1
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Chen M, Zhao D. Invisible Bridges: Unveiling the Role and Prospects of Tunneling Nanotubes in Cancer Therapy. Mol Pharm 2024; 21:5413-5429. [PMID: 39373242 PMCID: PMC11539062 DOI: 10.1021/acs.molpharmaceut.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Tunneling nanotubes (TNTs) are essential intercellular communication channels that significantly impact cancer pathophysiology, affecting tumor progression and resistance. This review methodically examines the mechanisms of TNTs formation, their structural characteristics, and their functional roles in material and signal transmission between cells. Highlighting their regulatory functions within the tumor microenvironment, TNTs are crucial for modulating cell survival, proliferation, drug resistance, and immune evasion. The review critically evaluates the therapeutic potential of TNTs, focusing on their applications in targeted drug delivery and gene therapy. It also proposes future research directions to thoroughly understand TNTs biogenesis, identify cell-specific molecular targets, and develop advanced technologies for the real-time monitoring of TNTs. By integrating insights from molecular biology, nanotechnology, and immunology, this review highlights the transformative potential of TNTs in advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Meiru Chen
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
- Department
of Gastroenterology, Hengshui People’s
Hospital, Hengshui, Hebei 053000, China
| | - Dongqiang Zhao
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
3
|
Pino MTL, Rocca MV, Acosta LH, Cabilla JP. Challenging the Norm: The Unrecognized Impact of Soluble Guanylyl Cyclase Subunits in Cancer. Int J Mol Sci 2024; 25:10053. [PMID: 39337539 PMCID: PMC11432225 DOI: 10.3390/ijms251810053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Since the discovery of nitric oxide (NO), a long journey has led us to the present, during which much knowledge has been gained about its pathway members and their roles in physiological and various pathophysiological conditions. Soluble guanylyl cyclase (sGC), the main NO receptor composed of the sGCα1 and sGCβ1 subunits, has been one of the central figures in this narrative. However, the sGCα1 and sGCβ1 subunits remained obscured by the focus on sGC's enzymatic activity for many years. In this review, we restore the significance of the sGCα1 and sGCβ1 subunits by compiling and analyzing available but previously overlooked information regarding their roles beyond enzymatic activity. We delve into the basics of sGC expression regulation, from its transcriptional regulation to its interaction with proteins, placing particular emphasis on evidence thus far demonstrating the actions of each sGC subunit in different tumor models. Exploring the roles of sGC subunits in cancer offers a valuable opportunity to enhance our understanding of tumor biology and discover new therapeutic avenues.
Collapse
Affiliation(s)
- María Teresa L Pino
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - María Victoria Rocca
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - Lucas H Acosta
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - Jimena P Cabilla
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| |
Collapse
|
4
|
Hruba L, Das V, Hajduch M, Dzubak P. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance. Biochem Pharmacol 2023; 215:115741. [PMID: 37567317 DOI: 10.1016/j.bcp.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Nucleoside-based drugs, recognized as purine or pyrimidine analogs, have been potent therapeutic agents since their introduction in 1950, deployed widely in the treatment of diverse diseases such as cancers, myelodysplastic syndromes, multiple sclerosis, and viral infections. These antimetabolites establish complex interactions with cellular molecular constituents, primarily via activation of phosphorylation cascades leading to consequential interactions with nucleic acids. However, the therapeutic efficacy of these agents is frequently compromised by the development of drug resistance, a continually emerging challenge in their clinical application. This comprehensive review explores the mechanisms of resistance to nucleoside-based drugs, encompassing a wide spectrum of phenomena from alterations in membrane transporters and activating kinases to changes in drug elimination strategies and DNA damage repair mechanisms. The critical analysis in this review underlines complex interactions of drug and cell and also guides towards novel therapeutic strategies to counteract resistance. The development of targeted therapies, novel nucleoside analogs, and synergistic drug combinations are promising approaches to restore tumor sensitivity and improve patient outcomes.
Collapse
Affiliation(s)
- Lenka Hruba
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic.
| |
Collapse
|
5
|
Esquivel B, Verzosa C, Katzov-Eckert H, Garcia-Patino M. Pharmacogenetic Algorithms. PHARMACOGENOMICS IN CLINICAL PRACTICE 2023:105-131. [DOI: 10.1007/978-3-031-45903-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
7
|
Marin JJG, Monte MJ, Macias RIR, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Cives-Losada C, Di Giacomo S, Gonzalez-Gallego J, Mauriz JL, Efferth T, Briz O. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers. Cancers (Basel) 2022; 14:cancers14143524. [PMID: 35884584 PMCID: PMC9320734 DOI: 10.3390/cancers14143524] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One-third of the approximately 10 million deaths yearly caused by cancer worldwide are due to hepatobiliary, pancreatic, and gastrointestinal tumors. One primary reason for this high mortality is the lack of response of these cancers to pharmacological treatment. More than 100 genes have been identified as responsible for seven mechanisms of chemoresistance, but only a few of them play a critical role. These include ABC proteins (mainly MDR1, MRP1-6, and BCRP), whose expression pattern greatly determines the individual sensitivity of each tumor to pharmacotherapy. Abstract Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Rocio I. R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Javier Gonzalez-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Jose L. Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| |
Collapse
|
8
|
Kong L, Du J, Gu J, Deng J, Guo Y, Tao B, Jin C, Fu D, Li J. Gemcitabine-Loaded Albumin Nanoparticle Exerts An Antitumor Effect on Gemcitabine-Resistant Pancreatic Cancer Cells Induced by MDR1 and MRP1 Overexpression in Vitro. Front Surg 2022; 9:890412. [PMID: 35656085 PMCID: PMC9152182 DOI: 10.3389/fsurg.2022.890412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Gemcitabine (GEM) is the first-line chemotherapeutic drug for pancreatic cancer treatment in clinical practice. However, many reasons can reduce the efficacy of GEM, among which the high expression of ATP-binding cassette (ABC) transporters is a significant factor. In this study, we aimed to investigate the antitumor effect of gemcitabine-loaded human serum albumin nanoparticle (GEM-HSA-NP) on GEM-resistant pancreatic cancer cells induced by the high expression of ABC transporters, namely multidrug resistance protein 1/P-gp/ABCB1 (MDR1) and multidrug resistance-associated protein 1/ ABCC1 (MRP1). Methods MDR1 and MRP1 were stably overexpressed via lentiviral transduction in the pancreatic cancer cell lines BxPC3 and PANC1. Proliferation inhibition assays, cell cycle arrest and apoptosis analyses were conducted to examine the antitumor effect of GEM-HSA-NP. In addition, intracellular ATP levels were determined to explore the potential mechanisms implicated preliminarily. Results When administered to GEM-resistant cancer cells, GEM-HSA-NP displayed its antitumor effect by promoting the inhibition of proliferation, cell cycle arrest, and apoptosis induction. Intracellular ATP depletion, caused by the albumin component of GEM-HSA-NP was proposed to be potentially involved in the modulation of ABC transporter activity. Conclusion GEM-HSA-NP can effectively overcome GEM-resistance induced by MDR1 and MRP1 overexpression, which highlights its potential value in a clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ji Li
- Correspondence: Ji Li
Deliang Fu
| |
Collapse
|
9
|
Franczyk B, Rysz J, Gluba-Brzózka A. Pharmacogenetics of Drugs Used in the Treatment of Cancers. Genes (Basel) 2022; 13:311. [PMID: 35205356 PMCID: PMC8871547 DOI: 10.3390/genes13020311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pharmacogenomics is based on the understanding of the individual differences in drug use, the response to drug therapy (efficacy and toxicity), and the mechanisms underlying variable drug responses. The identification of DNA variants which markedly contribute to inter-individual variations in drug responses would improve the efficacy of treatments and decrease the rate of the adverse side effects of drugs. This review focuses only on the impact of polymorphisms within drug-metabolizing enzymes on drug responses. Anticancer drugs usually have a very narrow therapeutic index; therefore, it is very important to use appropriate doses in order to achieve the maximum benefits without putting the patient at risk of life-threatening toxicities. However, the adjustment of the appropriate dose is not so easy, due to the inheritance of specific polymorphisms in the genes encoding the target proteins and drug-metabolizing enzymes. This review presents just a few examples of such polymorphisms and their impact on the response to therapy.
Collapse
Affiliation(s)
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
10
|
Kato K, Nguyen KT, Decker CW, Silkwood KH, Eck SM, Hernandez JB, Garcia J, Han D. Tunneling nanotube formation promotes survival against 5-fluorouracil in MCF-7 breast cancer cells. FEBS Open Bio 2021; 12:203-210. [PMID: 34738322 PMCID: PMC8727926 DOI: 10.1002/2211-5463.13324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Tunneling nanotubes (TNTs) are F-actin-based open-ended tubular extensions that form following stresses, such as nutritional deprivation and oxidative stress. The chemotherapy agent 5-fluorouracil (5-FU) represents a significant stressor to cancer cells and induces thymidine deficiency, a state similar to nutritional deprivation. However, the ability of 5-FU to induce TNT formation in cancer cells and potentially enhance survival has not been explored. In this study, we examined whether 5-FU can induce TNT formation in MCF-7 breast cancer cells. Cytotoxic doses of 5-FU (150-350 μm) were observed to significantly induce TNT formation beginning at 24 h after exposure. TNTs formed following 5-FU treatment probably originated as extensions of gap junctions as MCF-7 cells detach from cell clusters. TNTs act as conduits for exchange of cellular components and we observed mitochondrial exchange through TNTs following 5-FU treatment. 5-FU-induced TNT formation was inhibited by over 80% following treatment with the F-actin-depolymerizing agent, cytochalasin B (cytoB). The inhibition of TNTs by cytoB corresponded with increased 5-FU-induced cytotoxicity by 30-62% starting at 48 h, suggesting TNT formation aides in MCF-7 cell survival against 5-FU. Two other widely used chemotherapy agents, docetaxel and doxorubicin induced TNT formation at much lower levels than 5-FU. Our work suggests that the therapeutic targeting of TNTs may increase 5-FU chemotherapy efficacy and decrease drug resistance in cancer cells, and these findings merits further investigation.
