1
|
Ingmer H, Leisner JJ, Fulaz S. Forssman and the staphylococcal hemolysins. APMIS 2025; 133:e13459. [PMID: 39188243 PMCID: PMC11669744 DOI: 10.1111/apm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Forssman was a Swedish pathologist and microbiologist who, in the 1920s and 1930s conducted a long series of experiments that led to unique insights into surface antigens of blood cells, as well as added to the discrimination of toxins produced by staphylococci that lyse red blood cells. This review takes offset in the studies published by Forssman in APMIS addressing the hemolytic properties of staphylococcal toxins displayed against erythrocytes of animal and human origin. In light of current knowledge, we will discuss the insights we now have and how they may pave the way for curing infections with pathogenic staphylococci, including Staphylococcus aureus.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Jørgen J. Leisner
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Stephanie Fulaz
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Tomaszewski KL, Blanchard M, Olaniyi R, Brenton HR, Hayes S, Fatma F, Amarasinghe GK, Cho BK, Goo YA, DeDent AC, Fritz SA, Wardenburg JB. Enhanced Staphylococcus aureus protection by uncoupling of the α-toxin-ADAM10 interaction during murine neonatal vaccination. Nat Commun 2024; 15:8702. [PMID: 39379345 PMCID: PMC11461939 DOI: 10.1038/s41467-024-52714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Staphylococcus aureus remains a leading global cause of bacterial infection-associated mortality and has eluded prior vaccine development efforts. S. aureus α-toxin (Hla) is an essential virulence factor in disease, impairing the T cell response to infection. The anti-Hla antibody response is a correlate of human protective immunity. Here we observe that this response is limited early in human life and design a vaccine strategy to elicit immune protection against Hla in a neonatal mice. By targeted disruption of the interaction of Hla with its receptor ADAM10, we identify a vaccine antigen (HlaH35L/R66C/E70C, HlaHRE) that elicits an ~100-fold increase in the neutralizing anti-Hla response. Immunization with HlaHRE enhances the T follicular helper (TFH) cell response to S. aureus infection, correlating with the magnitude of the neutralizing anti-toxin response and disease protection. Furthermore, maternal HlaHRE immunization confers protection to offspring. Together, these findings illuminate a path for S. aureus vaccine development at the maternal-infant interface.
Collapse
Affiliation(s)
- Kelly L Tomaszewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Forward Defense, LLC, St. Louis, MO, USA
| | - Meagan Blanchard
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Reuben Olaniyi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Merck & Co, West Point, PA, USA
| | - Hannah R Brenton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha Hayes
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Farheen Fatma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute - Washington University School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute - Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea C DeDent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Cleveland Clinic Innovations, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie A Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Forward Defense, LLC, St. Louis, MO, USA.
| |
Collapse
|
3
|
Ong ZX, Kannan B, Phillips ARJ, Becker DL. Investigation of Staphylococcus aureus Biofilm-Associated Toxin as a Potential Squamous Cell Carcinoma Therapeutic. Microorganisms 2024; 12:293. [PMID: 38399697 PMCID: PMC10891956 DOI: 10.3390/microorganisms12020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer therapies developed using bacteria and their components have been around since the 19th century. Compared to traditional cancer treatments, the use of bacteria-derived compounds as cancer therapeutics could offer a higher degree of specificity, with minimal off-target effects. Here, we explored the use of soluble bacteria-derived toxins as a potential squamous cell carcinoma (SCC) therapeutic. We optimized a protocol to generate Staphylococcus aureus biofilm-conditioned media (BCM), where soluble bacterial products enriched in the development of biofilms were isolated from a bacterial culture and applied to SCC cell lines. Bioactive components of S. aureus ATCC 29213 (SA29213) BCM display selective toxicity towards cancerous human skin SCC-12 at low doses, while non-cancerous human keratinocyte HaCaT and fibroblast BJ-5ta are minimally affected. SA29213 BCM treatment causes DNA damage to SCC-12 and initiates Caspase 3-dependent-regulated cell death. The use of the novel SA29213 bursa aurealis transposon mutant library led to the identification of S. aureus alpha hemolysin as the main bioactive compound responsible for the observed SCC-12-specific toxicity. The antibody neutralisation of Hla eradicates the cytotoxicity of SA29213 BCM towards SCC-12. Hla displays high SCC-12-specific toxicity, which is exerted primarily through Hla-ADAM10 interaction, Hla oligomerisation, and pore formation. The high target specificity and potential to cause cell death in a controlled manner highlight SA29213 Hla as a good candidate as an alternative SCC therapeutic.
Collapse
Affiliation(s)
- Zi Xin Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 639798, Singapore
| | - Bavani Kannan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | | | - David L. Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
- National Skin Centre, Singapore 308205, Singapore
| |
Collapse
|
4
|
Alfano DN, Miller MJ, Bubeck Wardenburg J. Endothelial ADAM10 utilization defines a molecular pathway of vascular injury in mice with bacterial sepsis. J Clin Invest 2023; 133:e168450. [PMID: 37788087 PMCID: PMC10688991 DOI: 10.1172/jci168450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
The endothelium plays a critical role in the host response to infection and has been a focus of investigation in sepsis. While it is appreciated that intravascular thrombus formation, severe inflammation, and loss of endothelial integrity impair tissue oxygenation during sepsis, the precise molecular mechanisms that lead to endothelial injury remain poorly understood. We demonstrate here that endothelial ADAM10 was essential for the pathogenesis of Staphylococcus aureus sepsis, contributing to α-toxin-mediated (Hla-mediated) microvascular thrombus formation and lethality. As ADAM10 is essential for endothelial development and homeostasis, we examined whether other major human sepsis pathogens also rely on ADAM10-dependent pathways in pathogenesis. Mice harboring an endothelium-specific knockout of ADAM10 were protected against lethal Pseudomonas aeruginosa and Streptococcus pneumoniae sepsis, yet remained fully susceptible to group B streptococci and Candida albicans sepsis. These studies illustrate a previously unknown role for ADAM10 in sepsis-associated endothelial injury and suggest that understanding pathogen-specific divergent host pathways in sepsis may enable more precise targeting of disease.
Collapse
Affiliation(s)
| | - Mark J. Miller
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
5
|
Yang F, Suo M, Weli H, Wong M, Junidi A, Cummings C, Johnson R, Mallory K, Liu AY, Greenberg ZJ, Schuettpelz LG, Miller MJ, Luke CJ, Randolph GJ, Zinselmeyer BH, Wardenburg JB, Clemens RA. Staphylococcus aureus α-toxin impairs early neutrophil localization via electrogenic disruption of store-operated calcium entry. Cell Rep 2023; 42:113394. [PMID: 37950870 PMCID: PMC10731421 DOI: 10.1016/j.celrep.2023.113394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
The pore-forming S. aureus α-toxin (Hla) contributes to virulence and disease pathogenesis. While high concentrations of toxin induce cell death, neutrophils exhibit relative resistance to lysis, suggesting that the action of Hla may not be solely conferred by lytic susceptibility. Using intravital microscopy, we observed that Hla disrupts neutrophil localization and clustering early in infection. Hla forms a narrow, ion-selective pore, suggesting that Hla may dysregulate calcium or other ions to impair neutrophil function. We found that sub-lytic Hla did not permit calcium influx but caused rapid membrane depolarization. Depolarization decreases the electrogenic driving force for calcium, and concordantly, Hla suppressed calcium signaling in vitro and in vivo and calcium-dependent leukotriene B4 (LTB4) production, a key mediator of neutrophil clustering. Thus, Hla disrupts the early patterning of the neutrophil response to infection, in part through direct impairment of neutrophil calcium signaling. This early mis-localization of neutrophils may contribute to establishment of infection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mingyi Suo
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Homayemem Weli
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mason Wong
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alex Junidi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Celeste Cummings
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Johnson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kiara Mallory
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Y Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zev J Greenberg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cliff J Luke
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Regina A Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Teymournejad O, Li Z, Beesetty P, Yang C, Montgomery CP. Toxin expression during Staphylococcus aureus infection imprints host immunity to inhibit vaccine efficacy. NPJ Vaccines 2023; 8:3. [PMID: 36693884 PMCID: PMC9873725 DOI: 10.1038/s41541-022-00598-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus infections are a major public health issue, and a vaccine is urgently needed. Despite a considerable promise in preclinical models, all vaccines tested thus far have failed to protect humans against S. aureus. Unlike laboratory mice, humans are exposed to S. aureus throughout life. In the current study, we hypothesized that prior exposure to S. aureus "imprints" the immune response to inhibit vaccine-mediated protection. We established a mouse model in which S. aureus skin and soft tissue infection (SSTI) is followed by vaccination and secondary SSTI. Unlike naïve mice, S. aureus-sensitized mice were incompletely protected against secondary SSTI by vaccination with the inactivated α-hemolysin (Hla) mutant HlaH35L. Inhibition of protection was specific for the HlaH35L vaccine and required hla expression during primary SSTI. Surprisingly, inhibition occurred at the level of vaccine-elicited effector T cells; hla expression during primary infection limited the expansion of T cells and dendritic cells and impaired vaccine-specific T cell responses. Importantly, the T cell-stimulating adjuvant CAF01 rescued inhibition and restored vaccine-mediated protection. Together, these findings identify a potential mechanism for the failure of translation of promising S. aureus vaccines from mouse models to clinical practice and suggest a path forward to prevent these devastating infections.
