1
|
Chou YH, Pan SY, Shih HM, Lin SL. Update of pericytes function and their roles in kidney diseases. J Formos Med Assoc 2024; 123:307-317. [PMID: 37586973 DOI: 10.1016/j.jfma.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Studies have highlighted the significant involvement of kidney pericytes in renal fibrosis. Kidney pericytes, classified as interstitial mesenchymal cells, are extensively branched, collagen-producing cells that closely interact with endothelial cells. This article aims to provide an overview of the recent advancements in understanding the physiological functions of pericytes and their roles in kidney diseases. In a healthy kidney, pericytes have essential physiological function in angiogenesis, erythropoietin (EPO) production, and the regulation of renal blood flow. Nevertheless, pericyte-myofibroblast transition has been identified as the primary cause of disease progression in acute kidney injury (AKI)-to-chronic kidney disease (CKD) continuum. Our recent research has demonstrated that hypoxia-inducible factor-2α (HIF-2α) regulates erythropoietin production in pericytes. However, this production is repressed by EPO gene hypermethylation and HIF-2α downregulation which were induced by transforming growth factor-β1-activated DNA methyltransferase and activin receptor-like kinase-5 signaling pathway during renal fibrosis, respectively. Additionally, AKI induces epigenetic modifications in pericytes, rendering them more prone to extracellular matrix production, cell migration and proliferation, thereby contributing to subsequent capillary rarefaction and renal fibrosis. Further investigation into the specific functions and roles of different subpopulations of pericytes may contribute for the development of targeted therapies aimed at attenuating kidney disease and mitigating their adverse effects.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hong-Mou Shih
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
McLarnon SR. Pathophysiology of Red Blood Cell Trapping in Ischemic Acute Kidney Injury. Compr Physiol 2023; 14:5325-5343. [PMID: 38158367 DOI: 10.1002/cphy.c230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Red blood cell (RBC) trapping describes the accumulation of RBCs in the microvasculature of the kidney outer medulla that occurs following ischemic acute kidney injury (AKI). Despite its prominence in human kidneys following AKI, as well as evidence from experimental models demonstrating that the severity of RBC trapping is directly correlated with renal recovery, to date, RBC trapping has not been a primary focus in understanding the pathogenesis of ischemic kidney injury. New evidence from rodent models suggests that RBC trapping is responsible for much of the tubular injury occurring in the initial hours after kidney reperfusion from ischemia. This early injury appears to result from RBC cytotoxicity and closely reflects the injury profile observed in human kidneys, including sloughing of the medullary tubules and the formation of heme casts in the distal tubules. In this review, we discuss what is currently known about RBC trapping. We conclude that RBC trapping is likely avoidable. The primary causes of RBC trapping are thought to include rheologic alterations, blood coagulation, tubular cell swelling, and increased vascular permeability; however, new data indicate that a mismatch in blood flow between the cortex and medulla where medullary perfusion is maintained during cortical ischemia is also likely critical. The mechanism(s) by which RBC trapping contributes to renal functional decline require more investigation. We propose a renewed focus on the mechanisms mediating RBC trapping, and RBC trapping-associated injury is likely to provide important knowledge for improving AKI outcomes. © 2024 American Physiological Society. Compr Physiol 14:5325-5343, 2024.
Collapse
Affiliation(s)
- Sarah R McLarnon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Wildman SS, Dunn K, Van Beusecum JP, Inscho EW, Kelley S, Lilley RJ, Cook AK, Taylor KD, Peppiatt-Wildman CM. A novel functional role for the classic CNS neurotransmitters, GABA, glycine, and glutamate, in the kidney: potent and opposing regulators of the renal vasculature. Am J Physiol Renal Physiol 2023; 325:F38-F49. [PMID: 37102686 PMCID: PMC10511176 DOI: 10.1152/ajprenal.00425.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
The presence of a renal GABA/glutamate system has previously been described; however, its functional significance in the kidney remains undefined. We hypothesized, given its extensive presence in the kidney, that activation of this GABA/glutamate system would elicit a vasoactive response from the renal microvessels. The functional data here demonstrate, for the first time, that activation of endogenous GABA and glutamate receptors in the kidney significantly alters microvessel diameter with important implications for influencing renal blood flow. Renal blood flow is regulated in both the renal cortical and medullary microcirculatory beds via diverse signaling pathways. GABA- and glutamate-mediated effects on renal capillaries are strikingly similar to those central to the regulation of central nervous system capillaries, that is, exposing renal tissue to physiological concentrations of GABA, glutamate, and glycine led to alterations in the way that contractile cells, pericytes, and smooth muscle cells, regulate microvessel diameter in the kidney. Since dysregulated renal blood flow is linked to chronic renal disease, alterations in the renal GABA/glutamate system, possibly through prescription drugs, could significantly impact long-term kidney function.NEW & NOTEWORTHY Functional data here offer novel insight into the vasoactive activity of the renal GABA/glutamate system. These data show that activation of endogenous GABA and glutamate receptors in the kidney significantly alters microvessel diameter. Furthermore, the results show that these antiepileptic drugs are as potentially challenging to the kidney as nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
| | - Kadeshia Dunn
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Justin P Van Beusecum
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
- Medical University of South Carolina, Charleston, South Carolina, United States
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephen Kelley
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Rebecca J Lilley
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Anthony K Cook
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kirsti D Taylor
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | | |
Collapse
|
5
|
Lilley RJ, Taylor KD, Wildman SSP, Peppiatt-Wildman CM. Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network. Front Physiol 2023; 14:1194803. [PMID: 37362447 PMCID: PMC10288992 DOI: 10.3389/fphys.2023.1194803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Regardless of initiating cause, renal injury promotes a potent pro-inflammatory environment in the outer medulla and a concomitant sustained decrease in medullary blood flow (MBF). This decline in MBF is believed to be one of the critical events in the pathogenesis of acute kidney injury (AKI), yet the precise cellular mechanism underlying this are still to be fully elucidated. MBF is regulated by contractile pericyte cells that reside on the descending vasa recta (DVR) capillaries, which are the primary source of blood flow to the medulla. Methods: Using the rat and murine live kidney slice models, we investigated the acute effects of key medullary inflammatory mediators TNF-α, IL-1β, IL-33, IL-18, C3a and C5a on vasa recta pericytes, the effect of AT1-R blocker Losartan on pro-inflammatory mediator activity at vasa recta pericytes, and the effect of 4-hour sustained exposure on immunolabelled NG2+ pericytes. Results and discussion: Exposure of rat and mouse kidney slices to TNF-α, IL-18, IL-33, and C5a demonstrated a real-time pericyte-mediated constriction of DVR. When pro-inflammatory mediators were applied in the presence of Losartan the inflammatory mediator-mediated constriction that had previously been observed was significantly attenuated. When live kidney slices were exposed to inflammatory mediators for 4-h, we noted a significant reduction in the number of NG2+ positive pericytes along vasa recta capillaries in both rat and murine kidney slices. Data collected in this study demonstrate that inflammatory mediators can dysregulate pericytes to constrict DVR diameter and reduce the density of pericytes along vasa recta vessels, further diminishing the regulatory capacity of the capillary network. We postulate that preliminary findings here suggest pericytes play a role in AKI.