Collapse
Affiliation(s)
- Kaylyn Kato
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Kim Tho Nguyen
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Carl W Decker
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Kai H Silkwood
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Sydney M Eck
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Jeniffer B Hernandez
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Jerome Garcia
- Department of Biology, University of LaVerne, CA, USA
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| |
Collapse
|
11
|
Theile D, Wizgall P. Acquired ABC-transporter overexpression in cancer cells: transcriptional induction or Darwinian selection? Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1621-1632. [PMID: 34236499 PMCID: PMC8298356 DOI: 10.1007/s00210-021-02112-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Acquired multidrug resistance (MDR) in tumor diseases has repeatedly been associated with overexpression of ATP-binding cassette transporters (ABC-transporters) such as P-glycoprotein. Both in vitro and in vivo data suggest that these efflux transporters can cause MDR, albeit its actual relevance for clinical chemotherapy unresponsiveness remains uncertain. The overexpression can experimentally be achieved by exposure of tumor cells to cytotoxic drugs. For simplification, the drug-mediated transporter overexpression can be attributed to two opposite mechanisms: First, increased transcription of ABC-transporter genes mediated by nuclear receptors sensing the respective compound. Second, Darwinian selection of sub-clones intrinsically overexpressing drug transporters being capable of extruding the respective drug. To date, there is no definite data indicating which mechanism truly applies or whether there are circumstances promoting either mode of action. This review summarizes experimental evidence for both theories, suggests an algorithm discriminating between these two modes, and finally points out future experimental approaches of research to answer this basic question in cancer pharmacology.
Collapse
Affiliation(s)
- Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Pauline Wizgall
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Regulation of MRP4 Expression by circHIPK3 via Sponging miR-124-3p/miR-4524-5p in Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9050497. [PMID: 33946595 PMCID: PMC8147194 DOI: 10.3390/biomedicines9050497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance-associated protein 4 (MRP4), a member of the adenosine triphosphate (ATP) binding cassette transporter family, pumps various molecules out of the cell and is involved in cell communication and drug distribution. Several studies have reported the role of miRNAs in downregulating the expression of MRP4. However, regulation of MRP4 by circular RNA (circRNA) is yet to be elucidated. In this study, MRP4 was significantly upregulated in hepatocellular carcinoma (HCC) tissues compared to the adjacent noncancerous tissues. Computational prediction, luciferase reporter assay and miRNA transfection were used to investigate the interaction between miRNAs and MRP4. miR-124-3p and miR-4524-5p reduced the expression of MRP4 at the protein but not mRNA level. Circular RNA in vivo precipitation and luciferase reporter assays demonstrated that circHIPK3, as a competitive endogenous RNA, binds with miR-124-3p and miR-4524-5p. Further, knockdown of circHIPK3 resulted in downregulation of MRP4 protein, whereas cotransfection of circHIPK3-siRNA and miR-124-3p or miR-4524-5p inhibitors restored its expression. In conclusion, we report that miR-4524-5p downregulates the expression of MRP4 and circHIPK3 regulates MRP4 expression by sponging miR-124-3p and miR-4524-5p for the first time. Our results may provide novel insights into the prevention of MRP4-related proliferation and multiple drug resistance in HCC.
Collapse
|
13
|
Yang J, Liu X, Huang Y, He L, Zhang W, Ren J, Wang Y, Wu J, Wu X, Shan L, Yang X, Sun L, Liang J, Zhang Y, Shang Y. TRPS1 drives heterochromatic origin refiring and cancer genome evolution. Cell Rep 2021; 34:108814. [PMID: 33691114 DOI: 10.1016/j.celrep.2021.108814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Exploitation of naturally occurring genetic mutations could empower the discovery of novel aspects of established cancer genes. We report here that TRPS1, a gene linked to the tricho-rhino-phalangeal syndrome (TRPS) and recently identified as a potential breast cancer driver, promotes breast carcinogenesis through regulating replication. Epigenomic decomposition of TRPS1 landscape reveals nearly half of H3K9me3-marked heterochromatic origins are occupied by TRPS1, where it encourages the chromatin loading of APC/C, resulting in uncontrolled origin refiring. TRPS1 binds to the genome through its atypical H3K9me3 reading via GATA and IKAROS domains, while TRPS-related mutations affect its chromatin binding, replication boosting, and tumorigenicity. Concordantly, overexpression of wild-type but not TRPS-associated mutants of TRPS1 is sufficient to drive cancer genome amplifications, which experience an extrachromosomal route and dynamically evolve to confer therapeutic resistance. Together, these results uncover a critical function of TRPS1 in driving heterochromatin origin firing and breast cancer genome evolution.
Collapse
Affiliation(s)
- Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Lu X, Long Y, Li X, Zhang L, Li Q, Wen H, Zhong S, Cui Z. Generation of Knockout and Transgenic Zebrafish to Characterize Abcc4 Functions in Detoxification and Efflux of Lead. Int J Mol Sci 2021; 22:ijms22042054. [PMID: 33669601 PMCID: PMC7923114 DOI: 10.3390/ijms22042054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/25/2022] Open
Abstract
Lead (Pb) is one of the major heavy metals that are toxic to vertebrates and usually considered as environmental pollutants. ABCC4/MRP4 is an organic anion transporter that mediates cellular efflux of a wide range of exogenous and endogenous compounds such as cyclic nucleotides and anti-cancer drugs; however, it remains unclear whether ABCC4 and its orthologs function in the detoxification and excretion of toxic lead. In this study, we found that the transcriptional and translational expression of zebrafish abcc4 was significantly induced under lead exposure in developing zebrafish embryos and adult tissues. Overexpression of zebrafish Abcc4 markedly decreased the cytotoxicity and accumulation of lead in pig renal proximal tubule cell line (LLC-PK1 cells). To further understand the functions of zebrafish Abcc4 in lead detoxification, the clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system was used to create an abcc4−/− mutant zebrafish line. In comparison with the wild-type (WT) zebrafish, the abcc4−/− mutants showed a higher death rate and lead accumulation upon exposure to lead. Furthermore, a stable abcc4-transgenic zebrafish line was successfully generated, which exerted stronger ability to detoxify and excrete lead than WT zebrafish. These findings indicate that zebrafish Abcc4 plays a crucial role in lead detoxification and cellular efflux and could be used as a potential biomarker to monitor lead contamination in a water environment.
Collapse
Affiliation(s)
- Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (H.W.)
- Department of Genetics, Wuhan University, Wuhan 430071, China; (X.L.); (L.Z.)
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.L.); (Q.L.)
| | - Xixi Li
- Department of Genetics, Wuhan University, Wuhan 430071, China; (X.L.); (L.Z.)
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.L.); (Q.L.)
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lang Zhang
- Department of Genetics, Wuhan University, Wuhan 430071, China; (X.L.); (L.Z.)
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.L.); (Q.L.)
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (H.W.)
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan 430071, China; (X.L.); (L.Z.)
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China
- Correspondence: (S.Z.); (Z.C.); Tel.: +86-27-68759702 (S.Z.); +86-27-68780090 (Z.C.)
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.L.); (Q.L.)
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (S.Z.); (Z.C.); Tel.: +86-27-68759702 (S.Z.); +86-27-68780090 (Z.C.)
| |
Collapse
|
15
|
Guo Q, Li X, Cui MN, Sun JL, Ji HY, Ni BB, Yan MX. CD13: A Key Player in Multidrug Resistance in Cancer Chemotherapy. Oncol Res 2020; 28:533-540. [PMID: 32532363 PMCID: PMC7751223 DOI: 10.3727/096504020x15919605976853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most serious diseases that are harmful to human health. Systemic chemotherapy is an optimal therapeutic strategy for the treatment of cancer, but great difficulty has been encountered in its administration in the form of multidrug resistance (MDR). As an enzyme on the outer cell surface, CD13 is documented to be involved in the MDR development of tumor cells. In this review, we will focus on the role of CD13 in MDR generation based on the current evidence.
Collapse
Affiliation(s)
- Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Meng-Na Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Jia-Lin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Hong-Yan Ji
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Bei-Bei Ni
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Mei-Xing Yan
- Department of Pharmacy, Qingdao Women and Childrens HospitalQingdao, ShandongP.R. China
| |
Collapse
|
16
|
Ray A, Shelly A, Roy S, Mazumder S. Arsenic induced alteration in Mrp-1 like activity leads to zebrafish hepatocyte apoptosis: The cellular GSH connection. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103427. [PMID: 32470611 DOI: 10.1016/j.etap.2020.103427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/19/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Multidrug-resistance protein-1 facilitates the efflux of arsenic conjugated with reduced glutathione nonetheless; the relation between Mrp-1 ATPase activity and cellular GSH levels is contentious. To study this, Mrp-1-ATPase activity was measured in 5 μM arsenic trioxide exposed zebrafish hepatocytes (ZFH) and correlated with intracellular GSH levels. Alongside, mrp-1 gene expression as well as Mrp-1 protein level was also monitored. Diverse mode of Mrp-1 inhibition was reflected from differential level of Km and Vmax of Mrp-1 at different time points. 3 h post-arsenic treatment demonstrated non-competitive inhibition. At 6 h, there was significant increase in Km and ZFH death, suggesting reduced binding affinity of Mrp-1 for ATP. Increased caspase-9-cytochromeC-ATP levels (putative apoptosome), reinforced ZFH apoptosis. The increase in Vmax coupled with reduced substrate affinity of Mrp-1 suggests malfunctioning in arsenic- tolerance mechanisms. We posit the triggering glutathione level regulate arsenic tolerance in ZFH. Irreversible impairment of ATP binding to Mrp-1 culminates in arsenic-induced ZFH apoptosis.
