched in IDH2, NRAS, and SRSF2 mutations. CONCLUSION We find that BPDCN patients present in a similar way to cutaneous AML patients but appear to uniformly lack NPM1 mutations. Our study suggests that NPM1 can be used as a surrogate immunohistochemical stain to differentiate this rare disease from myeloid sarcoma in a rapid and cost-effective method.
Collapse
Affiliation(s)
- Hanan Hamdan
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Alexa Siddon
- Yale School of Medicine. 55 Park Street, Rm 435B. New Haven, CT, 06511, USA.
| | - Maximiliano Ramia de Cap
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - Sharon Germans
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Miguel D Cantu
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Franklin Fuda
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Travis Vandergriff
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Nidhi Aggarwal
- Department of Pathology, UPMC Presbyterian Hospital, Pittsburgh, PA, 15213, USA.
| | - Olga K Weinberg
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| |
Collapse
|
3
|
Kharfan-Dabaja MA, Lane AA, Pemmaraju N. How I treat blastic plasmacytoid dendritic cell neoplasm. Blood 2025; 145:567-576. [PMID: 39374520 DOI: 10.1182/blood.2024024262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT Historically, treatment options for blastic plasmacytoid dendritic cell neoplasm (BPDCN) were limited to conventional chemotherapy, adopted from regimens used to treat acute myeloid or acute lymphoblastic leukemias, or lymphomas. Nowadays, a novel therapy targeting CD123 is available to treat BPDCN. Yet, regardless of treatment choice, achieving a first complete remission represents the main goal of therapy, because it represents the best opportunity to prolong survival in BPDCN, if offered an allogeneic hematopoietic cell transplant (allo-HCT) as consolidative therapy. Although no specific conditioning regimen is considered standard of care in allo-HCT-eligible patients, recent data from 2 large registries reported a survival advantage when offering total body irradiation-based myeloablative conditioning (MAC) regimens. Unfortunately, applicability of MAC regimens is not feasible in patients who are older/unfit, which represents a considerable proportion of patients presenting worldwide. In such cases, reduced intensity conditioning regimens represent the next best option. Autologous HCT could be considered in patients who are older/unfit who did not have bone marrow involvement at initial presentation and at time of the procedure, albeit data supporting this option are less abundant. Future research is needed to decipher the interplay between clinical, genetic, and molecular features of the disease to personalize treatment accordingly, by enhancing efficacy and avoiding unnecessary toxicities.
Collapse
Affiliation(s)
- Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, FL
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Hammack MA, Mansfield PK, Tinker D, Chow P, Heinecke G, Hurley MY. Eruptive Widespread Violaceous Papules and Nodules on the Trunk: Answer. Am J Dermatopathol 2025; 47:153-154. [PMID: 39851908 DOI: 10.1097/dad.0000000000002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Affiliation(s)
| | - Patricia K Mansfield
- School of Medicine, SSM Health/St. Louis University School of Medicine, St. Louis, MO; and
| | - Daniel Tinker
- Department of Dermatology, SSM Health/Saint Louis University School of Medicine, St. Louis, MO
| | - Peter Chow
- Department of Dermatology, SSM Health/Saint Louis University School of Medicine, St. Louis, MO
| | - Gillian Heinecke
- Department of Dermatology, SSM Health/Saint Louis University School of Medicine, St. Louis, MO
| | - M Yadira Hurley
- Department of Dermatology, SSM Health/Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Sakamoto K, Takeuchi K. Diagnostic approach to blastic plasmacytoid dendritic cell neoplasm: historical perspectives and current understanding. J Clin Exp Hematop 2025; 65:1-16. [PMID: 40159280 DOI: 10.3960/jslrt.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy composed of immature cells that exhibit plasmacytoid dendritic cell (pDC) differentiation. The diagnosis of BPDCN is often challenging due to its rarity and morphologic and phenotypic overlap with other hematologic malignancies, such as acute myeloid leukemia (AML). The emergence of tagraxofusp, a CD123-directed cytotoxin, and other novel therapies has underscored the importance of accurately diagnosing BPDCN. This review initially outlined the clinical and histopathological features of BPDCN, including patients with immunoblastoid morphology. Various proposed diagnostic criteria based on flow cytometry and immunohistochemistry findings were presented, highlighting critical points of caution in the diagnostic process. Strategies for detecting minimal residual disease or microinvasion in BPDCN, a significant clinical issue, were also discussed. Additionally, we reviewed the recurrent 8q24 (MYC) and MYB rearrangements observed in BPDCN, which can aid in diagnosis. Furthermore, we explored mature plasmacytoid dendritic cell proliferation (MPDCP) associated with myeloid neoplasm, which is characterized by a clonal proliferation of pDCs in cases with a defined myeloid neoplasm and may also serve as a potential differential diagnosis for BPDCN. Lastly, we discussed pDC-AML, characterized by pDC proliferation in AML cases, which can also be part of MPDCP and is often associated with frequent RUNX1 mutations. Overall, this review provides insights into BPDCN diagnosis and highlights the current challenges in its detection and differential diagnosis.
Collapse
Affiliation(s)
- Kana Sakamoto
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Clinical Pathology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
6
|
Booth CA, Bouyssou JM, Togami K, Armand O, Rivas HG, Yan K, Rice S, Cheng S, Lachtara EM, Bourquin JP, Kentsis A, Rheinbay E, DeCaprio JA, Lane AA. BPDCN MYB fusions regulate cell cycle genes, impair differentiation, and induce myeloid-dendritic cell leukemia. JCI Insight 2024; 9:e183889. [PMID: 39499902 DOI: 10.1172/jci.insight.183889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
MYB fusions are recurrently found in select cancers, including blastic plasmacytoid DC neoplasm (BPDCN), an acute leukemia with poor prognosis. They are markedly enriched in BPDCN compared with other blood cancers and, in some patients, are the only obvious somatic mutation detected. This suggests that they may alone be sufficient to drive DC transformation. MYB fusions are hypothesized to alter the normal transcription factor activity of MYB, but, mechanistically, how they promote leukemogenesis is poorly understood. Using CUT&RUN chromatin profiling, we found that, in BPDCN leukemogenesis, MYB switches from being a regulator of DC lineage genes to aberrantly regulating G2/M cell cycle control genes. MYB fusions found in patients with BPDCN increased the magnitude of DNA binding at these locations, and this was linked to BPDCN-associated gene expression changes. Furthermore, expression of MYB fusions in vivo impaired DC differentiation and induced transformation to generate a mouse model of myeloid-dendritic acute leukemia. Therapeutically, we present evidence that all-trans retinoic acid (ATRA) may cause loss of MYB protein and cell death in BPDCN.
Collapse
Affiliation(s)
- Christopher Ag Booth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliette M Bouyssou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Katsuhiro Togami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Hembly G Rivas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Kezhi Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Siobhan Rice
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuyuan Cheng
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, New York, USA
| | - Emily M Lachtara
- Krantz Family Center for Cancer Research, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jean-Pierre Bourquin
- Division of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Alex Kentsis
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, New York, USA
| | - Esther Rheinbay
- Krantz Family Center for Cancer Research, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Pemmaraju N. BPDCN: state of the art. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:279-286. [PMID: 39644068 DOI: 10.1182/hematology.2024000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The emergence of blastic plasmacytoid dendritic cell neoplasm (BPDCN) as its own distinct entity within the pantheon of hematologic malignancies is due to the growing understanding of its unique multiorgan clinical presentation and characteristic skin lesions. The occurrence of BPDCN is generally heralded by a multicompartmental presentation of violaceous cutaneous lesions, involvement by bone marrow and/or blood, lymph node invasion, and an inclination toward extramedullary organ involvement, including, most remarkably, central nervous system (CNS)/cerebrospinal fluid positivity. With a median age historically of ≥ 70 years and up to 5:1 male predominance in most of the field's earlier studies, the most notable development in the modern era is the recognition of emerging important groups with BPDCN, such as female, pediatric, and adolescent/young adult patients; CNS + BPDCN patients; and an increasing number of cases being diagnosed worldwide. These trends are in line with the increased educational and research efforts, greater international collaboration, and markedly improved diagnostic tools and clinical approaches among hematology/oncology, hematopathology, dermatology, and dermatopathology teams around the world. Now, with over 5 years since the first commercially approved targeted agent specifically dedicated for BPDCN, the CD123-targeted agent tagraxofusp, improvements have been demonstrated particularly in the frontline setting for patients with BPDCN. The field is abundant with hope, as it has experienced advancements including greater molecular characterization, expanded identification of potential targets for therapy beyond CD123, advent of combination therapies, improving parameters for stem cell transplantation, and novel clinical trials specifically available for patients with BPDCN.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
8
|
Yacout M, Katamesh B, Jabban Y, He R, Viswanatha D, Jevremovic D, Greipp P, Bessonen K, Palmer J, Foran J, Saliba A, Hefazi-Torghabeh M, Begna K, Hogan W, Patnaik M, Shah M, Alkhateeb H, Al-Kali A. Characterisation and prognostic impact Of ZRSR2 mutations in myeloid neoplasms. Leukemia 2024; 38:2727-2730. [PMID: 39313565 PMCID: PMC11588644 DOI: 10.1038/s41375-024-02374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Affiliation(s)
- Mahmoud Yacout
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bahga Katamesh
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yazan Jabban
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David Viswanatha
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Patricia Greipp
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kurt Bessonen
- Division of Molecular Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jeanne Palmer
- Division of Hematology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - James Foran
- Division of Hematology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Antoine Saliba
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Kebede Begna
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - William Hogan
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mrinal Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mithun Shah
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Taka M, Toyoshima S, Takamatsu S, Kobayashi S. Radiation Therapy for Cutaneous Blastic Plasmacytoid Dendritic Cell Neoplasm: A Case Report and Review of the Literature. Curr Oncol 2024; 31:7117-7128. [PMID: 39590155 PMCID: PMC11593096 DOI: 10.3390/curroncol31110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a clinically aggressive hematologic malignancy derived from plasmacytoid dendritic cells. It commonly presents as cutaneous lesions. To date, no standard treatment protocol for BPDCN exists. Traditionally treated similarly to acute leukemia or lymphoma, its prognosis remains poor. Radiation therapy is employed for isolated skin lesions, for patients that are ineligible for chemotherapy due to age or comorbidities and for post-chemotherapy recurrence. However, very limited reports are available on radiotherapy for BPDCN. We present a case involving a 94-year-old BPDCN patient treated with radiation therapy, highlighting an atypical situation of two separate radiotherapy sessions with different dosages for isolated skin lesions. Initially, 45 Gy was administered in 15 fractions (45 Gy/15 Fr), followed by a second session of 30 Gy in 10 fractions (30 Gy/10 Fr) after disease recurrence. This case is unique in detailing radiation therapy for the exceedingly rare BPDCN, particularly dose fractionation. The findings indicate that 45 Gy/15 Fr can provide adequate local control, while even a lower dose of 30 Gy/10 Fr may be effective. This case report contributes to the limited literature by proposing potential therapeutic approaches and dosage guidelines to refine future BPDCN treatment protocols.