Collapse
Affiliation(s)
- Rebecca J. Lilley
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Kirsti D. Taylor
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | | | | |
Collapse
|
6
|
Xu M, Lichtenberger FB, Erdoǧan C, Lai E, Persson PB, Patzak A, Khedkar PH. Nitric Oxide Signalling in Descending Vasa Recta after Hypoxia/Re-Oxygenation. Int J Mol Sci 2022; 23:7016. [PMID: 35806018 PMCID: PMC9266395 DOI: 10.3390/ijms23137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Reduced renal medullary oxygen supply is a key factor in the pathogenesis of acute kidney injury (AKI). As the medulla exclusively receives blood through descending vasa recta (DVR), dilating these microvessels after AKI may help in renoprotection by restoring renal medullary blood flow. We stimulated the NO-sGC-cGMP signalling pathway in DVR at three different levels before and after hypoxia/re-oxygenation (H/R). Rat DVR were isolated and perfused under isobaric conditions. The phosphodiesterase 5 (PDE5) inhibitor sildenafil (10-6 mol/L) impaired cGMP degradation and dilated DVR pre-constricted with angiotensin II (Ang II, 10-6 mol/L). Dilations by the soluble guanylyl cyclase (sGC) activator BAY 60-2770 as well as the nitric oxide donor sodium nitroprusside (SNP, 10-3 mol/L) were equally effective. Hypoxia (0.1% O2) augmented DVR constriction by Ang II, thus potentially aggravating tissue hypoxia. H/R left DVR unresponsive to sildenafil, yet sGC activation by BAY 60-2770 effectively dilated DVR. Dilation to SNP under H/R is delayed. In conclusion, H/R renders PDE5 inhibition ineffective in dilating the crucial vessels supplying the area at risk for hypoxic damage. Stimulating sGC appears to be the most effective in restoring renal medullary blood flow after H/R and may prove to be the best target for maintaining oxygenation to this vulnerable area of the kidney.
Collapse
Affiliation(s)
- Minze Xu
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Falk-Bach Lichtenberger
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Cem Erdoǧan
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Enyin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Pontus B. Persson
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Pratik H. Khedkar
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| |
Collapse
|
7
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
8
|
Mediators of Regional Kidney Perfusion during Surgical Pneumo-Peritoneum Creation and the Risk of Acute Kidney Injury—A Review of Basic Physiology. J Clin Med 2022; 11:jcm11102728. [PMID: 35628855 PMCID: PMC9142947 DOI: 10.3390/jcm11102728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Acute kidney injury (AKI), especially if recurring, represents a risk factor for future chronic kidney disease. In intensive care units, increased intra-abdominal pressure is well-recognized as a significant contributor to AKI. However, the importance of transiently increased intra-abdominal pressures procedures is less commonly appreciated during laparoscopic surgery, the use of which has rapidly increased over the last few decades. Unlike the well-known autoregulation of the renal cortical circulation, medulla perfusion is modulated via partially independent regulatory mechanisms and strongly impacted by changes in venous and lymphatic pressures. In our review paper, we will provide a comprehensive overview of this evolving topic, covering a broad range from basic pathophysiology up to and including current clinical relevance and examples. Key regulators of oxidative stress such as ischemia-reperfusion injury, the activation of inflammatory response and humoral changes interacting with procedural pneumo-peritoneum formation and AKI risk will be recounted. Moreover, we present an in-depth review of the interaction of pneumo-peritoneum formation with general anesthetic agents and animal models of congestive heart failure. A better understanding of the relationship between pneumo-peritoneum formation and renal perfusion will support basic and clinical research, leading to improved clinical care and collaboration among specialists.
Collapse
|
9
|
Andersen SB, Taghavi I, Søgaard SB, Hoyos CAV, Nielsen MB, Jensen JA, Sørensen CM. Super-Resolution Ultrasound Imaging Can Quantify Alterations in Microbubble Velocities in the Renal Vasculature of Rats. Diagnostics (Basel) 2022; 12:1111. [PMID: 35626267 PMCID: PMC9140053 DOI: 10.3390/diagnostics12051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Super-resolution ultrasound imaging, based on the localization and tracking of single intravascular microbubbles, makes it possible to map vessels below 100 µm. Microbubble velocities can be estimated as a surrogate for blood velocity, but their clinical potential is unclear. We investigated if a decrease in microbubble velocity in the arterial and venous beds of the renal cortex, outer medulla, and inner medulla was detectable after intravenous administration of the α1-adrenoceptor antagonist prazosin. The left kidneys of seven rats were scanned with super-resolution ultrasound for 10 min before, during, and after prazosin administration using a bk5000 ultrasound scanner and hockey-stick probe. The super-resolution images were manually segmented, separating cortex, outer medulla, and inner medulla. Microbubble tracks from arteries/arterioles were separated from vein/venule tracks using the arterial blood flow direction. The mean microbubble velocities from each scan were compared. This showed a significant prazosin-induced velocity decrease only in the cortical arteries/arterioles (from 1.59 ± 0.38 to 1.14 ± 0.31 to 1.18 ± 0.33 mm/s, p = 0.013) and outer medulla descending vasa recta (from 0.70 ± 0.05 to 0.66 ± 0.04 to 0.69 ± 0.06 mm/s, p = 0.026). Conclusively, super-resolution ultrasound imaging makes it possible to detect and differentiate microbubble velocity responses to prazosin simultaneously in the renal cortical and medullary vascular beds.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | | | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
| |
Collapse
|
10
|
Tayyeb A, Dihazi GH, Tampe B, Zeisberg M, Tampe D, Hakroush S, Bührig C, Frese J, Serin N, Eltoweissy M, Müller GA, Dihazi H. Calreticulin Shortage Results in Disturbance of Calcium Storage, Mitochondrial Disease, and Kidney Injury. Cells 2022; 11:cells11081329. [PMID: 35456008 PMCID: PMC9025518 DOI: 10.3390/cells11081329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/10/2022] Open
Abstract
Renal Ca2+ reabsorption plays a central role in the fine-tuning of whole-body Ca2+ homeostasis. Here, we identified calreticulin (Calr) as a missing link in Ca2+ handling in the kidney and showed that a shortage of Calr results in mitochondrial disease and kidney pathogenesis. We demonstrated that Calr+/− mice displayed a chronic physiological low level of Calr and that this was associated with progressive renal injury manifested in glomerulosclerosis and tubulointerstitial damage. We found that Calr+/− kidney cells suffer from a disturbance in functionally active calcium stores and decrease in Ca2+ storage capacity. Consequently, the kidney cells displayed an abnormal activation of Ca2+ signaling and NF-κB pathways, resulting in inflammation and wide progressive kidney injury. Interestingly, the disturbance in the Ca2+ homeostasis and signaling in Calr+/− kidney mice cells triggered severe mitochondrial disease and aberrant mitophagy, resulting in a high level of oxidative stress and energy shortage. These findings provide novel mechanistic insight into the role of Calr in kidney calcium handling, function, and pathogenesis.