Collapse
Affiliation(s)
- Omid Teymournejad
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.185648.60000 0001 2175 0319Present Address: Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL US
| | - Zhaotao Li
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US
| | - Pavani Beesetty
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.231844.80000 0004 0474 0428Present Address: Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario Canada
| | - Ching Yang
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.259180.70000 0001 2298 1899Present Address: Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY US
| | - Christopher P. Montgomery
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH US ,grid.240344.50000 0004 0392 3476Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH US
| |
Collapse
|
7
|
Yin N, Yang X, Wang L, Zhang C, Guan J, Tao Y, Guo X, Zhao Y, Song W, Wang B, Tang Y. Kaempferol inhibits the expression of α-hemolysin and protects mice from methicillin-resistant Staphylococcus aureus-induced lethal pneumonia. Microb Pathog 2021; 162:105336. [PMID: 34856361 DOI: 10.1016/j.micpath.2021.105336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium that induces a variety of diseases in humans and animals. The significant pathogenicity of S. aureus is due to its expression of several virulence factors. Alpha-hemolysin (Hla) has attracted attention as a virulence factor in staphylococcal pathogenesis and has been the predominant focus of intense research. In this study, we found that kaempferol, a flavonoid compound, inhibited hemolysis at a low concentration (32 μg/mL) and exerted no effect on bacterial growth. Western blot and RT-qPCR assays further demonstrated that kaempferol downregulated the expression of Hla in S. aureus. We observed that kaempferol alleviated the damage from S. aureus Hla in A549 cells. More importantly, kaempferol showed a potent protective effect on mice pneumonia induced by MRSA, as evidenced by a significant improvement in the survival of mice, a reduction in the number of colonized colonies in lung tissue and a decrease in the pathological damage to lung tissues. In summary, the results demonstrate the protective effect of kaempferol on MRSA-induced lethal pneumonia in mice and indicate that kaempferol could be developed as a potential anti-MRSA drug.
Collapse
Affiliation(s)
- Ning Yin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xin Yang
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 271016, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chi Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ye Tao
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xuerui Guo
- Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yong Tang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
8
|
Wang M, Fan Z, Han H. Autophagy in Staphylococcus aureus Infection. Front Cell Infect Microbiol 2021; 11:750222. [PMID: 34692566 PMCID: PMC8529010 DOI: 10.3389/fcimb.2021.750222] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is an invasive, facultative intracellular pathogen that can colonize niches in various host organisms, making it difficult for the host immune system to completely eliminate. Host autophagy is an intracellular clearance pathway involved in degrading S. aureus. Whereas the accessory gene regulatory system of S. aureus that controls virulence factors could resist the host immune defenses by evading and even utilizing autophagy. This article reviews the interaction between autophagy and S. aureus, providing insights on how to use these mechanisms to improve S. aureus infection control.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ziyao Fan
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
10
|
Klopfenstein N, Cassat JE, Monteith A, Miller A, Drury S, Skaar E, Serezani CH. Murine Models for Staphylococcal Infection. Curr Protoc 2021; 1:e52. [PMID: 33656290 PMCID: PMC7935403 DOI: 10.1002/cpz1.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that colonizes almost every organ in humans and mice and is a leading cause of diseases worldwide. S. aureus infections can be challenging to treat due to widespread antibiotic resistance and their ability to cause tissue damage. The primary modes of transmission of S. aureus are via direct contact with a colonized or infected individual or invasive spread from a colonization niche in the same individual. S. aureus can cause a myriad of diseases, including skin and soft tissue infections (SSTIs), osteomyelitis, pneumonia, endocarditis, and sepsis. S. aureus infection is characterized by the formation of purulent lesions known as abscesses, which are rich in live and dead neutrophils, macrophages, and surrounded by a capsule containing fibrin and collagen. Different strains of S. aureus produce varying amounts of toxins that evade and/or elicit immune responses. Therefore, animal models of S. aureus infection provide a unique opportunity to understand the dynamics of organ-specific immune responses and modifications in the pathogen that could favor the establishment of the pathogen. With advances in in vivo imaging of fluorescent transgenic mice, combined with fluorescent/bioluminescent bacteria, we can use mouse models to better understand the immune response to these types of infections. By understanding the host and bacterial dynamics within various organ systems, we can develop therapeutics to eliminate these pathogens. This module describes in vivo mouse models of both local and systemic S. aureus infection. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Murine model of Staphylococcus aureus subcutaneous infection Alternate Protocol: Murine tape stripping skin infection model Basic Protocol 2: Sample collection to determine skin structure, production of inflammatory mediators, and bacterial load Basic Protocol 3: Murine model of post-traumatic Staphylococcus aureus osteomyelitis Basic Protocol 4: Intravenous infection of the retro-orbital sinus Support Protocol: Preparation of the bacterial inoculum.
Collapse
Affiliation(s)
- Nathan Klopfenstein
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Andrew Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anderson Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sydney Drury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Henrique Serezani
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Klopfenstein N, Brandt SL, Castellanos S, Gunzer M, Blackman A, Serezani CH. SOCS-1 inhibition of type I interferon restrains Staphylococcus aureus skin host defense. PLoS Pathog 2021; 17:e1009387. [PMID: 33690673 PMCID: PMC7984627 DOI: 10.1371/journal.ppat.1009387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/22/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
The skin innate immune response to methicillin-resistant Staphylococcus aureus (MRSA) culminates in the formation of an abscess to prevent bacterial spread and tissue damage. Pathogen recognition receptors (PRRs) dictate the balance between microbial control and injury. Therefore, intracellular brakes are of fundamental importance to tune the appropriate host defense while inducing resolution. The intracellular inhibitor suppressor of cytokine signaling 1 (SOCS-1), a known JAK/STAT inhibitor, prevents the expression and actions of PRR adaptors and downstream effectors. Whether SOCS-1 is a molecular component of skin host defense remains to be determined. We hypothesized that SOCS-1 decreases type I interferon production and IFNAR-mediated antimicrobial effector functions, limiting the inflammatory response during skin infection. Our data show that MRSA skin infection enhances SOCS-1 expression, and both SOCS-1 inhibitor peptide-treated and myeloid-specific SOCS-1 deficient mice display decreased lesion size, bacterial loads, and increased abscess thickness when compared to wild-type mice treated with the scrambled peptide control. SOCS-1 deletion/inhibition increases phagocytosis and bacterial killing, dependent on nitric oxide release. SOCS-1 inhibition also increases the levels of type I and type II interferon levels in vivo. IFNAR deletion and antibody blockage abolished the beneficial effects of SOCS-1 inhibition in vivo. Notably, we unveiled that hyperglycemia triggers aberrant SOCS-1 expression that correlates with decreased overall IFN signatures in the infected skin. SOCS-1 inhibition restores skin host defense in the highly susceptible hyperglycemic mice. Overall, these data demonstrate a role for SOCS-1-mediated type I interferon actions in host defense and inflammation during MRSA skin infection.
Collapse
Affiliation(s)
- Nathan Klopfenstein
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Stephanie L Brandt
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sydney Castellanos
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V, Dortmund, Germany
| | - Amondrea Blackman
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - C Henrique Serezani
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
12
|
Teymournejad O, Montgomery CP. Evasion of Immunological Memory by S. aureus Infection: Implications for Vaccine Design. Front Immunol 2021; 12:633672. [PMID: 33692805 PMCID: PMC7937817 DOI: 10.3389/fimmu.2021.633672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Recurrent S. aureus infections are common, suggesting that natural immune responses are not protective. All candidate vaccines tested thus far have failed to protect against S. aureus infections, highlighting an urgent need to better understand the mechanisms by which the bacterium interacts with the host immune system to evade or prevent protective immunity. Although there is evidence in murine models that both cellular and humoral immune responses are important for protection against S. aureus, human studies suggest that T cells are critical in determining susceptibility to infection. This review will use an “anatomic” approach to systematically outline the steps necessary in generating a T cell-mediated immune response against S. aureus. Through the processes of bacterial uptake by antigen presenting cells, processing and presentation of antigens to T cells, and differentiation and proliferation of memory and effector T cell subsets, the ability of S. aureus to evade or inhibit each step of the T-cell mediated response will be reviewed. We hypothesize that these interactions result in the redirection of immune responses away from protective antigens, thereby precluding the establishment of “natural” memory and potentially inhibiting the efficacy of vaccination. It is anticipated that this approach will reveal important implications for future design of vaccines to prevent these infections.