Collapse
Affiliation(s)
- Masashi Taka
- Department of Radiotherapy, Toyama Prefectural Central Hospital, 2-2-78, Nishinagae, Toyama City 930-8550, Japan;
| | - Shinichiro Toyoshima
- Department of Radiotherapy, Toyama Prefectural Central Hospital, 2-2-78, Nishinagae, Toyama City 930-8550, Japan;
| | - Shigeyuki Takamatsu
- Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa City 920-8641, Japan; (S.T.); (S.K.)
| | - Satoshi Kobayashi
- Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa City 920-8641, Japan; (S.T.); (S.K.)
| |
Collapse
|
10
|
Luo Y, Wang LJ, Wang CL. Advancing the understanding and management of blastic plasmacytoid dendritic cell neoplasm: Insights from recent case studies. World J Clin Cases 2024; 12:6441-6446. [PMID: 39507120 PMCID: PMC11438698 DOI: 10.12998/wjcc.v12.i31.6441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
We specifically discuss the mechanisms of the pathogenesis, diagnosis, and management of blastic plasmacytoid dendritic cell neoplasm (BPDCN), a rare but aggressive haematologic malignancy characterized by frequent skin manifestations and systemic dissemination. The article enriches our understanding of BPDCN through detailed case reports showing the clinical, immunophenotypic, and histopathological features that are critical for diagnosing this disease. These cases highlight the essential role of pathologists in employing advanced immunophenotyping techniques to accurately identify the disease early in its course and guide treatment decisions. Furthermore, we explore the implications of these findings for management strategies, emphasizing the use of targeted therapies such as tagraxofusp and the potential of allogeneic haematopoietic stem cell transplantation in achieving remission. The editorial underscores the importance of interdisciplinary approaches in managing BPDCN, pointing towards a future where precision medicine could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Yan Luo
- Department of Stomatology, The People's Hospital of Dadukou District, Chongqing 400084, China
| | - Li-Juan Wang
- Department of Pathology, The Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Cheng-Long Wang
- Department of Pathology, The Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| |
Collapse
|
11
|
Tettero JM, Cloos J, Bullinger L. Acute myeloid leukemia: does sex matter? Leukemia 2024; 38:2329-2331. [PMID: 39402216 PMCID: PMC11518996 DOI: 10.1038/s41375-024-02435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Jesse M Tettero
- Department of Hematology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.
- Fralin Biomedical Research Institute, Virginia Tech Cancer Research Center, Washington, DC, USA.
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. Alternative Splicing: A Potential Therapeutic Target in Hematological Malignancies. Hematol Rep 2024; 16:682-697. [PMID: 39584923 PMCID: PMC11587037 DOI: 10.3390/hematolrep16040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Leukemia represents the most prevalent malignancy in children, constituting 30% of childhood cancer cases, with acute lymphoblastic leukemia (ALL) being particularly heterogeneous. This paper explores the role of alternative splicing in leukemia, highlighting its significance in cancer development and progression. Aberrant splicing is often driven by mutations in splicing-factor genes, which can lead to the production of variant proteins that contribute to oncogenesis. The spliceosome, a complex of small nuclear RNAs and proteins, facilitates RNA splicing, a process critical for generating diverse mRNA and protein products from single genes. Mutations in splicing factors, such as U2AF1, SF3B1, SRSF2, ZRSR2, and HNRNPH1, are frequently observed across various hematological malignancies and are associated with poor prognosis and treatment resistance. This research underscores the necessity of understanding the mechanisms of RNA splicing dysregulation in order to develop targeted therapies to correct these aberrant processes, thereby improving outcomes for patients with leukemia and related disorders.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo;
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, North Macedonia;
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
13
|
Suzuki K, Koyama D, Oka Y, Sato Y, Sekine R, Fukatsu M, Hayashi K, Takano M, Hashimoto Y, Ikezoe T. Myeloid sarcoma with plasmacytoid dendritic cell-like proliferation associated with IKZF1, ETV6 and DNMT3A mutations. Int J Hematol 2024; 120:382-388. [PMID: 38861243 DOI: 10.1007/s12185-024-03806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The classification of clonal plasmacytoid dendritic cell (pDC) proliferation associated with myeloid neoplasms remains a topic of ongoing debate. Although the fifth edition of the World Health Organization classification classifies clonal pDC proliferation into two categories, it is unclear whether this classification adequately captures the complexities of clonal pDC pathogenesis. We present a clinical case featuring myeloid sarcoma with pDC-like cells in cervical lymph nodes and bone marrow (BM). Analysis of biopsy specimens and BM aspirate revealed two distinct cellular populations expressing myeloid and pDC markers. One population exhibited myeloid leukemia and monocyte markers, including MPO, CD13, CD33, CD11b, and CD14, while the other manifested an immunophenotype reminiscent of pDCs, characterized by expression of CD56 and CD123. Additionally, whole exome sequencing and RNA sequencing of BM mononuclear cells were conducted to explore the pathophysiology of this rare malignancy, and unveiled pDC-like cell proliferation driven by IKZF1 and ETV6 mutations originating from clonal hematopoiesis initiated by a DNMT3A mutation. Notably, venetoclax-based therapy exhibited efficacy for achieving and sustaining complete remission. This case provides pivotal insights into the mechanistic aspects of pDC/pDC-like cell proliferation in myeloid sarcoma, offering valuable perspectives on therapeutic strategies.
Collapse
Affiliation(s)
- Kengo Suzuki
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Daisuke Koyama
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan.
| | - Yuka Oka
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yuki Sato
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Rei Sekine
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kiyohito Hayashi
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Motoki Takano
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| |
Collapse
|
14
|
Salman H. Comparative Analysis of AML Classification Systems: Evaluating the WHO, ICC, and ELN Frameworks and Their Distinctions. Cancers (Basel) 2024; 16:2915. [PMID: 39199685 PMCID: PMC11352995 DOI: 10.3390/cancers16162915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Comprehensive analyses of the molecular heterogeneity of acute myelogenous leukemia, AML, particularly when malignant cells retain normal karyotype, has significantly evolved. In 2022, significant revisions were introduced in the World Health Organization (WHO) classification and the European LeukemiaNet (ELN) 2022 guidelines of acute myeloid leukemia (AML). These revisions coincided with the inception of the first version of the International Consensus Classification (ICC) for AML. These modifications aim to improve diagnosis and treatment outcomes via a comprehensive incorporation of sophisticated genetic and clinical parameters as well as facilitate accruals to innovative clinical trials. Key updates include modifications to the blast count criteria for AML diagnosis, with WHO 2022 eliminating the ≥20% blast requirement in the presence of AML-defining abnormalities and ICC 2022 setting a 10% cutoff for recurrent genetic abnormalities. Additionally, new categories, such as AML with mutated TP53 and MDS/AML, were introduced. ELN 2022 guidelines retained risk stratification approach and emphasized the critical role of measurable residual disease (MRD) that increased the use of next-generation sequencing (NGS) and flow cytometry testing. These revisions underscore the importance of precise classification for targeted treatment strategies and improved patient outcomes. How much difference versus concordance these classifications present and the impact of those on clinical practice is a continuing discussion.
Collapse
Affiliation(s)
- Huda Salman
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Denker S, Künstner A, Schwarting J, Witte HM, Bernard V, Stölting S, Lohneis P, Kusch K, von Bubnoff N, Merz H, Busch H, Feller AC, Gebauer N. Clonal evolution and blastic plasmacytoid dendritic cell neoplasm: malignancies of divergent hematopoietic lineages emerging from a common founding clone. Leukemia 2024; 38:1858-1861. [PMID: 38890446 PMCID: PMC11286505 DOI: 10.1038/s41375-024-02305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Svenja Denker
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Julian Schwarting
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Hanno M Witte
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Stephanie Stölting
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Philipp Lohneis
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Kathrin Kusch
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Nikolas von Bubnoff
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Alfred C Feller
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Niklas Gebauer
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
16
|
Shimony S, Keating J, Fay CJ, Luskin MR, Neuberg DS, LeBoeuf NR, Lane AA. Organ involvement in adults with BPDCN is associated with sun exposure history, TET2 and RAS mutations, and survival. Blood Adv 2024; 8:2803-2812. [PMID: 38603567 PMCID: PMC11176947 DOI: 10.1182/bloodadvances.2024012797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Blastic plasmacytoid dendritic cell neoplasm (BPDCN) can involve skin, bone marrow (BM), central nervous system (CNS), and non-CNS extramedullary sites. Preclinical models demonstrated clonal advantage of TET2-mutated plasmacytoid dendritic cells exposed to UV radiation. However, whether sun exposure, disease characteristics, and patient survival are clinically related is unclear. We classified organ involvement in 66 patients at diagnosis as skin only (n = 19), systemic plus skin (n = 33), or systemic only (n = 14). BM involvement was absent, microscopic (<5%), or overt (≥5%). UV exposure was based on clinical and demographic data. Patients with skin only BPDCN were more frequently aged ≥75 years (47% vs 19%; P = .032) and had lower rates of complex karyotype (0 vs 32%, P = .022) and mutated NRAS (0 vs 29%, P = .044). Conversely, those without skin involvement had lower UV exposure (23% vs 59%, P = .03) and fewer TET2 mutations (33% vs 72%, P = .051). The median overall survival (OS) was 23.5, 20.4, and 17.5 months for skin only, systemic plus skin, and systemic only, respectively. Patients with no BM involvement had better OS vs overt involvement (median OS, 27.3 vs 15.0 months; P = .033) and comparable with microscopic involvement (27.3 vs 23.5 months; P = .6). Overt BM involvement remained significant for OS when adjusted for baseline characteristics and treatment received. In summary, BPDCN clinical characteristics are associated with disease genetics and survival, which together may impact prognosis and indicate informative disease subtypes for future research.