Collapse
Affiliation(s)
- Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore 53700, Pakistan;
| | - Gry H. Dihazi
- UMG-Laboratories, Institute for Clinical Chemistry, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany;
| | - Björn Tampe
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Michael Zeisberg
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Desiree Tampe
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Samy Hakroush
- Department of Pathology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany;
| | - Charlotte Bührig
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Jenny Frese
- Department of Occupational Medicine and Health Safety, Deutsche Post AG, Kölnische Strasse 81, 34117 Kassel, Germany;
| | - Nazli Serin
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
- Department of Hematology and Oncology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Marwa Eltoweissy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt;
| | - Gerhard A. Müller
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
- Centre for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-551-3960350
| |
Collapse
|
11
|
Freitas F, Attwell D. Pericyte-mediated constriction of renal capillaries evokes no-reflow and kidney injury following ischaemia. eLife 2022; 11:74211. [PMID: 35285797 PMCID: PMC8947765 DOI: 10.7554/elife.74211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury is common, with ~13 million cases and 1.7 million deaths/year worldwide. A major cause is renal ischaemia, typically following cardiac surgery, renal transplant or severe haemorrhage. We examined the cause of the sustained reduction in renal blood flow ('no-reflow'), which exacerbates kidney injury even after an initial cause of compromised blood supply is removed. Adult male Sprague-Dawley rats, or NG2-dsRed male mice were used in this study. After 60 min kidney ischaemia and 30-60 min reperfusion, renal blood flow remained reduced, especially in the medulla, and kidney tubule damage was detected as Kim-1 expression. Constriction of the medullary descending vasa recta and cortical peritubular capillaries occurred near pericyte somata, and led to capillary blockages, yet glomerular arterioles and perfusion were unaffected, implying that the long-lasting decrease of renal blood flow contributing to kidney damage was generated by pericytes. Blocking Rho kinase to decrease pericyte contractility from the start of reperfusion increased the post-ischaemic diameter of the descending vasa recta capillaries at pericytes, reduced the percentage of capillaries that remained blocked, increased medullary blood flow and reduced kidney injury. Thus, post-ischaemic renal no-reflow, contributing to acute kidney injury, reflects pericytes constricting the descending vasa recta and peritubular capillaries. Pericytes are therefore an important therapeutic target for treating acute kidney injury.
Collapse
Affiliation(s)
- Felipe Freitas
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
14
|
|
15
|
Martín Giménez VM, Noriega SE, Kassuha DE, Fuentes LB, Manucha W. Anandamide and endocannabinoid system: an attractive therapeutic approach for cardiovascular disease. Ther Adv Cardiovasc Dis 2018; 12:177-190. [PMID: 29764302 DOI: 10.1177/1753944718773690] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is currently not adequately managed and has become one of the main causes of morbidity and mortality worldwide. Current therapies are inadequate in terms of preventing its progression. There are several limitations, such as poor oral bioavailability, side effects, low adherence to treatment, and high dosage frequency of formulations due to the short half-life of the active ingredients used, among others. This review aims to highlight the most relevant aspects of the relationship between the cardiovascular system and the endocannabinoid system, with special attention to the possible translational effect of the use of anandamide in cardiovascular health. The deep and detailed knowledge of this interaction, not always beneficial, and that for years has gone unnoticed, is essential for the development of new therapies. We discuss the most recent and representative results obtained in the field of basic research, referring to the aforementioned subject, emphasizing fundamentally the main role of nitric oxide, renal physiology and its deregulation in pathological processes.
Collapse
Affiliation(s)
| | - Sandra Edith Noriega
- Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Diego Enrique Kassuha
- Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | | | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, CP 5500, Argentina
| |
Collapse
|
16
|
Braun D, Dietze S, Pahlitzsch TMJ, Wennysia IC, Persson PB, Ludwig M, Patzak A. Short-term hypoxia and vasa recta function in kidney slices. Clin Hemorheol Microcirc 2018; 67:475-484. [PMID: 28922144 DOI: 10.3233/ch-179230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Descending vasa recta (DVR) supply the inner part of outer renal medulla an area at risk for hypoxic damages. OBJECTIVE We hypothesize increased vasoreactivity after hypoxia/re-oxygenation (H/R) in DVR, which might contribute to the reduced medullary perfusion after an ischemic event. METHODS Live kidney slices (200μm) from SD rats were used for functional experiments. TUNEL assay and H&E staining were used to estimate slice viability. Kidney slices were treated with carbogen or hypoxia (1% O2) for 60 or 90 min and vasoreactivity to Ang II (10-7 M) was recorded by DIC microscopy after re-oxygenation with carbogen. Expression of NOS and NADPH enzymes mRNA were determined in iron-perfusion isolated VR. RESULTS Percentage of apoptotic cells increased in control and H/R after 90 min in the medulla. Ang II- induced constriction of DVR was reduced after 90 min in control (compared to 60 min), but not after H/R. NOS enzymes mRNA expression levels decreased over 90 min hypoxia. CONCLUSIONS Increased reactivity of DVR to Ang II after H/R compared to control (90 min) suggest a role of DVR in renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Diana Braun
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Stefanie Dietze
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | | | - Inggrid C Wennysia
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Pontus B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Marion Ludwig
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
17
|
Pahlitzsch T, Liu ZZ, Al-Masri A, Braun D, Dietze S, Persson PB, Schunck WH, Blum M, Kupsch E, Ludwig M, Patzak A. Hypoxia-reoxygenation enhances murine afferent arteriolar vasoconstriction by angiotensin II. Am J Physiol Renal Physiol 2017; 314:F430-F438. [PMID: 29070570 DOI: 10.1152/ajprenal.00252.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We tested the hypothesis that hypoxia-reoxygenation (H/R) augments vasoreactivity to angiotensin II (ANG II). In particular, we compared an in situ live kidney slice model with isolated afferent arterioles (C57Bl6 mice) to assess the impact of tubules on microvessel response. Hematoxylin and eosin staining was used to estimate slice viability. Arterioles in the slices were located by differential interference contrast microscopy, and responses to vasoactive substances were assessed. Cytosolic calcium transients and NADPH oxidase (NOX) mRNA expression were studied in isolated afferent arterioles. SOD activity was measured in live slices. Both experimental models were subjected to control and H/R treatment (60 min). Slices were further analyzed after 30-, 60-, and 90-min hypoxia followed by 10- or 20-min reoxygenation (H/R). H/R resulted in enhanced necrotic tissue damage compared with control conditions. To characterize the slice model, we applied ANG II (10-7 M), norepinephrine (NE; 10-5 M), endothelin-1 (ET-1; 10-7 M), and ATP (10-4 M), reducing the initial diameter to 44.5 ± 2.8, 50.0 ± 2.2, 45.3 ± 2.6, and 74.1 ± 1.8%, respectively. H/R significantly increased the ANG II response compared with control in live slices and in isolated afferent arterioles, although calcium transients remained similar. TEMPOL incubation prevented the H/R effect on ANG II responses. H/R significantly increased NOX2 mRNA expression in isolated arterioles. SOD activity was significantly decreased after H/R. Enhanced arteriolar responses after H/R occurred independently from the surrounding tissue, indicating no influence of tubules on vascular function in this model. The mechanism of increased ANG II response after H/R might be increased oxidative stress and increased calcium sensitivity of the contractile apparatus.