Collapse
Affiliation(s)
- Omid Teymournejad
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher P Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
13
|
Salina ACG, Brandt SL, Klopfenstein N, Blackman A, Bazzano JMR, Sá-Nunes A, Byers-Glosson N, Brodskyn C, Tavares NM, Da Silva IBS, Medeiros AI, Serezani CH. Leukotriene B 4 licenses inflammasome activation to enhance skin host defense. Proc Natl Acad Sci U S A 2020; 117:30619-30627. [PMID: 33184178 PMCID: PMC7720147 DOI: 10.1073/pnas.2002732117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The initial production of inflammatory mediators dictates host defense as well as tissue injury. Inflammasome activation is a constituent of the inflammatory response by recognizing pathogen and host-derived products and eliciting the production of IL-1β and IL-18 in addition to inducing a type of inflammatory cell death termed "pyroptosis." Leukotriene B4 (LTB4) is a lipid mediator produced quickly (seconds to minutes) by phagocytes and induces chemotaxis, increases cytokine/chemokine production, and enhances antimicrobial effector functions. Whether LTB4 directly activates the inflammasome remains to be determined. Our data show that endogenously produced LTB4 is required for the expression of pro-IL-1β and enhances inflammasome assembly in vivo and in vitro. Furthermore, LTB4-mediated Bruton's tyrosine kinase (BTK) activation is required for inflammasome assembly in vivo as well for IL-1β-enhanced skin host defense. Together, these data unveil a new role for LTB4 in enhancing the expression and assembly of inflammasome components and suggest that while blocking LTB4 actions could be a promising therapeutic strategy to prevent inflammasome-mediated diseases, exogenous LTB4 can be used as an adjuvant to boost inflammasome-dependent host defense.
Collapse
Affiliation(s)
- Ana Carolina Guerta Salina
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Stephanie L Brandt
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-3082
| | - Nathan Klopfenstein
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Amondrea Blackman
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
| | | | - Anderson Sá-Nunes
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Nicole Byers-Glosson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-3082
| | - Claudia Brodskyn
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, Brazil
| | | | | | - Alexandra I Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil
| | - C Henrique Serezani
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
14
|
ORAI1 and ORAI2 modulate murine neutrophil calcium signaling, cellular activation, and host defense. Proc Natl Acad Sci U S A 2020; 117:24403-24414. [PMID: 32929002 DOI: 10.1073/pnas.2008032117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signals are initiated in immune cells by the process of store-operated calcium entry (SOCE), where receptor activation triggers transient calcium release from the endoplasmic reticulum, followed by opening of plasma-membrane calcium-release activated calcium (CRAC) channels. ORAI1, ORAI2, and ORAI3 are known to comprise the CRAC channel; however, the contributions of individual isoforms to neutrophil function are not well understood. Here, we show that loss of ORAI1 partially decreases calcium influx, while loss of both ORAI1 and ORAI2 completely abolishes SOCE. In other immune-cell types, loss of ORAI2 enhances SOCE. In contrast, we find that ORAI2-deficient neutrophils display decreased calcium influx, which is correlated with measurable differences in the regulation of neutrophil membrane potential via KCa3.1. Decreased SOCE in ORAI1-, ORAI2-, and ORAI1/2-deficient neutrophils impairs multiple neutrophil functions, including phagocytosis, degranulation, leukotriene, and reactive oxygen species (ROS) production, rendering ORAI1/2-deficient mice highly susceptible to staphylococcal infection. This study demonstrates that ORAI1 and ORAI2 are the primary components of the neutrophil CRAC channel and identifies subpopulations of neutrophils where cell-membrane potential functions as a rheostat to modulate the SOCE response. These findings have implications for mechanisms that modulate neutrophil function during infection, acute and chronic inflammatory conditions, and cancer.
Collapse
|
15
|
Keller MD, Ching KL, Liang FX, Dhabaria A, Tam K, Ueberheide BM, Unutmaz D, Torres VJ, Cadwell K. Decoy exosomes provide protection against bacterial toxins. Nature 2020; 579:260-264. [PMID: 32132711 DOI: 10.1038/s41586-020-2066-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The production of pore-forming toxins that disrupt the plasma membrane of host cells is a common virulence strategy for bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA)1-3. It is unclear, however, whether host species possess innate immune mechanisms that can neutralize pore-forming toxins during infection. We previously showed that the autophagy protein ATG16L1 is necessary for protection against MRSA strains encoding α-toxin4-a pore-forming toxin that binds the metalloprotease ADAM10 on the surface of a broad range of target cells and tissues2,5,6. Autophagy typically involves the targeting of cytosolic material to the lysosome for degradation. Here we demonstrate that ATG16L1 and other ATG proteins mediate protection against α-toxin through the release of ADAM10 on exosomes-extracellular vesicles of endosomal origin. Bacterial DNA and CpG DNA induce the secretion of ADAM10-bearing exosomes from human cells as well as in mice. Transferred exosomes protect host cells in vitro by serving as scavengers that can bind multiple toxins, and improve the survival of mice infected with MRSA in vivo. These findings indicate that ATG proteins mediate a previously unknown form of defence in response to infection, facilitating the release of exosomes that serve as decoys for bacterially produced toxins.
Collapse
Affiliation(s)
- Matthew D Keller
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.,Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Krystal L Ching
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.,Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- Division of Advanced Research Technologies, New York University Langone Health, New York, NY, USA.,The Microscopy Labratory at New York University Langone Health, New York, NY, USA
| | - Avantika Dhabaria
- Division of Advanced Research Technologies, New York University Langone Health, New York, NY, USA.,The Proteomics Labratory at New York University Langone Health, New York, NY, USA
| | - Kayan Tam
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Beatrix M Ueberheide
- Division of Advanced Research Technologies, New York University Langone Health, New York, NY, USA.,The Proteomics Labratory at New York University Langone Health, New York, NY, USA.,The Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Ken Cadwell
- Department of Microbiology, New York University School of Medicine, New York, NY, USA. .,Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA. .,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
16
|
von Hoven G, Qin Q, Neukirch C, Husmann M, Hellmann N. Staphylococcus aureus α-toxin: small pore, large consequences. Biol Chem 2020; 400:1261-1276. [PMID: 30951494 DOI: 10.1515/hsz-2018-0472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
The small β-pore-forming α-toxin, also termed α-hemolysin or Hla is considered to be an important virulence factor of Staphylococcus aureus. Perforation of the plasma membrane (PM) by Hla leads to uncontrolled flux of ions and water. Already a small number of toxin pores seems to be sufficient to induce complex cellular responses, many of which depend on the efflux of potassium. In this article, we discuss the implications of secondary membrane lesions, for example, by endogenous channels, for Hla-mediated toxicity, for calcium-influx and membrane repair. Activation of purinergic receptors has been proposed to be a major contributor to the lytic effects of various pore forming proteins, but new findings raise doubts that this holds true for Hla. However, the recently discovered cellular pore forming proteins gasdermin D and Mixed lineage kinase domain-like pseudokinase (MLKL) which perforate the PM from the cytosolic side might contribute to both calcium-influx-dependent damage and membrane repair. Activation of endogenous pore forming proteins by Hla above a threshold concentration could explain the apparent dependence of pore characteristics on toxin concentrations. If secondary membrane damage in the aftermath of Hla-attack contributes significantly to overall PM permeability, it might be an interesting target for new therapeutic approaches.
Collapse
Affiliation(s)
- Gisela von Hoven
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Qianqian Qin
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Claudia Neukirch
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Nadja Hellmann
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 30, 55128 Mainz, Germany
| |
Collapse
|
17
|
A Functional Polymorphism-Mediated Disruption of EGR1/ADAM10 Pathway Confers the Risk of Sepsis Progression. mBio 2019; 10:mBio.01663-19. [PMID: 31387910 PMCID: PMC6686044 DOI: 10.1128/mbio.01663-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has indicated that single nucleotide polymorphisms (SNPs) are related to the susceptibility of sepsis and might provide potential evidence for the mechanisms of sepsis. Our recent preliminary study showed that the ADAM10 genetic polymorphism was clinically associated with the development of sepsis, and little is known about the underlying mechanism. The aim of this study was to confirm the association between the ADAM10 promoter rs653765 G→A polymorphism and the progression of sepsis and to discover the underlying mechanism. Clinical data showed that the rs653765 G→A polymorphism was positively correlated with the development of sepsis, as evidenced by a multiple-center case-control association study with a large sample size, and showed that EGR1 and ADAM10 levels were associated well with the different subtypes of sepsis patients. In vitro results demonstrated that the rs653765 G→A variants could functionally modulate ADAM10 promoter activity by altering the binding of the EGR1 transcription factor (TF) to the ADAM10 promoter, affecting the transcription and translation of the ADAM10 gene. Electrophoretic mobility shift assay (EMSA) followed by chromatin immunoprecipitation (ChIP) assay indicated the direct interaction. Functional studies further identified that the EGR1/ADAM10 pathway is important for the inflammatory response. EGR1 intervention in vivo decreased host proinflammatory cytokine secretion and rescued the survival and tissue injury of the mouse endotoxemia model.IMPORTANCE Sepsis is characterized as life-threatening organ dysfunction, with unacceptably high mortality. Evidence has indicated that functional SNPs within inflammatory genes are associated with susceptibility, progression, and prognosis of sepsis. These mechanisms on which these susceptible sites depended often suggest the key pathogenesis and potential targets in sepsis. In the present study, we confirmed that a functional variant acts as an important genetic factor that confers the progression of sepsis in a large sample size and in multiple centers and revealed that the variants modulate the EGR1/ADAM10 pathway and influence the severity of sepsis. We believe that we provide an important insight into this new pathway involving the regulation of inflammatory process of sepsis based on the clinical genetic evidence, which will enhance the understanding of nosogenesis of sepsis and provide the potential target for inflammation-related diseases.