Collapse
Affiliation(s)
- Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Sonali Roy
- Natural Product Chemistry Group, CSTD, CSIR North East Institute of Science & Technology, Jorhat 785006, India; National Institute of Pharmaceutical Education and Research, Guwahati 781125, India.
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India; Faculty of Life Sciences & Biotechnology, South Asian University, New Delhi 110 021, India.
| |
Collapse
|
17
|
Lozano E, Asensio M, Perez-Silva L, Banales JM, Briz O, Marin JJG. MRP3-Mediated Chemoresistance in Cholangiocarcinoma: Target for Chemosensitization Through Restoring SOX17 Expression. Hepatology 2020; 72:949-964. [PMID: 31863486 DOI: 10.1002/hep.31088] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS A limitation for the treatment of unresectable cholangiocarcinoma (CCA) is its poor response to chemotherapy, which is partly due to reduction of intracellular levels of anticancer drugs through ATP-binding cassette (ABC) pumps. Low expression of SOX17 (SRY-box containing gene 17), a transcription factor that promotes biliary differentiation and phenotype maintenance, has been associated with cholangiocyte malignant transformation. Whether SOX17 is also involved in CCA chemoresistance is investigated in this study. APPROACH AND RESULTS SOX17 expression in human CCA cells (EGI-1 and TFK-1) selectively potentiated cytotoxicity of SN-38, 5-fluorouracil and mitoxantrone, but not that of gemcitabine, capecitabine, cisplatin, or oxaliplatin. The analysis of the resistome by TaqMan low-density arrays revealed changes affecting primarily ABC pump expression. Single-gene quantitative real-time PCR, immunoblot, and immunofluorescence analyses confirmed that MRP3 (multidrug resistance associated protein 3), which was highly expressed in CCA human tumors, was down-regulated in SOX17-transduced CCA cells. The substrate specificity of this pump matched that of SOX17-induced in vitro selective chemosensitization. Functional studies showed lower ability of SOX17-expressing CCA cells to extrude specific MRP3 substrates. Reporter assay of MRP3 promoter (ABCC3pr) revealed that ABCC3pr activity was inhibited by SOX17 expression and SOX2/SOX9 silencing. The latter was highly expressed in CCA. Moreover, SOX2/9, but not SOX17, induced altered electrophoretic mobility of ABCC3pr, which was prevented by SOX17. The growth of CCA tumors subcutaneously implanted into immunodeficient mice was inhibited by 5-fluorouracil. This effect was enhanced by co-treatment with adenoviral vectors encoding SOX17. CONCLUSIONS SOX9/2/17 are involved in MRP3-mediated CCA chemoresistance. Restored SOX17 expression, in addition to its tumor suppression effect, induces selective chemosensitization due to MRP3 down-regulation and subsequent intracellular drug accumulation.
Collapse
Affiliation(s)
- Elisa Lozano
- Experimental Hepatology and Drug Targeting, IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases, Carlos III National Health Institute, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting, IBSAL, University of Salamanca, Salamanca, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting, IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesus M Banales
- National Institute for the Study of Liver and Gastrointestinal Diseases, Carlos III National Health Institute, Madrid, Spain.,Department of Hepatology and Gastroenterology, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain.,Ikerbasque, Bilbao, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting, IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases, Carlos III National Health Institute, Madrid, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting, IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases, Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
18
|
Multidrug transporter MRP4/ABCC4 as a key determinant of pancreatic cancer aggressiveness. Sci Rep 2020; 10:14217. [PMID: 32848164 PMCID: PMC7450045 DOI: 10.1038/s41598-020-71181-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Recent findings show that MRP4 is critical for pancreatic ductal adenocarcinoma (PDAC) cell proliferation. Nevertheless, the significance of MRP4 protein levels and function in PDAC progression is still unclear. The aim of this study was to determine the role of MRP4 in PDAC tumor aggressiveness. Bioinformatic studies revealed that PDAC samples show higher MRP4 transcript levels compared to normal adjacent pancreatic tissue and circulating tumor cells express higher levels of MRP4 than primary tumors. Also, high levels of MRP4 are typical of high-grade PDAC cell lines and associate with an epithelial-mesenchymal phenotype. Moreover, PDAC patients with high levels of MRP4 depict dysregulation of pathways associated with migration, chemotaxis and cell adhesion. Silencing MRP4 in PANC1 cells reduced tumorigenicity and tumor growth and impaired cell migration. Transcriptomic analysis revealed that MRP4 silencing alters PANC1 gene expression, mainly dysregulating pathways related to cell-to-cell interactions and focal adhesion. Contrarily, MRP4 overexpression significantly increased BxPC-3 growth rate, produced a switch in the expression of EMT markers, and enhanced experimental metastatic incidence. Altogether, our results indicate that MRP4 is associated with a more aggressive phenotype in PDAC, boosting pancreatic tumorigenesis and metastatic capacity, which could finally determine a fast tumor progression in PDAC patients.
Collapse
|
19
|
Dissecting Molecular Features of Gliomas: Genetic Loci and Validated Biomarkers. Int J Mol Sci 2020; 21:ijms21020685. [PMID: 31968687 PMCID: PMC7014190 DOI: 10.3390/ijms21020685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, several studies focused on the genetics of gliomas. This allowed identifying several germline loci that contribute to individual risk for tumor development, as well as various somatic mutations that are key for disease classification. Unfortunately, none of the germline loci clearly confers increased risk per se. Contrariwise, somatic mutations identified within the glioma tissue define tumor genotype, thus representing valid diagnostic and prognostic markers. Thus, genetic features can be used in glioma classification and guided therapy. Such copious genomic variabilities are screened routinely in glioma diagnosis. In detail, Sanger sequencing or pyrosequencing, fluorescence in-situ hybridization, and microsatellite analyses were added to immunohistochemistry as diagnostic markers. Recently, Next Generation Sequencing was set-up as an all-in-one diagnostic tool aimed at detecting both DNA copy number variations and mutations in gliomas. This approach is widely used also to detect circulating tumor DNA within cerebrospinal fluid from patients affected by primary brain tumors. Such an approach is providing an alternative cost-effective strategy to genotype all gliomas, which allows avoiding surgical tissue collection and repeated tumor biopsies. This review summarizes available molecular features that represent solid tools for the genetic diagnosis of gliomas at present or in the next future.
Collapse
|
20
|
Coix Seed Extract Enhances the Anti-Pancreatic Cancer Efficacy of Gemcitabine through Regulating ABCB1- and ABCG2-Mediated Drug Efflux: A Bioluminescent Pharmacokinetic and Pharmacodynamic Study. Int J Mol Sci 2019; 20:ijms20215250. [PMID: 31652737 PMCID: PMC6862065 DOI: 10.3390/ijms20215250] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/29/2023] Open
Abstract
A deep insight into the function and kinetics of ATP-binding cassette (ABC) transporters may aid in the development of pharmaceutics that can minimize the particular facet of chemo-resistance. We utilized bioluminescence imaging to monitor the ABC transporter mediated intracellular drug efflux function. We also investigated the potential association between the intracellular bioluminescent pharmacokinetic profiles and the anti-tumor efficacy of the coix seed extract and gemcitabine against pancreatic cancer cells in vitro and in vivo. The bioluminescent pharmacokinetic parameters and pharmacodynamic index (IC50 and TGI) were determined. The expression levels ABCB1 and ABCG2 were assessed. Results showed that coix seed extract could synergistically enhance the anti-cancer efficacy of gemcitabine (p < 0.05). Meanwhile coix seed extract alone or in combination with gemcitabine could significantly increase the AUCluc while decreasing the Kluc (p < 0.01). Western blot and immunohistochemistry assay demonstrated that coix seed extract could significantly mitigate gemcitabine-induced upregulation of ABCB1 and ABCG2 protein. The Pearson correlation analysis demonstrated that the bioluminescent pharmacokinetic parameters and pharmacodynamic index have strong association in vitro and in vivo. In conclusion coix seed extract could augment the efficacy of gemcitabine therapy in pancreatic cancer cells may at least partly due to the alteration of ABC transporter-mediated drug efflux function.
Collapse
|
21
|
Aier I, Semwal R, Dhara A, Sen N, Varadwaj PK. An integrated epigenome and transcriptome analysis identifies PAX2 as a master regulator of drug resistance in high grade pancreatic ductal adenocarcinoma. PLoS One 2019; 14:e0223554. [PMID: 31622355 PMCID: PMC6797122 DOI: 10.1371/journal.pone.0223554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notoriously difficult to treat due to its aggressive, ever resilient nature. A major drawback lies in its tumor grade; a phenomenon observed across various carcinomas, where highly differentiated and undifferentiated tumor grades, termed as low and high grade respectively, are found in the same tumor. One eminent problem due to such heterogeneity is drug resistance in PDAC. This has been implicated to ABC transporter family of proteins that are upregulated in PDAC patients. However, the regulation of these transporters with respect to tumor grade in PDAC is not well understood. To combat these issues, a study was designed to identify novel genes that might regulate drug resistance phenotype and be used as targets. By integrating epigenome with transcriptome data, several genes were identified based around high grade PDAC. Further analysis indicated oncogenic PAX2 transcription factor as a novel regulator of drug resistance in high grade PDAC cell lines. It was observed that silencing of PAX2 resulted in increased susceptibility of high grade PDAC cells to various chemotherapeutic drugs. Mechanistically, the study showed that PAX2 protein can bind and alter transcriptionally; expression of many ABC transporter genes in high grade PDAC cell lines. Overall, the study indicated that PAX2 significantly upregulated ABC family of genes resulting in drug resistance and poor survival in PDAC.