Collapse
Affiliation(s)
- Tamara Pahlitzsch
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Zhi Zhao Liu
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Amira Al-Masri
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Diana Braun
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Stefanie Dietze
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Pontus B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | | | - Maximilian Blum
- Max-Delbrück Center for Molecular Medicine , Berlin , Germany
| | - Eckehardt Kupsch
- PHZ Institut für Pathologie, Hannover Zentrum, Hannover , Germany
| | - Marion Ludwig
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| |
Collapse
|
18
|
Crislip GR, O'Connor PM, Wei Q, Sullivan JC. Vasa recta pericyte density is negatively associated with vascular congestion in the renal medulla following ischemia reperfusion in rats. Am J Physiol Renal Physiol 2017; 313:F1097-F1105. [PMID: 28794065 DOI: 10.1152/ajprenal.00261.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Recent evidence suggests that a greater density of pericytes in renal cadaveric allografts is associated with better recovery following transplant. The physiological mechanism(s) through which pericyte density may be beneficial is not well understood. The goal of this study was to test the hypothesis that lower medullary pericyte density is associated with greater renal injury following ischemia reperfusion (IR) in a rat model, providing a basis for future studies to better understand pericytes in a pathological environment. To test our hypothesis, we determined the association between medullary pericyte density and renal injury in spontaneously hypertensive rats (SHR) following 45 min of warm bilateral IR. We found that there was a significant negative relationship between pericyte density and plasma creatinine (slope = -0.03, P = 0.02) and blood urea nitrogen (slope = -0.5, P = 0.01) in female but not male SHR. Pericyte density was negatively associated with medullary peritubular capillary (PT) congestion in both sexes following IR (male: slope = -0.04, P = 0.009; female: slope = -0.03, P = 0.0001). To further test this relationship, we used a previously reported method to reduce pericyte density in SHR. Medullary erythrocyte congestion in vasa recta (VR) and PT significantly increased following IR in both sexes when pericyte density was pharmacologically decreased (VR: P = 0.03; PT: P = 0.03). Our data support the hypothesis that pericyte density is negatively associated with the development of IR injury in SHR, which may be mediated by erythrocyte congestion in the medullary vasculature.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Physiology, Augusta University, Augusta, Georgia; and
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia; and
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia
| | | |
Collapse
|
19
|
Kennedy-Lydon T. Immune Functions and Properties of Resident Cells in the Heart and Cardiovascular System: Pericytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:93-103. [PMID: 28667555 DOI: 10.1007/978-3-319-57613-8_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This chapter provides an introduction to pericyte physiology. Pericytes are smooth muscle-like cells that wrap around vessels and arterioles. Here, we discuss their structure, function, contractility and interaction with other cells including immune cells and finally their role in pathological processes. Additionally, we discuss recent studies describing pericyte populations in the heart and their potential as targets for future cardiac therapeutic interventions.
Collapse
|
20
|
Hosszu A, Antal Z, Lenart L, Hodrea J, Koszegi S, Balogh DB, Banki NF, Wagner L, Denes A, Hamar P, Degrell P, Vannay A, Szabo AJ, Fekete A. σ1-Receptor Agonism Protects against Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol 2017; 28:152-165. [PMID: 27056295 PMCID: PMC5198266 DOI: 10.1681/asn.2015070772] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/05/2016] [Indexed: 11/03/2022] Open
Abstract
Mechanisms of renal ischemia-reperfusion injury remain unresolved, and effective therapies are lacking. We previously showed that dehydroepiandrosterone protects against renal ischemia-reperfusion injury in male rats. Here, we investigated the potential role of σ1-receptor activation in mediating this protection. In rats, pretreatment with either dehydroepiandrosterone or fluvoxamine, a high-affinity σ1-receptor agonist, improved survival, renal function and structure, and the inflammatory response after sublethal renal ischemia-reperfusion injury. In human proximal tubular epithelial cells, stimulation by fluvoxamine or oxidative stress caused the σ1-receptor to translocate from the endoplasmic reticulum to the cytosol and nucleus. Fluvoxamine stimulation in these cells also activated nitric oxide production that was blocked by σ1-receptor knockdown or Akt inhibition. Similarly, in the postischemic rat kidney, σ1-receptor activation by fluvoxamine triggered the Akt-nitric oxide synthase signaling pathway, resulting in time- and isoform-specific endothelial and neuronal nitric oxide synthase activation and nitric oxide production. Concurrently, intravital two-photon imaging revealed prompt peritubular vasodilation after fluvoxamine treatment, which was blocked by the σ1-receptor antagonist or various nitric oxide synthase blockers. In conclusion, in this rat model of ischemia-reperfusion injury, σ1-receptor agonists improved postischemic survival and renal function via activation of Akt-mediated nitric oxide signaling in the kidney. Thus, σ1-receptor activation might provide a therapeutic option for renoprotective therapy.
Collapse
Affiliation(s)
- Adam Hosszu
- MTA-SE Lendulet Diabetes Research Group and
- First Department of Pediatrics
| | | | | | | | | | | | | | | | - Adam Denes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary; and
| | - Peter Hamar
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Peter Degrell
- Department of Pathology, Moritz Kaposi General Hospital, Kaposvar, Hungary
| | - Adam Vannay
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- First Department of Pediatrics
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE Lendulet Diabetes Research Group and
- First Department of Pediatrics
| |
Collapse
|
21
|
Abstract
Pericytes are a heterogeneous population of cells located in the blood vessel wall. They were first identified in the 19th century by Rouget, however their biological role and potential for drug targeting have taken time to be recognised. Isolation of pericytes from several different tissues has allowed a better phenotypic and functional characterization. These findings revealed a tissue-specific, multi-functional group of cells with multilineage potential. Given this emerging evidence, pericytes have acquired specific roles in pathobiological events in vascular diseases. In this review article, we will provide a compelling overview of the main diseases in which pericytes are involved, from well-established mechanisms to the latest findings. Pericyte involvement in diabetes and cancer will be discussed extensively. In the last part of the article we will review therapeutic approaches for these diseases in light of the recently acquired knowledge. To unravel pericyte-related vascular pathobiological events is pivotal not only for more tailored treatments of disease but also to establish pericytes as a therapeutic tool.