Collapse
|
18
|
Abstract
Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Despite broad literature including basic and translational scientific studies, many gaps in our understanding of host-pathogen interactions remain. In this review, pathogen virulence factors that drive lung infection and injury are discussed in relation to their associated host immune pathways. CAP epidemiology is considered, with a focus on Staphylococcus aureus and Streptococcus pneumoniae as primary pathogens. Bacterial factors involved in nasal colonization and subsequent virulence are illuminated. A particular emphasis is placed on bacterial pore-forming toxins, host cell death, and inflammasome activation. Identified host-pathogen interactions are then examined by linking pathogen factors to aberrant host response pathways in the context of acute lung injury in both primary and secondary infection. While much is known regarding bacterial virulence and host immune responses, CAP management is still limited to mostly supportive care. It is likely that improvements in therapy will be derived from combinatorial targeting of both pathogen virulence factors and host immunomodulation.
Collapse
|
19
|
Triplett KD, Pokhrel S, Castleman MJ, Daly SM, Elmore BO, Joyner JA, Sharma G, Herbert G, Campen MJ, Hathaway HJ, Prossnitz ER, Hall PR. GPER activation protects against epithelial barrier disruption by Staphylococcus aureus α-toxin. Sci Rep 2019; 9:1343. [PMID: 30718654 PMCID: PMC6362070 DOI: 10.1038/s41598-018-37951-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Sex bias in innate defense against Staphylococcus aureus skin and soft tissue infection (SSTI) is dependent on both estrogen production by the host and S. aureus secretion of the virulence factor, α-hemolysin (Hla). The impact of estrogen signaling on the immune system is most often studied in terms of the nuclear estrogen receptors ERα and ERβ. However, the potential contribution of the G protein-coupled estrogen receptor (GPER) to innate defense against infectious disease, particularly with respect to skin infection, has not been addressed. Using a murine model of SSTI, we found that GPER activation with the highly selective agonist G-1 limits S. aureus SSTI and Hla-mediated pathogenesis, effects that were absent in GPER knockout mice. Specifically, G-1 reduced Hla-mediated skin lesion formation and pro-inflammatory cytokine production, while increasing bacterial clearance. In vitro, G-1 reduced surface expression of the Hla receptor, ADAM10, in a human keratinocyte cell line and increased resistance to Hla-mediated permeability barrier disruption. This novel role for GPER activation in skin innate defense against infectious disease suggests that G-1 may have clinical utility in patients with epithelial permeability barrier dysfunction or who are otherwise at increased risk of S. aureus infection, including those with atopic dermatitis or cancer.
Collapse
Affiliation(s)
- Kathleen D Triplett
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Srijana Pokhrel
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Moriah J Castleman
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Seth M Daly
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Bradley O Elmore
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Jason A Joyner
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Geetanjali Sharma
- University of New Mexico School of Medicine, Department of Internal Medicine, Albuquerque, NM, 87131, USA
| | - Guy Herbert
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Matthew J Campen
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Helen J Hathaway
- University of New Mexico School of Medicine, Department of Cell Biology & Physiology, Albuquerque, NM, 87131, USA
| | - Eric R Prossnitz
- University of New Mexico School of Medicine, Department of Internal Medicine, Albuquerque, NM, 87131, USA
| | - Pamela R Hall
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA.
| |
Collapse
|
20
|
Staphylococcus aureus alpha toxin activates Notch in vascular cells. Angiogenesis 2018; 22:197-209. [PMID: 30324336 DOI: 10.1007/s10456-018-9650-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
Staphylococcus aureus infection is one of the leading causes of morbidity in hospitalized patients in the United States, an effect compounded by increasing antibiotic resistance. The secreted agent hemolysin alpha toxin (Hla) requires the receptor A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10) to mediate its toxic effects. We hypothesized that these effects are in part regulated by Notch signaling, for which ADAM10 activation is essential. Notch proteins function in developmental and pathological angiogenesis via the modulation of key pathways in endothelial and perivascular cells. Thus, we hypothesized that Hla would activate Notch in vascular cells. Human umbilical vein endothelial cells were treated with recombinant Hla (rHla), Hla-H35L (genetically inactivated Hla), or Hank's solution (HBSS), and probed by different methods. Luciferase assays showed that Hla (0.01 µg/mL) increased Notch activation by 1.75 ± 0.5-fold as compared to HBSS controls (p < 0.05), whereas Hla-H35L had no effect. Immunocytochemistry and Western blotting confirmed these findings and revealed that ADAM10 and γ-secretase are required for Notch activation after inhibitor and siRNA assays. Retinal EC in mice engineered to express yellow fluorescent protein (YFP) upon Notch activation demonstrated significantly greater YFP intensity after Hla injection than controls. Aortic rings from Notch reporter mice embedded in matrix and incubated with rHla or Hla-H35L demonstrate increased Notch activation occurs at tip cells during sprouting. These mice also had higher skin YFP intensity and area of expression after subcutaneous inoculation of S. aureus expressing Hla than a strain lacking Hla in both EC and pericytes assessed by microscopy. Human liver displayed strikingly higher Notch expression in EC and pericytes during S. aureus infection by immunohistochemistry than tissues from uninfected patients. In sum, our results demonstrate that the S. aureus toxin Hla can potently activate Notch in vascular cells, an effect which may contribute to the pathobiology of infection with this microorganism.
Collapse
|
21
|
Brandt SL, Klopfenstein N, Wang S, Winfree S, McCarthy BP, Territo PR, Miller L, Serezani CH. Macrophage-derived LTB4 promotes abscess formation and clearance of Staphylococcus aureus skin infection in mice. PLoS Pathog 2018; 14:e1007244. [PMID: 30102746 PMCID: PMC6107286 DOI: 10.1371/journal.ppat.1007244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 07/26/2018] [Indexed: 01/26/2023] Open
Abstract
The early events that shape the innate immune response to restrain pathogens during skin infections remain elusive. Methicillin-resistant Staphylococcus aureus (MRSA) infection engages phagocyte chemotaxis, abscess formation, and microbial clearance. Upon infection, neutrophils and monocytes find a gradient of chemoattractants that influence both phagocyte direction and microbial clearance. The bioactive lipid leukotriene B4 (LTB4) is quickly (seconds to minutes) produced by 5-lipoxygenase (5-LO) and signals through the G protein-coupled receptors LTB4R1 (BLT1) or BLT2 in phagocytes and structural cells. Although it is known that LTB4 enhances antimicrobial effector functions in vitro, whether prompt LTB4 production is required for bacterial clearance and development of an inflammatory milieu necessary for abscess formation to restrain pathogen dissemination is unknown. We found that LTB4 is produced in areas near the abscess and BLT1 deficient mice are unable to form an abscess, elicit neutrophil chemotaxis, generation of neutrophil and monocyte chemokines, as well as reactive oxygen species-dependent bacterial clearance. We also found that an ointment containing LTB4 synergizes with antibiotics to eliminate MRSA potently. Here, we uncovered a heretofore unknown role of macrophage-derived LTB4 in orchestrating the chemoattractant gradient required for abscess formation, while amplifying antimicrobial effector functions.
Collapse
Affiliation(s)
- Stephanie L. Brandt
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, Indiana, United States of America
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
| | - Nathan Klopfenstein
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Soujuan Wang
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, Indiana, United States of America
| | - Seth Winfree
- Indiana Center for Biological Microscopy, Indianapolis, Indiana, United States of America
| | - Brian P. McCarthy
- Indiana Institute for Biomedical Imaging Sciences, Department of Radiology, Indianapolis, Indiana, United States of America
| | - Paul R. Territo
- Indiana Institute for Biomedical Imaging Sciences, Department of Radiology, Indianapolis, Indiana, United States of America
| | - Lloyd Miller
- Johns Hopkins University School of Medicine, Department of Dermatology, Baltimore, Maryland, United States of America
| | - C. Henrique Serezani
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indianapolis, Indiana, United States of America
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, Tennessee, United States of America
| |
Collapse
|
22
|
Olaniyi RO, Pancotto L, Grimaldi L, Bagnoli F. Deciphering the Pathological Role of Staphylococcal α-Toxin and Panton-Valentine Leukocidin Using a Novel Ex Vivo Human Skin Model. Front Immunol 2018; 9:951. [PMID: 29867940 PMCID: PMC5953321 DOI: 10.3389/fimmu.2018.00951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus alpha-toxin and Panton-Valentine leukocidin (PVL) have been reported to play critical roles in different animal models of skin infection. These models, however, do not completely recapitulate the human disease due to the host specificity of these toxins as well as the intrinsic anatomical and immunological differences between animals and humans. Human skin explants represent a valid alternative to animal models for studying skin infections. Herein, we developed a human skin explant wound model to study the pathogenic role of alpha-toxin and PVL; inflammatory responses elicited by these toxins; and the neutralizing ability of antibodies to mitigate skin damage. Different concentrations of alpha-toxin and/PVL were applied to superficial wounds on human skin explants. Treatment with alpha-toxin resulted in high tissue toxicity and loss of skin epithelial integrity. PVL induced a milder but significant toxicity with no loss of skin structural integrity. The combination of both toxins resulted in increased tissue toxicity as compared with the individual toxins alone. Treatment of the skin with these toxins also resulted in a decrease of CD45-positive cells in the epidermis. In addition, both toxins induced the release of pro-inflammatory cytokines and chemokines. Finally, antibodies raised against alpha-toxin were able to mitigate tissue toxicity in a concentration-dependent manner. Results from this study confirm the key role of α-toxin in staphylococcal infection of the human skin and suggest a possible cooperation of the two toxins in tissue pathology.