Collapse
Affiliation(s)
- Imlimaong Aier
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology—Allahabad, Uttar Pradesh, India
| | - Rahul Semwal
- Department of Information Technology, Indian Institute of Information Technology—Allahabad, Uttar Pradesh, India
| | - Aiindrila Dhara
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Nirmalya Sen
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
- S.N.Bose Innovation Centre, University Of Kalyani, Nadia, West Bengal, India
| | - Pritish Kumar Varadwaj
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology—Allahabad, Uttar Pradesh, India
| |
Collapse
|
22
|
Wang B, Shen C, Li Y, Zhang T, Huang H, Ren J, Hu Z, Xu J, Xu B. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther 2019; 12:5751-5765. [PMID: 31410021 PMCID: PMC6645696 DOI: 10.2147/ott.s208924] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Chemotherapy remains a primary treatment method for advanced pancreatic cancer. However, chemotherapy resistance can influence the therapeutic effect of pancreatic cancer. The resistance mechanism of chemotherapeutic agents such as gemcitabine, which is an agent typically used to treat pancreatic cancer, is complicated and can be influenced by genes and the environment. Oridonin is a tetracyclic diterpenoid compound extracted from the traditional Chinese herb Rabdosia labtea. Oridonin may overcome drug resistance in pancreatic cancer, but researching pancreatic cancer drug resistance of chemotherapy by oridonin is not completely understood. Purpose: The present study aimed to assess the impact of oridonin on multidrug resistance proteins, apoptosis-associated proteins and energy metabolism in gemcitabine-resistant PANC-1 (PANC-1/Gem) pancreatic cancer cells. Methods: Gemcitabine resistance in PANC-1/Gem cells was induced using a concentration gradient of gemcitabine. Cell Counting Kit-8 assays were used to detect the impact of gemcitabine and oridonin on the proliferation of PANC-1 and PANC-1/Gem cells. Western blot analysis and immunofluorescence were used to detect the expression of multidrug resistance proteins, apoptosis-associated proteins and low-density lipoprotein receptor protein 1 (LRP1) proteins in PANC-1/Gem cells. The effects of gemcitabine and oridonin on PANC-1/Gem cells apoptosis were detected using flow cytometry. Animal xenograft tumor assays were used to detect the effect of gemcitabine and oridonin on pancreatic cancer in vivo. Furthermore, the ATP Assay kit was used to determine the effects of gemcitabine and oridonin on ATP levels in PANC-1/Gem cells. Immunofluorescence assays were used to detect the effects of gemcitabine and oridonin on the expression of low-density lipoprotein receptor protein 1 (LRP1) in PANC-1/Gem cells. In addition, LRP1 expression was knocked down in PANC-1/Gem cells via lentiviral vector-mediated RNA silencing. Clone formation assays and Western blot analysis were used to detect the effect of LRP1 knockdown on the proliferation of PANC-1/Gem cells. Results: The present results demonstrate that oridonin overcomes PANC-1/Gem cells gemcitabine reistance by regulating GST pi and LRP1/ERK/JNK signaling. Conclusion: In conclusion, the present study indicated that oridonin could overcome gemcitabine resistance in PANC-1/Gem cells by regulating GST pi and LRP1/ ERK/JNK signaling, inducing cell apoptosis. Therefore, oridonin with gemcitabine may be a promising preoperative treatment for patients who suffer from pancreatic cancer.
Collapse
Affiliation(s)
- Bili Wang
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Can Shen
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.,Department of Clinical Laboratory, The Affiliated Yinzhou Hospital of Ningbo University, Ningbo 315040, People's Republic of China
| | - Yang Li
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Ting Zhang
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Hui Huang
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Jun Ren
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Zhengjun Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Jian Xu
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China
| |
Collapse
|
23
|
Carozzo A, Yaneff A, Gómez N, Di Siervi N, Sahores A, Diez F, Attorresi AI, Rodríguez-González Á, Monczor F, Fernández N, Abba M, Shayo C, Davio C. Identification of MRP4/ABCC4 as a Target for Reducing the Proliferation of Pancreatic Ductal Adenocarcinoma Cells by Modulating the cAMP Efflux. Mol Pharmacol 2019; 96:13-25. [PMID: 31043460 DOI: 10.1124/mol.118.115444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of tumors with no effective therapy available; is currently the third leading cause of cancer in developed countries; and is predicted to become the second deadliest cancer in the United States by 2030. Due to the marginal benefits of current standard chemotherapy, the identification of new therapeutic targets is greatly required. Considering that cAMP pathway is commonly activated in pancreatic ductal adenocarcinoma (PDAC) and its premalignant lesions, we aim to investigate the multidrug resistance-associated protein 4 (MRP4)-dependent cAMP extrusion process as a cause of increased cell proliferation in human PDAC cell lines. Our results from in silico analysis indicate that MRP4 expression may influence PDAC patient outcome; thus, high MRP4 levels could be indicators of poor survival. In addition, we performed in vitro experiments and identified an association between higher MRP4 expression levels and more undifferentiated and malignant models of PDAC and cAMP extrusion capacity. We studied the antiproliferative effect and the overall cAMP response of three MRP4 inhibitors, probenecid, MK571, and ceefourin-1 in PDAC in vitro models. Moreover, MRP4-specific silencing in PANC-1 cells reduced cell proliferation (P < 0.05), whereas MRP4 overexpression in BxPC-3 cells significantly incremented their growth rate in culture (P < 0.05). MRP4 pharmacological inhibition or silencing abrogated cell proliferation through the activation of the cAMP/Epac/Rap1 signaling pathway. Also, extracellular cAMP reverted the antiproliferative effect of MRP4 blockade. Our data highlight the MRP4-dependent cAMP extrusion process as a key participant in cell proliferation, indicating that MRP4 could be an exploitable therapeutic target for PDAC. SIGNIFICANCE STATEMENT: ABCC4/MRP4 is the main transporter responsible for cAMP efflux. In this work, we show that MRP4 expression may influence PDAC patient outcome and identify an association between higher MRP4 expression levels and more undifferentiated and malignant in vitro models of PDAC. Findings prove the involvement of MRP4 in PDAC cell proliferation through a novel extracellular cAMP mitogenic pathway and further support MRP4 inhibition as a promising therapeutic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Alejandro Carozzo
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Nicolás Di Siervi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Ana Sahores
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Federico Diez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Alejandra I Attorresi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Ángela Rodríguez-González
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Federico Monczor
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Martín Abba
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Carina Shayo
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| |
Collapse
|
24
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018; 24:3222-3238. [PMID: 30090003 PMCID: PMC6079284 DOI: 10.3748/wjg.v24.i29.3222] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases and is characterized by high chemoresistance, leading to the lack of effective therapeutic approaches and grim prognosis. Despite increasing understanding of the mechanisms of chemoresistance in cancer and the role of ATP-binding cassette (ABC) transporters in this resistance, the therapeutic potential of their pharmacological inhibition has not been successfully exploited yet. In spite of the discovery of potent pharmacological modulators of ABC transporters, the results obtained in clinical trials have been so far disappointing, with high toxicity levels impairing their successful administration to the patients. Critically, although ABC transporters have been mostly studied for their involvement in development of multidrug resistance (MDR), in recent years the contribution of ABC transporters to cancer initiation and progression has emerged as an important area of research, the understanding of which could significantly influence the development of more specific and efficient therapies. In this review, we explore the role of ABC transporters in the development and progression of malignancies, with focus on PDAC. Their established involvement in development of MDR will be also presented. Moreover, an emerging role for ABC transporters as prognostic tools for patients' survival will be discussed, demonstrating the therapeutic potential of ABC transporters in cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
26
|
Zimmermann MT, Therneau TM, Kocher JPA. The impact of pharmacokinetic gene profiles across human cancers. BMC Cancer 2018; 18:577. [PMID: 29783934 PMCID: PMC5963084 DOI: 10.1186/s12885-018-4345-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The right drug to the right patient at the right time is one of the ideals of Individualized Medicine (IM) and remains one of the most compelling promises of the post-genomic age. The addition of genomic information is expected to increase the precision of an individual patient's treatment, resulting in improved outcomes. While pilot studies have been encouraging, key aspects of interpreting tumor genomics information, such as somatic activation of drug transport or metabolism, have not been systematically evaluated. METHODS In this work, we developed a simple rule-based approach to classify the therapies administered to each patient from The Cancer Genome Atlas PanCancer dataset (n = 2858) as effective or ineffective. Our Therapy Efficacy model used each patient's drug target and pharmacokinetic (PK) gene expression profile; the specific genes considered for each patient depended on the therapies they received. Patients who received predictably ineffective therapies were considered at high-risk of cancer-related mortality and those who did not receive ineffective therapies were considered at low-risk. The utility of our Therapy Efficacy model was assessed using per-cancer and pan-cancer differential survival. RESULTS Our simple rule-based Therapy Efficacy model classified 143 (5%) patients as high-risk. High-risk patients had age ranges comparable to low-risk patients of the same cancer type and tended to be later stage and higher grade (odds ratios of 1.6 and 1.4, respectively). A significant pan-cancer association was identified between predictions of our Therapy Efficacy model and poorer overall survival (hazard ratio, HR = 1.47, p = 6.3 × 10- 3). Individually, drug export (HR = 1.49, p = 4.70 × 10- 3) and drug metabolism (HR = 1.73, p = 9.30 × 10- 5) genes demonstrated significant survival associations. Survival associations for target gene expression are mechanism-dependent. Similar results were observed for event-free survival. CONCLUSIONS While the resolution of clinical information within the dataset is not ideal, and modeling the relative contribution of each gene to the activity of each therapy remains a challenge, our approach demonstrates that somatic PK alterations should be integrated into the interpretation of somatic transcriptomic profiles as they likely have a significant impact on the survival of specific patients. We believe that this approach will aid the prospective design of personalized therapeutic strategies.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Present Address: Genomic Science and Precision Medicine Center, Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Terry M Therneau
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Brusatol Enhances the Chemotherapy Efficacy of Gemcitabine in Pancreatic Cancer via the Nrf2 Signalling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2360427. [PMID: 29849873 PMCID: PMC5932458 DOI: 10.1155/2018/2360427] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
Although gemcitabine is the standard chemotherapy treatment for advanced pancreatic cancer, its benefits are quite limited due to prevalent chemoresistance, and the mechanism underlying gemcitabine chemoresistance remains unclear. Currently, Nrf2 has been deemed as a significant contributor to gemcitabine chemoresistance in pancreatic cancer. Brusatol is a unique inhibitor of the Nrf2 pathway, and in previous studies, we determined that brusatol exhibits the effects of growth inhibition and proapoptosis in pancreatic cancer cells. Due to these data, we speculate that brusatol can reverse gemcitabine-induced Nrf2 activation and propose that it can enhance gemcitabine efficacy in treating pancreatic cancer. In this study, we first proved that brusatol can effectively inhibit the Nrf2 signalling pathway and increase ROS accumulation in pancreatic cancer cells. Next, we demonstrated that brusatol can abrogate gemcitabine-induced Nrf2 activation in pancreatic cancer cells. In addition, we discovered that brusatol potentiates gemcitabine-induced growth inhibition and apoptosis in human pancreatic cancer cells. In nude mice with PANC-1 xenografts, treatment with a combination of brusatol and gemcitabine considerably reduced in vivo tumour growth compared with control treatment or treatment with either brusatol or gemcitabine alone. Immunohistochemical staining also showed that Nrf2 expression levels were reduced in brusatol-treated xenograft tumour tissues. In summary, our results suggest that brusatol is capable of enhancing the antitumour effects of gemcitabine in both pancreatic cancer cells and PANC-1 xenografts via suppressing the Nrf2 pathway.