Collapse
|
22
|
Hyndman KA, Dugas C, Arguello AM, Goodchild TT, Buckley KM, Burch M, Yanagisawa M, Pollock JS. High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression. Am J Physiol Regul Integr Comp Physiol 2016; 311:R263-71. [PMID: 27280426 DOI: 10.1152/ajpregu.00016.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Abstract
The collecting duct endothelin-1 (ET-1), endothelin B (ETB) receptor, and nitric oxide synthase-1 (NOS1) pathways are critical for regulation of fluid-electrolyte balance and blood pressure control during high-salt feeding. ET-1, ETB receptor, and NOS1 are highly expressed in the inner medullary collecting duct (IMCD) and vasa recta, suggesting that there may be cross talk or paracrine signaling between the vasa recta and IMCD. The purpose of this study was to test the hypothesis that endothelial cell-derived ET-1 (paracrine) and collecting duct-derived ET-1 (autocrine) promote IMCD nitric oxide (NO) production through activation of the ETB receptor during high-salt feeding. We determined that after 7 days of a high-salt diet (HS7), there was a shift to 100% ETB expression in IMCDs, as well as a twofold increase in nitrite production (a metabolite of NO), and this increase could be prevented by acute inhibition of the ETB receptor. ETB receptor blockade or NOS1 inhibition also prevented the ET-1-dependent decrease in ion transport from primary IMCDs, as determined by transepithelial resistance. IMCD were also isolated from vascular endothelial ET-1 knockout mice (VEETKO), collecting duct ET-1 KO (CDET-1KO), and flox controls. Nitrite production by IMCD from VEETKO and flox mice was similarly increased twofold with HS7. However, IMCD NO production from CDET-1KO mice was significantly blunted with HS7 compared with flox control. Taken together, these data indicate that during high-salt feeding, the autocrine actions of ET-1 via upregulation of the ETB receptor are critical for IMCD NO production, facilitating inhibition of ion reabsorption.
Collapse
Affiliation(s)
- Kelly Anne Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Courtney Dugas
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexandra M Arguello
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Traci T Goodchild
- Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; and
| | | | - Mariah Burch
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Augusta University, Augusta, Georgia
| | - Masashi Yanagisawa
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas; and International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Augusta University, Augusta, Georgia;
| |
Collapse
|
23
|
Brähler S, Yu H, Suleiman H, Krishnan GM, Saunders BT, Kopp JB, Miner JH, Zinselmeyer BH, Shaw AS. Intravital and Kidney Slice Imaging of Podocyte Membrane Dynamics. J Am Soc Nephrol 2016; 27:3285-3290. [PMID: 27036737 DOI: 10.1681/asn.2015121303] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
In glomerular disease, podocyte injury results in a dramatic change in cell morphology known as foot process effacement. Remodeling of the actin cytoskeleton through the activity of small GTPases was identified as a key mechanism in effacement, with increased membrane activity and motility in vitro However, whether podocytes are stationary or actively moving cells in vivo remains debated. Using intravital and kidney slice two-photon imaging of the three-dimensional structure of mouse podocytes, we found that uninjured podocytes remained nonmotile and maintained a canopy-shaped structure over time. On expression of constitutively active Rac1, however, podocytes changed shape by retracting processes and clearly exhibited domains of increased membrane activity. Constitutive activation of Rac1 also led to podocyte detachment from the glomerular basement membrane, and we detected detached podocytes crawling on the surface of the tubular epithelium and occasionally, in contact with peritubular capillaries. Podocyte membrane activity also increased in the inflammatory environment of immune complex-mediated GN. Our results provide evidence that podocytes transition from a static to a dynamic state in vivo, shedding new light on mechanisms in foot process effacement.
Collapse
Affiliation(s)
| | - Haiyang Yu
- Department of Pathology and Immunology and
| | | | | | | | - Jeffrey B Kopp
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri; and
| | | | | |
Collapse
|
24
|
Gomez IG, Roach AM, Nakagawa N, Amatucci A, Johnson BG, Dunn K, Kelly MC, Karaca G, Zheng TS, Szak S, Peppiatt-Wildman CM, Burkly LC, Duffield JS. TWEAK-Fn14 Signaling Activates Myofibroblasts to Drive Progression of Fibrotic Kidney Disease. J Am Soc Nephrol 2016; 27:3639-3652. [PMID: 27026366 DOI: 10.1681/asn.2015111227] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
The identification of the cellular origins of myofibroblasts has led to the discovery of novel pathways that potentially drive myofibroblast perpetuation in disease. Here, we further investigated the role of innate immune signaling pathways in this process. In mice, renal injury-induced activation of pericytes, which are myofibroblast precursors attached to endothelial cells, led to upregulated expression of TNF receptor superfamily member 12a, also known as fibroblast growth factor-inducible 14 (Fn14), by these cells. In live rat kidney slices, administration of the Fn14 ligand, TNF-related weak inducer of apoptosis (TWEAK), promoted pericyte-dependent vasoconstriction followed by pericyte detachment from capillaries. In vitro, administration of TWEAK activated and differentiated pericytes into cytokine-producing myofibroblasts, and further activated established myofibroblasts in a manner requiring canonical and noncanonical NF-κB signaling pathways. Deficiency of Fn14 protected mouse kidneys from fibrogenesis, inflammation, and associated vascular instability after in vivo injury, and was associated with loss of NF-κB signaling. In a genetic model of spontaneous CKD, therapeutic delivery of anti-TWEAK blocking antibodies attenuated disease progression, preserved organ function, and increased survival. These results identify the TWEAK-Fn14 signaling pathway as an important factor in myofibroblast perpetuation, fibrogenesis, and chronic disease progression.
Collapse
Affiliation(s)
- Ivan G Gomez
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Allie M Roach
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Naoki Nakagawa
- Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Aldo Amatucci
- Research & Development, Biogen, Cambridge, Massachusetts
| | - Bryce G Johnson
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Kadeshia Dunn
- Medway School of Pharmacy, University of Kent, Chatham, Kent, United Kingdom
| | - Mark C Kelly
- Medway School of Pharmacy, University of Kent, Chatham, Kent, United Kingdom
| | - Gamze Karaca
- Research & Development, Biogen, Cambridge, Massachusetts
| | | | - Suzanne Szak
- Research & Development, Biogen, Cambridge, Massachusetts
| | | | - Linda C Burkly
- Research & Development, Biogen, Cambridge, Massachusetts;
| | - Jeremy S Duffield
- Research & Development, Biogen, Cambridge, Massachusetts; .,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
25
|
Culshaw GJ, MacIntyre IM, Dhaun N, Webb DJ. Endothelin in nondiabetic chronic kidney disease: preclinical and clinical studies. Semin Nephrol 2016; 35:176-87. [PMID: 25966349 DOI: 10.1016/j.semnephrol.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence and prevalence of chronic kidney disease (CKD) is increasing. Despite current therapies, many patients with CKD have suboptimal blood pressure, ongoing proteinuria, and develop progressive renal dysfunction. Further therapeutic options therefore are required. Over the past 20 years the endothelin (ET) system has become a prime target. Experimental models have shown that ET-1, acting primarily via the endothelin-A receptor, plays an important role in the development of proteinuria, glomerular injury, fibrosis, and inflammation. Subsequent animal and early clinical studies using ET-receptor antagonists have suggested that theses therapies may slow renal disease progression primarily through blood pressure and proteinuria reduction. This review examines the current literature regarding the ET system in nondiabetic CKD.
Collapse
Affiliation(s)
- Geoff J Culshaw
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
| | - Iain M MacIntyre
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Neeraj Dhaun
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - David J Webb
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
26
|
Abstract
Endothelin (ET) is one of the most potent renal vasoconstrictors. Endothelin plays an essential role in the regulation of renal blood flow, glomerular filtration, sodium and water transport, and acid-base balance. ET-1, ET-2, and ET-3 are the three distinct endothelin isoforms comprising the endothelin family. ET-1 is the major physiologically relevant peptide and exerts its biological activity through two G-protein-coupled receptors: ET(A) and ET(B). Both ET(A) and ET(B) are expressed by the renal vasculature. Although ET(A) are expressed mainly by vascular smooth muscle cells, ET(B) are expressed by both renal endothelial and vascular smooth muscle cells. Activation of the endothelin system, or overexpression of downstream endothelin signaling pathways, has been implicated in several pathophysiological conditions including hypertension, acute kidney injury, diabetic nephropathy, and immune nephritis. In this review, we focus on the effects of endothelin on the renal microvasculature, and update recent findings on endothelin in the regulation of renal hemodynamics.