Collapse
Affiliation(s)
| | | | - Luca Grimaldi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | |
Collapse
|
23
|
Impact of Type III Secretion Effectors and of Phenoxyacetamide Inhibitors of Type III Secretion on Abscess Formation in a Mouse Model of Pseudomonas aeruginosa Infection. Antimicrob Agents Chemother 2017; 61:AAC.01202-17. [PMID: 28807906 DOI: 10.1128/aac.01202-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of intra-abdominal infections, wound infections, and community-acquired folliculitis, each of which may involve macro- or microabscess formation. The rising incidence of multidrug resistance among P. aeruginosa isolates has increased both the economic burden and the morbidity and mortality associated with P. aeruginosa disease and necessitates a search for novel therapeutics. Previous work from our group detailed novel phenoxyacetamide inhibitors that block type III secretion and injection into host cells in vitro In this study, we used a mouse model of P. aeruginosa abscess formation to test the in vivo efficacy of these compounds against the P. aeruginosa type III secretion system (T3SS). Bacteria used the T3SS to intoxicate infiltrating neutrophils to establish abscesses. Despite this antagonism, sufficient numbers of functioning neutrophils remained for proper containment of the abscesses, as neutrophil depletion resulted in an increased abscess size, the formation of dermonecrotic lesions on the skin, and the dissemination of P. aeruginosa to internal organs. Consistent with the specificity of the T3SS-neutrophil interaction, P. aeruginosa bacteria lacking a functional T3SS were fully capable of causing abscesses in a neutropenic host. Phenoxyacetamide inhibitors attenuated abscess formation and aided in the immune clearance of the bacteria. Finally, a P. aeruginosa strain resistant to the phenoxyacetamide compound was fully capable of causing abscess formation even in the presence of the T3SS inhibitors. Together, our results further define the role of type III secretion in murine abscess formation and demonstrate the in vivo efficacy of phenoxyacetamide inhibitors in P. aeruginosa infection.
Collapse
|
24
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
25
|
Falahee PC, Anderson LS, Reynolds MB, Pirir M, McLaughlin BE, Dillen CA, Cheung AL, Miller LS, Simon SI. α-Toxin Regulates Local Granulocyte Expansion from Hematopoietic Stem and Progenitor Cells in Staphylococcus aureus-Infected Wounds. THE JOURNAL OF IMMUNOLOGY 2017; 199:1772-1782. [PMID: 28733486 DOI: 10.4049/jimmunol.1700649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022]
Abstract
The immune response to Staphylococcus aureus infection in skin involves the recruitment of polymorphonuclear neutrophils (PMNs) from the bone marrow via the circulation and local granulopoiesis from hematopoietic stem and progenitor cells (HSPCs) that also traffic to infected skin wounds. We focus on regulation of PMN number and function and the role of pore-forming α-toxin (AT), a virulence factor that causes host cell lysis and elicits inflammasome-mediated IL-1β secretion in wounds. Infection with wild-type S. aureus enriched in AT reduced PMN recruitment and resulted in sustained bacterial burden and delayed wound healing. In contrast, PMN recruitment to wounds infected with an isogenic AT-deficient S. aureus strain was unimpeded, exhibiting efficient bacterial clearance and hastened wound resolution. HSPCs recruited to infected wounds were unaffected by AT production and were activated to expand PMN numbers in proportion to S. aureus abundance in a manner regulated by TLR2 and IL-1R signaling. Immunodeficient MyD88-knockout mice infected with S. aureus experienced lethal sepsis that was reversed by PMN expansion mediated by injection of wild-type HSPCs directly into wounds. We conclude that AT-induced IL-1β promotes local granulopoiesis and effective resolution of S. aureus-infected wounds, revealing a potential antibiotic-free strategy for tuning the innate immune response to treat methicillin-resistant S. aureus infection in immunodeficient patients.
Collapse
Affiliation(s)
- Patrick C Falahee
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Leif S Anderson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Mack B Reynolds
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Mauricio Pirir
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Bridget E McLaughlin
- Comprehensive Cancer Center Flow Cytometry Shared Resource, University of California, Davis, Davis, CA 95616
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231; and
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231; and
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616;
| |
Collapse
|
26
|
Wetzel S, Seipold L, Saftig P. The metalloproteinase ADAM10: A useful therapeutic target? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624438 DOI: 10.1016/j.bbamcr.2017.06.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteolytic cleavage represents a unique and irreversible posttranslational event regulating the function and half-life of many intracellular and extracellular proteins. The metalloproteinase ADAM10 has raised attention since it cleaves an increasing number of protein substrates close to the extracellular membrane leaflet. This "ectodomain shedding" regulates the turnover of a number of transmembrane proteins involved in cell adhesion and receptor signaling. It can initiate intramembrane proteolysis followed by nuclear transport and signaling of the cytoplasmic domain. ADAM10 has also been implicated in human disorders ranging from neurodegeneration to dysfunction of the immune system and cancer. Targeting proteases for therapeutic purposes remains a challenge since these enzymes including ADAM10 have a wide range of substrates. Accelerating or inhibiting a specific protease activity is in most cases associated with unwanted side effects and a therapeutic useful window of application has to be carefully defined. A better understanding of the regulatory mechanisms controlling the expression, subcellular localization and activity of ADAM10 will likely uncover suitable drug targets which will allow a more specific and fine-tuned modulation of its proteolytic activity.
Collapse
Affiliation(s)
- Sebastian Wetzel
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| |
Collapse
|
27
|
Rasigade JP. Catching the evader: Can monoclonal antibodies interfere with Staphylococcus aureus immune escape? Virulence 2017; 9:1-4. [PMID: 28441093 PMCID: PMC5955477 DOI: 10.1080/21505594.2017.1320012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
28
|
Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin Cell Dev Biol 2017; 72:101-116. [PMID: 28445785 DOI: 10.1016/j.semcdb.2017.04.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen capable of infecting a variety of host species and tissue sites. This versatility stems from the pathogen's ability to secrete diverse host-damaging virulence factors. Among these factors, the S. aureus pore-forming toxins (PFTs) α-toxin and the bicomponent leukocidins, have garnered much attention for their ability to lyse cells at low concentrations and modulate disease severity. Although many of these toxins were discovered nearly a century ago, their host cell specificities have only been elucidated over the past five to six years, starting with the discovery of the eukaryotic receptor for α-toxin and rapidly followed by identification of the leukocidin receptors. The identification of these receptors has revealed the species- and cell type-specificity of toxin binding, and provided insight into non-lytic effects of PFT intoxication that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- E Sachiko Seilie
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, United States; Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
29
|
Doctor A, Zimmerman J, Agus M, Rajasekaran S, Wardenburg JB, Fortenberry J, Zajicek A, Typpo K. Pediatric Multiple Organ Dysfunction Syndrome: Promising Therapies. Pediatr Crit Care Med 2017; 18:S67-S82. [PMID: 28248836 PMCID: PMC5333132 DOI: 10.1097/pcc.0000000000001053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To describe the state of the science, identify knowledge gaps, and offer potential future research questions regarding promising therapies for children with multiple organ dysfunction syndrome presented during the Eunice Kennedy Shriver National Institute of Child Health and Human Development Workshop on Pediatric Multiple Organ Dysfunction Syndrome (March 26-27, 2015). DATA SOURCES Literature review, research data, and expert opinion. STUDY SELECTION Not applicable. DATA EXTRACTION Moderated by an expert from the field, issues relevant to the association of multiple organ dysfunction syndrome with a variety of conditions were presented, discussed, and debated with a focus on identifying knowledge gaps and research priorities. DATA SYNTHESIS Summary of presentations and discussion supported and supplemented by relevant literature. CONCLUSIONS Among critically ill children, multiple organ dysfunction syndrome is relatively common and associated with significant morbidity and mortality. For outcomes to improve, effective therapies aimed at preventing and treating this condition must be discovered and rigorously evaluated. In this article, a number of potential opportunities to enhance current care are highlighted including the need for a better understanding of the pharmacokinetics and pharmacodynamics of medications, the effect of early and optimized nutrition, and the impact of effective glucose control in the setting of multiple organ dysfunction syndrome. Additionally, a handful of the promising therapies either currently being implemented or developed are described. These include extracorporeal therapies, anticytokine therapies, antitoxin treatments, antioxidant approaches, and multiple forms of exogenous steroids. For the field to advance, promising therapies and other therapies must be assessed in rigorous manner and implemented accordingly.