Collapse
|
28
|
Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res 2017; 41:1-13. [PMID: 29230689 DOI: 10.1007/s12272-017-0979-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
5-Fluorouracil (5-FU) alone or in combination with other therapeutic drugs has been widely used for clinical treatment of various cancers. However, 5-FU-based chemotherapy has limited anticancer efficacy in clinic due to multidrug resistance and dose-limiting cytotoxicity. Some molecules and genes in cancer cells, such as nuclear factor kappa B, insulin-like growth factor-1 receptor, epidermal growth factor receptor, cyclooxygenase-2, signal transducer and activator of transcription 3, phosphatase and tensin homolog deleted on chromosome ten and Bcl-2 etc. are related to the chemoresistance and sensitivity of cancer cells to 5-FU. The activation of these molecules and genes expressions in cancer cells will be increased or decreased with long-term exposure of 5-FU. Curcumin has been found to be able to negatively regulate these processes. In order to overcome the problems of 5-FU, curcumin has been used to combine with 5-FU in cancer therapy.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China
| | - Panjing Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan, 646000, China.
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
29
|
Mazza T, Copetti M, Capocefalo D, Fusilli C, Biagini T, Carella M, De Bonis A, Mastrodonato N, Piepoli A, Pazienza V, Maiello E, di Mola FF, di Sebastiano P, Andriulli A, Tavano F. MicroRNA co-expression networks exhibit increased complexity in pancreatic ductal compared to Vater's papilla adenocarcinoma. Oncotarget 2017; 8:105320-105339. [PMID: 29285254 PMCID: PMC5739641 DOI: 10.18632/oncotarget.22184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
MiRNA expression abnormalities in adenocarcinoma arising from pancreatic ductal system (PDAC) and Vater's papilla (PVAC) could be associated with distinctive pathologic features and clinical cancer behaviours. Our previous miRNA expression profiling data on PDAC (n=9) and PVAC (n=4) were revaluated to define differences/similarities in miRNA expression patterns. Afterwards, in order to uncover target genes and core signalling pathways regulated by specific miRNAs in these two tumour entities, miRNA interaction networks were wired for each tumour entity, and experimentally validated target genes underwent pathways enrichment analysis. One hundred and one miRNAs were altered, mainly over-expressed, in PDAC samples. Twenty-six miRNAs were deregulated in PVAC samples, where more miRNAs were down-expressed in tumours compared to normal tissues. Four miRNAs were significantly altered in both subgroups of patients, while 27 miRNAs were differentially expressed between PDAC and PVAC. Although miRNA interaction networks were more complex and dense in PDAC than in PVAC, pathways enrichment analysis uncovered a functional overlapping between PDAC and PVAC. However, shared signalling events were influenced by different miRNA and/or genes in the two tumour entities. Overall, specific miRNA expression patterns were involved in the regulation of a limited core signalling pathways in the biology landscape of PDAC and PVAC.
Collapse
Affiliation(s)
- Tommaso Mazza
- Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy
| | | | - Daniele Capocefalo
- Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome 00161, Italy
| | - Caterina Fusilli
- Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Tommaso Biagini
- Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- Medical Genetics Unit, Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Antonio De Bonis
- Department of Surgery, Research Hospital, San Giovanni Rotondo 71013, Italy
| | | | - Ada Piepoli
- Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy
| | - Valerio Pazienza
- Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy
| | - Evaristo Maiello
- Department of Oncology IRCCS “Casa Sollievo della Sofferenza”, Research Hospital, San Giovanni Rotondo 71013, Italy
| | | | | | - Angelo Andriulli
- Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy
| |
Collapse
|
30
|
Cho JH, Kim SA, Park SB, Kim HM, Song SY. Suppression of pancreatic adenocarcinoma upregulated factor (PAUF) increases the sensitivity of pancreatic cancer to gemcitabine and 5FU, and inhibits the formation of pancreatic cancer stem like cells. Oncotarget 2017; 8:76398-76407. [PMID: 29100320 PMCID: PMC5652714 DOI: 10.18632/oncotarget.19458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer stem cells (CSCs) play a crucial role in tumorigenesis and chemoresistance of pancreatic ductal adenocarcinoma. Pancreatic adenocarcinoma up-regulated factor (PAUF), a novel secretory protein, has been shown to contribute to cancer progression and metastasis. Because the clinical relationship between PAUF and pancreatic CSCs is largely unknown, we investigated the associations between the functional role of PAUF and pancreatic CSCs. Pancreatic cancer sphere cultured from the CFPAC-1 cells showed elevated expression of PAUF and pluripotent stemness genes (Oct4, Nanog, Stat3, and Sox2), and the mRNA of PAUF were increased in CD44+CD24+ESA+ pancreatic CSCs. PAUF knockdown (shPAUF) CFPAC-1 diminished the number of spheres and decreased stemness genes and CSC surface markers (CD133, c-MET and ALDH1). In addition, siPAUF CFPAC-1 decreased the mRNA expression of multidrug resistant protein 5 (MRP5) and ribonucleotide reductase M2 (RRM2) and were more vulnerable to gemcitabine and 5-FU than negative control (p<0.05). In conclusion, PAUF was increased in pancreatic CSCs and the suppression of PAUF enhances chemotherapeutic response to gemcitabine and 5FU by decreasing MRP5 and RRM2 in pancreatic cancer cells.
Collapse
Affiliation(s)
- Jae Hee Cho
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Sun A. Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Man Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
A polymorphism in ABCC4 is related to efficacy of 5-FU/capecitabine-based chemotherapy in colorectal cancer patients. Sci Rep 2017; 7:7059. [PMID: 28765596 PMCID: PMC5539293 DOI: 10.1038/s41598-017-07491-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
To investigate the association of microRNA (miRNA) binding-site polymorphisms in the drug transporter genes with the efficacy of 5-Fluorouracil (5-FU)/capecitabine-based chemotherapy in colorectal cancer (CRC), 6 polymorphisms were determined in 432 CRC patients by using DNA sequencing method. The impacts of the polymorphisms on the miRNA-mediated regulation of gene expression were evaluated by using the methods including quantitative real-time PCR, western blotting, and luciferase reporter assays. The effects of miRNA on the intracellular concentration and cytotoxicity of 5-FU in CRC cells were measured by high performance liquid chromatography conjected tandem mass spectrometry (HPLC-MS/MS) and MTT methods, respectively. Statistical analysis showed that a polymorphism rs3742106 in the 3'-UTR of ATP-binding cassette subfamily C member 4 (ABCC4) gene was significantly associated with the efficacy of 5-FU/capecitabine-based chemotherapy in CRC. The patients with T/T genotype had significantly higher response rate than those with G/G and G/T genotypes. The expression of ABCC4 was inhibited by miR-3190-5p through binding to the 3'-UTR of the ABCC4 gene. This regulatory role of miR-3190-5p was disrupted by rs3742106. Furthermore, we found that the intracellular concentration of 5-FU was elevated by miR-3190-5p, and consequently the sensitivity of CRC cells to 5-FU was also enhanced. Rs3742106 might be regarded as a genetic biomarker for individualized use of 5-FU and capecitabine in CRC.
