1
|
Xie Y, Wang X, Wang W, Pu N, Liu L. Epithelial-mesenchymal transition orchestrates tumor microenvironment: current perceptions and challenges. J Transl Med 2025; 23:386. [PMID: 40176117 PMCID: PMC11963649 DOI: 10.1186/s12967-025-06422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical process in cancer progression, facilitating tumor cells to develop invasive traits and augmenting their migratory capabilities. EMT is primed by tumor microenvironment (TME)-derived signals, whereupon cancer cells undergoing EMT in turn remodel the TME, thereby modulating tumor progression and therapeutic response. This review discusses the mechanisms by which EMT coordinates TME dynamics, including secretion of soluble factors, direct cell contact, release of exosomes and enzymes, as well as metabolic reprogramming. Recent evidence also indicates that cells undergoing EMT may differentiate into cancer-associated fibroblasts, thereby establishing themselves as functional constituents of the TME. Elucidating the relationship between EMT and the TME offers novel perspectives for therapeutic strategies to enhance cancer treatment efficacy. Although EMT-directed therapies present significant therapeutic potential, the current lack of effective targeting approaches-attributable to EMT complexity and its microenvironmental context dependency-underscores the necessity for mechanistic investigations and translational clinical validation.
Collapse
Affiliation(s)
- Yuqi Xie
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Wang H, Ji S, Zhang J, Li C, Meng X, Sun Y, Wang L, Luan H, Li F, Hui L, Li F, Wei S, Yu H, Li Z. LILRB4 specific overexpression in myeloid cells promotes tumor progression and immunosuppression in mouse models. Biochem Biophys Res Commun 2025; 755:151536. [PMID: 40048761 DOI: 10.1016/j.bbrc.2025.151536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Leukocyte immunoglobulin like receptor B4 (LILRB4) was considered to promote tumor progression and immunosuppression in various malignancies. As a murine homolog of LILRB4, gp49B has been employed in numerous mouse models to investigate the immunosuppressive properties of LILRB4. However, gp49B differs significantly from LILRB4 in its amino acid sequence and intracellular domains. In this study, we developed a conditional mouse model that overexpresses LILRB4 specifically in myeloid cells to investigate its effects on solid tumors and hematological malignancies. Our results showed that the physiological structure and overall immune system of LILRB4L/L; Cre mice were normal. LL2 tumors in LILRB4L/L; Cre mice exhibited increased size and weight, with elevated levels of immunosuppressive markers programmed cell death protein 1 (PD-1) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) on infiltrating CD3+ T cells, alongside a shift in tumor-associated macrophages (TAMs) from M1-type to M2-type. In the C1498 model, LILRB4 overexpression promoted tumor progression and metastasis, evidenced by increased bioluminescence and enhanced infiltration of monocytic myeloid-derived suppressor cells (M-MDSCs). Real-time PCR analysis showed upregulation of immunosuppressive mRNAs, including colony-stimulating factor 1 (CSF1), arginase1 (Arg1), macrophage galactose N-acetyl-galactosamine specific lectin 2 (Mgl2) and interleukin-1β (IL-1β) while downregulating pro-inflammatory markers like nitric oxide synthase 2 (Nos2). These findings indicate that LILRB4 fosters an immunosuppressive microenvironment that supports tumor progression. LILRB4L/L; Cre mice may serve as a promising tool for studying targeted LILRB4 tumor immunotherapy.
Collapse
Affiliation(s)
- Hongying Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Shuhao Ji
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Jiashen Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Chunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Xianhui Meng
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Yuxiao Sun
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Huiwen Luan
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Lijun Hui
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Fang Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Shuping Wei
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
3
|
Wang X, Li L, Liu D, Jin Y, Zhao X, Li S, Hou R, Guan Z, Ma W, Zheng J, Lv M, Shi M. LILRB4 as a novel immunotherapeutic target for multiple diseases. Biochem Pharmacol 2025; 233:116762. [PMID: 39842553 DOI: 10.1016/j.bcp.2025.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Immune checkpoints are critical for maintaining autoimmune homeostasis and are implicated in various autoimmune diseases, with their significance increasingly recognized. Investigating the functions and mechanisms of these checkpoints is essential for the development of more effective treatments. Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4) stands out as a unique immune checkpoint, with limited expression in most normal tissues but prominent presence in various hematological and solid tumors. It is also expressed on numerous immune and stromal cells, functioning as both a "Tumor Immune Checkpoint" and a "Tumor Stromal Immune Checkpoint." Due to its distinct expression profile, LILRB4 plays a pivotal role in tumors, autoimmune diseases, allergic reactions, and the maintenance of immune homeostasis during transplantation and pregnancy. A thorough understanding of its ligands, functions, mechanisms, and ongoing therapeutic strategies targeting LILRB4 will be crucial for the development of advanced therapeutic options. This review examines LILRB4 expression and function across multiple diseases and discusses therapeutic approaches targeting LILRB4 in various contexts. Additionally, the potential of combining current drugs with LILRB4-targeted therapies is explored. Challenges in developing LILRB4-targeting drugs are also addressed, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Lanying Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Ming Lv
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou, Zhejiang, PR China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
4
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
5
|
Luan H, Wang T, Li F, Sun S, Wang Z, Zhao X, Kong F, Hu T, Liu Y, Zhang J, Liu X, Wang H, Meng X, Li C, Zhang J, Ji S, Hui L, Nie S, Wang Y, Li Z. IGSF9 promotes tumor invasion and metastasis through GSK-3β/β-catenin mediated EMT in lung cancer. Neoplasia 2024; 58:101067. [PMID: 39383800 PMCID: PMC11492623 DOI: 10.1016/j.neo.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
We previously reported that immunoglobulin superfamily member 9 (IGSF9) as a tumor specific immune checkpoint promoted the tumor immune escape, however, as an adhesion molecule, whether IGSF9 promotes tumor invasion and metastasis has not been reported. Here, the full length, the intracellular domain (ID) not extracellular domain (ECD) of IGSF9 could alter tumor cell morphology from a flat and polygonal shape to elongated strips, suggesting that IGSF9 signal pathway has the potential to mediate epithelial-to-mesenchymal transition (EMT). Real-time PCR and western blotting also showed that the mesenchymal markers were significantly up-regulated, and the epithelial markers were significantly down-regulated in IGSF9 and IGSF9-ID groups. Meanwhile, immunofluorescence showed that β-catenin was clearly translocated into the nucleus in IGSF9 and IGSF9-ID groups. The in vitro and in vivo data showed that IGSF9, IGSF9-ID and ECD could promote tumor invasion and metastasis. Mechanistically, IGSF9-ID could recruit GSK-3β to result in the accumulation and nuclear translocation of β-catenin to trigger EMT. Anti-IGSF9 could significantly inhibit the invasion and metastasis, and IGSF9 is an effective candidate for lung cancer therapy.