Collapse
Affiliation(s)
- Allan Doctor
- Departments of Pediatrics (Critical Care Medicine) and Biochemistry, Washington University in Saint Louis
| | - Jerry Zimmerman
- Department of Pediatrics (Critical Care Medicine), University of Washington, Seattle, WA
| | - Michael Agus
- Department of Pediatrics (Critical Care Medicine), Harvard University, Boston, MA
| | - Surender Rajasekaran
- Department of Pediatrics (Critical Care Medicine), Michigan State University, Grand Rapids, MI
| | | | - James Fortenberry
- Department of Pediatrics (Critical Care Medicine), Emory University, Atlanta, GA
| | - Anne Zajicek
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, NICHD
| | - Katri Typpo
- Department of Pediatrics (Critical Care Medicine), University of Arizona, Phoenix, AZ
| |
Collapse
|
30
|
Dejani NN, Brandt SL, Piñeros A, Glosson-Byers NL, Wang S, Son YM, Medeiros AI, Serezani CH. Topical Prostaglandin E Analog Restores Defective Dendritic Cell-Mediated Th17 Host Defense Against Methicillin-Resistant Staphylococcus Aureus in the Skin of Diabetic Mice. Diabetes 2016; 65:3718-3729. [PMID: 27605625 PMCID: PMC5127243 DOI: 10.2337/db16-0565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Abstract
People with diabetes are more prone to Staphylococcus aureus skin infection than healthy individuals. Control of S. aureus infection depends on dendritic cell (DC)-induced T-helper 17 (Th17)-mediated neutrophil recruitment and bacterial clearance. DC ingestion of infected apoptotic cells (IACs) drive prostaglandin E2 (PGE2) secretion to generate Th17 cells. We speculated that hyperglycemia inhibits skin DC migration to the lymph nodes and impairs the Th17 differentiation that accounts for poor skin host defense in diabetic mice. Diabetic mice showed increased skin lesion size and bacterial load and decreased PGE2 secretion and Th17 cells compared with nondiabetic mice after methicillin-resistant S. aureus (MRSA) infection. Bone marrow-derived DCs (BMDCs) cultured in high glucose (25 mmol/L) exhibited decreased Ptges mRNA expression, PGE2 production, lower CCR7-dependent DC migration, and diminished maturation after recognition of MRSA-IACs than BMDCs cultured in low glucose (5 mmol/L). Similar events were observed in DCs from diabetic mice infected with MRSA. Topical treatment of diabetic mice with the PGE analog misoprostol improved host defense against MRSA skin infection by restoring DC migration to draining lymph nodes, Th17 differentiation, and increased antimicrobial peptide expression. These findings identify a novel mechanism involved in poor skin host defense in diabetes and propose a targeted strategy to restore skin host defense in diabetes.
Collapse
Affiliation(s)
- Naiara N Dejani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- University of São Paulo, Ribeirão Preto, Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho," Araraquara, Brazil
| | - Stephanie L Brandt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Annie Piñeros
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- University of São Paulo, Ribeirão Preto, Brazil
| | - Nicole L Glosson-Byers
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Sue Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Young Min Son
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Alexandra I Medeiros
- University of São Paulo, Ribeirão Preto, Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho," Araraquara, Brazil
| | - C Henrique Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
31
|
Targeting Alpha Toxin and ClfA with a Multimechanistic Monoclonal-Antibody-Based Approach for Prophylaxis of Serious Staphylococcus aureus Disease. mBio 2016; 7:mBio.00528-16. [PMID: 27353753 PMCID: PMC4937210 DOI: 10.1128/mbio.00528-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus produces numerous virulence factors, each contributing different mechanisms to bacterial pathogenesis in a spectrum of diseases. Alpha toxin (AT), a cytolytic pore-forming toxin, plays a key role in skin and soft tissue infections and pneumonia, and a human anti-AT monoclonal antibody (MAb), MEDI4893*, has been shown to reduce disease severity in dermonecrosis and pneumonia infection models. However, interstrain diversity and the complex pathogenesis of S. aureus bloodstream infections suggests that MEDI4893* alone may not provide adequate protection against S. aureus sepsis. Clumping factor A (ClfA), a fibrinogen binding protein, is an important virulence factor facilitating S. aureus bloodstream infections. Herein, we report on the identification of a high-affinity anti-ClfA MAb, 11H10, that inhibits ClfA binding to fibrinogen, prevents bacterial agglutination in human plasma, and promotes opsonophagocytic bacterial killing (OPK). 11H10 prophylaxis reduced disease severity in a mouse bacteremia model and was dependent on Fc effector function and OPK. Additionally, prophylaxis with 11H10 in combination with MEDI4893* provided enhanced strain coverage in this model and increased survival compared to that obtained with the individual MAbs. The MAb combination also reduced disease severity in murine dermonecrosis and pneumonia models, with activity similar to that of MEDI4893* alone. These results indicate that an MAb combination targeting multiple virulence factors provides benefit over a single MAb neutralizing one virulence mechanism by providing improved efficacy, broader strain coverage, and protection against multiple infection pathologies. Alternative strategies to broad-spectrum antibiotics are required to combat the antibiotic resistance epidemic. Previous attempts at active or passive immunization against Staphylococcus aureus targeting single antigens have failed in clinical trials despite positive preclinical data. To provide broad disease and isolate coverage, an effective immunization strategy likely must target multiple virulence mechanisms of the pathogen. Herein, we tested a multimechanistic MAb combination targeting alpha toxin (AT) and clumping factor A (ClfA) that neutralizes AT-mediated cytotoxicity, blocks fibrinogen binding by ClfA, prevents bacterial agglutination, targets the bacteria for opsonophagocytic killing, and provides broad isolate coverage in a lethal-bacteremia model. Although each MAb alone was effective in bacteremia against some individual isolates, the MAb combination provided improved protection against other isolates. These results illustrate the importance of targeting multiple virulence mechanisms and highlight the potential for an MAb combination targeting AT and ClfA to effectively prevent S. aureus disease.
Collapse
|
32
|
Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci Rep 2016; 6:24242. [PMID: 27066838 PMCID: PMC4828653 DOI: 10.1038/srep24242] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide variety of infections and antibiotic resistant strains are a major problem in hospitals. One of the best studied virulence factors of S. aureus is the pore-forming toxin alpha hemolysin (αHL) whose mechanism of action is incompletely understood. We performed a genome-wide loss-of-function screen using CRISPR/Cas9 technology to identify host targets required for αHL susceptibility in human myeloid cells. We found gRNAs for ten genes enriched after intoxication with αHL and focused on the top five hits. Besides a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), the host receptor for αHL, we identified three proteins, Sys1 golgi trafficking protein (SYS1), ADP-ribosylation factor 1 (ARFRP1), and tetraspanin-14 (TSPAN14) which regulate the presentation of ADAM10 on the plasma membrane post-translationally. Interestingly, we also showed that cells lacking sphingomyelin synthase 1 (SGMS1) resist αHL intoxication, but have only a slightly reduced ADAM10 surface expression. SGMS1 regulates lipid raft formation, suggesting that αHL requires these membrane microdomains for attachment and cytotoxicity.
Collapse
|
33
|
Ezekwe EAD, Weng C, Duncan JA. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes. Toxins (Basel) 2016; 8:95. [PMID: 27043625 PMCID: PMC4848622 DOI: 10.3390/toxins8040095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/24/2022] Open
Abstract
The Staphylococcus aureus toxin, α-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin’s activity against these cells. In host monocytic cells, α-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for α-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-α-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires α-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by α-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types.
Collapse
Affiliation(s)
- Ejiofor A D Ezekwe
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Chengyu Weng
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph A Duncan
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine/Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Powers ME, Becker REN, Sailer A, Turner JR, Bubeck Wardenburg J. Synergistic Action of Staphylococcus aureus α-Toxin on Platelets and Myeloid Lineage Cells Contributes to Lethal Sepsis. Cell Host Microbe 2016; 17:775-87. [PMID: 26067604 DOI: 10.1016/j.chom.2015.05.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/15/2015] [Accepted: 05/22/2015] [Indexed: 02/06/2023]
Abstract
Multi-organ failure contributes to mortality in bacterial sepsis. Platelet and immune cell activation contribute to organ injury during sepsis, but the mechanisms by which bacterial virulence factors initiate these responses remain poorly defined. We demonstrate that during lethal sepsis, Staphylococcus aureus α-toxin simultaneously alters platelet activation and promotes neutrophil inflammatory signaling through interactions with its cellular receptor ADAM10. Platelet intoxication prevents endothelial barrier repair and facilitates formation of injurious platelet-neutrophil aggregates, contributing to lung and liver injury that is mitigated by ADAM10 deletion on platelets and myeloid lineage cells. While platelet- or myeloid-specific ADAM10 knockout does not alter sepsis mortality, double-knockout animals are highly protected. These results define a pathway by which a single bacterial toxin utilizes a widely expressed receptor to coordinate progressive, multi-organ disease in lethal sepsis. As an expression-enhancing ADAM10 polymorphism confers susceptibility to severe human sepsis, these studies highlight the importance of understanding molecular host-microbe interactions.