Collapse
|
32
|
Jeong CB, Kim HS, Kang HM, Lee YH, Zhou B, Choe J, Lee JS. Genome-wide identification of ATP-binding cassette (ABC) transporters and conservation of their xenobiotic transporter function in the monogonont rotifer (Brachionus koreanus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:17-26. [PMID: 27835832 DOI: 10.1016/j.cbd.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
The ATP-binding cassette (ABC) transporter family is one of the largest gene family in animals, and members of this family are known to be involved in various biological processes due to their ability to transport a wide range of substrates across membranes using ATP cleavage-derived energy. We identified 61 ABC transporters in the genome of the monogonont rotifer Brachionus koreanus, and classified these into eight distinct subfamilies (A-H) by phylogenetic analysis. ABC transporters in the rotifer B. koreanus are comprised of 11 ABCA genes, 19 ABCB genes, 14 ABCC genes, 3 ABCD genes, 1 ABCE gene, 3 ABCF genes, 8 ABCG genes, and 2 ABCH genes. Extensive gene duplication and loss events in synteny were observed in several subfamilies. In particular, massive gene duplications of P-glycoproteins (P-gps), multidrug resistance proteins (MRPs), and Bk-Abcg-like proteins were observed. The ability of these B. koreanus proteins to function as multixenobiotic resistance (MXR) ABC transporters was validated using specific fluorescence substrates/inhibitors. The ABC transporter superfamily members identified in this study will be useful in future toxicological studies, and will facilitate comparative studies of the evolution of the ABC transporter superfamily in invertebrates.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
33
|
Lou Y, Wang Q, Zheng J, Hu H, Liu L, Hong D, Zeng S. Possible Pathways of Capecitabine-Induced Hand–Foot Syndrome. Chem Res Toxicol 2016; 29:1591-1601. [PMID: 27631426 DOI: 10.1021/acs.chemrestox.6b00215] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Lou
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Qian Wang
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Jinqi Zheng
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, People’s Republic of China
| | - Haihong Hu
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Lin Liu
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Dongsheng Hong
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Su Zeng
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| |
Collapse
|
34
|
Singh NS, Bernier M, Wainer IW. Selective GPR55 antagonism reduces chemoresistance in cancer cells. Pharmacol Res 2016; 111:757-766. [PMID: 27423937 PMCID: PMC5026616 DOI: 10.1016/j.phrs.2016.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
Abstract
G protein-coupled receptor 55 (GPR55) possesses pro-oncogenic activity and its function can be competitively inhibited with (R,R')-4'-methoxy-1-naphthylfenoterol (MNF) through poorly defined signaling pathways. Here, the anti-tumorigenic effect of MNF was investigated in the human pancreatic cancer cell line, PANC-1, by focusing on the expression of known cancer biomarkers and the expression and function of multidrug resistance (MDR) exporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP). Incubation of PANC1 cells with MNF (1μM) for 24h significantly decreased EGF receptor, pyruvate kinase M2 (PKM2), and β-catenin protein levels and was accompanied by significant reduction in nuclear accumulation of HIF-1α and the phospho-active forms of PKM2 and β-catenin. Inhibition of GPR55 with either MNF or the GPR55 antagonist CID 16020046 lowered the amount of MDR proteins in total cellular extracts while diminishing the nuclear expression of Pgp and BCRP. There was significant nuclear accumulation of doxorubicin in PANC-1 cells treated with MNF and the pre-incubation with MNF increased the cytotoxicity of doxorubicin and gemcitabine in these cells. Potentiation of doxorubicin cytotoxicity by MNF was also observed in MDA-MB-231 breast cancer cells and U87MG glioblastoma cells, which express high levels of GPR55. The data suggest that inhibition of GPR55 activity produces antitumor effects via attenuation of the MEK/ERK and PI3K-AKT pathways leading to a reduction in the expression and function of MDR proteins.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Biomarkers, Tumor/metabolism
- Carrier Proteins/metabolism
- Cell Proliferation/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/metabolism
- Deoxycytidine/pharmacology
- Dose-Response Relationship, Drug
- Doxorubicin/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fenoterol/analogs & derivatives
- Fenoterol/pharmacology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- MCF-7 Cells
- Membrane Proteins/metabolism
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Cannabinoid
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Signal Transduction/drug effects
- Thyroid Hormones/metabolism
- beta Catenin/metabolism
- Gemcitabine
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Nagendra S Singh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21224, USA.
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, (NIH), Baltimore, MD 21224, USA.
| | - Irving W Wainer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21224, USA; Mitchell Woods Pharmaceuticals, Shelton, CT 06484, USA.
| |
Collapse
|
35
|
Gemcitabine upregulates ABCG2/BCRP and modulates the intracellular pharmacokinetic profiles of bioluminescence in pancreatic cancer cells. Anticancer Drugs 2016; 27:183-91. [PMID: 26556627 DOI: 10.1097/cad.0000000000000315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A lack of methods capable of exploring real-time intracellular drug deposition has since limited the investigation of gemcitabine-induced multidrug resistance in vitro and in vivo. Specifically, resistance induced by D-luciferin, a substrate of the breast cancer resistance protein (ABCG2/BCRP), has recently attracted clinical attention, but further investigation has been limited. Herein, the intracellular pharmacokinetic behavior of D-luciferin was investigated in pancreatic cancer cell lines in real time by using bioluminescence imaging. To achieve this feat, BxPC3 and Panc1 pancreatic cancer cells overexpressing firefly luciferase were treated with gemcitabine in a dose and time gradient manner in vitro. The intracellular pharmacokinetic profiles of each group were then determined through the acquisition of bioluminescent signal intensity of D-luciferin in cells. Simultaneously, key pharmacokinetic parameters including area under the curve, elimination rate constant (K), and mean resident time were calculated according to the noncompartment model. ABCG2 protein levels following gemcitabine treatment were detected through western blot, and gemcitabine showed no significant effect on luciferase activity over dimethyl sulfoxide (DMSO) as a control (P>0.05). However, gemcitabine significantly increased K values while suppressing area under the curve and mean resident time compared with DMSO (P<0.05) and increased ABCG2 expression over DMSO-treated cells. In addition, gemcitabine increased the elimination rate of the ABCG2 substrate, D-luciferin, and decreased D-luciferin accumulation in BxPC3 and Panc1 cells in a dose-response manner. Advances made herein illustrate the versatility of the in-vitro bioluminescent model and its capability to observe the onset of chemoresistance in real time.
Collapse
|
36
|
Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan A. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS One 2016; 11:e0155013. [PMID: 27171227 PMCID: PMC4865144 DOI: 10.1371/journal.pone.0155013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/22/2016] [Indexed: 12/22/2022] Open
Abstract
Increased expression of ABC-family of transporters is associated with chemotherapy failure. Although the drug transporters ABCG2, ABCB1 and ABCC1 have been majorly implicated in cancer drug resistance, recent studies have associated ABCC3 with multi drug resistance and poor clinical response. In this study, we have examined the expression of ABCC3 in breast cancers and studied its role in drug resistance and stemness of breast cancer cells in comparison with the more studied ABCC1. We observed that similar to ABCC1, the transcripts levels of ABCC3 was significantly high in breast cancers compared to adjacent normal tissue. Importantly, expression of both transporters was further increased in chemotherapy treated patient samples. Consistent with this, we observed that treatment of breast cancer cell lines with anti-cancer agents increased their mRNA levels of both ABCC1 and ABCC3. Further, similar to knockdown of ABCC1, knockdown of ABCC3 also significantly increased the retention of chemotherapeutic drugs in breast cancer cells and rendered them more chemo-sensitive. Interestingly, ABCC1 and ABCC3 knockdown cells also showed reduction in the expression of stemness genes, while ABCC3 knockdown additionally led to a reduction in the CD44high/CD24low breast cancer stem-like subpopulation. Consistent with this, their ability to form primary tumours was compromised. Importantly, down-modulation of ABCC3 rendered these cells increasingly susceptible to doxorubicin in xenograft mice models in vivo. Thus, our study highlights the importance of ABCC3 transporters in drug resistance to chemotherapy in the context of breast cancer. Further, these results suggest that combinatorial inhibition of these transporters together with standard chemotherapy can reduce therapy-induced resistance in breast cancer.
Collapse
Affiliation(s)
- Sai A. Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science (IISc), Bangalore, 560012, India
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - Nayanabhirama Udupa
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science (IISc), Bangalore, 560012, India
| |
Collapse
|
37
|
Kataoka J, Shiraha H, Horiguchi S, Sawahara H, Uchida D, Nagahara T, Iwamuro M, Morimoto H, Takeuchi Y, Kuwaki K, Onishi H, Nakamura S, Takaki A, Nouso K, Yagi T, Yamamoto K, Okada H. Loss of Runt-related transcription factor 3 induces resistance to 5-fluorouracil and cisplatin in hepatocellular carcinoma. Oncol Rep 2016; 35:2576-82. [PMID: 26985715 PMCID: PMC4811400 DOI: 10.3892/or.2016.4681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) is known to function as a tumor suppressor in gastric cancer and other types of cancers, including hepatocellular carcinoma (HCC). However, its role has not been fully elucidated. In the present study, we aimed to evaluate the role of RUNX3 in HCC. We used the human HCC cell lines Hep3B, Huh7 and HLF; RUNX3 cDNA was introduced into Hep3B and Huh7 cells, which were negative for endogenous RUNX3 expression, and RUNX3 siRNA was transfected into HLF cells, which were positive for endogenous RUNX3. We analyzed the expression of RUNX3 and multidrug resistance-associated protein (MRP) by immunoblotting. MTT assays were used to determine the effects of RUNX3 expression on 5-fluorouracil (5-FU) and cisplatin (CDDP) sensitivity. Finally, 23 HCC specimens resected from patients with HCC at Okayama University Hospital were analyzed, and correlations among immunohistochemical expression of RUNX3 protein and MRP protein were evaluated in these specimens. Exogenous RUNX3 expression reduced the expression of MRP1, MRP2, MRP3 and MRP5 in the RUNX3-negative cells, whereas knockdown of RUNX3 in the HLF cells stimulated the expression of these MRPs. An inverse correlation between RUNX3 and MRP expression was observed in the HCC tissues. Importantly, loss of RUNX3 expression contributed to 5-FU and CDDP resistance by inducing MRP expression. These data have important implications in the study of chemotherapy resistance in HCC.