Collapse
Affiliation(s)
- Shai Shimony
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Julia Keating
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Christopher J. Fay
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA
- Center for Cutaneous Oncology, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Marlise R. Luskin
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Nicole R. LeBoeuf
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA
- Center for Cutaneous Oncology, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Andrew A. Lane
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
17
|
Yokomori R, Kusakabe TG, Nakai K. Characterization of trans-spliced chimeric RNAs: insights into the mechanism of trans-splicing. NAR Genom Bioinform 2024; 6:lqae067. [PMID: 38846348 PMCID: PMC11155486 DOI: 10.1093/nargab/lqae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Trans-splicing is a post-transcriptional processing event that joins exons from separate RNAs to produce a chimeric RNA. However, the detailed mechanism of trans-splicing remains poorly understood. Here, we characterize trans-spliced genes and provide insights into the mechanism of trans-splicing in the tunicate Ciona. Tunicates are the closest invertebrates to humans, and their genes frequently undergo trans-splicing. Our analysis revealed that, in genes that give rise to both trans-spliced and non-trans-spliced messenger RNAs, trans-splice acceptor sites were preferentially located at the first functional acceptor site, and their paired donor sites were weak in both Ciona and humans. Additionally, we found that Ciona trans-spliced genes had GU- and AU-rich 5' transcribed regions. Our data and findings not only are useful for Ciona research community, but may also aid in a better understanding of the trans-splicing mechanism, potentially advancing the development of gene therapy based on trans-splicing.
Collapse
Affiliation(s)
- Rui Yokomori
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Kenta Nakai
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
Luo Q, Raulston EG, Prado MA, Wu X, Gritsman K, Whalen KS, Yan K, Booth CAG, Xu R, van Galen P, Doench JG, Shimony S, Long HW, Neuberg DS, Paulo JA, Lane AA. Targetable leukaemia dependency on noncanonical PI3Kγ signalling. Nature 2024; 630:198-205. [PMID: 38720074 DOI: 10.1038/s41586-024-07410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.
Collapse
Affiliation(s)
- Qingyu Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Evangeline G Raulston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Miguel A Prado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kira Gritsman
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karley S Whalen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kezhi Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christopher A G Booth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ran Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Peter van Galen
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Rabin Medical Center, Tel Aviv Faculty of Medicine, Tel Aviv, Israel
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
20
|
Shumilov E, Mazzeo P, Ghandili S, Künstner A, Weidemann S, Banz Y, Ströbel P, Pollak M, Kolloch L, Beltraminelli H, Kerkhoff A, Mikesch JH, Schliemann C, Haase D, Wulf G, Legros M, Lenz G, Feldmeyer L, Pabst T, Witte H, Gebauer N, Bacher U. Diagnostic management of blastic plasmacytoid dendritic cell neoplasm (BPDCN) in close interaction with therapeutic considerations. Ann Hematol 2024; 103:1587-1599. [PMID: 38194088 PMCID: PMC11009756 DOI: 10.1007/s00277-023-05587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN), a rare malignancy derived from plasmacytoid dendritic cells, can mimic both acute leukemia and aggressive T-cell lymphoma. Therapy of this highly aggressive hematological disease should be initiated as soon as possible, especially in light of novel targeted therapies that have become available. However, differential diagnosis of BPDCN remains challenging. This retrospective study aimed to highlight the challenges to timely diagnoses of BPDCN. We documented the diagnostic and clinical features of 43 BPDCN patients diagnosed at five academic hospitals from 2001-2022. The frequency of BPDCN diagnosis compared to AML was 1:197 cases. The median interval from the first documented clinical manifestation to diagnosis of BPDCN was 3 months. Skin (65%) followed by bone marrow (51%) and blood (45%) involvement represented the most common sites. Immunophenotyping revealed CD4 + , CD45 + , CD56 + , CD123 + , HLA-DR + , and TCL-1 + as the most common surface markers. Overall, 86% (e.g. CD33) and 83% (e.g., CD7) showed co-expression of myeloid and T-cell markers, respectively. In the median, we detected five genomic alterations per case including mutational subtypes typically involved in AML: DNA methylation (70%), signal transduction (46%), splicing factors (38%), chromatin modification (32%), transcription factors (32%), and RAS pathway (30%), respectively. The contribution of patients (30%) proceeding to any form of upfront stem cell transplantation (SCT; autologous or allogeneic) was almost equal resulting in beneficial overall survival rates in those undergoing allogeneic SCT (p = 0.0001). BPDCN is a rare and challenging entity sharing various typical characteristics of other hematological diseases. Comprehensive diagnostics should be initiated timely to ensure appropriate treatment strategies.
Collapse
Affiliation(s)
- Evgenii Shumilov
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Paolo Mazzeo
- Clinics of Hematology and Medical Oncology, INDIGHO Laboratory, University Medical Center Goettingen (UMG), Goettingen, Germany
| | - Susanne Ghandili
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Matthias Pollak
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lina Kolloch
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Helmut Beltraminelli
- Dermatopathology Department, Ente Ospedaliero Cantonale (EOC), Locarno, Switzerland
| | - Andrea Kerkhoff
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Christoph Schliemann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Detlef Haase
- Clinics of Hematology and Medical Oncology, INDIGHO Laboratory, University Medical Center Goettingen (UMG), Goettingen, Germany
| | - Gerald Wulf
- Department of Hematology and Medical Oncology, University Medical Center Goettingen (UMG), Goettingen, Germany
| | - Myriam Legros
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Laurence Feldmeyer
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Bern University Hospital, University of Bern, InselspitalBern, Switzerland
| | - Hanno Witte
- Department for Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
- Department for Hematology and Oncology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Niklas Gebauer
- Department for Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Künstner A, Schwarting J, Witte HM, Xing P, Bernard V, Stölting S, Lohneis P, Janke F, Salehi M, Chen X, Kusch K, Sültmann H, Chteinberg E, Fischer A, Siebert R, von Bubnoff N, Merz H, Busch H, Feller AC, Gebauer N. Genome-wide DNA methylation-analysis of blastic plasmacytoid dendritic cell neoplasm identifies distinct molecular features. Leukemia 2024; 38:1086-1098. [PMID: 38600314 DOI: 10.1038/s41375-024-02240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison. DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters (IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2) differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN offers novel molecular insights and potential diagnostic applications.
Collapse
Affiliation(s)
- Axel Künstner
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Julian Schwarting
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Hanno M Witte
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| | - Pengwei Xing
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Veronica Bernard
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Stephanie Stölting
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Philipp Lohneis
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Maede Salehi
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Kathrin Kusch
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Emil Chteinberg
- Institute of Human Genetics Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Anja Fischer
- Institute of Human Genetics Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Nikolas von Bubnoff
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Alfred C Feller
- Hämatopathologie Lübeck, Consultation Centre for Lymph Node Pathology and Hematopathology, 23562, Lübeck, Germany
| | - Niklas Gebauer
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
22
|
Faustmann P, Schroeder JC, Mix L, Harland L, Riedel A, Vogel W, Lengerke C, Wirths S. Real-world evidence on tagraxofusp for blastic plasmacytoid dendritic cell neoplasm - collected cases from a single center and case reports. Front Oncol 2024; 14:1384172. [PMID: 38665943 PMCID: PMC11043520 DOI: 10.3389/fonc.2024.1384172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Blastic plasmacytoid dendritic cell neoplasia (BPDCN) is a rare, aggressive hematologic malignancy. Until recently, the only curative treatment consisted of intensive chemotherapy, followed by hematopoietic cell transplantation (HCT) in eligible adult cases. Tagraxofusp, a CD123-targeted protein-drug conjugate and the first approved targeted treatment for BPDCN, might enhance outcomes especially in patients not eligible for intensive therapies. Methods Here, we report real-world outcomes of five male patients with a median age of 79 years who received tagraxofusp as first-line treatment for BPDCN. Results Tagraxofusp was found to be well-tolerated in this elderly cohort, with only one patient requiring discontinuation. Three patients responded to the treatment (two patients achieved a CR and one patient achieved a partial response), of which two subsequently underwent allogeneic (allo) HCT. One patient is alive and well after ≥ 4 years after alloHCT, and one patient shows sustained CR after now 13 cycles of tagraxofusp. The other three patients died of progressive disease 4-11 months after initiation of treatment. Discussion In line with results from 13 published cases outside clinical trials in the literature, sustained responses were associated with CR after tagraxofusp treatment and subsequent alloHCT. Our results provide real-world evidence for safety and efficacy of tagraxofusp as first-line treatment for BPDCN.