Collapse
Affiliation(s)
- Huiwen Luan
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ting Wang
- Department of Pathology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264099, PR China
| | - Fangmin Li
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Shuang Sun
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Laboratory Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264099, PR China
| | - Zhenbo Wang
- Department of Binzhou Medical University Hospital, Binzhou, Shandong 256600, PR China
| | - Xinyu Zhao
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Feng Kong
- Shandong Institute of Clinical Medicine, Shandong Provincial Hospital, Jinan, Shandong 250021, PR China
| | - Tao Hu
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264099, PR China
| | - Yifan Liu
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Juan Zhang
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoli Liu
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Hongying Wang
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xianhui Meng
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunling Li
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jiashen Zhang
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Shuhao Ji
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Lijun Hui
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Siman Nie
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Yaopeng Wang
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong 266011, PR China.
| | - Zunling Li
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
6
|
Liu Q, Liu Y, Yang Z. Leukocyte immunoglobulin-like receptor B4: A keystone in immune modulation and therapeutic target in cancer and beyond. CANCER INNOVATION 2024; 3:e153. [PMID: 39444949 PMCID: PMC11495969 DOI: 10.1002/cai2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024]
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) significantly impacts immune regulation and the pathogenesis and progression of various cancers. This review discusses LILRB4's structural attributes, expression patterns in immune cells, and molecular mechanisms in modulating immune responses. We describe the influence of LILRB4 on T cells, dendritic cells, NK cells, and macrophages, and its dual role in stimulating and suppressing immune activities. The review discusses the current research on LILRB4's involvement in acute myeloid leukemia, chronic lymphocytic leukemia, and solid tumors, such as colorectal cancer, pancreatic cancer, non-small cell lung cancer, hepatocellular carcinoma, and extramedullary multiple myeloma. The review also describes LILRB4's role in autoimmune disorders, infectious diseases, and other conditions. We evaluate the recent advancements in targeting LILRB4 using monoclonal antibodies and peptide inhibitors and their therapeutic potential in cancer treatment. Together, these studies underscore the need for further research on LILRB4's interactions in the tumor microenvironment and highlight its importance as a therapeutic target in oncology and for future clinical innovations.
Collapse
Affiliation(s)
- Qi Liu
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingYunnanChina
| | - Zhanyu Yang
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
7
|
Li M, Zhao X. Leukocyte immunoglobulin-like receptor B4 (LILRB4) in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024; 137:2697-2711. [PMID: 38973293 PMCID: PMC11611246 DOI: 10.1097/cm9.0000000000003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Leukocyte immunoglobulin-like receptor (LILR) B4 (also known as ILT3/CD85k) is an immune checkpoint protein that is highly expressed in solid tumors and hematological malignancies and plays a significant role in the pathophysiology of cancer. LILRB4 is highly expressed in acute myeloid leukemia (AML), and this phenotype is associated with adverse patient outcomes. Its differential expression in tumors compared to normal tissues, its presence in tumor stem cells, and its multifaceted roles in tumorigenesis position it as a promising therapeutic target in AML. Currently, several immunotherapies targeting LILRB4 are undergoing clinical trials. This review summarizes advancements made in the study of LILRB4 in AML, focusing on its structure, ligands, expression, and significance in normal tissues and AML; its protumorigenic effects and mechanisms in AML; and the application of LILRB4-targeted therapies in AML. These insights highlight the potential advantages of LILRB4 as an immunotherapeutic target in the context of AML.
Collapse
Affiliation(s)
- Muzi Li
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| |
Collapse
|
8
|
Parsons A, Colon ES, Spasic M, Kurt BB, Swarbrick A, Freedman RA, Mittendorf EA, van Galen P, McAllister SS. Cell Populations in Human Breast Cancers are Molecularly and Biologically Distinct with Age. RESEARCH SQUARE 2024:rs.3.rs-5167339. [PMID: 39483921 PMCID: PMC11527348 DOI: 10.21203/rs.3.rs-5167339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging is associated with increased breast cancer risk and outcomes are worse for the oldest and youngest patients, regardless of subtype. It is not known how cells in the breast tumor microenvironment are impacted by age and how they might contribute to age-related disease pathology. Here, we discover age-associated differences in cell states and interactions in human estrogen receptor-positive (ER+) and triple-negative breast cancers (TNBC) using new computational analyses of existing single-cell gene expression data. Age-specific program enrichment (ASPEN) analysis reveals age-related changes, including increased tumor cell epithelial-mesenchymal transition, cancer-associated fibroblast inflammatory responses, and T cell stress responses and apoptosis in TNBC. ER+ breast cancer is dominated by increased cancer cell estrogen receptor 1 (ESR1) and luminal cell activity, reduced immune cell metabolism, and decreased vascular and extracellular matrix (ECM) remodeling with age. Cell interactome analysis reveals candidate signaling pathways that drive many of these cell states. This work lays a foundation for discovery of age-adapted therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Adrienne Parsons
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Sauras Colon
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Oncological Pathology and Bioinformatics Research Group, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tortosa, Tarragona, Spain
| | - Milos Spasic
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Busem Binboga Kurt
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel A. Freedman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
10
|
He Z, Zhou X, Xiao Y, Gao Y. In vitro screening methods of novel immune checkpoint inhibitors related to T cell infiltration and anti-PD-1 resistance. Methods Cell Biol 2024; 190:11-24. [PMID: 39515875 DOI: 10.1016/bs.mcb.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immune checkpoint blockade-based cancer immunotherapy is an effective tool for cancer treatment. PD-1/PD-L1 blockade, however, is limited by a low response rate and adaptive resistance. A growing body of studies has shown that the high stromal content dense with extracellular matrix plays a significant role in immune checkpoint blockade resistance as well as T cell exclusion. In addition to physically obstructing immune cell infiltration, the extracellular matrix (ECM) may also interact with T cell receptors to indirectly impair their effector function and lead to anti-PD-1 resistance. Anti-PD-1 resistance may thus be overcome by rupturing the physical barrier related negative immune regulation, which may improve T cell infiltration and the efficacy of cancer immunotherapy. Here, we offer two straightforward methods based on flow cytometry and confocal microscopy to evaluate the effectiveness of an inhibitor targeting the novel "stromal checkpoint" DDR1/collagen, which aims to facilitate T cell migration and infiltration of tumor spheres by overcoming collagen barriers. With minor variations, the same method can be easily modified to test the inhibitors that target other immune checkpoints, and the extracellular matrix-associated drug targets that mediate anti-PD-1 resistance.