Collapse
Affiliation(s)
- Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Justin P VanBeusecum
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
27
|
Jin C, Speed JS, Pollock DM. High salt intake increases endothelin B receptor function in the renal medulla of rats. Life Sci 2015; 159:144-147. [PMID: 26724217 DOI: 10.1016/j.lfs.2015.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/15/2022]
Abstract
AIMS Endothelin (ET)-1 promotes natriuresis via the endothelin B receptor (ETB) within the renal medulla. In male rats, direct interstitial infusion of ET-1 into the renal medulla has no effect on renal sodium and water excretion but is associated with endothelin A receptor (ETA)-dependent reductions in medullary blood flow. Loss of ETB function leads to salt-sensitive hypertension. We hypothesized that HS intake would increase the natriuretic and diuretic response to renal medullary infusion of ET peptides. MAIN METHODS Male Sprague-Dawley (SD) rats were fed a normal (NS) or high (HS) salt diet for 7days. Rats were anesthetized and a catheter implanted in the renal medulla for interstitial infusion along with a ureteral catheter for urine collection. Medullary infusion of a low dose of ETB receptor agonist, sarafotoxin 6c (S6c; 0.15μg/kg/h), or ET-1 (0.45μg/kg/h) was used to determine changes in sodium excretion (UNaV). KEY FINDINGS In HS fed rats, intramedullary infusion of a low dose of S6c induced a significant increase in UNaV, roughly 2-fold over baseline, compared to no response to this low dose in NS fed rats. In HS fed rats, intramedullary infusion of ET-1 induced a significantly greater increase in UNaV compared to NS fed rats, although this increase was not different from the HS time control studies. SIGNIFICANCE We conclude that high salt intake enhances the diuretic and natriuretic effects of ETB receptor activation in vivo consistent with a role for the ETB receptor in maintaining fluid-electrolyte homeostasis.
Collapse
Affiliation(s)
- Chunhua Jin
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
28
|
Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 2015; 35:96-107. [PMID: 25795503 DOI: 10.1016/j.semnephrol.2015.01.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The kidney is comprised of heterogeneous cell populations that function together to perform a number of tightly controlled, complex and interdependent processes. Renal endothelial cells contribute to vascular tone, regulation of blood flow to local tissue beds, modulation of coagulation and inflammation, and vascular permeability. Both ischemia and sepsis have profound effects on the renal endothelium, resulting in microvascular dysregulation resulting in continued ischemia and further injury. In recent years, the concept of the vascular endothelium as an organ that is both the source of and target for inflammatory injury has become widely appreciated. Here we revisit the renal endothelium in the light of ever evolving molecular advances.
Collapse
Affiliation(s)
- Sudhanshu Kumar Verma
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, The Roudebush VA Medical Center, Indiana Center for Biological Microscopy, Indianapolis, IN
| | - Bruce A Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, The Roudebush VA Medical Center, Indiana Center for Biological Microscopy, Indianapolis, IN.
| |
Collapse
|
29
|
Moreno C, Llinás MT, Rodriguez F, Moreno JM, Salazar FJ. Nitric oxide, prostaglandins and angiotensin II in the regulation of renal medullary blood flow during volume expansion. J Physiol Biochem 2015; 72:1-8. [PMID: 26611113 DOI: 10.1007/s13105-015-0450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/17/2015] [Indexed: 11/29/2022]
Abstract
Regulation of medullary blood flow (MBF) is essential in maintaining renal function and blood pressure. However, it is unknown whether outer MBF (OMBF) and papillary blood flow (PBF) are regulated independently when extracellular volume (ECV) is enhanced. The aim of this study was to determine whether OMBF and PBF are differently regulated and whether there is an interaction between nitric oxide (NO), prostaglandins (PGs) and angiotensin II (Ang II) in regulating OMBF and PBF when ECV is enhanced. To achieve these goals, OMBF and PBF were measured by laser-Doppler in volume-expanded rats treated with a cyclooxygenase inhibitor (meclofenamate, 3 mg/kg) and/or a NO synthesis inhibitor (L-nitro-arginine methyl ester (L-NAME), 3 μg/kg/min) and/or Ang II (10 ng/kg/min). OMBF was unchanged by NO or PGs synthesis inhibition but decreased by 36 % (P < 0.05) when L-NAME and meclofenamate were infused simultaneously. PBF was similarly reduced by L-NAME (12 %), meclofenamate (17 %) or L-NAME + meclofenamate (19 %). Ang II did not modify OMBF, but it led to a similar decrease (P < 0.05) in OMBF when it was administered to rats with reduced NO (32 %), PGs (36 %) or NO and PGs (37 %) synthesis. In contrast, the fall in PBF induced by Ang II (12 %) was enhanced (P < 0.05) by the simultaneous PGs (30 %) or PGs and NO (31 %) synthesis inhibition but not in L-NAME-treated rats (20 %). This study presents novel findings suggesting that blood flows to the outer medulla and renal papilla are differently regulated and showing that there is a complex interaction between NO, PGs and Ang II in regulating OMBF and PBF when ECV is enhanced.
Collapse
Affiliation(s)
- Carol Moreno
- Cardiovascular and Metabolic Diseases, MedImmune, Cambridge, UK
| | - María T Llinás
- Department of Physiology, School of Medicine, University of Murcia, Murcia, 30100, Spain.,Regional Campus of International Excellence "Mare Nostrum", Murcia, Spain.,Instituto Murciano de Investigación Biomédica, Murcia, Spain
| | - Francisca Rodriguez
- Department of Physiology, School of Medicine, University of Murcia, Murcia, 30100, Spain.,Regional Campus of International Excellence "Mare Nostrum", Murcia, Spain.,Instituto Murciano de Investigación Biomédica, Murcia, Spain
| | - Juan M Moreno
- Department of Physiology, School of Medicine, University of Murcia, Murcia, 30100, Spain.,Regional Campus of International Excellence "Mare Nostrum", Murcia, Spain.,Instituto Murciano de Investigación Biomédica, Murcia, Spain
| | - F Javier Salazar
- Department of Physiology, School of Medicine, University of Murcia, Murcia, 30100, Spain. .,Regional Campus of International Excellence "Mare Nostrum", Murcia, Spain. .,Instituto Murciano de Investigación Biomédica, Murcia, Spain.
| |
Collapse
|
30
|
Kennedy-Lydon T, Crawford C, Wildman SS, Peppiatt-Wildman CM. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes. Am J Physiol Renal Physiol 2015. [PMID: 26202223 DOI: 10.1152/ajprenal.00199.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage.