Collapse
|
23
|
Nishimura K, Saika W, Inoue D. Minor introns impact on hematopoietic malignancies. Exp Hematol 2024; 132:104173. [PMID: 38309573 DOI: 10.1016/j.exphem.2024.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
In the intricate orchestration of the central dogma, pre-mRNA splicing plays a crucial role in the post-transcriptional process that transforms DNA into mature mRNA. Widely acknowledged as a pivotal RNA processing step, it significantly influences gene expression and alters the functionality of gene product proteins. Although U2-dependent spliceosomes efficiently manage the removal of over 99% of introns, a distinct subset of essential genes undergo splicing with a different intron type, denoted as minor introns, using U12-dependent spliceosomes. Mutations in spliceosome component genes are now recognized as prevalent genetic abnormalities in cancer patients, especially those with hematologic malignancies. Despite the relative rarity of minor introns, genes containing them are evolutionarily conserved and play crucial roles in functions such as the RAS-MAPK pathway. Disruptions in U12-type minor intron splicing caused by mutations in snRNA or its regulatory components significantly contribute to cancer progression. Notably, recurrent mutations associated with myelodysplastic syndrome (MDS) in the minor spliceosome component ZRSR2 underscore its significance. Examination of ZRSR2-mutated MDS cells has revealed that only a subset of minor spliceosome-dependent genes, such as LZTR1, consistently exhibit missplicing. Recent technological advancements have uncovered insights into minor introns, raising inquiries beyond current understanding. This review comprehensively explores the importance of minor intron regulation, the molecular implications of minor (U12-type) spliceosomal mutations and cis-regulatory regions, and the evolutionary progress of studies on minor, aiming to provide a sophisticated understanding of their intricate role in cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan; Department of Hematology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| |
Collapse
|
24
|
Pemmaraju N, Deconinck E, Mehta P, Walker I, Herling M, Garnache-Ottou F, Gabarin N, Campbell CJV, Duell J, Moshe Y, Mughal T, Mohty M, Angelucci E. Recent Advances in the Biology and CD123-Directed Treatment of Blastic Plasmacytoid Dendritic Cell Neoplasm. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e130-e137. [PMID: 38267355 DOI: 10.1016/j.clml.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive myeloid malignancy of the dendritic cell lineage that affects patients of all ages, though the incidence appears to be highest in patients over the age of 60 years. Diagnosis is based on the presence of plasmacytoid dendritic cell precursors expressing CD123, the interleukin-3 (IL-3) receptor alpha, and a distinct histologic appearance. Timely diagnosis remains a challenge, due to lack of disease awareness and overlapping biologic and clinical features with other hematologic malignancies. Prognosis is poor with a median overall survival of 8 to 14 months, irrespective of disease presentation pattern. Historically, the principal treatment was remission induction therapy followed by a stem cell transplant (SCT) in eligible patients. However, bridging to SCT is often not achieved with induction chemotherapy regimens. The discovery that CD123 is universally expressed in BPDCN and is considered to have a pathogenetic role in its development paved the way for the successful introduction of tagraxofusp, a recombinant human IL-3 fused to a truncated diphtheria toxin payload, as an initial treatment for BPDCN. Tagraxofusp was approved in 2018 by the United States Food and Drug Administration for the treatment of patients aged 2 years and older with newly diagnosed and relapsed/refractory BPDCN, and by the European Medicines Agency in 2021 for first-line treatment of adults. The advent of tagraxofusp has opened a new era of precision oncology in the treatment of BPDCN. Herein, we present an overview of BPDCN biology, its diagnosis, and treatment options, illustrated by clinical cases.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Eric Deconinck
- Department of Hematology, CHU Besançon, Besançon Cedex, France; INSERM, UMR1098 RIGHT, Franche-Comté University, Établissement Français du Sang, Besançon, France
| | - Priyanka Mehta
- Department of Haematology, University Hospitals of Bristol and Weston, NHS Foundation Trust, Bristol, United Kingdom
| | - Irwin Walker
- Department of Medicine, McMaster University, Hamilton, ON, Canada; Juravinski Hospital and Cancer Centre, Hamilton, ON, Canada
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Francine Garnache-Ottou
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d'Hématologie et d'Immunologie Régional, Besançon, France
| | - Nadia Gabarin
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Clinton J V Campbell
- Juravinski Hospital and Cancer Centre, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Johannes Duell
- Medizinische Klinik und Poliklinik II des Universitätsklinikums, Zentrum Innere Medizin (ZIM), Würzburg, Germany
| | - Yakir Moshe
- Department of Hematology and Bone Marrow Transplantation, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tariq Mughal
- Division of Hematology-Oncology, Tufts University School of Medicine, Boston, MA; Consultant to Stemline Therapeutics Inc, New York, NY
| | - Mohamad Mohty
- Department of Hematology and Cellular Therapy, Saint-Antoine Hospital, Sorbonne University, Paris, France
| | - Emanuele Angelucci
- Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
25
|
Kemps PG, Kester L, Scheijde-Vermeulen MA, van Noesel CJM, Verdijk RM, Diepstra A, van Marion AMW, Dors N, van den Bos C, Bruggink AH, Hogendoorn PCW, van Halteren AGS. Demographics and additional haematologic cancers of patients with histiocytic/dendritic cell neoplasms. Histopathology 2024; 84:837-846. [PMID: 38213281 DOI: 10.1111/his.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
AIMS The discovery of somatic genetic alterations established many histiocytic disorders as haematologic neoplasms. We aimed to investigate the demographic characteristics and additional haematologic cancers of patients diagnosed with histiocytic disorders in The Netherlands. METHODS AND RESULTS We retrieved data on histiocytosis patients from the Dutch Nationwide Pathology Databank (Palga). During 1993 to 2022, more than 4000 patients with a pathologist-assigned diagnosis of a histiocytic disorder were registered in Palga. Xanthogranulomas were the most common subtype, challenging the prevailing assumption that Langerhans cell histiocytosis (LCH) is the most common histiocytic disorder. LCH and juvenile xanthogranuloma (JXG) had a peak incidence in the first years of life; males were overrepresented among all histiocytosis subgroups. 118 patients had a histiocytic disorder and an additional haematologic malignancy, including 107 (91%) adults at the time of histiocytosis diagnosis. In 16/118 patients, both entities had been analysed for the same genetic alteration(s). In 11 of these 16 patients, identical genetic alterations had been detected in both haematologic neoplasms. This included two patients with PAX5 p.P80R mutated B cell acute lymphoblastic leukaemia and secondary histiocytic sarcoma, further supporting that PAX5 alterations may predispose (precursor) B cells to differentiate into the myeloid lineage. All 4/11 patients with myeloid neoplasms as their additional haematologic malignancy had shared N/KRAS mutations. CONCLUSIONS This population-based study highlights the frequency of xanthogranulomas. Furthermore, our data add to the growing evidence supporting clonal relationships between histiocytic/dendritic cell neoplasms and additional myeloid or lymphoid malignancies. Particularly adult histiocytosis patients should be carefully evaluated for the development of these associated haematologic cancers.
Collapse
Affiliation(s)
- Paul G Kemps
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lennart Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arjan Diepstra
- Department of Pathology, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Natasja Dors
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Astrid G S van Halteren
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Internal Medicine, Section Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
26
|
Kosasih HJ, Healey G, Brennan MS, Bjelosevic S, Sadras T, Jalud FB, Ibnat T, Ng AP, Mayoh C, Mao J, Tax G, Ludlow LEA, Johnstone RW, Herold MJ, Khaw SL, de Bock CE, Ekert PG. A novel MYB::PAIP1 oncogenic fusion in pediatric blastic plasmacytoid dendritic cell neoplasm (BPDCN) is dependent on BCL2 expression and is sensitive to venetoclax. Hemasphere 2024; 8:e1. [PMID: 38435422 PMCID: PMC10878182 DOI: 10.1002/hem3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/16/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
- Hansen J. Kosasih
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Gerry Healey
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
| | - Margs S. Brennan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medicine Huddinge, Centre for Haematology and Regenerative MedicineKarolinska InstitutetStockholmSweden
| | - Stefan Bjelosevic
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Teresa Sadras
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Tasnia Ibnat
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Ashley P. Ng
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- The Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Jie Mao
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Gabor Tax
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneySydneyNew South WalesAustralia
| | - Louise E. A. Ludlow
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ricky W. Johnstone
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityHeidelbergVictoriaAustralia
| | - Seong L. Khaw
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Charles E. de Bock
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's and Children's HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Paul G. Ekert
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
27
|
Luskin MR, Lane AA. Tagraxofusp for blastic plasmacytoid dendritic cell neoplasm. Haematologica 2024; 109:44-52. [PMID: 36951152 PMCID: PMC10772502 DOI: 10.3324/haematol.2022.282171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that presents with characteristic dark purple skin papules, plaques, and tumors, but may also involve the bone marrow, blood, lymph nodes, and central nervous system. The disease, which commonly affects older men but can also present in children, is associated with a distinct immunophenotype including universal expression of CD123, the α chain of the interleukin 3 receptor. Recently, tagraxofusp, a CD123-targeting drug consisting of the ligand for CD123, interleukin 3, conjugated to a truncated diphtheria toxin payload was approved for treatment of BPDCN. This was the first agent specifically approved for BPDCN and the first CD123 targeted agent in oncology. Here, we review the development of tagraxofusp, and the key preclinical insights and clinical data that led to approval. Tagraxofusp treatment is associated with a unique toxicity, capillary leak syndrome (CLS), which can be severe but is manageable with proper patient selection and monitoring, early recognition, and directed intervention. We outline our approach to the use of tagraxofusp and discuss open questions in the treatment of BPDCN. Overall, tagraxofusp represents a unique targeted therapy and a step forward in meeting an unmet need for patients with this rare disease.