Collapse
Affiliation(s)
- Zhuoying He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
11
|
Wang H, Wang L, Luan H, Xiao J, Zhao Z, Yu P, Deng M, Liu Y, Ji S, Ma J, Zhou Y, Zhang J, Meng X, Zhang J, Zhao X, Li C, Li F, Wang D, Wei S, Hui L, Nie S, Jin C, An Z, Zhang N, Wang Y, Zhang CC, Li Z. LILRB4 on multiple myeloma cells promotes bone lesion by p-SHP2/NF-κB/RELT signal pathway. J Exp Clin Cancer Res 2024; 43:183. [PMID: 38951916 PMCID: PMC11218313 DOI: 10.1186/s13046-024-03110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Leukocyte Ig-like receptor B family 4 (LILRB4) as an immune checkpoint on myeloid cells is a potential target for tumor therapy. Extensive osteolytic bone lesion is the most characteristic feature of multiple myeloma. It is unclear whether ectopic LILRB4 on multiple myeloma regulates bone lesion. METHODS The conditioned medium (CM) from LILRB4-WT and -KO cells was used to analyze the effects of LILRB4 on osteoclasts and osteoblasts. Xenograft, syngeneic and patient derived xenograft models were constructed, and micro-CT, H&E staining were used to observe the bone lesion. RNA-seq, cytokine array, qPCR, the activity of luciferase, Co-IP and western blotting were used to clarify the mechanism by which LILRB4 mediated bone damage in multiple myeloma. RESULTS We comprehensively analyzed the expression of LILRB4 in various tumor tissue arrays, and found that LILRB4 was highly expressed in multiple myeloma samples. The patient's imaging data showed that the higher the expression level of LILRB4, the more serious the bone lesion in patients with multiple myeloma. The conditioned medium from LILRB4-WT not -KO cells could significantly promote the differentiation and maturation of osteoclasts. Xenograft, syngeneic and patient derived xenograft models furtherly confirmed that LILRB4 could mediate bone lesion of multiple myeloma. Next, cytokine array was performed to identify the differentially expressed cytokines, and RELT was identified and regulated by LILRB4. The overexpression or exogenous RELT could regenerate the bone damage in LILRB4-KO cells in vitro and in vivo. The deletion of LILRB4, anti-LILRB4 alone or in combination with bortezomib could significantly delay the progression of bone lesion of multiple myeloma. CONCLUSIONS Our findings indicated that LILRB4 promoted the bone lesion by promoting the differentiation and mature of osteoclasts through secreting RELT, and blocking LILRB4 singling pathway could inhibit the bone lesion.
Collapse
Affiliation(s)
- Hongying Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Huiwen Luan
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Jing Xiao
- Department of Hematology, Yantaishan Hospital, Yantai, Shandong, 264003, P.R. China
| | - Zhiling Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Pengfei Yu
- Department of Biopharmaceutical, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Peking University International Cancer Institute, Peking University, CN 38 Xueyuan Rd. Haidian Dis., Beijing, 100191, P.R. China
| | - Yifan Liu
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Shuhao Ji
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Junjie Ma
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264009, P.R. China
| | - Yan Zhou
- Department of Gastrointestinalstrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong, 264003, P.R. China
| | - Jiashen Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
| | - Xianhui Meng
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xinyu Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Chunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Dapeng Wang
- Department of Pathophysiology, Bengbu Medical College, Anhui, 233000, P.R. China
| | - Shujuan Wei
- R&D Center, Luye Pharma Group, Yantai, Shandong, 264005, P.R. China
| | - Lijun Hui
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Siman Nie
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Changzhu Jin
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Yaopeng Wang
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, 266011, P.R. China.
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| |
Collapse
|
12
|
Yuwen H, Wang H, Li T, Ren Y, Zhang YK, Chen P, Sun A, Bian G, Li B, Flowers D, Presler M, Subramanian K, Xue J, Wang J, Lynch K, Mei J, He X, Shan B, Hou B. ATG-101 Is a Tetravalent PD-L1×4-1BB Bispecific Antibody That Stimulates Antitumor Immunity through PD-L1 Blockade and PD-L1-Directed 4-1BB Activation. Cancer Res 2024; 84:1680-1698. [PMID: 38501978 PMCID: PMC11094422 DOI: 10.1158/0008-5472.can-23-2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.
Collapse
Affiliation(s)
- Hui Yuwen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Huajing Wang
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Tengteng Li
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Yijing Ren
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | | | - Peng Chen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Ao Sun
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Gang Bian
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Bohua Li
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | | | | | | | - Jia Xue
- Crown Bioscience Inc., Taicang, P.R. China
| | | | | | - Jay Mei
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Xiaowen He
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Bo Shan
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Bing Hou
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| |
Collapse
|
13
|
Tian J, Ashique AM, Weeks S, Lan T, Yang H, Chen HIH, Song C, Koyano K, Mondal K, Tsai D, Cheung I, Moshrefi M, Kekatpure A, Fan B, Li B, Qurashi S, Rocha L, Aguayo J, Rodgers C, Meza M, Heeke D, Medfisch SM, Chu C, Starck S, Basak NP, Sankaran S, Malhotra M, Crawley S, Tran TT, Duey DY, Ho C, Mikaelian I, Liu W, Rivera LB, Huang J, Paavola KJ, O'Hollaren K, Blum LK, Lin VY, Chen P, Iyer A, He S, Roda JM, Wang Y, Sissons J, Kutach AK, Kaplan DD, Stone GW. ILT2 and ILT4 Drive Myeloid Suppression via Both Overlapping and Distinct Mechanisms. Cancer Immunol Res 2024; 12:592-613. [PMID: 38393969 DOI: 10.1158/2326-6066.cir-23-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/28/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.