Collapse
Affiliation(s)
- Michael E Powers
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Russell E N Becker
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Anne Sailer
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jerrold R Turner
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
36
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTI) in the United States and elsewhere. Recurrent infections occur frequently in patients with S. aureus SSTI, underscoring the need to better understand the nature of protective immunity against these infections. Here, we review recent findings concerning the host factors that predispose to S. aureus SSTI. RECENT FINDINGS Recurrent infections occur in nearly half of all patients with S. aureus SSTI. Epidemiologic and environmental factors, such as exposure to healthcare, age, and household contacts with S. aureus SSTI, and contaminated household fomites are associated with recurrence. The majority of the population has evidence of antistaphylococcal antibodies, but whether these are protective remains enigmatic. In contrast, recent clinical and experimental findings clearly highlight the critical roles of innate and T cell-mediated immunity in defense against these infections. S. aureus interferes with innate and adaptive immunity by a number of recently elucidated mechanisms. SUMMARY Recurrent S. aureus SSTIs are common, suggesting incomplete or absent protective immunity among these patients. Our understanding of protective immunity against recurrent infections is incomplete, and further basic and translational investigation is urgently needed to design strategies to prevent and treat these infections.
Collapse
|
38
|
Powers ME, Bubeck Wardenburg J. Host autophagy combating S. aureus: α-toxin will be tolerated. Cell Host Microbe 2016; 17:419-20. [PMID: 25856749 DOI: 10.1016/j.chom.2015.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Autophagy regulates the degradation of both cellular components and invading intracellular pathogens. In this issue of Cell Host & Microbe, Maurer et al. (2015) reveal that cellular autophagy decreases host sensitivity to Staphylococcus aureus α-toxin via reduced expression of the toxin receptor ADAM10, thus rendering the host tolerant to disease.
Collapse
Affiliation(s)
- Michael E Powers
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Flannagan RS, Heit B, Heinrichs DE. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens 2015; 4:826-68. [PMID: 26633519 PMCID: PMC4693167 DOI: 10.3390/pathogens4040826] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Bryan Heit
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
40
|
Chan LC, Chaili S, Filler SG, Barr K, Wang H, Kupferwasser D, Edwards JE, Xiong YQ, Ibrahim AS, Miller LS, Schmidt CS, Hennessey JP, Yeaman MR. Nonredundant Roles of Interleukin-17A (IL-17A) and IL-22 in Murine Host Defense against Cutaneous and Hematogenous Infection Due to Methicillin-Resistant Staphylococcus aureus. Infect Immun 2015; 83:4427-37. [PMID: 26351278 PMCID: PMC4598415 DOI: 10.1128/iai.01061-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and skin structure infections (SSSI) in humans. Moreover, the high frequency of recurring SSSI due to S. aureus, particularly methicillin-resistant S. aureus (MRSA) strains, suggests that infection induces suboptimal anamnestic defenses. The present study addresses the hypothesis that interleukin-17A (IL-17A) and IL-22 play distinct roles in immunity to cutaneous and invasive MRSA infection in a mouse model of SSSI. Mice were treated with specific neutralizing antibodies against IL-17A and/or IL-22 and infected with MRSA, after which the severity of infection and host immune response were determined. Neutralization of either IL-17A or IL-22 reduced T cell and neutrophil infiltration and host defense peptide elaboration in lesions. These events corresponded with increased abscess severity, MRSA viability, and CFU density in skin. Interestingly, combined inhibition of IL-17A and IL-22 did not worsen abscesses but did increase gamma interferon (IFN-γ) expression at these sites. The inhibition of IL-22 led to a reduction in IL-17A expression, but not vice versa. These results suggest that the expression of IL-17A is at least partially dependent on IL-22 in this model. Inhibition of IL-17A but not IL-22 led to hematogenous dissemination to kidneys, which correlated with decreased T cell infiltration in renal tissue. Collectively, these findings indicate that IL-17A and IL-22 have complementary but nonredundant roles in host defense against cutaneous versus hematogenous infection. These insights may support targeted immune enhancement or other novel approaches to address the challenge of MRSA infection.
Collapse
Affiliation(s)
- Liana C Chan
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Siyang Chaili
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kevin Barr
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Huiyuan Wang
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Deborah Kupferwasser
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - John E Edwards
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yan Q Xiong
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Michael R Yeaman
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
41
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
42
|
Castleman MJ, Febbraio M, Hall PR. CD36 Is Essential for Regulation of the Host Innate Response to Staphylococcus aureus α-Toxin-Mediated Dermonecrosis. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26223653 DOI: 10.4049/jimmunol.1500500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is the primary cause of skin and skin structure infections (SSSIs) in the United States. α-Hemolysin (Hla), a pore-forming toxin secreted by S. aureus and a major contributor to tissue necrosis, prompts recruitment of neutrophils critical for host defense against S. aureus infections. However, the failure to clear apoptotic neutrophils can result in damage to host tissues, suggesting that mechanisms of neutrophil clearance are essential to limiting Hla-mediated dermonecrosis. We hypothesized that CD36, a scavenger receptor which facilitates recognition of apoptosing cells, would play a significant role in regulating Hla-mediated inflammation and tissue injury during S. aureus SSSI. In this study, we show that CD36 on macrophages negatively regulates dermonecrosis caused by Hla-producing S. aureus. This regulation is independent of bacterial burden, as CD36 also limits dermonecrosis caused by intoxication with sterile bacterial supernatant or purified Hla. Dermonecrotic lesions of supernatant intoxicated CD36(-/-) mice are significantly larger, with increased neutrophil accumulation and IL-1β expression, compared with CD36(+/+) (wild-type) mice. Neutrophil depletion of CD36(-/-) mice prevents this phenotype, demonstrating the contribution of neutrophils to tissue injury in this model. Furthermore, administration of CD36(+/+) but not CD36(-/-) macrophages near the site of intoxication reduces dermonecrosis, IL-1β production and neutrophil accumulation to levels seen in wild-type mice. This therapeutic effect is reversed by inhibiting actin polymerization in the CD36(+/+) macrophages, supporting a mechanism of action whereby CD36-dependent macrophage phagocytosis of apoptotic neutrophils regulates Hla-mediated dermonecrosis. Taken together, these data demonstrate that CD36 is essential for controlling the host innate response to S. aureus skin infection.
Collapse
Affiliation(s)
- Moriah J Castleman
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| | - Maria Febbraio
- School of Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| |
Collapse
|
43
|
Richter E, Harms M, Ventz K, Gierok P, Chilukoti RK, Hildebrandt JP, Mostertz J, Hochgräfe F. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS One 2015; 10:e0122089. [PMID: 25816343 PMCID: PMC4376684 DOI: 10.1371/journal.pone.0122089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Responsiveness of cells to alpha-toxin (Hla) from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of the epidermal growth factor receptor EGFR and mitogen-activated protein kinases MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects.
Collapse
Affiliation(s)
- Erik Richter
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Manuela Harms
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Katharina Ventz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Philipp Gierok
- Department of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Ravi Kumar Chilukoti
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, 17489, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute, University of Greifswald, 17487, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
- * E-mail:
| |
Collapse
|
44
|
Maurer K, Reyes-Robles T, Alonzo F, Durbin J, Torres VJ, Cadwell K. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host Microbe 2015; 17:429-40. [PMID: 25816775 DOI: 10.1016/j.chom.2015.03.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
Resistance and tolerance are two defense strategies employed by the host against microbial threats. Autophagy-mediated degradation of bacteria has been extensively described as a major resistance mechanism. Here we find that the dominant function of autophagy proteins during infections with the epidemic community-associated methicillin-resistant Staphylococcus aureus USA300 is to mediate tolerance rather than resistance. Atg16L1 hypomorphic mice (Atg16L1(HM)), which have reduced autophagy, were highly susceptible to lethality in both sepsis and pneumonia models of USA300 infection. Autophagy confers protection by limiting the damage caused by α-toxin, particularly to endothelial cells. Remarkably, Atg16L1(HM) mice display enhanced survival rather than susceptibility upon infection with α-toxin-deficient S. aureus. These results identify an essential role for autophagy in tolerance to Staphylococcal disease and highlight how a single virulence factor encoded by a pathogen can determine whether a given host factor promotes tolerance or resistance.