Collapse
Affiliation(s)
- Marlise R Luskin
- BPDCN Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.
| | - Andrew A Lane
- BPDCN Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.
| |
Collapse
|
28
|
Ozga M, Nicolet D, Mrózek K, Yilmaz AS, Kohlschmidt J, Larkin KT, Blachly JS, Oakes CC, Buss J, Walker CJ, Orwick S, Jurinovic V, Rothenberg-Thurley M, Dufour A, Schneider S, Sauerland MC, Görlich D, Krug U, Berdel WE, Woermann BJ, Hiddemann W, Braess J, Subklewe M, Spiekermann K, Carroll AJ, Blum WG, Powell BL, Kolitz JE, Moore JO, Mayer RJ, Larson RA, Uy GL, Stock W, Metzeler KH, Grimes HL, Byrd JC, Salomonis N, Herold T, Mims AS, Eisfeld AK. Sex-associated differences in frequencies and prognostic impact of recurrent genetic alterations in adult acute myeloid leukemia (Alliance, AMLCG). Leukemia 2024; 38:45-57. [PMID: 38017103 PMCID: PMC10776397 DOI: 10.1038/s41375-023-02068-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
Clinical outcome of patients with acute myeloid leukemia (AML) is associated with demographic and genetic features. Although the associations of acquired genetic alterations with patients' sex have been recently analyzed, their impact on outcome of female and male patients has not yet been comprehensively assessed. We performed mutational profiling, cytogenetic and outcome analyses in 1726 adults with AML (749 female and 977 male) treated on frontline Alliance for Clinical Trials in Oncology protocols. A validation cohort comprised 465 women and 489 men treated on frontline protocols of the German AML Cooperative Group. Compared with men, women more often had normal karyotype, FLT3-ITD, DNMT3A, NPM1 and WT1 mutations and less often complex karyotype, ASXL1, SRSF2, U2AF1, RUNX1, or KIT mutations. More women were in the 2022 European LeukemiaNet intermediate-risk group and more men in adverse-risk group. We found sex differences in co-occurring mutation patterns and prognostic impact of select genetic alterations. The mutation-associated splicing events and gene-expression profiles also differed between sexes. In patients aged <60 years, SF3B1 mutations were male-specific adverse outcome prognosticators. We conclude that sex differences in AML-associated genetic alterations and mutation-specific differential splicing events highlight the importance of patients' sex in analyses of AML biology and prognostication.
Collapse
Affiliation(s)
- Michael Ozga
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
| | - Ayse S Yilmaz
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Karilyn T Larkin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - James S Blachly
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Christopher C Oakes
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Jill Buss
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Christopher J Walker
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Shelley Orwick
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vindi Jurinovic
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Annika Dufour
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | | | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Wolfgang E Berdel
- Department of Medicine, Hematology and Oncology, University of Münster, Münster, Germany
| | | | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Marion Subklewe
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Bayard L Powell
- Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Joseph O Moore
- Duke Cancer Institute, Duke University Health System, Durham, NC, USA
| | - Robert J Mayer
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
| | | | - Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- University of Chicago Medical Center, Chicago, IL, USA
| | - Klaus H Metzeler
- Department of Hematology, Cellular Therapy, and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alice S Mims
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
| |
Collapse
|
29
|
Luo Q, Raulston EG, Prado MA, Wu X, Gritsman K, Yan K, Booth CAG, Xu R, van Galen P, Doench JG, Shimony S, Long HW, Neuberg DS, Paulo JA, Lane AA. Targetable leukemia dependency on noncanonical PI3Kγ signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571909. [PMID: 38328043 PMCID: PMC10849582 DOI: 10.1101/2023.12.15.571909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Phosphoinositide 3-kinase gamma (PI3Kγ) is implicated as a target to repolarize tumor-associated macrophages and promote anti-tumor immune responses in solid cancers. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid, and dendritic lineages. This dependency is characterized by innate inflammatory signaling and activation of phosphoinositide 3-kinase regulatory subunit 5 ( PIK3R5 ), which encodes a regulatory subunit of PI3Kγ and stabilizes the active enzymatic complex. Mechanistically, we identify p21 (RAC1) activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency independently of Akt kinase. PI3Kγ inhibition dephosphorylates PAK1, activates a transcriptional network of NFκB-related tumor suppressor genes, and impairs mitochondrial oxidative phosphorylation. We find that treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukemias with activated PIK3R5 , either at baseline or by exogenous inflammatory stimulation. Notably, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukemia xenografts with low baseline PIK3R5 expression, as residual leukemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Taken together, our study reveals a targetable dependency on PI3Kγ/PAK1 signaling that is amenable to near-term evaluation in patients with acute leukemia.
Collapse
|
30
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
31
|
Fukuchi K, Koyama D, Takada M, Mori H, Hayashi K, Asano N, Sato Y, Fukatsu M, Takano M, Takahashi H, Shirado-Harada K, Kimura S, Yamamoto T, Ikezoe T. Mutated ZRSR2 and CUL3 accelerate clonal evolution and confer venetoclax resistance via RAS signaling pathway in blastic plasmacytoid dendritic cell neoplasm. Int J Hematol 2023; 118:489-493. [PMID: 37029861 DOI: 10.1007/s12185-023-03597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive subtype of myeloid malignancy characterized by skin, lymph node and central nervous system (CNS) involvement. Although various regimens are used, a standard therapeutic strategy for BPDCN has not been established. Recent studies revealed that BPDCN patients frequently have a mutation in ZRSR2, which is a minor spliceosome component. However, the association between the clinical features of BPDCN and ZRSR2 mutational status remains unknown. A 70-year-old man was referred to our hospital with skin rash and enlarged lymph nodes, as well as blasts in the peripheral blood. BPDCN was diagnosed based on the immunophenotype of the blasts derived from bone marrow. Whole exome sequencing revealed that BPDCN cells collected at diagnosis had mutations in ZRSR2, ZBTB33, CUL3, TET2 and NRAS. RNA sequencing analysis indicated that U12-type intron retention occurred in LZTR1, caused by ZRSR2 loss. After seven cycles of venetoclax combined with azacitidine therapy, BPDCN cells appeared in the peripheral blood and infiltrated the CNS. Two KRAS mutated clones appeared at BPDCN recurrence. These findings are important for understanding the pathogenesis of BPDCN, which will inform development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Koichiro Fukuchi
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Daisuke Koyama
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan.
| | - Maki Takada
- Department of Dermatology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Hirotaka Mori
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Kiyohito Hayashi
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Naomi Asano
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Yuki Sato
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Motoki Takano
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Hiroshi Takahashi
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Kayo Shirado-Harada
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Satoshi Kimura
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Toshiyuki Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| |
Collapse
|
32
|
Caramia F, Speed TP, Shen H, Haupt Y, Haupt S. Establishing the Link between X-Chromosome Aberrations and TP53 Status, with Breast Cancer Patient Outcomes. Cells 2023; 12:2245. [PMID: 37759468 PMCID: PMC10526523 DOI: 10.3390/cells12182245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Ubiquitous to normal female human somatic cells, X-chromosome inactivation (XCI) tightly regulates the transcriptional silencing of a single X chromosome from each pair. Some genes escape XCI, including crucial tumour suppressors. Cancer susceptibility can be influenced by the variability in the genes that escape XCI. The mechanisms of XCI dysregulation remain poorly understood in complex diseases, including cancer. Using publicly available breast cancer next-generation sequencing data, we show that the status of the major tumour suppressor TP53 from Chromosome 17 is highly associated with the genomic integrity of the inactive X (Xi) and the active X (Xa) chromosomes. Our quantification of XCI and XCI escape demonstrates that aberrant XCI is linked to poor survival. We derived prognostic gene expression signatures associated with either large deletions of Xi; large amplifications of Xa; or abnormal X-methylation. Our findings expose a novel insight into female cancer risks, beyond those associated with the standard molecular subtypes.
Collapse
Affiliation(s)
- Franco Caramia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (F.C.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Terence P. Speed
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia;
| | - Hui Shen
- Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Ygal Haupt
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (F.C.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sue Haupt
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (F.C.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
33
|
Cuglievan B, Connors J, He J, Khazal S, Yedururi S, Dai J, Garces S, Quesada AE, Roth M, Garcia M, McCall D, Gibson A, Ragoonanan D, Petropoulos D, Tewari P, Nunez C, Mahadeo KM, Tasian SK, Lamble AJ, Pawlowska A, Hammond D, Maiti A, Haddad FG, Senapati J, Daver N, Gangat N, Konopleva M, Meshinchi S, Pemmaraju N. Blastic plasmacytoid dendritic cell neoplasm: a comprehensive review in pediatrics, adolescents, and young adults (AYA) and an update of novel therapies. Leukemia 2023; 37:1767-1778. [PMID: 37452102 PMCID: PMC10457206 DOI: 10.1038/s41375-023-01968-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that can involve the bone marrow, peripheral blood, skin, lymph nodes, and the central nervous system. Though more common in older adults, BPDCN has been reported across all age groups, including infants and children. The incidence of pediatric BPDCN is extremely low and little is known about the disease. Pediatric BPDCN is believed to be clinically less aggressive but often with more dissemination at presentation than adult cases. Unlike adults who almost always proceed to a hematopoietic stem cell transplantation in first complete remission if transplant-eligible, the majority of children can be cured with a high-risk acute lymphoblastic leukemia-like regimen. Hematopoietic stem cell transplantation is recommended for children with high-risk disease, the definition of which continues to evolve, or those in relapse and refractory settings where outcomes continue to be dismal. Novel agents used in other hematologic malignancies and CD123 targeted agents, including chimeric antigen receptor T-cells and monoclonal/bispecific antibodies, are being brought into research and practice. Our goal is to provide a comprehensive review of presentation, diagnosis, and treatment by review of pediatric cases reported for the last 20 years, and a review of novel targeted therapies and therapies under investigation for adult and pediatric patients.