Collapse
Affiliation(s)
- Jane Tian
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sabrina Weeks
- NGM Biopharmaceuticals, South San Francisco, California
| | - Tian Lan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Hong Yang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Kikuye Koyano
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Daniel Tsai
- NGM Biopharmaceuticals, South San Francisco, California
| | - Isla Cheung
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Bin Fan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Betty Li
- NGM Biopharmaceuticals, South San Francisco, California
| | - Samir Qurashi
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lauren Rocha
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Col Rodgers
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Darren Heeke
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Chun Chu
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | | | | | | | | | - Dana Y Duey
- NGM Biopharmaceuticals, South San Francisco, California
| | - Carmence Ho
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Wenhui Liu
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lee B Rivera
- NGM Biopharmaceuticals, South San Francisco, California
| | - Jiawei Huang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Lisa K Blum
- NGM Biopharmaceuticals, South San Francisco, California
| | - Vicky Y Lin
- NGM Biopharmaceuticals, South San Francisco, California
| | - Peirong Chen
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sisi He
- NGM Biopharmaceuticals, South San Francisco, California
| | - Julie M Roda
- NGM Biopharmaceuticals, South San Francisco, California
| | - Yan Wang
- NGM Biopharmaceuticals, South San Francisco, California
| | - James Sissons
- NGM Biopharmaceuticals, South San Francisco, California
| | - Alan K Kutach
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | |
Collapse
|
14
|
Hou J, Chen Y, Cai Z, Heo GS, Yuede CM, Wang Z, Lin K, Saadi F, Trsan T, Nguyen AT, Constantopoulos E, Larsen RA, Zhu Y, Wagner N, McLaughlin N, Kuang XC, Barrow AD, Li D, Zhou Y, Wang S, Gilfillan S, Gross M, Brioschi S, Liu Y, Holtzman DM, Colonna M. Antibody-mediated targeting of human microglial leukocyte Ig-like receptor B4 attenuates amyloid pathology in a mouse model. Sci Transl Med 2024; 16:eadj9052. [PMID: 38569016 PMCID: PMC11977387 DOI: 10.1126/scitranslmed.adj9052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-β (Aβ) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aβ and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aβ plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aβ load, mitigated some Aβ-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Jinchao Hou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Carla M. Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zuoxu Wang
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kent Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Fareeha Saadi
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel A. Larsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yiyang Zhu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nicole Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nolan McLaughlin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xinyi Cynthia Kuang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alexander D. Barrow
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shoutang Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yongjian Liu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Huang R, Liu X, Kim J, Deng H, Deng M, Gui X, Chen H, Wu G, Xiong W, Xie J, Lewis C, Homsi J, Yang X, Zhang C, He Y, Lou Q, Smith C, John S, Zhang N, An Z, Zhang CC. LILRB3 Supports Immunosuppressive Activity of Myeloid Cells and Tumor Development. Cancer Immunol Res 2024; 12:350-362. [PMID: 38113030 PMCID: PMC10932818 DOI: 10.1158/2326-6066.cir-23-0496] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The existing T cell-centered immune checkpoint blockade therapies have been successful in treating some but not all patients with cancer. Immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSC), that inhibit antitumor immunity and support multiple steps of tumor development are recognized as one of the major obstacles in cancer treatment. Leukocyte Ig-like receptor subfamily B3 (LILRB3), an immune inhibitory receptor containing tyrosine-based inhibitory motifs (ITIM), is expressed solely on myeloid cells. However, it is unknown whether LILRB3 is a critical checkpoint receptor in regulating the activity of immunosuppressive myeloid cells, and whether LILRB3 signaling can be blocked to activate the immune system to treat solid tumors. Here, we report that galectin-4 and galectin-7 induce activation of LILRB3 and that LILRB3 is functionally expressed on immunosuppressive myeloid cells. In some samples from patients with solid cancers, blockade of LILRB3 signaling by an antagonistic antibody inhibited the activity of immunosuppressive myeloid cells. Anti-LILRB3 also impeded tumor development in myeloid-specific LILRB3 transgenic mice through a T cell-dependent manner. LILRB3 blockade may prove to be a novel approach for immunotherapy of solid cancers.
Collapse
Affiliation(s)
- Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- These authors contributed equally
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- These authors contributed equally
| | - Jaehyup Kim
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xun Gui
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jade Homsi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xing Yang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Qi Lou
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Caroline Smith
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Di Modugno F, Di Carlo A, Spada S, Palermo B, D'Ambrosio L, D'Andrea D, Morello G, Belmonte B, Sperduti I, Balzano V, Gallo E, Melchionna R, Panetta M, Campo G, De Nicola F, Goeman F, Antoniani B, Carpano S, Frigè G, Warren S, Gallina F, Lambrechts D, Xiong J, Vincent BG, Wheeler N, Bortone DS, Cappuzzo F, Facciolo F, Tripodo C, Visca P, Nisticò P. Tumoral and stromal hMENA isoforms impact tertiary lymphoid structure localization in lung cancer and predict immune checkpoint blockade response in patients with cancer. EBioMedicine 2024; 101:105003. [PMID: 38340557 PMCID: PMC10869748 DOI: 10.1016/j.ebiom.2024.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Tertiary Lymphoid Structures (TLS) correlate with positive outcomes in patients with NSCLC and the efficacy of immune checkpoint blockade (ICB) in cancer. The actin regulatory protein hMENA undergoes tissue-specific splicing, producing the epithelial hMENA11a linked to favorable prognosis in early NSCLC, and the mesenchymal hMENAΔv6 found in invasive cancer cells and pro-tumoral cancer-associated fibroblasts (CAFs). This study investigates how hMENA isoforms in tumor cells and CAFs relate to TLS presence, localization and impact on patient outcomes and ICB response. METHODS Methods involved RNA-SEQ on NSCLC cells with depleted hMENA isoforms. A retrospective observational study assessed tissues from surgically treated N0 patients with NSCLC, using immunohistochemistry for tumoral and stromal hMENA isoforms, fibronectin, and TLS presence. ICB-treated patient tumors were analyzed using Nanostring nCounter and GeoMx spatial transcriptomics. Multiparametric flow cytometry characterized B cells and tissue-resident memory T cells (TRM). Survival and ICB response were estimated in the cohort and validated using bioinformatics pipelines in different datasets. FINDINGS Findings indicate that hMENA11a in NSCLC cells upregulates the TLS regulator LTβR, decreases fibronectin, and favors CXCL13 production by TRM. Conversely, hMENAΔv6 in CAFs inhibits LTβR-related NF-kB pathway, reduces CXCL13 secretion, and promotes fibronectin production. These patterns are validated in N0 NSCLC tumors, where hMENA11ahigh expression, CAF hMENAΔv6low, and stromal fibronectinlow are associated with intratumoral TLS, linked to memory B cells and predictive of longer survival. The hMENA isoform pattern, fibronectin, and LTβR expression broadly predict ICB response in tumors where TLS indicates an anti-tumor immune response. INTERPRETATION This study uncovers hMENA alternative splicing as an unexplored contributor to TLS-related Tumor Immune Microenvironment (TIME) and a promising biomarker for clinical outcomes and likely ICB responsiveness in N0 patients with NSCLC. FUNDING This work is supported by AIRC (IG 19822), ACC (RCR-2019-23669120), CAL.HUB.RIA Ministero Salute PNRR-POS T4, "Ricerca Corrente" granted by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| | - Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Lorenzo D'Ambrosio