Collapse
Affiliation(s)
- Teresa Kennedy-Lydon
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Carol Crawford
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Scott S Wildman
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Claire M Peppiatt-Wildman
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| |
Collapse
|
31
|
Stefanska A, Eng D, Kaverina N, Duffield JS, Pippin JW, Rabinovitch P, Shankland SJ. Interstitial pericytes decrease in aged mouse kidneys. Aging (Albany NY) 2015; 7:370-82. [PMID: 26081073 PMCID: PMC4505164 DOI: 10.18632/aging.100756] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
With increasing age, the kidney undergoes characteristic changes in the glomerular and tubulo-interstitial compartments, which are ultimately accompanied by reduced kidney function. Studies have shown age-related loss of peritubular vessels. Normal peritubular vessel tone, function and survival depend on neighboring pericytes. Pericyte detachment leads to vascular damage, which can be accompanied by their differentiation to fibroblasts and myofibroblasts, a state that favors matrix production. To better understand the fate of pericytes in the aged kidney, 27 month-old mice were studied. Compared to 3 month-old young adult mice, aged kidneys showed a substantial decrease in capillaries, identified by CD31 staining, in both cortex and medulla. This was accompanied by a marked decrease in surrounding NG2+ / PDGFRβ+ pericytes. This decrease was more pronounced in the medulla. Capillaries devoid of pericytes were typically dilated in aged mice. Aged kidneys were also characterized by interstitial fibrosis due to increased collagen-I and -III staining. This was accompanied by an increase in the number of pericytes that acquired a pro-fibrotic phenotype, identified by increased PDGFRβ+ / αSMA+ staining. These findings are consistent with the decline in kidney interstitial pericytes as a critical step in the development of changes to the peritubular vasculature with aging, and accompanying fibrosis.
Collapse
Affiliation(s)
- Ania Stefanska
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Diana Eng
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Natalya Kaverina
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Jeremy S. Duffield
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Biogen Idec, Cambridge, MA 02142, USA
| | - Jeffrey W. Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Peter Rabinovitch
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stuart J. Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
32
|
Abstract
Renal pericytes have been neglected for many years, but recently they have become an intensively studied cell population in renal biology and pathophysiology. Pericytes are stromal cells that support vasculature, and a subset of pericytes are mesenchymal stem cells. In kidney, pericytes have been reported to play critical roles in angiogenesis, regulation of renal medullary and cortical blood flow, and serve as progenitors of interstitial myofibroblasts in renal fibrogenesis. They interact with endothelial cells through distinct signaling pathways and their activation and detachment from capillaries after acute or chronic kidney injury may be critical for driving chronic kidney disease progression. By contrast, during kidney homeostasis it is likely that pericytes serve as a local stem cell population that replenishes differentiated interstitial and vascular cells lost during aging. This review describes both the regenerative properties of pericytes as well as involvement in pathophysiologic conditions such as fibrogenesis.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Renal Division, Department of Medicine, Boston, MA; Harvard Medical School, Boston, MA; Division of Nephrology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - Benjamin D Humphreys
- Brigham and Women's Hospital, Renal Division, Department of Medicine, Boston, MA; Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA.
| |
Collapse
|
33
|
Ghezzi C, Gorraitz E, Hirayama BA, Loo DDF, Grempler R, Mayoux E, Wright EM. Fingerprints of hSGLT5 sugar and cation selectivity. Am J Physiol Cell Physiol 2014; 306:C864-70. [PMID: 24573086 DOI: 10.1152/ajpcell.00027.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sodium glucose cotransporters (SGLTs) mediate the translocation of carbohydrates across the brush border membrane of different organs such as intestine, kidney, and brain. The human SGLT5 (hSGLT5), in particular, is localized in the kidney were it is responsible for mannose and fructose reabsorption from the glomerular filtrate as confirmed by more recent studies on hSGLT5 knockout mice. Here we characterize the functional properties of hSGLT5 expressed in a stable T-Rex-HEK-293 cell line using biochemical and electrophysiological assays. We confirmed that hSGLT5 is a sodium/mannose transporter that is blocked by phlorizin. Li(+) and H(+) ions were also able to drive mannose transport, and transport was electrogenic. Our results moreover indicate that substrates require a pyranose ring with an axial hydroxyl group (-OH) on carbon 2 (C-2). Compared with Na(+)/glucose cotransport, the level of function of Na(+)/mannose cotransport in rat kidney slices was low.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Department of Physiology, Geffen School of Medicine, University of California, Los Angeles, California; and
| | | | | | | | | | | | | |
Collapse
|
34
|
Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 2014; 508:55-60. [PMID: 24670647 PMCID: PMC3976267 DOI: 10.1038/nature13165] [Citation(s) in RCA: 1353] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/19/2014] [Indexed: 01/12/2023]
Abstract
Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke.
Collapse
Affiliation(s)
- Catherine N Hall
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Clare Reynell
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Bodil Gesslein
- Department of Neuroscience & Pharmacology and Center for Healthy Aging, and Department of Clinical Neurophysiology, Glostrup Hospital, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Nicola B Hamilton
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Anusha Mishra
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Fergus M O'Farrell
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Martin Lauritzen
- Department of Neuroscience & Pharmacology and Center for Healthy Aging, and Department of Clinical Neurophysiology, Glostrup Hospital, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| |
Collapse
|
35
|
Zhang Z, Lin H, Cao C, Payne K, Pallone TL. Descending vasa recta endothelial cells and pericytes form mural syncytia. Am J Physiol Renal Physiol 2013; 306:F751-63. [PMID: 24381184 DOI: 10.1152/ajprenal.00470.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using patch clamp, we induced depolarization of descending vasa recta (DVR) pericytes or endothelia and tested whether it was conducted to distant cells. Membrane potential was measured with the fluorescent voltage dye di-8-ANEPPS or with a second patch-clamp electrode. Depolarization of an endothelial cell induced responses in other endothelia within a millisecond and was slowed by gap junction blockade with heptanol. Endothelial response to pericyte depolarization was poor, implying high-resistance myo-endothelial coupling. In contrast, dual patch clamp of neighboring pericytes revealed syncytial coupling. At high sampling rate, the spread of depolarization between pericytes and endothelia occurred in 9 ± 2 or 12 ± 2 μs, respectively. Heptanol (2 mM) increased the overall input resistance of the pericyte layer to current flow and prevented transmission of depolarization between neighboring cells. The fluorescent tracer Lucifer yellow (LY), when introduced through ruptured patches, spread between neighboring endothelia in 1 to 7 s, depending on location of the flanking cell. LY diffused to endothelial cells on the ipsilateral but not contralateral side of the DVR wall and minimally between pericytes. We conclude that both DVR pericytes and endothelia are part of individual syncytia. The rate of conduction of membrane potential exceeds that for diffusion of hydrophilic molecules by orders of magnitude. Gap junction coupling of adjacent endothelial cells may be spatially oriented to favor longitudinal transmission along the DVR axis.