Collapse
Affiliation(s)
- Branko Cuglievan
- Division of Pediatrics, Department of Pediatric Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jeremy Connors
- Division of Pediatrics, Department of Pediatric Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiasen He
- Division of Pediatrics, Department of Pediatric Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Pediatrics, Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sireesha Yedururi
- Division of Radiology, Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julia Dai
- Division of Internal Medicine, Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofia Garces
- Division of Pathology, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andres E Quesada
- Division of Pathology, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Division of Pediatrics, Department of Pediatric Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Division of Pediatrics, Department of Pediatric Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Division of Pediatrics, Department of Pediatric Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Division of Pediatrics, Department of Pediatric Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dristhi Ragoonanan
- Division of Pediatrics, Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Demetrios Petropoulos
- Division of Pediatrics, Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priti Tewari
- Division of Pediatrics, Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Division of Pediatrics, Department of Pediatric Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam J Lamble
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Anna Pawlowska
- Division of Pediatric Hematology/Oncology, and Hematopoietic Stem Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Danielle Hammond
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jayatsu Senapati
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naseema Gangat
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Marina Konopleva
- Department of Oncology, Montefiore Einstein Cancer Center, Bronx, NY, USA
| | | | - Naveen Pemmaraju
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Chen J, Zhang X, Ma L, Gao Y, Fu Z, Liu M. 18F-FDG PET/CT findings in a patient with blastic plasmacytoid dendritic cell neoplasm and post-transplant lymphoproliferative disorder after hematopoietic stem cell transplantation: a case report. Front Med (Lausanne) 2023; 10:1258310. [PMID: 37663666 PMCID: PMC10469918 DOI: 10.3389/fmed.2023.1258310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an extremely rare hematopoietic malignancy, which originating from precursors of plasmacytoid dendritic cells. Allogeneic hematopoietic stem cell transplantation (HSCT) is normally considered in the treatment of BPDCN patients to acquire sustained remission. Post-transplant lymphoproliferative disorder (PTLD) is a group of conditions involving abnormal lymphoid cells proliferation in the context of extrinsic immunosuppression after solid organ transplantation (SOT) or HSCT. Herein, we report a patient with BPDCN, who suffered from PTLD after allogeneic HSCT. Case presentation A 66-year-old man was diagnosed with BPDCN, confirmed by pathologic examination after splenectomy. The post-surgery 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (18F-FDG PET/CT) showed multifocal 18F-FDG avidity in the left cheek, lymph nodes and bone marrow. The patient started chemotherapy, followed by allogeneic HSCT and immunosuppressive therapy. Four months after the HSCT, the patient developed intermittent fever and recurrent lymphadenopathy, accompanied with progressively elevated Epstein-Barr virus (EBV)-DNA both in serum and lymphocytes. 18F-FDG PET/CT was performed again and found multiple new enlarged 18F-FDG-avid lymph nodes, while the previous hypermetabolic lesions all disappeared. The pathology of mesenteric lymph node indicated a monomorphic PTLD (diffuse large B-cell lymphoma). Then the immunosuppressive medications were stopped and two cycles of Rituximab were given, and the follow-up CT scan indicated a complete response. Conclusion When patients with BPDCN recurred new enlarged lymph nodes after allogeneic HSCT and immunosuppressive therapy, PTLD should be taken into consideration. 18F-FDG PET/CT may provide additional evidence for supporting or refuting the suspicion of PTLD, and suggest lesions accessible for biopsy.
Collapse
Affiliation(s)
| | | | | | | | - Zhanli Fu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
35
|
Yamada T, Hiramoto N, Mori T, Yamashita D, Tai Y, Yamamoto R, Nishikubo M, Maruoka H, Sakamoto K, Takeuchi K, Nannya Y, Ogawa S, Ishikawa T. Coincidence of cutaneous blastic plasmacytoid dendritic cell neoplasm and myelodysplastic syndrome derived from clonal hematopoiesis. Blood Cancer J 2023; 13:119. [PMID: 37558659 PMCID: PMC10412548 DOI: 10.1038/s41408-023-00893-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Tomohiko Yamada
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Nobuhiro Hiramoto
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan.
| | - Takuto Mori
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yukimasa Tai
- Department of Dermatology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Ryusuke Yamamoto
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masashi Nishikubo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hayato Maruoka
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Kana Sakamoto
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
36
|
Bouligny IM, Maher KR, Grant S. Secondary-Type Mutations in Acute Myeloid Leukemia: Updates from ELN 2022. Cancers (Basel) 2023; 15:3292. [PMID: 37444402 DOI: 10.3390/cancers15133292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
The characterization of the molecular landscape and the advent of targeted therapies have defined a new era in the prognostication and treatment of acute myeloid leukemia. Recent revisions in the European LeukemiaNet 2022 guidelines have refined the molecular, cytogenetic, and treatment-related boundaries between myelodysplastic neoplasms (MDS) and AML. This review details the molecular mechanisms and cellular pathways of myeloid maturation aberrancies contributing to dysplasia and leukemogenesis, focusing on recent molecular categories introduced in ELN 2022. We provide insights into novel and rational therapeutic combination strategies that exploit mechanisms of leukemogenesis, highlighting the underpinnings of splicing factors, the cohesin complex, and chromatin remodeling. Areas of interest for future research are summarized, and we emphasize approaches designed to advance existing treatment strategies.
Collapse
Affiliation(s)
- Ian M Bouligny
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| | - Keri R Maher
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| | - Steven Grant
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
37
|
Griffin GK, Booth CAG, Togami K, Chung SS, Ssozi D, Verga JA, Bouyssou JM, Lee YS, Shanmugam V, Hornick JL, LeBoeuf NR, Morgan EA, Bernstein BE, Hovestadt V, van Galen P, Lane AA. Ultraviolet radiation shapes dendritic cell leukaemia transformation in the skin. Nature 2023; 618:834-841. [PMID: 37286599 PMCID: PMC10284703 DOI: 10.1038/s41586-023-06156-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.
Collapse
Affiliation(s)
- Gabriel K Griffin
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | | | - Katsuhiro Togami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Sook Chung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel Ssozi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julia A Verga
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juliette M Bouyssou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yoke Seng Lee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Vignesh Shanmugam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicole R LeBoeuf
- Department of Dermatology, Center for Cutaneous Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Bradley E Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Volker Hovestadt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| | - Peter van Galen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| | - Andrew A Lane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Wu SJ, Sadigh S, Lane AA, Pinkus GS. Expanding the Immunophenotypic Spectrum of Neoplastic and Reactive Plasmacytoid Dendritic Cells. Am J Clin Pathol 2023; 159:455-463. [PMID: 36880313 PMCID: PMC10893858 DOI: 10.1093/ajcp/aqac174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/07/2022] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES Targeted therapies for blastic plasmacytoid dendritic cell neoplasm (BPDCN) have presented a diagnostic dilemma for differentiating residual BPDCN from reactive plasmacytoid dendritic cells (pDCs) because these conditions have a similar immunoprofile, necessitating discovery of additional diagnostic markers. METHODS Fifty cases of BPDCN involving bone marrow (26/50) and skin (24/50) as well as other hematologic malignancies (67) and nonneoplastic samples (37) were included. Slides were stained using a double-staining protocol for the following immunohistochemical marker combinations: TCF4/CD123, TCF4/CD56, SOX4/CD123, and IRF8/CD123. RESULTS The nuclear marker SOX4 is expressed in neoplastic pDCs; in our cohort, SOX4/CD123 showed 100% sensitivity and 98% specificity in distinguishing BPDCN from reactive pDCs and other neoplasms. TCF4/CD56 had a 96% sensitivity and 100% specificity for BPDCN. IRF8 is a nonspecific marker that is positive in BPDCN and pDCs as well as other myeloid malignancies. CONCLUSIONS The novel immunohistochemical combination SOX4/CD123 distinguishes BPDCN, including CD56-negative BPDCN, from both reactive pDCs and other neoplasms. Because of their high diagnostic sensitivity and specificity, the double-staining marker combinations TCF4/CD123, TCF4/CD56, and SOX4/CD123 can be used to confirm lineage in BPDCN cases and detect minimal/measurable residual disease in tissue specimens.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, US
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, US
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, US
| | | |
Collapse
|
39
|
Garsetti DE, Sahay K, Wang Y, Rogers MB. Sex and the basal mRNA synthesis machinery. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1765. [PMID: 36195437 PMCID: PMC10070566 DOI: 10.1002/wrna.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022]
Abstract
Evolution and change generated an incredible diversity of organisms on this earth. Yet, some processes are so central to life that change is strongly selected against. Synthesis of the eukaryotic messenger RNA is one example. The assemblies that carry out transcription and processing (capping, polyadenylation, and splicing) are so conserved that most genes have recognizable orthologs in yeast and humans. Naturally, most would conclude transcription and processing are identical in both sexes. However, this is an assumption. Men and women vastly differ in their physiologies. The incidence of pathologies, symptom presentation, disease outcome, and therapeutic response in each sex vary enormously. Despite the harm ignorance causes women, biological research has been historically carried out without regard to sex. The male mouse was the default mammal. A cultured cell's sex was considered irrelevant. Attempts to fill this knowledge gap have revealed molecular dissimilarities. For example, the earliest embryonic male and female transcriptomes differ long before fetal sex hormones appear. We used public data to challenge the assumption of sameness by reviewing reports of sex-biased gene expression and gene targeting. We focused on 120 genes encoding nonregulatory proteins involved in mRNA synthesis. Remarkably, genes with recognizable orthologs in yeast and thus LEAST likely to differ, did differ between the sexes. The rapidly growing public databases can be used to compare the expression of any gene in male and female tissues. Appreciating the principles that drive sex differences will enrich our understanding of RNA biology in all humans-men and women. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Diane E Garsetti
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Khushboo Sahay
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Yue Wang
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Melissa B Rogers
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| |
Collapse
|
40
|
Lee YJ, Kim Y, Park SH, Jo JC. Plasmacytoid dendritic cell neoplasms. Blood Res 2023; 58:90-95. [PMID: 37105563 PMCID: PMC10133850 DOI: 10.5045/br.2023.2023052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are type I interferon-producing cells that modulate immune responses. There are two types of pDC neoplasms: 1) mature pDC proliferation (MPDCP) associated with myeloid neoplasm and 2) blastic pDC neoplasm (BPDCN). MPDCP is a clonal expansion of mature pDCs that is predominantly associated with chronic myelomonocytic leukemia. In contrast, BPDCN is a clinically aggressive myeloid malignancy involving the skin, bone marrow, lymphatic organs, and central nervous system. There are various types of skin lesions, ranging from solitary brown or violaceous to disseminated cutaneous lesions, which often spread throughout the body. The expression of CD4, CD56, CD123, and pDC markers (TCL-1, TCF4, CD303, and CD304, etc.) are typical immunophenotype of BPDCN. Historically, BPDCN treatment has been based on acute leukemia regimens and allogeneic hematopoietic cell transplantation in selected patients. Recent advances in molecular biology and genetics have led to the development of targeted agents, such as tagraxofusp (a recombinant fusion protein targeting CD123), anti-CD123 CAR-T cells, XmAb14045, and IMGN632. Lastly, this review provides a comprehensive overview of pDC neoplasms.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Youjin Kim
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sang Hyuk Park
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jae-Cheol Jo
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
41
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
42
|
North American Blastic Plasmacytoid Dendritic Cell Neoplasm Consortium: position on standards of care and areas of need. Blood 2023; 141:567-578. [PMID: 36399715 DOI: 10.1182/blood.2022017865] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with historically poor outcomes and no worldwide consensus treatment approach. Unique among most hematologic malignancies for its frequent cutaneous involvement, BPDCN can also invade other extramedullary compartments, including the central nervous system. Generally affecting older adults, many patients are unfit to receive intensive chemotherapy, and although hematopoietic stem cell transplantation is preferred for younger, fit individuals, not all are eligible. One recent therapeutic breakthrough is that all BPDCNs express CD123 (IL3Rα) and that this accessible surface marker can be pharmacologically targeted. The first-in-class agent for BPDCN, tagraxofusp, which targets CD123, was approved in December 2018 in the United States for patients with BPDCN aged ≥2 years. Despite favorable response rates in the frontline setting, many patients still relapse in the setting of monotherapy, and outcomes in patients with relapsed/refractory BPDCN remain dismal. Therefore, novel approaches targeting both CD123 and other targets are actively being investigated. To begin to formally address the state of the field, we formed a new collaborative initiative, the North American BPDCN Consortium (NABC). This group of experts, which includes a multidisciplinary panel of hematologists/oncologists, hematopoietic stem cell transplant physicians, pathologists, dermatologists, and pediatric oncologists, was tasked with defining the current standard of care in the field and identifying the most important research questions and future directions in BPDCN. The position findings of the NABC's inaugural meetings are presented herein.