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Daniel D'Andrea
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, New Hall Block - Room 171, Clifton Campus - NG11 8NS, Nottingham, United Kingdom
| | - Gaia Morello
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Vittoria Balzano
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Enzo Gallo
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Mariangela Panetta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Giulia Campo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Francesca De Nicola
- SAFU Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Frauke Goeman
- SAFU Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Barbara Antoniani
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Carpano
- Second Division of Medical Oncology, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, Milan, Italy
| | - Sarah Warren
- NanoString Technologies Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Filippo Gallina
- Thoracic-Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Diether Lambrechts
- Center for Cancer Biology, Herestraat 49 box 912, VIB, 3000, Leuven, Belgium
| | - Jieyi Xiong
- Center for Cancer Biology, Herestraat 49 box 912, VIB, 3000, Leuven, Belgium
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 5206 Marsico Hall, Chapel Hill, NC, 27599, USA
| | - Nathan Wheeler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 5206 Marsico Hall, Chapel Hill, NC, 27599, USA
| | - Dante S Bortone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 5206 Marsico Hall, Chapel Hill, NC, 27599, USA
| | - Federico Cappuzzo
- Second Division of Medical Oncology, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Francesco Facciolo
- Thoracic-Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Paolo Visca
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
17
|
Xiang Z, Yin X, Wei L, Peng M, Zhu Q, Lu X, Guo J, Zhang J, Li X, Zou Y. LILRB4 Checkpoint for Immunotherapy: Structure, Mechanism and Disease Targets. Biomolecules 2024; 14:187. [PMID: 38397424 PMCID: PMC10887124 DOI: 10.3390/biom14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
LILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions. Its ability to induce effector T cell dysfunction and promote T suppressor cell differentiation has been demonstrated, indicating the therapeutic potential of LILRB4 for modulating excessive immune responses, particularly in autoimmune diseases or the induction of transplant tolerance. Additionally, through intervening with LILRB4 molecules, immune system responsiveness can be adjusted, representing significant value in areas such as cancer treatment. Thus, LILRB4 has emerged as a key player in addressing autoimmune diseases, transplant tolerance induction, and other medical issues. In this review, we provide a comprehensive overview of LILRB4, encompassing its structure, expression, and ligand molecules as well as its role as a tolerance receptor. By exploring the involvement of LILRB4 in various diseases, its significance in disease progression is emphasized. Furthermore, we propose that the manipulation of LILRB4 represents a promising immunotherapeutic strategy and highlight its potential in disease prevention, treatment and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (Z.X.); (X.Y.); (L.W.); (M.P.); (Q.Z.); (X.L.); (J.G.); (J.Z.); (X.L.)
| |
Collapse
|
18
|
Jang A, Lichterman JN, Zhong JY, Shoag JE, Garcia JA, Zhang T, Barata PC. Immune approaches beyond traditional immune checkpoint inhibitors for advanced renal cell carcinoma. Hum Vaccin Immunother 2023; 19:2276629. [PMID: 37947202 PMCID: PMC10653627 DOI: 10.1080/21645515.2023.2276629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Renal cell carcinoma (RCC), especially clear cell RCC, is generally considered an immunotherapy-responsive cancer. Recently, the prognosis for patients with locally advanced and metastatic RCC has significantly improved with the regulatory approvals of anti-PD-1/PD-L1/CTLA-4 immune checkpoint inhibitor (ICI)-based regimens. Yet in most cases, RCC will remain initially unresponsive to treatment or will develop resistance over time. Hence, there remains an unmet need to understand what leads to ICI resistance and to develop novel immune and nonimmune treatments to enhance the response to ICIs. In this review, we highlight recently published studies and the latest clinical studies investigating the next generation of immune approaches to locally advanced and metastatic RCC beyond traditional ICIs. These trials include cytokines, gut microbiota-based therapies, novel immune checkpoint agents, vaccines, and chimeric antigen receptor T cells. These agents are being evaluated as monotherapy or in combination with traditional ICIs and will hopefully provide improved outcomes to patients with RCC soon.
Collapse
Affiliation(s)
- Albert Jang
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jake N. Lichterman
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Y. Zhong
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan E. Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jorge A. Garcia
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tian Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pedro C. Barata
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Flies DB, Langermann S, Jensen C, Karsdal MA, Willumsen N. Regulation of tumor immunity and immunotherapy by the tumor collagen extracellular matrix. Front Immunol 2023; 14:1199513. [PMID: 37662958 PMCID: PMC10470046 DOI: 10.3389/fimmu.2023.1199513] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
It has been known for decades that the tumor extracellular matrix (ECM) is dysfunctional leading to loss of tissue architecture and promotion of tumor growth. The altered ECM and tumor fibrogenesis leads to tissue stiffness that act as a physical barrier to immune cell infiltration into the tumor microenvironment (TME). It is becoming increasingly clear that the ECM plays important roles in tumor immune responses. A growing body of data now indicates that ECM components also play a more active role in immune regulation when dysregulated ECM components act as ligands to interact with receptors on immune cells to inhibit immune cell subpopulations in the TME. In addition, immunotherapies such as checkpoint inhibitors that are approved to treat cancer are often hindered by ECM changes. In this review we highlight the ways by which ECM alterations affect and regulate immunity in cancer. More specifically, how collagens and major ECM components, suppress immunity in the complex TME. Finally, we will review how our increased understanding of immune and immunotherapy regulation by the ECM is leading towards novel disruptive strategies to overcome immune suppression.
Collapse
|
20
|
Closset L, Gultekin O, Salehi S, Sarhan D, Lehti K, Gonzalez-Molina J. The extracellular matrix - immune microenvironment crosstalk in cancer therapy: Challenges and opportunities. Matrix Biol 2023; 121:217-228. [PMID: 37524251 DOI: 10.1016/j.matbio.2023.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Targeting the tumour immune microenvironment (TIME) by cancer immunotherapy has led to improved patient outcomes. However, response to these treatments is heterogeneous and cancer-type dependant. The therapeutic activity of classical cancer therapies such as chemotherapy, radiotherapy, and surgical oncology is modulated by alterations of the TIME. A major regulator of immune cell function and resistance to both immune and classical therapies is the extracellular matrix (ECM). Concurrently, cancer therapies reshape the TIME as well as the ECM, causing both pro- and anti-tumour responses. Accordingly, the TIME-ECM crosstalk presents attractive opportunities to improve therapy outcomes. Here, we review the molecular crosstalk between the TIME and the ECM in cancer and its implications in cancer progression and clinical intervention. Additionally, we discuss examples and future directions of ECM and TIME co-targeting in combination with oncological therapies including surgery, chemotherapy, and radiotherapy.