Collapse
Affiliation(s)
- Zhong Zhang
- Div. of Nephrology, N3W143, 22 S. Greene St., UMMS, Baltimore, MD 21201.
| | | | | | | | | |
Collapse
|
36
|
Rat choroidal pericytes as a target of the autonomic nervous system. Cell Tissue Res 2013; 356:1-8. [DOI: 10.1007/s00441-013-1769-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/11/2013] [Indexed: 02/04/2023]
|
37
|
Crawford C, Wildman SSP, Kelly MC, Kennedy-Lydon TM, Peppiatt-Wildman CM. Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow? Front Physiol 2013; 4:307. [PMID: 24194721 PMCID: PMC3810653 DOI: 10.3389/fphys.2013.00307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta (DVR), and therefore may be able to regulate medullary blood flow (MBF). Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial, and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesize that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine) evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is important.
Collapse
Affiliation(s)
- C Crawford
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich Chatham Maritime, Kent, UK
| | | | | | | | | |
Collapse
|
38
|
Stefańska A, Stefańska AM, Péault B, Péault B, Mullins JJ, Mullins JJ. Renal pericytes: multifunctional cells of the kidneys. Pflugers Arch 2013; 465:767-73. [PMID: 23588377 DOI: 10.1007/s00424-013-1263-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 12/11/2022]
Abstract
Pericytes have become a hot topic in renal biology. They play a critical physiological role in vessel development, maintenance and remodelling through active communication with their vascular partners-endothelial cells-and modulation of extracellular matrix proteins. Multiple functions for renal pericytes have been described; specialised perivascular populations participate in glomerular filtration, regulate medullary blood flow and contribute to kidney fibrosis by differentiation into collagen-generating myofibroblasts. Interestingly, the origin of renin-producing cells of the juxtaglomerular region is attributed to the perivascular cell lineage; we have observed the coincidence of renin and pericyte marker expression during human kidney development. Finally, pericytes have been shown to share features with mesenchymal stem cells, which places them as potential renal progenitor cell candidates. Since renal diseases are often associated with microvascular complications, renal pericytes may emerge as new targets for the treatment of kidney disease.
Collapse
Affiliation(s)
- Ania Stefańska
- University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Queens Medical Research Institute, 47 Little France Avenue, Edinburgh, EH16 4TJ, Scotland, UK
| | | | | | | | | | | |
Collapse
|
39
|
Peppiatt‐Wildman CM, Kennedy‐Lydon T, Crawford C, Wildman SSP. A pivotal role for pericytes in non‐steroidal anti‐inflammatory drug‐induced toxicity. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.1110.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Carol Crawford
- Biological SciencesMedway School of PharmacyKentUnited Kingdom
| | | |
Collapse
|
40
|
Crawford C, Pollock JS, Wildman SSP, Peppiatt‐Wildman CM. The role of nitric oxide in pericyte‐mediated regulation of vasa recta diameter. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.1110.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carol Crawford
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | | | - Scott S P Wildman
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | | |
Collapse
|
41
|
Dunn KN, Kelley SP, Crawford C, Wildman SSP, Peppiatt‐Wildman CM. A novel role for GABA and glutamate in pericyte‐mediated regulation of medullary blood flow. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.1110.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Stephen P Kelley
- Medway School Of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Carol Crawford
- Medway School Of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Scott S P Wildman
- Medway School Of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | | |
Collapse
|
42
|
Birch R, Crawford C, Kelly M, Unwin RJ, Schwiebert E, Wildman SSP, Peppiatt‐Wildman CM. Serine proteases affect
in situ
vasa recta capillary diameter: mechanism for kidney failure associated with pancreatitis? FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.1110.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rebecca Birch
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Carol Crawford
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Mark Kelly
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Robert J Unwin
- Department of PhysiologyUCL Medical SchoolRoyal Free HospitalLondonUnited Kingdom
| | | | - Scott S P Wildman
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | | |
Collapse
|
43
|
Kelly M, Crawford C, Loo R, Delaney M, Farmer C, Wildman SS, Peppiatt‐Wildman CM. Live kidney slices present a novel method for delineating the mechanisms of calcineurin inhibitor‐mediated nephrotoxicity. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.646.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark Kelly
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Carol Crawford
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Ruey‐Leng Loo
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Michael Delaney
- Renal UnitEast Kent Hospitals University NHS Foundation TrustCanterburyUnited Kingdom
| | - Chris Farmer
- Renal UnitEast Kent Hospitals University NHS Foundation TrustCanterburyUnited Kingdom
| | - Scott S.P. Wildman
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | | |
Collapse
|
44
|
Peppiatt‐Wildman CM. Do pericytes represent the cellular switch between kidney health and disease? FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.897.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Kennedy‐Lydon TM, Crawford C, Wildman SSP, Peppiatt‐Wildman CM. Renal pericytes: regulators of medullary blood flow. Acta Physiol (Oxf) 2013; 207:212-25. [PMID: 23126245 PMCID: PMC3561688 DOI: 10.1111/apha.12026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/03/2012] [Accepted: 09/27/2012] [Indexed: 01/29/2023]
Abstract
Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla.
Collapse
Affiliation(s)
| | - C. Crawford
- Medway School of Pharmacy The Universities of Kent and Greenwich at Medway Kent UK
| | - S. S. P. Wildman
- Medway School of Pharmacy The Universities of Kent and Greenwich at Medway Kent UK
| | | |
Collapse
|
46
|
|
47
|
Peppiatt-Wildman CM, Crawford C, Hall AM. Fluorescence imaging of intracellular calcium signals in intact kidney tissue. Nephron Clin Pract 2012; 121:e49-58. [PMID: 23147410 DOI: 10.1159/000342812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intracellular calcium (Ca(2+)) plays an important role in normal renal physiology and in the pathogenesis of various kidney diseases; however, the study of Ca(2+) signals in intact tissue has been limited by technical difficulties, including achieving adequate loading of Ca(2+)-sensitive fluorescent dyes. The kidney slice preparation represents a model whereby three-dimensional tissue architecture is preserved and structures in both the cortex and medulla can be imaged using confocal or multiphoton microscopy. METHODS Ca(2+)-sensitive dyes Rhod-2, Fura-red and Fluo-4 were loaded into tubular and vascular cells in rat kidney slices using a re-circulating perfusion system and real-time imaging of Ca(2+) signals was recorded by confocal microscopy. Kidney slices were also obtained from transgenic mice expressing the GCaMP2 Ca(2+)-sensor in their endothelial cells and real time Ca(2+) transients stimulated by physiological stimuli. RESULTS Wide spread loading of Ca(2+) indicators was achieved in the tubular and vascular structures of both the medulla and cortex. Real time Ca(2+) signals were successfully recorded in different intracellular compartments of both rat and mouse cortical and medullary tubules in response to physiological stimuli (ATP and angiotensin II). Glomerular Ca(2+) transients were similarly recorded in kidney slices taken from the transgenic mouse expressing the GCaMP2 Ca(2+)-sensor. CONCLUSION We present new approaches that can be adopted to image cytosolic and mitochondrial Ca(2+) signals within various cell types in intact kidney tissue. Moreover, techniques described in this study can be used to facilitate future detailed investigations of intracellular Ca(2+) homeostasis in renal health and disease.
Collapse
Affiliation(s)
- C M Peppiatt-Wildman
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham Maritime, UK. C.M.Peppiatt @ kent.ac.uk
| | | | | |
Collapse
|