Collapse
|
43
|
Li Z, He Z, Wang J, Kong G. RNA splicing factors in normal hematopoiesis and hematologic malignancies: novel therapeutic targets and strategies. J Leukoc Biol 2023; 113:149-163. [PMID: 36822179 DOI: 10.1093/jleuko/qiac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/18/2023] Open
Abstract
RNA splicing, a crucial transesterification-based process by which noncoding regions are removed from premature RNA to create mature mRNA, regulates various cellular functions, such as proliferation, survival, and differentiation. Clinical and functional studies over the past 10 y have confirmed that mutations in RNA splicing factors are among the most recurrent genetic abnormalities in hematologic neoplasms, including myeloid malignancies, chronic lymphocytic leukemia, mantle cell lymphoma, and clonal hematopoiesis. These findings indicate an important role for splicing factor mutations in the development of clonal hematopoietic disorders. Mutations in core or accessory components of the RNA spliceosome complex alter splicing sites in a manner of change of function. These changes can result in the dysregulation of cancer-associated gene expression and the generation of novel mRNA transcripts, some of which are not only critical to disease development but may be also serving as potential therapeutic targets. Furthermore, multiple studies have revealed that hematopoietic cells bearing mutations in splicing factors depend on the expression of the residual wild-type allele for survival, and these cells are more sensitive to reduced expression of wild-type splicing factors or chemical perturbations of the splicing machinery. These findings suggest a promising possibility for developing novel therapeutic opportunities in tumor cells based on mutations in splicing factors. Here, we combine current knowledge of the mechanistic and functional effects of frequently mutated splicing factors in normal hematopoiesis and the effects of their mutations in hematologic malignancies. Moreover, we discuss the development of potential therapeutic opportunities based on these mutations.
Collapse
Affiliation(s)
- Zhenzhen Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Zhongzheng He
- Department of Neurosurgery, Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710003, China
| | - Jihan Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710004, China
| |
Collapse
|
44
|
Habibi M, Taheri G. A new machine learning method for cancer mutation analysis. PLoS Comput Biol 2022; 18:e1010332. [PMID: 36251702 PMCID: PMC9612828 DOI: 10.1371/journal.pcbi.1010332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/27/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
It is complicated to identify cancer-causing mutations. The recurrence of a mutation in patients remains one of the most reliable features of mutation driver status. However, some mutations are more likely to happen than others for various reasons. Different sequencing analysis has revealed that cancer driver genes operate across complex pathways and networks, with mutations often arising in a mutually exclusive pattern. Genes with low-frequency mutations are understudied as cancer-related genes, especially in the context of networks. Here we propose a machine learning method to study the functionality of mutually exclusive genes in the networks derived from mutation associations, gene-gene interactions, and graph clustering. These networks have indicated critical biological components in the essential pathways, especially those mutated at low frequency. Studying the network and not just the impact of a single gene significantly increases the statistical power of clinical analysis. The proposed method identified important driver genes with different frequencies. We studied the function and the associated pathways in which the candidate driver genes participate. By introducing lower-frequency genes, we recognized less studied cancer-related pathways. We also proposed a novel clustering method to specify driver modules. We evaluated each driver module with different criteria, including the terms of biological processes and the number of simultaneous mutations in each cancer. Materials and implementations are available at: https://github.com/MahnazHabibi/MutationAnalysis.
Collapse
Affiliation(s)
- Mahnaz Habibi
- Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Golnaz Taheri
- Department of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
45
|
Lin CY, Yu CJ, Shen CI, Liu CY, Chao TC, Huang CC, Tseng LM, Lai JI. IKZF3 amplification frequently occurs in HER2-positive breast cancer and is a potential therapeutic target. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:242. [PMID: 36180600 DOI: 10.1007/s12032-022-01812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
Breast cancer is one of the leading causes of cancer death in women, and although treatment outcome has substantially improved in the past decades, advanced or metastatic breast cancers still carry a poor prognosis. Gene amplification is one of the frequent genetic alterations in cancer, and oncogene amplification may be associated with cancer aggressiveness and oncogenicity. Targeting amplified genes such as HER2 has vastly improved disease outcome and survival, and anti-HER2 therapeutics have revolutionized the standard of care in HER2 breast cancer. Besides currently known druggable gene amplifications including ERBB2 and FGFR2, other frequently amplified genes are relatively less well known for function and clinical significance. By querying four large databases from TCGA and AACR-Genie, from a total of 11,890 patients with invasive ductal breast carcinoma, we discover IKZF3, CCND1, ERBB2 to be consistently amplified across different cohorts. We further identify IKZF3 as a frequently amplified gene in breast cancer with a prevalence of 12-15% amplification rate. Interestingly, IKZF3 amplification is frequently co-amplified with ERBB2/HER2, and is also associated with worse prognosis compared to IKZF3 non-amplified cancers. Analysis of HER2 breast cancer patients treated with trastuzumab revealed decrease in both ERBB2/HER2 and IKZF3 expression. Further investigation using the DepMap for gene dependency by genome-wide CRISPR screening revealed dependence on IKZF3 in HER2 breast cancer cell lines. Our study utilized an integrative analysis of large-scale patient genomics, transcriptomics and clinical data to reveal IKZF3 as a frequently amplified gene, and suggest a potential role of IKZF3 as a druggable target for HER2 breast cancer.
Collapse
Affiliation(s)
- Chih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jen Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
46
|
Robin M, de Wreede LC, Padron E, Bakunina K, Fenaux P, Koster L, Nazha A, Beelen DW, Rampal RK, Sockel K, Komrokji RS, Gagelmann N, Eikema DJ, Radujkovic A, Finke J, Potter V, Killick SB, Legrand F, Solary E, Broom A, Garcia-Manero G, Rizzoli V, Hayden P, Patnaik MM, Onida F, Yakoub-Agha I, Itzykson R. Role of allogeneic transplantation in chronic myelomonocytic leukemia: an international collaborative analysis. Blood 2022; 140:1408-1418. [PMID: 35667047 DOI: 10.1182/blood.2021015173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
To determine the survival benefit of allogeneic hematopoietic cell transplantation (allo-HCT) in chronic myelomonocytic leukemias (CMML), we assembled a retrospective cohort of CMML patients 18-70 years old diagnosed between 2000 and 2014 from an international CMML dataset (n = 730) and the EBMT registry (n = 384). The prognostic impact of allo-HCT was analyzed through univariable and multivariable time-dependent models and with a multistate model, accounting for age, sex, CMML prognostic scoring system (low or intermediate-1 grouped as lower-risk, intermediate-2 or high as higher-risk) at diagnosis, and AML transformation. In univariable analysis, lower-risk CMMLs had a 5-year overall survival (OS) of 20% with allo-HCT vs 42% without allo-HCT (P < .001). In higher-risk patients, 5-year OS was 27% with allo-HCT vs 15% without allo-HCT (P = .13). With multistate models, performing allo-HCT before AML transformation reduced OS in patients with lower-risk CMML, and a survival benefit was predicted for men with higher-risk CMML. In a multivariable analysis of lower-risk patients, performing allo-HCT before transformation to AML significantly increased the risk of death within 2 years of transplantation (hazard ratio [HR], 3.19; P < .001), with no significant change in long-term survival beyond this time point (HR, 0.98; P = .92). In higher-risk patients, allo-HCT significantly increased the risk of death in the first 2 years after transplant (HR 1.46; P = .01) but not beyond (HR, 0.60; P = .09). Performing allo-HCT before AML transformation decreases life expectancy in lower-risk patients but may be considered in higher-risk patients.