Collapse
Affiliation(s)
- Lara Closset
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Saint-Antoine Research center (CRSA), UMR_S 938, INSERM, Sorbonne Université, Paris F-75012, France
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden
| | - Sahar Salehi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden.
| |
Collapse
|
21
|
Ozbay Kurt FG, Lasser S, Arkhypov I, Utikal J, Umansky V. Enhancing immunotherapy response in melanoma: myeloid-derived suppressor cells as a therapeutic target. J Clin Invest 2023; 133:e170762. [PMID: 37395271 DOI: 10.1172/jci170762] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Despite the remarkable success of immune checkpoint inhibitors (ICIs) in melanoma treatment, resistance to them remains a substantial clinical challenge. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that can suppress antitumor immune responses mediated by T and natural killer cells and promote tumor growth. They are major contributors to ICI resistance and play a crucial role in creating an immunosuppressive tumor microenvironment. Therefore, targeting MDSCs is considered a promising strategy to improve the therapeutic efficacy of ICIs. This Review describes the mechanism of MDSC-mediated immune suppression, preclinical and clinical studies on MDSC targeting, and potential strategies for inhibiting MDSC functions to improve melanoma immunotherapy.
Collapse
Affiliation(s)
- Feyza Gul Ozbay Kurt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| |
Collapse
|
22
|
Kumata S, Notsuda H, Su MT, Saito-Koyama R, Tanaka R, Suzuki Y, Funahashi J, Endo S, Yokota I, Takai T, Okada Y. Prognostic impact of LILRB4 expression on tumor-infiltrating cells in resected non-small cell lung cancer. Thorac Cancer 2023. [PMID: 37290427 PMCID: PMC10363795 DOI: 10.1111/1759-7714.14991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4/ILT3) is an up-and-coming molecule that promotes immune evasion. We have previously reported that LILRB4 facilitates myeloid-derived suppressor cells (MDSCs)-mediated tumor metastasis in mice. This study aimed to investigate the impact of the LILRB4 expression levels on tumor-infiltrating cells on the prognosis of non-small cell lung cancer (NSCLC) patients. METHODS We immunohistochemically evaluated the LILRB4 expression levels of completely resected 239 NSCLC specimens. Whether the blocking of LILRB4 on human PBMC-derived CD33+ MDSCs inhibited the migration ability of lung cancer cells was also examined using transwell migration assay. RESULTS The LILRB4 high group, in which patients with a high LILRB4 expression level on tumor-infiltrating cells, showed a shorter overall survival (OS) (p = 0.013) and relapse-free survival (RFS) (p = 0.0017) compared to the LILRB4 low group. Multivariate analyses revealed that a high LILRB4 expression was an independent factor for postoperative recurrence, poor OS and RFS. Even in the cohort background aligned by propensity score matching, OS (p = 0.023) and RFS (p = 0.0046) in the LILRB4 high group were shorter than in the LILRB4 low group. Some of the LILRB4 positive cells were positive for MDSC markers, CD33 and CD14. Transwell migration assay demonstrated that blocking LILRB4 significantly inhibited the migration of human lung cancer cells cocultured with CD33+ MDSCs. CONCLUSION Together, signals through LILRB4 on tumor-infiltrating cells, including MDSCs, play an essential role in promoting tumor evasion and cancer progression, impacting the recurrence and poor prognosis of patients with resected NSCLC.
Collapse
Affiliation(s)
- Sakiko Kumata
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Thoracic Surgery, Miyagi Cancer Center Hospital, Natori, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ryoko Saito-Koyama
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, National Hospital Organization, Sendai Medical Center, Sendai, Japan
| | - Ryota Tanaka
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuyo Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Junichi Funahashi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Miyamoto S, Chiba T, Itoi S, Su MT, Takai T. LILRB4/gp49B Co-Localizes with Integrin via Fibronectin at Focal Adhesion Sites on Mast Cells. TOHOKU J EXP MED 2023; 259:273-284. [PMID: 36642505 DOI: 10.1620/tjem.2023.j001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mast cells protect a host from invasion by infectious agents and environmental allergens through activation of innate and adaptive immune receptors, their excessive activation being tightly regulated by inhibitory receptors, such as leukocyte immunoglobulin-like receptor (LILR)B4 (gp49B in mice). However, the regulatory mechanism of LILRB4/gp49B expressed on mast cells remains to be clarified in relation to their recently identified ligand, fibronectin (FN), a direct activator of integrins and an indirect stimulator of high-affinity Fc receptor for IgE (FcεRI). Confocal microscopic analysis suggested that gp49B is spatially close to integrin β1 on non-adhered bone marrow-derived mast cells (BMMCs). Their spatial relatedness increases further at robust focal adhesion sites on cells adhering to immobilized FN. However, the confocal fluorescence signal of the α subunit of FcεRI was found to be correlated to neither gp49B nor integrin β1 on non-adherent and adherent BMMCs. Stimulation of FcεRI with an immobilized antigen caused FcεRIα signals to accumulate in an inside area surrounded by robust focal adhesion with a concomitant slight increase in the signal correlation of FcεRIα and integrin β1, accompanied by a less significant increase of the FcεRIα and gp49 correlation. Thus, activating and inhibitory FN receptors integrin and gp49B, respectively, were co-localized via FN at robust focal adhesion sites on BMMCs, while FcεRI was not close to gp49B spatially.
Collapse
Affiliation(s)
- Shotaro Miyamoto
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| | - Takumi Chiba
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| | - So Itoi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| |
Collapse
|
24
|
Morse JW, Rios M, Ye J, Rios A, Zhang CC, Daver NG, DiNardo CD, Zhang N, An Z. Antibody therapies for the treatment of acute myeloid leukemia: exploring current and emerging therapeutic targets. Expert Opin Investig Drugs 2023; 32:107-125. [PMID: 36762937 PMCID: PMC10031751 DOI: 10.1080/13543784.2023.2179482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is the most common and deadly type of leukemia affecting adults. It is typically managed with rounds of non-targeted chemotherapy followed by hematopoietic stem cell transplants, but this is only possible in patients who can tolerate these harsh treatments and many are elderly and frail. With the identification of novel tumor-specific cell surface receptors, there is great conviction that targeted antibody therapies will soon become available for these patients. AREAS COVERED In this review, we describe the current landscape of known target receptors for monospecific and bispecific antibody-based therapeutics for AML. Here, we characterize each of the receptors and targeted antibody-based therapeutics in development, illustrating the rational design behind each therapeutic compound. We then discuss the bispecific antibodies in development and how they improve immune surveillance of AML. For each therapeutic, we also summarize the available pre-clinical and clinical data, including data from discontinued trials. EXPERT OPINION One antibody-based therapeutic has already been approved for AML treatment, the CD33-targeting antibody-drug conjugate, gemtuzumab ozogamicin. Many more are currently in pre-clinical and clinical studies. These antibody-based therapeutics can perform tumor-specific, elaborate cytotoxic functions and there is growing confidence they will soon lead to personalized, safe AML treatment options that induce durable remissions.