Collapse
Affiliation(s)
- Junro Kataoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroaki Sawahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Teruya Nagahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroki Morimoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kenji Kuwaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinichiro Nakamura
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology, Okayama Saiseikai General Hospital, Okayama 700-8511, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
38
|
Liou GY, Storz P. Strategies to Target Pancreatic Cancer. MOLECULAR TARGETS AND STRATEGIES IN CANCER PREVENTION 2016:1-20. [DOI: 10.1007/978-3-319-31254-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Silencing pancreatic adenocarcinoma upregulated factor (PAUF) increases the sensitivity of pancreatic cancer cells to gemcitabine. Tumour Biol 2015; 37:7555-64. [PMID: 26684804 DOI: 10.1007/s13277-015-4641-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/13/2015] [Indexed: 12/26/2022] Open
Abstract
Pancreatic adenocarcinoma upregulated factor (PAUF) is a new oncogene that activates signaling pathways that play a critical role in resistance to gemcitabine. We thus speculated that PAUF also plays a role in resistance to gemcitabine of pancreatic cancer cells. We established BxPC-3 cell lines with stable PAUF knockdown (BxPC-3_shPAUF) and controls (BxPC-3_shCtrl) and evaluated sensitivity to gemcitabine in vitro by MTT and flow cytometry. We established a xenograft model of human pancreatic cancer to examine PAUF function in gemcitabine resistance in vivo. Gene chip microarrays were performed to identify differentially expressed genes in BxPC-3_shPAUF and BxPC-3_shCtrl cells. Silencing PAUF increased the sensitivity of BxPC-3 cells to gemcitabine in vitro and in vivo. PAUF-knockdown BxPC-3 cell lines treated with gemcitabine showed increased proliferation inhibition and apoptosis compared with controls. Gemcitabine exhibited a more pronounced effect on reduction of BxPC-3_shPAUF tumors than BxPC-3_shCtrl tumors. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assays confirmed a significantly higher apoptotic rate of BXPC-3_shPAUF tumors compared with BXPC-3_shCtrl tumors. Gene array showed that PAUF function in gemcitabine sensitivity might involve MRP2, MRP3, MDR1, PIK3R1, and NFkB2 genes. PAUF could be considered as a key molecular target for sensitizing pancreatic cancer cells to gemcitabine.
Collapse
|
40
|
Kim SE, Hinoue T, Kim MS, Sohn KJ, Cho RC, Weisenberger DJ, Laird PW, Kim YI. Effects of folylpolyglutamate synthase modulation on global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. J Nutr Biochem 2015; 29:27-35. [PMID: 26895662 DOI: 10.1016/j.jnutbio.2015.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/10/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022]
Abstract
Folylpolyglutamate synthase (FPGS) plays a critical role in intracellular folate homeostasis. FPGS-induced polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence FPGS modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression and aberrant DNA methylation is mechanistically linked cancer development. We investigated whether FPGS modulation would affect global and gene-specific promoter DNA methylation with consequent functional effects on gene expression profiles in HCT116 colon and MDA-MB-435 breast cancer cells. Although FPGS modulation altered global DNA methylation and DNA methyltransferases (DNMT) activity, the effects of FPGS modulation on global DNA methylation and DNMT activity could not be solely explained by intracellular folate concentrations and content of long-chain folylpolyglutamates, and it may be cell-specific. FPGS modulation influenced differential gene expression and promoter cytosine-guanine dinucleotide sequences (CpG) DNA methylation involved in cellular development, cell cycle, cell death and molecular transport. Some of the altered gene expression was associated with promoter CpG DNA methylation changes. In both the FPGS-overexpressed HCT116 and MDA-MB-435 cell lines, we identified several differentially expressed genes involved in folate biosynthesis and one-carbon metabolism, which might in part have contributed to the observed increased efficacy of 5-fluorouracil in response to FPGS overexpression. Our data suggest that FPGS modulation affects global and promoter CpG DNA methylation and expression of several genes involved in important biological pathways. The potential role of FPGS modulation in DNA methylation and its associated downstream functional effects warrants further studies.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada M5B 1T8.
| | - Toshinori Hinoue
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503-2518, USA
| | - Michael S Kim
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada M5B 1T8
| | - Kyoung-Jin Sohn
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada M5B 1T8; Department of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert C Cho
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Daniel J Weisenberger
- USC Epigenome Center, University of Southern California, Los Angeles, CA 90089-9601, USA; Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90089-9601, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503-2518, USA
| | - Young-In Kim
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada M5B 1T8; Department of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Gastroenterology, St. Michael's Hospital, Toronto, ON, Canada M5B 1W8
| |
Collapse
|
41
|
Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Drug Resist Updat 2015; 23:20-54. [PMID: 26690339 DOI: 10.1016/j.drup.2015.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Our current understanding of the mechanisms of action of antitumor agents and the precise mechanisms underlying drug resistance is that these two processes are directly linked. Moreover, it is often possible to delineate chemoresistance mechanisms based on the specific mechanism of action of a given anticancer drug. A more holistic approach to the chemoresistance problem suggests that entire metabolic pathways, rather than single enzyme targets may better explain and educate us about the complexity of the cellular responses upon cytotoxic drug administration. Drugs, which target thymidylate synthase and folate-dependent enzymes, represent an important therapeutic arm in the treatment of various human malignancies. However, prolonged patient treatment often provokes drug resistance phenomena that render the chemotherapeutic treatment highly ineffective. Hence, strategies to overcome drug resistance are primarily designed to achieve either enhanced intracellular drug accumulation, to avoid the upregulation of folate-dependent enzymes, and to circumvent the impairment of DNA repair enzymes which are also responsible for cross-resistance to various anticancer drugs. The current clinical practice based on drug combination therapeutic regimens represents the most effective approach to counteract drug resistance. In the current paper, we review the molecular aspects of the activity of TS-targeting drugs and describe how such mechanisms are related to the emergence of clinical drug resistance. We also discuss the current possibilities to overcome drug resistance by using a molecular mechanistic approach based on medicinal chemistry methods focusing on rational structural modifications of novel antitumor agents. This paper also focuses on the importance of the modulation of metabolic pathways upon drug administration, their analysis and the assessment of their putative roles in the networks involved using a meta-analysis approach. The present review describes the main pathways that are modulated by TS-targeting anticancer drugs starting from the description of the normal functioning of the folate metabolic pathway, through the protein modulation occurring upon drug delivery to cultured tumor cells as well as cancer patients, finally describing how the pathways are modulated by drug resistance development. The data collected are then analyzed using network/netwire connecting methods in order to provide a wider view of the pathways involved and of the importance of such information in identifying additional proteins that could serve as novel druggable targets for efficacious cancer therapy.
Collapse
|
42
|
Kugimiya N, Nishimoto A, Hosoyama T, Ueno K, Enoki T, Li TS, Hamano K. The c-MYC-ABCB5 axis plays a pivotal role in 5-fluorouracil resistance in human colon cancer cells. J Cell Mol Med 2015; 19:1569-1581. [PMID: 25689483 PMCID: PMC4511355 DOI: 10.1111/jcmm.12531] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/11/2014] [Indexed: 02/05/2023] Open
Abstract
c-MYC overexpression is frequently observed in various cancers including colon cancer and regulates many biological activities such as aberrant cell proliferation, apoptosis, genomic instability, immortalization and drug resistance. However, the mechanism by which c-MYC confers drug resistance remains to be fully elucidated. In this study, we found that the c-MYC expression level in primary colorectal cancer tissues correlated with the recurrence rate following 5-fluorouracil (5-FU)-based adjuvant chemotherapy. Supporting this finding, overexpression of exogenous c-MYC increased the survival rate following 5-FU treatment in human colon cancer cells, and knockdown of endogenous c-MYC decreased it. Furthermore, c-MYC knockdown decreased the expression level of ABCB5, which is involved in 5-FU resistance. Using a chromatin immunoprecipitation assay, we found that c-MYC bound to the ABCB5 promoter region. c-MYC inhibitor (10058-F4) treatment inhibited c-MYC binding to the ABCB5 promoter, leading to a decrease in ABCB5 expression level. ABCB5 knockdown decreased the survival rate following 5-FU treatment as expected, and the ABCB5 expression level was increased in 5-FU-resistant human colon cancer cells. Finally, using a human colon cancer xenograft murine model, we found that the combined 5-FU and 10058-F4 treatment significantly decreased tumorigenicity in nude mice compared with 5-FU or 10058-F4 treatment alone. 10058-F4 treatment decreased the ABCB5 expression level in the presence or absence of 5-FU. In contrast, 5-FU treatment alone increased the ABCB5 expression level. Taken together, these results suggest that c-MYC confers resistance to 5-FU through regulating ABCB5 expression in human colon cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Aged
- Animals
- Carcinogenesis/drug effects
- Carcinogenesis/pathology
- Cell Line, Tumor
- Chemotherapy, Adjuvant
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/surgery
- Drug Resistance, Neoplasm/drug effects
- Female
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Recurrence, Local/pathology
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Proto-Oncogene Proteins c-myc/antagonists & inhibitors
- Proto-Oncogene Proteins c-myc/metabolism
- Signal Transduction/drug effects
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Naruji Kugimiya
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Arata Nishimoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Tohru Hosoyama
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Koji Ueno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Tadahiko Enoki
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki UniversityNagasaki, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| |
Collapse
|
43
|
Riganti C, Kopecka J, Panada E, Barak S, Rubinstein M. The role of C/EBP-β LIP in multidrug resistance. J Natl Cancer Inst 2015; 107:djv046. [PMID: 25766403 DOI: 10.1093/jnci/djv046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chemotherapy triggers endoplasmic reticulum (ER) stress, which in turn regulates levels of the active (LAP) and the natural dominant-negative (LIP) forms of the transcription factor C/EBP-β. LAP upregulates and LIP downregulates the multidrug resistance (MDR) protein P-glycoprotein (Pgp), but it is not known how critical is their role in establishing MDR. METHODS Cell viability was quantitated by crystal violet staining and measuring absorbance at 540nm. Expression of various proteins was determined by immunoblotting. mRNA levels were determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). LIP and LAP were overexpressed using expression plasmids followed by selection with blasticidin. Tumor cells expressing doxycycline-inducible LIP were orthotopically implanted in mice (n = 15 mice per group), and tumor size was measured daily by caliper. Tumor sections were stained with hematoxylin and eosin and immunostained for Pgp, proliferation, and ER stress markers. RESULTS MDR cells do not express basal, chemotherapy-triggered, or ER stress-triggered LIP and fail to activate the CHOP-caspase-3 death-triggering axis upon ER stress or chemotherapy challenge. Overexpression of LIP reversed the MDR phenotype in vitro and in tumors implanted in mice. LIP was undetectable in MDR cells, probably due to its ubiquitination, which was 3.56-fold higher, resulting in lysosomal and proteasomal degradation of LIP. CONCLUSIONS Spontaneous and drug-selected MDR cells lack LIP, which is eliminated by ubiquitin-mediated degradation. Loss of LIP drives MDR not only by increasing Pgp expression but also by a two-fold attenuation of ER stress-triggered cell death.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR)
| | - Elisa Panada
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR)
| | - Sara Barak
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR)
| | - Menachem Rubinstein
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR).