Collapse
Affiliation(s)
- Marie Robin
- Department of Hematology, Transplantation Division, Hôpital Saint-Louis, Paris, France
| | - Liesbeth C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Katerina Bakunina
- European Bone Marrow Transplantation (EBMT) Statistical Unit, Leiden, Netherlands
| | - Pierre Fenaux
- Department of Hematology and Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Linda Koster
- European Bone Marrow Transplantation (EBMT) Data Office Leiden, Leiden, Netherlands
| | | | - Dietrich W Beelen
- Department of Bone Marrow Transplantation, University Hospital Essen, Essen, Germany
| | - Raajit K Rampal
- Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Katja Sockel
- Division of Hematology, Medical Clinic and Policlinic I, University Hospital Dresden, Technical University (TU) Dresden, Dresden, Germany
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk-Jan Eikema
- European Bone Marrow Transplantation (EBMT) Statistical Unit, Leiden, Netherlands
| | - Aleksandar Radujkovic
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Jürgen Finke
- Department of Medicine-Hematology, Oncology, Freiburg University Hospital and Medical Faculty, Freiburg, Germany
| | - Victoria Potter
- King's College Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Sally B Killick
- The Royal Bournemouth and Christchurch Hospitals National Health Service (NHS) Foundation Trust, Bournemouth, United Kingdom
| | - Faezeh Legrand
- Programme de Transplantation & Therapie Cellulaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli Calmettes, Marseille, France
| | - Eric Solary
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Angus Broom
- Western General Hospital, Edinburg, United Kingdom
| | | | - Vittorio Rizzoli
- Department of Hematology, U.O. Ematologia Centro Trapianti Midollo Osseo (CTMO) of Hematology, Parma, Italy
| | - Patrick Hayden
- Department of Hematology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | | | - Francesco Onida
- Bone Marrow Transplantation (BMT) Center - Hematology Unit, Istituto di ricovero e cura a carattere scientifico (IRCCS) Ospedale Maggiore Policlinico Di Milano-University of Milan, Milano, Italy
| | - Ibrahim Yakoub-Agha
- INSERM U1286, Centre Hospitalo-Universitaire (CHU) de Lille, Univ. Lille, Infinite, Lille, France; and
| | - Raphael Itzykson
- European Bone Marrow Transplantation (EBMT) Statistical Unit, Leiden, Netherlands
- Génomes, biologie cellulaire et thérapeutique U944, Université Paris Cité, INSERM, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris France
| |
Collapse
|
47
|
Loss of METTL3 attenuates blastic plasmacytoid dendritic cell neoplasm response to PRMT5 inhibition via IFN signaling. Blood Adv 2022; 6:5330-5344. [PMID: 35482445 PMCID: PMC9631685 DOI: 10.1182/bloodadvances.2021006306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy with poor clinical outcomes. Dysregulated MYC expression, which is associated with protein arginine methyltransferase 5 (PRMT5) dependency, is a recurrent feature of BPDCN. Although recent studies have reported a PRMT5 gene signature in BPDCN patient samples, the role of PRMT5 in BPDCN remains unexplored. Here, we demonstrate that BPDCN is highly sensitive to PRMT5 inhibition. Consistent with the upregulation of PRMT5 in BPDCN, we show that pharmacological inhibition (GSK3326595) of PRMT5 inhibits the growth of the patient-derived BPDCN cell line CAL-1 in vitro and mitigated tumor progression in our mouse xenograft model. Interestingly, RNA-sequencing (RNA-seq) analysis revealed that PRMT5 inhibition increases intron retention in several key RNA methylation genes, including METTL3, which was accompanied by a dose-dependent decrease in METTL3 expression. Notably, the function of cellular m6A RNA modification of METTL3 was also affected by PRMT5 inhibition in CAL-1 cells. Intriguingly, METTL3 depletion in CAL-1 caused a significant increase in interferon (IFN) signaling, which was further elevated upon PRMT5 inhibition. Importantly, we discovered that this increase in IFN signaling attenuated the sensitivity of METTL3-depleted CAL-1 cells to PRMT5 inhibition. Correspondingly, stimulation of IFN signaling via TLR7 agonists weakened CAL-1 cell sensitivity to PRMT5 inhibition. Overall, our findings implicate PRMT5 as a therapeutic target in BPDCN and provide insight into the involvement of METTL3 and the IFN pathway in regulating the response to PRMT5 inhibition.
Collapse
|
48
|
Weinstein R, Bishop K, Broadbridge E, Yu K, Carrington B, Elkahloun A, Zhen T, Pei W, Burgess SM, Liu P, Bresciani E, Sood R. Zrsr2 Is Essential for the Embryonic Development and Splicing of Minor Introns in RNA and Protein Processing Genes in Zebrafish. Int J Mol Sci 2022; 23:10668. [PMID: 36142581 PMCID: PMC9501576 DOI: 10.3390/ijms231810668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
ZRSR2 (zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2) is an essential splicing factor involved in 3' splice-site recognition as a component of both the major and minor spliceosomes that mediate the splicing of U2-type (major) and U12-type (minor) introns, respectively. Studies of ZRSR2-depleted cell lines and ZRSR2-mutated patient samples revealed its essential role in the U12-dependent minor spliceosome. However, the role of ZRSR2 during embryonic development is not clear, as its function is compensated for by Zrsr1 in mice. Here, we utilized the zebrafish model to investigate the role of zrsr2 during embryonic development. Using CRISPR/Cas9 technology, we generated a zrsr2-knockout zebrafish line, termed zrsr2hg129/hg129 (p.Trp167Argfs*9) and examined embryo development in the homozygous mutant embryos. zrsr2hg129/hg129 embryos displayed multiple developmental defects starting at 4 days post fertilization (dpf) and died after 8 dpf, suggesting that proper Zrsr2 function is required during embryonic development. The global transcriptome analysis of 3 dpf zrsr2hg129/hg129 embryos revealed that the loss of Zrsr2 results in the downregulation of essential metabolic pathways and the aberrant retention of minor introns in about one-third of all minor intron-containing genes in zebrafish. Overall, our study has demonstrated that the role of Zrsr2 as a component of the minor spliceosome is conserved and critical for proper embryonic development in zebrafish.
Collapse
Affiliation(s)
- Rachel Weinstein
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Broadbridge
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Yu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Blake Carrington
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel Elkahloun
- Microarray Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tao Zhen
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wuhong Pei
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn M. Burgess
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Liu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica Bresciani
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Concurrent Zrsr2 mutation and Tet2 loss promote myelodysplastic neoplasm in mice. Leukemia 2022; 36:2509-2518. [PMID: 36030305 PMCID: PMC9522584 DOI: 10.1038/s41375-022-01674-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
RNA splicing and epigenetic gene mutations are the most frequent genetic lesions found in patients with myelodysplastic neoplasm (MDS). About 25% of patients present concomitant mutations in such pathways, suggesting a cooperative role in MDS pathogenesis. Importantly, mutations in the splicing factor ZRSR2 frequently associate with alterations in the epigenetic regulator TET2. However, the impact of these concurrent mutations in hematopoiesis and MDS remains unclear. Using CRISPR/Cas9 genetically engineered mice, we demonstrate that Zrsr2m/mTet2-/- promote MDS with reduced penetrance. Animals presented peripheral blood cytopenia, splenomegaly, extramedullary hematopoiesis, and multi-lineage dysplasia, signs consistent with MDS. We identified a myelo-erythroid differentiation block accompanied by an expansion of LT-HSC and MPP2 progenitors. Transplanted animals presented a similar phenotype, thus indicating that alterations were cell-autonomous. Whole-transcriptome analysis in HSPC revealed key alterations in ribosome, inflammation, and migration/motility processes. Moreover, we found the MAPK pathway as the most affected target by mRNA aberrant splicing. Collectively, this study shows that concomitant Zrsr2 mutation and Tet2 loss are sufficient to initiate MDS in mice. Understanding this mechanistic interplay will be crucial for the identification of novel therapeutic targets in the spliceosome/epigenetic MDS subgroup.
Collapse
|
50
|
Renosi F, Callanan M, Lefebvre C. Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers (Basel) 2022; 14:cancers14174132. [PMID: 36077669 PMCID: PMC9454802 DOI: 10.3390/cancers14174132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Differential diagnosis between Blastic pDC Neoplasm (BPDCN) and Acute Myeloid Leukemia with pDC expansion (pDC-AML) is particularly challenging, and genomic features can help in diagnosis. This review aims at clarifying recent data on genomics features because the past five years have generated a large amount of original data regarding pDC neoplasms. The genetic landscape of BPDCN is now well-defined, with important updates concerning MYC/MYC rearrangements, but also epigenetic defects and novel concepts in oncogenic and immune pathways. Concerning pDC-AML, they now appear to exhibit an original mutation landscape, especially with RUNX1 mutations, which is of interest for diagnostic criteria and for therapeutic purposes. We highlight here these two different profiles, which contribute to differential diagnosis between BPDCN and pDC-AML. This point is particularly important for the study of different therapeutic strategies between BPDCN and AML. Abstract Plasmacytoid Dendritic Cells (pDC) are type I interferon (IFN)-producing cells that play a key role in immune responses. Two major types of neoplastic counterparts for pDC are now discriminated: Blastic pDC Neoplasm (BPDCN) and Mature pDC Proliferation (MPDCP), associated with myeloid neoplasm. Two types of MPDCP are now better described: Chronic MyeloMonocytic Leukemia with pDC expansion (pDC-CMML) and Acute Myeloid Leukemia with pDC expansion (pDC-AML). Differential diagnosis between pDC-AML and BPDCN is particularly challenging, and genomic features can help for diagnosis. Here, we systematically review the cytogenetic, molecular, and transcriptional characteristics of BPDCN and pDC-AML. BPDCN are characterized by frequent complex karyotypes with recurrent MYB/MYC rearrangements as well as recurrent deletions involving ETV6, IKZF1, RB1, and TP53 loci. Epigenetic and splicing pathways are also particularly mutated, while original processes are dysregulated, such as NF-kB, TCF4, BCL2, and IFN pathways; neutrophil-specific receptors; and cholinergic signaling. In contrast, cytogenetic abnormalities are limited in pDC-AML and are quite similar to other AML. Interestingly, RUNX1 is the most frequently mutated gene (70% of cases). These typical genomic features are of potential interest for diagnosis, and also from a prognostic or therapeutic perspective.
Collapse
Affiliation(s)
- Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, F-25000 Besancon, France
- Laboratoire d’Hématologie et d’Immunologie Régional, Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besancon, France
- Correspondence:
| | - Mary Callanan
- INSERM 1231 and 1209, University of Bourgogne-Franche Comté, F-21000 Dijon, France
- Service d’Oncologie Génétique, CHU Dijon Bourgogne, F-21000 Dijon, France
| | - Christine Lefebvre
- INSERM 1209 and CNRS UMR 5309, Université Grenoble-Alpes, F-38000 Grenoble, France
- Laboratoire de Génétique des hémopathies, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|