Collapse
Affiliation(s)
- Joshua W Morse
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Margarita Rios
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - John Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Adan Rios
- Division of Oncology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
25
|
Peng Z, Lv X, Huang S. Recent Progress on the Role of Fibronectin in Tumor Stromal Immunity and Immunotherapy. Curr Top Med Chem 2022; 22:2494-2505. [PMID: 35708087 DOI: 10.2174/1568026622666220615152647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/20/2023]
Abstract
As a major component of the stromal microenvironment of various solid tumors, the extracellular matrix (ECM) has attracted increasing attention in cancer-related studies. ECM in the tumor stroma not only provides an external barrier and framework for tumor cell adhesion and movement, but also acts as an active regulator that modulates the tumor microenvironment, including stromal immunity. Fibronectin (Fn), as a core component of the ECM, plays a key role in the assembly and remodeling of the ECM. Hence, understanding the role of Fn in the modulation of tumor stromal immunity is of great importance for cancer immunotherapy. Hence, in-depth studies on the underlying mechanisms of Fn in tumors are urgently needed to clarify the current understanding and issues and to identify new and specific targets for effective diagnosis and treatment purposes. In this review, we summarize the structure and role of Fn, its potent derivatives in tumor stromal immunity, and their biological effects and mechanisms in tumor development. In addition, we discuss the novel applications of Fn in tumor treatment. Therefore, this review can provide prospective insight into Fn immunotherapeutic applications in tumor treatment.
Collapse
Affiliation(s)
- Zheng Peng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaolan Lv
- Department of Laboratory Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Shigao Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Air Force Medical University, Xi an, Shaan Xi, China
| |
Collapse
|
26
|
Qian Y, Yang T, Liang H, Deng M. Myeloid checkpoints for cancer immunotherapy. Chin J Cancer Res 2022; 34:460-482. [PMID: 36398127 PMCID: PMC9646457 DOI: 10.21147/j.issn.1000-9604.2022.05.07] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2023] Open
Abstract
Myeloid checkpoints are receptors on the myeloid cell surface which can mediate inhibitory signals to modulate anti-tumor immune activities. They can either inhibit cellular phagocytosis or suppress T cells and are thus involved in the pathogenesis of various diseases. In the tumor microenvironment, besides killing tumor cells by phagocytosis or activating anti-tumor immunity by tumor antigen presentation, myeloid cells could execute pro-tumor efficacies through myeloid checkpoints by interacting with counter-receptors on other immune cells or cancer cells. In summary, myeloid checkpoints may be promising therapeutic targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Yixin Qian
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Ting Yang
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| |
Collapse
|
27
|
Vyas M, Peigney D, Demehri S. Extracellular matrix-natural killer cell interactome: an uncharted territory in health and disease. Curr Opin Immunol 2022; 78:102246. [PMID: 36174410 DOI: 10.1016/j.coi.2022.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 01/29/2023]
Abstract
Extracellular matrix (ECM) constantly undergoes remodeling to maintain the tissue homeostasis and an impaired ECM remodeling is a hallmark of many diseases, including cancer, infections, and inflammatory disorders. ECM has recently become recognized to regulate the immune response in peripheral tissues. Most immune cells express a diverse array of ECM receptors that, upon engagement by their cognate ECM ligands, can regulate their movement and effector functions. Natural killer (NK) cells are innate lymphocytes capable of mounting a swift cytotoxic immunity against cancer and virally infected cells using germline-encoded activating and inhibitory receptors. Regulation of NK cell effector function by ECM proteins in peripheral tissues is an emerging field with major implications for maintaining tolerance in normal tissues and controlling solid cancers, viral infections, and inflammatory diseases. The development of novel therapeutics targeting ECM-NK cell interplay represents a promising strategy to promote health and combat many diseases affecting solid organs.
Collapse
Affiliation(s)
- Maulik Vyas
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Domitille Peigney
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Zacharias M, Kashofer K, Wurm P, Regitnig P, Schütte M, Neger M, Ehmann S, Marsh LM, Kwapiszewska G, Loibner M, Birnhuber A, Leitner E, Thüringer A, Winter E, Sauer S, Pollheimer MJ, Vagena FR, Lackner C, Jelusic B, Ogilvie L, Durdevic M, Timmermann B, Lehrach H, Zatloukal K, Gorkiewicz G. Host and microbiome features of secondary infections in lethal covid-19. iScience 2022; 25:104926. [PMID: 35992303 PMCID: PMC9374491 DOI: 10.1016/j.isci.2022.104926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Secondary infections contribute significantly to covid-19 mortality but driving factors remain poorly understood. Autopsies of 20 covid-19 cases and 14 controls from the first pandemic wave complemented with microbial cultivation and RNA-seq from lung tissues enabled description of major organ pathologies and specification of secondary infections. Lethal covid-19 segregated into two main death causes with either dominant diffuse alveolar damage (DAD) or secondary pneumonias. The lung microbiome in covid-19 showed a reduced biodiversity and increased prototypical bacterial and fungal pathogens in cases of secondary pneumonias. RNA-seq distinctly mirrored death causes and stratified DAD cases into subgroups with differing cellular compositions identifying myeloid cells, macrophages and complement C1q as strong separating factors suggesting a pathophysiological link. Together with a prominent induction of inhibitory immune-checkpoints our study highlights profound alterations of the lung immunity in covid-19 wherein a reduced antimicrobial defense likely drives development of secondary infections on top of SARS-CoV-2 infection. Covid-19 autopsy cohort complemented with microbial cultivation and deep sequencing Major death causes stratify into DAD and secondary pneumonias Prototypical bacterial and fungal agents are found in secondary pneumonias Macrophages and C1q stratify DAD subgroups and indicate immune impairment in lungs
Collapse
Affiliation(s)
- Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Philipp Wurm
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Moritz Schütte
- Alacris Theranostics GmbH, Max-Planck-Strasse 3, 12489 Berlin, Germany
| | - Margit Neger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Sandra Ehmann
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstrasse 6/VI, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstrasse 6/VI, 8010 Graz, Austria
| | - Martina Loibner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstrasse 6/VI, 8010 Graz, Austria
| | - Eva Leitner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Andrea Thüringer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Elke Winter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Stefan Sauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marion J Pollheimer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Fotini R Vagena
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Carolin Lackner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Barbara Jelusic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Lesley Ogilvie
- Alacris Theranostics GmbH, Max-Planck-Strasse 3, 12489 Berlin, Germany
| | - Marija Durdevic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63, 14195 Berlin, Germany
| | - Hans Lehrach
- Alacris Theranostics GmbH, Max-Planck-Strasse 3, 12489 Berlin, Germany.,Max Planck Institute for Molecular Genetics, Ihnestrasse 63, 14195 Berlin, Germany
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| |
Collapse
|
29
|