| |
Collapse
|
44
|
Zhang G, Wang Z, Qian F, Zhao C, Sun C. Silencing of the ABCC4 gene by RNA interference reverses multidrug resistance in human gastric cancer. Oncol Rep 2015; 33:1147-54. [PMID: 25572969 DOI: 10.3892/or.2014.3702] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/24/2014] [Indexed: 12/25/2022] Open
Abstract
The identification of genes associated with recurrent drug resistance in gastric cancer and the elucidation of the underlying molecular mechanisms associated with recurrent drug resistance in gastric cancer are important for the effective treatment and prognosis of this cancer. Variations in the expression level of the ATP-binding cassette subfamily C member 4 (ABCC4) gene are correlated with the recurrence, development and chemotherapeutic susceptibility of various types of cancers. In the present study, we demonstrated that the ABCC4 gene was highly expressed in multiple types of gastric cancer cells, and ABCC4 expression was even more prominent in the drug-resistant gastric cancer cells. Conversely, in normal gastric mucosal cells, ABCC4 expression was very low or undetectable. We used RNA interference to decrease the expression of ABCC4 in drug-resistant gastric cancer cells, which resulted in an increase in apoptosis and cell cycle arrest in the G1 phase. In addition, we found that ABCC4 knockdown in 5-fluorouracil (5-FU)-resistant cancer cells restored 5-FU sensitivity, resulting in the inhibition of cell proliferation and tumour growth in nude mice. Our results showed that inhibition of ABCC4 gene expression can inhibit the proliferation of multidrug-resistant gastric cancer cells and can enhance gastric cancer cell sensitivity to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Guangyu Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P.R. China
| | - Zhenran Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P.R. China
| | - Feng Qian
- Department of General Surgery, The Southwest Hospital of the Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Chen Zhao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P.R. China
| | - Chaowen Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P.R. China
| |
Collapse
|
45
|
Abstract
Since over 50 years, 5-fluorouracil (5-FU) is in use as backbone of chemotherapy treatment regimens for a wide range of cancers including colon, breast, and head and neck carcinomas. However, drug resistance and severe toxicities such as mucositis, diarrhea, neutropenia, and vomiting in up to 40% of treated patients often lead to dose limitation or treatment discontinuation. Because the oral bioavailability of 5-FU is unpredictable and highly variable, 5-FU is commonly administered intravenously. To overcome medical complications and inconvenience associated with intravenous administration, the oral prodrugs capecitabine and tegafur have been developed. Both fluoropyrimidines are metabolically converted intracellularly to 5-FU, which then needs metabolic activation to exert its damaging activity on RNA and DNA. The low response rates of 10-15% of 5-FU monotherapy can be improved by combination regimens of infusional 5-FU and leucovorin together with oxaliplatin (FOLFOX) or irinotecan (FOLFIRI), thereby increasing response rates to 30-40%. The impact of metabolizing enzymes in the development of fluoropyrimidine toxicity and resistance has been studied in great detail. In addition, membrane drug transporters, which are critical determinants of intracellular drug concentrations, may play a role in occurrence of toxicity and development of resistance against fluoropyrimidine-based therapy as well. This review therefore summarizes current knowledge on the role of drug transporters with particular focus on ATP-binding cassette transporters in fluoropyrimidine-based chemotherapy response.
Collapse
|
46
|
Wang WB, Yang Y, Zhao YP, Zhang TP, Liao Q, Shu H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J Gastroenterol 2014; 20:15682-15690. [PMID: 25400452 PMCID: PMC4229533 DOI: 10.3748/wjg.v20.i42.15682] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/04/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
Resistance to 5-fluorouracil (5-FU), an important anticancer drug, is a serious challenge in the treatment of pancreatic cancer. Equilibrative nucleoside transporter 1 and multidrug-resistance protein (MRP) 5 and MRP8, rather than P-glycoprotein, play important roles in 5-FU transport. Thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase and thymidine phosphorylase are four key enzymes involved in 5-FU metabolism. Other metabolic enzymes, including uridine monophosphate synthetase, also contribute to chemoresistance. Intracellular signaling pathways are an integrated network, and nuclear factor kappa-light-chain-enhancer of activated B cells, AKT and extracellular signal-regulated kinases are signaling pathways that are particularly relevant to 5-FU resistance. In addition, recent reports indicate that STAT-3 is a crucial survival protein. Proteomic assays provide a powerful tool for identifying target proteins and understanding the role of microRNAs and stromal factors to facilitate the development of strategies to combat 5-FU resistance.
Collapse
|
47
|
Machado SP, Cunha V, Reis-Henriques MA, Ferreira M. Histopathological lesions, P-glycoprotein and PCNA expression in zebrafish (Danio rerio) liver after a single exposure to diethylnitrosamine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:720-732. [PMID: 25299848 DOI: 10.1016/j.etap.2014.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
The presence of carcinogenic compounds in the aquatic environment is a recognized problem. ABC transporters are well known players in the multidrug-resistance (MDR) phenomenon in mammals associated with resistance to chemotherapy, however little is known in fish species. Thus, the aim of this study was to induce hepatic tumours and evaluate long-term effects on P-glycoprotein (P-gp) and proliferating cell nuclear antigen (PCNA) proteins in Danio rerio liver, after exposure to diethylnitrosamine (DEN). Several hepatic histopathological alterations were observed in zebrafish after exposure to DEN including pre-neoplastic lesions 6 and 9 months post-exposure. After 3, 6 and 9 months of exposure to DEN, P-gp and PCNA proteins expression were up-regulated. In conclusion, this study has shown that zebrafish ABC transporters can play a similar role as in human disease, hence zebrafish can be used also as a biological model to investigate in more deep mechanisms involved in disease processes.
Collapse
Affiliation(s)
- Sandrine P Machado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Virgínia Cunha
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS/UP - Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Professor Abel Salazar, 2, 4099-003 Porto, Portugal
| | - Maria Armanda Reis-Henriques
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Marta Ferreira
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| |
Collapse
|
48
|
Schober M, Jesenofsky R, Faissner R, Weidenauer C, Hagmann W, Michl P, Heuchel RL, Haas SL, Löhr JM. Desmoplasia and chemoresistance in pancreatic cancer. Cancers (Basel) 2014; 6:2137-54. [PMID: 25337831 PMCID: PMC4276960 DOI: 10.3390/cancers6042137] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/08/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) occurs mainly in people older than 50 years of age. Although great strides have been taken in treating PDAC over the past decades its incidence nearly equals its mortality rate and it was quoted as the 4th leading cause of cancer deaths in the U.S. in 2012. This review aims to focus on research models and scientific developments that help to explain the extraordinary resistance of PDAC towards current therapeutic regimens. Furthermore, it highlights the main features of drug resistance including mechanisms promoted by cancer cells or cancer stem cells (CSCs), as well as stromal cells, and the acellular components surrounding the tumor cells—known as peritumoral desmoplasia—that affects intra-tumoral drug delivery. Finally, therapeutic concepts and avenues for future research are suggested, based on the topics discussed.
Collapse
Affiliation(s)
- Marvin Schober
- Division of Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universitaet Marburg, Baldingerstrasse, Marburg 35043, Germany.
| | - Ralf Jesenofsky
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Ralf Faissner
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Cornelius Weidenauer
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Wolfgang Hagmann
- Lung Cancer, Genomics/Epigenomics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69121, Germany.
| | - Patrick Michl
- Division of Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universitaet Marburg, Baldingerstrasse, Marburg 35043, Germany.
| | - Rainer L Heuchel
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 52 Huddinge, Sweden.
| | - Stephan L Haas
- Gastrocentrum, Karolinska University Hospital, Stockholm, Stockholm 141 86, Sweden.
| | - J-Matthias Löhr
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 52 Huddinge, Sweden.
| |
Collapse
|
49
|
Mohelnikova-Duchonova B, Melichar B, Soucek P. FOLFOX/FOLFIRI pharmacogenetics: The call for a personalized approach in colorectal cancer therapy. World J Gastroenterol 2014; 20:10316-10330. [PMID: 25132748 PMCID: PMC4130839 DOI: 10.3748/wjg.v20.i30.10316] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/05/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
While 5-fluorouracil used as single agent in patients with metastatic colorectal cancer has an objective response rate around 20%, the administration of combinations of irinotecan with 5-fluorouracil/folinic acid or oxaliplatin with 5-fluorouracil/folinic acid results in significantly increased response rates and improved survival. However, the side effects of systemic therapy such as myelotoxicity, neurotoxicity or gastrointestinal toxicity may lead to life-threatening complications and have a major impact on the quality of life of the patients. Therefore, biomarkers that would be instrumental in the choice of optimal type, combination and dose of drugs for an individual patient are urgently needed. The efficacy and toxicity of anticancer drugs in tumor cells is determined by the effective concentration in tumor cells, healthy tissues and by the presence and quantity of the drug targets. Enzymes active in drug metabolism and transport represent important determinants of the therapeutic outcome. The aim of this review was to summarize published data on associations of gene and protein expression, and genetic variability of putative biomarkers with response to therapy of colorectal cancer to 5-fluorouracil/leucovorin/oxaliplatin and 5-fluorouracil/leukovorin/irinotecan regimens. Gaps in the knowledge identified by this review may aid the design of future research and clinical trials.
Collapse
|
50
|
Zhao X, Guo Y, Yue W, Zhang L, Gu M, Wang Y. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer. Onco Targets Ther 2014; 7:343-51. [PMID: 24591841 PMCID: PMC3937249 DOI: 10.2147/ott.s56029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Multidrug resistance protein 4 (MRP4), also known as ATP-cassette binding protein 4 (ABCC4), is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. METHODS ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. RESULTS ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. CONCLUSION ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yinan Guo
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wentao Yue
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yue Wang
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|