Collapse
Affiliation(s)
- Katie Maurer
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Tamara Reyes-Robles
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Joan Durbin
- Department of Pathology, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
45
|
Cui L, Gao Y, Xie Y, Wang Y, Cai Y, Shao X, Ma X, Li Y, Ma G, Liu G, Cheng W, Liu Y, Liu T, Pan Q, Tao H, Liu Z, Zhao B, Shao Y, Li K. An ADAM10 promoter polymorphism is a functional variant in severe sepsis patients and confers susceptibility to the development of sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:73. [PMID: 25888255 PMCID: PMC4373036 DOI: 10.1186/s13054-015-0796-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/09/2015] [Indexed: 12/17/2022]
Abstract
Introduction Although genetic variants of the A disintegrin and metalloproteinase 10 (ADAM10) gene have been shown to be associated with susceptibility to several inflammatory-related diseases, to date little is known about the clinical relationship in the development of sepsis. Methods Two genetic variants in the promoter of ADAM10 were selected to analyze the potential association with the risk of sepsis. A total of 440 sepsis patients and 450 matched healthy individuals in two independent Chinese Han population were enrolled. Pyrosequencing and polymerase chain reaction-length polymorphism was used to determine the genotypes of the rs514049 and rs653765. A real-time qPCR method was used to detect the mRNA level of ADAM10. Enzyme-linked immunosorbent assay was used to measure the expression levels of substrates CX3CL1, interleukin (IL)-6R, tumor necrosis factor alpha (TNF-α), and the pro-inflammatory cytokines IL-1β and IL-6. Luciferase assay was used to analyze the activities of the promoter haplotypes of ADAM10. Results No statistically significant differences between sepsis cases and controls in the genotype or allele frequencies were observed, suggesting that ADAM10 single nucleotide polymorphisms (SNPs) may not be risk factors for the occurrence of sepsis. A significant difference in the genotype and allele frequencies of the rs653765 SNP between patients with sepsis subtype and severe sepsis (P = 0.0014) or severe sepsis/sepsis shock (P = 0.0037) were observed. Moreover, the rs653765 CC genotype in severe sepsis showed a higher ADAM10 level compared to healthy groups, and the rs653765 CC polymorphism had a strong impact on the production of the ADAM10 substrates CX3CL1, IL-6R and TNF-α. Furthermore, the functional assay showed that ADAM10 C-A haplotype carriers exhibited significantly higher reporter activity compared with the T-A carriers and T-C carriers in human acute monocytic leukemia cell line. Conclusions Our data initially indicated the ADAM10 rs653765 polymorphism was associated with the development of severe sepsis; the risk CC genotype could functionally affect the expression level of ADAM10 mRNA and was accompanied by the up-regulation of its substrates. Thus, ADAM10 might be clinically important and play a critical role in the pathogenesis of the development of sepsis, with potentially important therapeutic implications. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-0796-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Yan Gao
- The Intensive Care Unit, the Forth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yuliu Xie
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical College, Zhanjiang, PR China.
| | - Yan Wang
- Clinical Research Center of Guangdong Medical College, Affiliated Hospital of Guangdong Medical College, Zhanjiang, PR China.
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Xin Shao
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical College, Zhanjiang, PR China.
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Gen Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Wanwen Cheng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Yu Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Tingting Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Hua Tao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| | - Yiming Shao
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical College, Zhanjiang, PR China.
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Renmin street south 57, Xiashan district, Zhanjiang City, 524001, Guangdong Province, PR China.
| |
Collapse
|
46
|
Herwald H, Egesten A. All that glisters is not gold - Staphylococcus aureus and innate immunity. J Innate Immun 2015; 7:113-115. [PMID: 25732123 DOI: 10.1159/000371822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Kraef C, Alabi AS, Peters G, Becker K, Kremsner PG, Rossatanga EG, Mellmann A, Grobusch MP, Zanger P, Schaumburg F. Co-detection of Panton-Valentine leukocidin encoding genes and cotrimoxazole resistance in Staphylococcus aureus in Gabon: implications for HIV-patients' care. Front Microbiol 2015; 6:60. [PMID: 25699036 PMCID: PMC4318419 DOI: 10.3389/fmicb.2015.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/17/2015] [Indexed: 12/28/2022] Open
Abstract
Patients infected with the human immunodeficiency virus (HIV) are frequently exposed to antimicrobial agents. This might have an impact on the resistance profile, genetic background and virulence factors of colonizing Staphylococcus aureus. Sub-Saharan Africa is considered to be endemic for Panton-Valentine leukocidin (PVL) positive S. aureus which can be associated with skin and soft tissue infections (SSTI). We compared S. aureus from nasal and pharyngeal swabs from HIV patients (n = 141) and healthy controls (n = 206) in Gabon in 2013, and analyzed determinants of colonization with PVL positive isolates in a cross-sectional study. S. aureus isolates were screened for the presence of selected virulence factors (incl. PVL) and were subjected to antimicrobial susceptibility testing and genotyping. In HIV patients, S. aureus was more frequently detected (36.9 vs. 31.6%) and the isolates were more frequently PVL positive than in healthy controls (42.1 vs. 23.2%). The presence of PVL was associated with cotrimoxazole resistance (OR = 25.1, p < 0.001) and the use of cotrimoxazole was a risk factor for colonization with PVL positive isolates (OR = 2.5, p = 0.06). PVL positive isolates were associated with the multilocus sequence types ST15 (OR = 5.6, p < 0.001) and ST152 (OR = 62.1, p < 0.001). Participants colonized with PVL positive isolates reported more frequently SSTI in the past compared to carriers of PVL negative isolates (OR = 2.7, p = 0.01). In conclusion, the novelty of our study is that cotrimoxazole might increase the risk of SSTI in regions where cotrimoxazole resistance is high and associated with PVL. This finding needs to be confirmed in prospective studies.
Collapse
Affiliation(s)
- Christian Kraef
- Institute of Medical Microbiology, University Hospital Münster Münster, Germany ; Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital Lambaréné, Gabon
| | - Abraham S Alabi
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital Lambaréné, Gabon ; Institut für Tropenmedizin, Eberhard Karls Universität, Deutsches Zentrum für Infektionsforschung Tübingen, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster Münster, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster Münster, Germany
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital Lambaréné, Gabon ; Institut für Tropenmedizin, Eberhard Karls Universität, Deutsches Zentrum für Infektionsforschung Tübingen, Germany
| | | | | | - Martin P Grobusch
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital Lambaréné, Gabon ; Institut für Tropenmedizin, Eberhard Karls Universität, Deutsches Zentrum für Infektionsforschung Tübingen, Germany ; Division of Internal Medicine, Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Philipp Zanger
- Institut für Tropenmedizin, Eberhard Karls Universität, Deutsches Zentrum für Infektionsforschung Tübingen, Germany ; Institute of Public Health, University Hospital Heidelberg Heidelberg, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster Münster, Germany ; Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital Lambaréné, Gabon
| |
Collapse
|
48
|
Accarias S, Lugo-Villarino G, Foucras G, Neyrolles O, Boullier S, Tabouret G. Pyroptosis of resident macrophages differentially orchestrates inflammatory responses to Staphylococcus aureus in resistant and susceptible mice. Eur J Immunol 2015; 45:794-806. [PMID: 25472006 DOI: 10.1002/eji.201445098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/06/2014] [Accepted: 11/28/2014] [Indexed: 01/13/2023]
Abstract
The relationship between Staphylococcus aureus and innate immunity is highly complex and requires further investigation to be deciphered. i.p. challenge of C57BL/6 and DBA/2 mice, resistant and susceptible to the infection, respectively, resulted in different patterns of cytokine production and neutrophil recruitment. Staphylococcus aureus infection induced macrophage pyroptosis, an inflammasome-dependent cell death program, whose rates significantly differed between C57BL/6 and DBA/2 mice. Fast rate pyroptosis of C57BL/6 macrophages released high levels of IL-1β but limited the synthesis of other cytokines such as TNF-α, IL-6, CXCL1, and CXCL2. Conversely, the extended survival of DBA/2 macrophages allowed substantial production of these NF-κB-related cytokines. Phenotyping of resting macrophages in different mouse strains revealed differential predisposition toward specific macrophage phenotypes that modulate S. aureus-mediated inflammasome activation. Treatment of DBA/2 susceptible mice with inflammasome inducers (i.e. nigericin and ATP) artificially increased pyroptosis and lowered the levels of NF-κB-related inflammatory cytokines, but restored IL-1β to levels similar to those in C57BL/6 mice. Collectively, this study promotes the concept that, in association with host genetics, the basal phenotype of resident macrophages influences the early inflammatory response and possibly participates in S. aureus infection outcome via the inflammasome pathway and subsequent pyroptosis.
Collapse
Affiliation(s)
- Solène Accarias
- Université de Toulouse, INP, ENVT, Toulouse, France; INRA, IHAP, Toulouse, France
| | | | | | | | | | | |
Collapse
|
49
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
50
|
Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model. Antimicrob Agents Chemother 2014; 59:299-309. [PMID: 25348518 DOI: 10.1128/aac.03918-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alpha-toxin (AT) is a major virulence determinant in Staphylococcus aureus skin and soft tissue infection models. We previously demonstrated that prophylactic administration of 2A3, an AT-neutralizing monoclonal antibody (MAb), prevents S. aureus disease in a mouse dermonecrosis model by neutralizing AT-mediated tissue necrosis and immune evasion. In the present study, MEDI4893*, an affinity-optimized version of 2A3, was characterized for therapeutic activity in the dermonecrosis model as a single agent and in combination with two frontline antibiotics, vancomycin and linezolid. MEDI4893* postinfection therapy was found to exhibit a therapeutic treatment window similar to that for linezolid but longer than that for vancomycin. Additionally, when combined with either vancomycin or linezolid, MEDI4893* resulted in reduced tissue damage, increased neutrophil and macrophage infiltration and abscess formation, and accelerated healing relative to those with the antibiotic monotherapies. These data suggest that AT neutralization with a potent MAb holds promise for both prophylaxis and adjunctive therapy with antibiotics and may be a valuable addition to currently available options for the treatment of S. aureus skin and soft tissue infections.
Collapse
|