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547:215887. [PMID: 35995141 DOI: 10.1016/j.canlet.2022.215887] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor and is associated with a high risk of recurrence and distant metastasis. Effective treatment for osteosarcoma, especially advanced osteosarcoma, has stagnated over the past four decades. The advent of immune checkpoint inhibitor (ICI) has transformed the treatment paradigm for multiple malignant tumor types and indicated a potential therapeutic strategy for osteosarcoma. In this review, we discuss recent advances in immune checkpoints, including programmed cell death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and their related ICIs for osteosarcoma treatment. We present the main existing mechanisms of resistance to ICIs therapy in osteosarcoma. Moreover, we summarize the current strategies for improving the efficacy of ICIs in osteosarcoma and address the potential predictive biomarkers of ICIs treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yang Wen
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Tang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
30
|
Takahashi N, Itoi S, Su MT, Endo S, Takai T. Co-localization of Fibronectin Receptors LILRB4/gp49B and Integrin on Dendritic Cell Surface. TOHOKU J EXP MED 2022; 257:171-180. [PMID: 35691913 DOI: 10.1620/tjem.2022.j014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A myeloid immune checkpoint, leukocyte immunoglobulin-like receptor (LILR) B4 (B4, also known as ILT3/CD85k in humans and gp49B in mice) is expressed on dendritic cells (DCs). However, a mode of regulation of DCs by B4/gp49B is not identified yet in relation to the ligand(s) as well as to the counteracting, activation-type receptor. Our recent identification of the physiological/pathological ligand for B4/gp49B as the fibronectin (FN) N-terminal 30-kDa domain poses the question of the relationship between B4/gp49B and a classical FN receptor/cellular activator, integrin, on DCs. Here we showed that FN is not constitutively tethered on the surface of bone marrow-derived cultured DCs (BMDCs) or splenic DCs, even though the FN receptor integrin and gp49B are co-expressed on these cells. Confocal laser scanning microscopic analysis, however, revealed weak correlation of fluorescent signals between gp49B and integrin β1, suggesting their partial co-localization on the BMDC surface even in the absence of FN. We found that the plating of BMDCs onto immobilized FN induced tyrosine phosphorylation of focal adhesion kinase (FAK) and spleen tyrosine kinase (Syk). In the absence of gp49B, while the FAK phosphorylation level was virtually unchanged, that of phosphorylation of Syk was markedly augmented. These results suggested that the immobilized FN induced a crosstalk between gp49B and integrin in terms of the intracellular signaling of BMDCs, in which gp49B suppressed the integrin-mediated pro-inflammatory cascade. Our observations may provide a clue for elucidating the mechanism of the therapeutic efficacy of B4/gp49B blocking in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Naoyuki Takahashi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| | - So Itoi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University
| |
Collapse
|
31
|
Itoi S, Takahashi N, Saito H, Miyata Y, Su MT, Kezuka D, Itagaki F, Endo S, Fujii H, Harigae H, Sakamoto Y, Takai T. Myeloid immune checkpoint ILT3/LILRB4/gp49B can co-tether fibronectin with integrin on macrophages. Int Immunol 2022; 34:435-444. [PMID: 35689642 DOI: 10.1093/intimm/dxac023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/08/2022] [Indexed: 12/16/2022] Open
Abstract
LILRB4 (B4, also known as ILT3/CD85k) is an immune checkpoint of myeloid-lineage cells, albeit its mode of function remains obscure. Our recent identification of a common ligand for both human B4 and its murine ortholog gp49B as the fibronectin (FN) N-terminal 30-kDa domain poses the question of how B4/gp49B regulate cellular activity upon recognition of FN in the plasma and/or the extracellular matrix. Since FN in the extracellular matrix is tethered by FN-binding integrins, we hypothesized that B4/gp49B would tether FN in cooperation with integrins on the cell surface, thus they should be in close vicinity to integrins spatially. This scenario suggests a mode of function of B4/gp49B by which the FN-induced signal is regulated. FN pull-down complex was found to contain gp49B and integrin β1 in bone marrow-derived macrophages. The confocal fluorescent signals of the three molecules on the intrinsically FN-tethering macrophages were correlated to each other. When FN-poor macrophages adhered to culture plate, the gp49-integrin β1 signal correlation increased at the focal adhesion, supporting the notion that gp49B and integrin β1 become spatially closer to each other there. While adherence of RAW264.7 and THP-1 cells to immobilized FN induced phosphorylation of spleen tyrosine kinase, whose level was augmented under B4/gp49B deficiency. Thus, we concluded that B4/gp49B can co-tether fibronectin in cooperation with integrin in the cis configuration on the same cell, forming a B4/gp49B-FN-integrin triplet as a regulatory unit of focal adhesion-dependent proinflammatory signal in macrophages.
Collapse
Affiliation(s)
- So Itoi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naoyuki Takahashi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Haruka Saito
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yusuke Miyata
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Dai Kezuka
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Fumika Itagaki
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yuzuru Sakamoto
- Department of Human Science, Faculty of Liberal Arts, Tohoku Gakuin University, Sendai 981-3193, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
32
|
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an inhibitory receptor in the LILR family mainly expressed on normal and malignant human cells of myeloid origin. By binding to ligands, LILRB4 is activated and subsequently recruits adaptors to cytoplasmic immunoreceptor tyrosine inhibitory motifs to initiate different signaling cascades, thus playing an important role in physiological and pathological conditions, including autoimmune diseases, microbial infections, and cancers. In normal myeloid cells, LILRB4 regulates intrinsic cell activation and differentiation. In disease-associated or malignant myeloid cells, LILRB4 is significantly correlated with disease severity or patient survival and suppresses T cells, thereby participating in the pathogenesis of various diseases. In summary, LILRB4 functions as an immune checkpoint on myeloid cells and may be a promising therapeutic target for various human immune diseases, especially for cancer immunotherapy.
Collapse
|
33
|
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third leading cause of cancer-related death worldwide. Single-agent anti-PD-1 immune checkpoint inhibitors (ICIs) demonstrated promising efficacy in early-phase trials, a finding that was not confirmed in phase III studies. The combination of atezolizumab (an anti-PD-L1 ICI) with bevacizumab (an anti-VEGF antibody) was approved as first-line therapy in 2020, however, with significant improvement in response rate, progression-free survival, and overall survival in comparison with the previous standard of care, sorafenib. Numerous ongoing clinical trials are assessing ICIs in combination with each other or with targeted agents, and also in earlier stages with local therapies. This review summarizes the latest concepts in the use of ICIs for the management of HCC. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rubens Copia Sperandio
- Centro de Oncologia e Hematologia Einstein Família Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil, 05652-900
| | - Roberto Carmagnani Pestana
- Centro de Oncologia e Hematologia Einstein Família Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil, 05652-900
| | - Beatriz Viesser Miyamura
- Departamento de Medicina, Hospital da Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil, 01221-010
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|