1
|
Gupta A, Bohara VS, Siddegowda YB, Chaudhary N, Kumar S. Alpha-synuclein and RNA viruses: Exploring the neuronal nexus. Virology 2024; 597:110141. [PMID: 38917691 DOI: 10.1016/j.virol.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Alpha-synuclein (α-syn), known for its pivotal role in Parkinson's disease, has recently emerged as a significant player in neurotropic RNA virus infections. Upregulation of α-syn in various viral infections has been found to impact neuroprotective functions by regulating neurotransmitter synthesis, vesicle trafficking, and synaptic vesicle recycling. This review focuses on the multifaceted role of α-syn in controlling viral replication by modulating chemoattractant properties towards microglial cells, virus-induced ER stress signaling, anti-oxidative proteins expression. Furthermore, the text underlines the α-syn-mediated regulation of interferon-stimulated genes. The review may help suggest potential therapeutic avenues for mitigating the impact of RNA viruses on the central nervous system by exploiting α-syn neuroprotective biology.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vijay Singh Bohara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Gęgotek A, Moniuszko-Malinowska A, Groth M, Skrzydlewska E. Changes in cerebrospinal fluid proteome of patients with tick-borne encephalitis. J Med Virol 2024; 96:e29763. [PMID: 38949193 DOI: 10.1002/jmv.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Tick-borne encephalitis (TBE) is one of the main diseases transmitted by ticks, the incidence of which is increasing. Moreover, its diagnosis and therapy are often long and difficult according to nonspecific symptoms and complex etiology. This study aimed to observe changes in the proteome of cerebrospinal fluid from TBE patients. Cerebrospinal fluid (CSF) of TBE patients (n = 20) and healthy individuals (n = 10) was analyzed using a proteomic approach (QExactiveHF-Orbitrap mass spectrometer) and zymography. Obtained results show that in CSF of TBE patients, the top-upregulated proteins are involved in pro-inflammatory reaction (interleukins), as well as antioxidant/protective response (peroxiredoxins, heat shock proteins). Moreover, changes in the proteome of CSF are not only the result of this disease development, but they can also be an indicator of its course. This mainly applies to proteins involved in proteolysis including serpins and metalloproteinases, whose activity is proportional to the length of patients' convalescence. The obtained proteomic data strongly direct attention to the changes caused by the development of TBE to antioxidant, pro-inflammatory, and proteolytic proteins, knowledge about which can significantly contribute to faster and more accurate diagnosis of various clinical forms of TBE.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Dobrzyńska M, Moniuszko-Malinowska A, Radziwon P, Pancewicz S, Gęgotek A, Skrzydlewska E. Tick-borne encephalitis virus transmitted singly and in duo with Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum bacteria by ticks as pathogens modifying lipid metabolism in human blood. J Biomed Sci 2024; 31:28. [PMID: 38438941 PMCID: PMC10910801 DOI: 10.1186/s12929-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy. METHODS The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment. CONCLUSION Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, M. Sklodowskiej-Curie 23, 15-950, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| |
Collapse
|
4
|
Beránková Z, Khanna R, Spěváková M, Langhansová H, Kopecký J, Lieskovská J. Cellular stress is triggered by tick-borne encephalitis virus and limits the virus replication in PMJ2-R mouse macrophage cell line. Ticks Tick Borne Dis 2024; 15:102269. [PMID: 37813002 DOI: 10.1016/j.ttbdis.2023.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Viral infection may represent a stress condition to the host cell. Cells react to it by triggering the defence programme to restore homeostasis and these events may in turn impact the viral replication. The knowledge about tick-borne encephalitis virus (TBEV) infection-associated stress is limited. Here we investigated the interplay between TBEV infection and stress pathways in PMJ2-R mouse macrophage cell line, as macrophages are the target cells in early phases of TBEV infection. First, to determine how stress influences TBEV replication, the effect of stress inducers H2O2 and tunicamycin (TM) was tested. Viral multiplication was decreased in the presence of both stress inducers suggesting that the stress and cellular stress responses restrict the virus replication. Second, we investigated the induction of oxidative stress and endoplasmic reticulum (ER) stress upon TBEV infection. The level of oxidative stress was interrogated by measuring the reactive oxygen species (ROS). ROS were intermittently increased in infected cells at 12 hpi and at 72 hpi. As mitochondrial dysfunction may result in increased ROS level, we evaluated the mitochondrial homeostasis by measuring the mitochondrial membrane potential (MMP) and found that TBEV infection induced the hyperpolarization of MMP. Moreover, a transient increase of gene expression of stress-induced antioxidative enzymes, like p62, Gclm and Hmox1, was detected. Next, we evaluated the ER stress upon TBEV infection by analysing unfolded protein responses (UPR). We found that infection induced gene expression of two general sensors BiP and CHOP and activated the IRE1 pathway of UPR. Finally, since the natural transmission route of TBEV from its tick vector to the host is mediated via tick saliva, the impact of tick saliva from Ixodes ricinus on stress pathways in TBEV-infected cells was tested. We observed only marginal potentiation of UPR pathway. In conclusion, we found that TBEV infection of PMJ2-R cells elicits the changes in redox balance and triggers cellular stress defences, including antioxidant responses and the IRE1 pathway of UPR. Importantly, our results revealed the negative effect of stress-evoked events on TBEV replication and only marginal impact of tick saliva on stress cellular pathways.
Collapse
Affiliation(s)
- Zuzana Beránková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Ritesh Khanna
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Markéta Spěváková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jan Kopecký
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jaroslava Lieskovská
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Lebeau G, El Safadi D, Hoarau M, Meilhac O, Krejbich-Trotot P, Viranaicken W. Zika virus restriction of host antioxidant response is mediated by intracellular NS1 and reveals its ability to upregulate Bach1 expression. Biochem Biophys Res Commun 2024; 690:149312. [PMID: 38016247 DOI: 10.1016/j.bbrc.2023.149312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Zika virus (ZIKV), has gained global attention due to its association with severe disorders, including microcephaly and congenital Zika syndrome. We investigated the role of ZIKV nonstructural protein 1 (NS1) in altering the host's antioxidant response. Using a stable cell line expressing NS1, we found that NS1 significantly reduced the expression of antioxidant-related genes, including heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and sequestosome-1 (SQSTM1), which are regulated NRF2. Interestingly, this effect was attributed to increased expression of BACH1, a factor that competes with NRF2 for binding to certain antioxidant responsive elements (ARE). Thus, ZIKV NS1-mediated disruption of the antioxidant system is linked to BACH1 overexpression. These findings offer insights into ZIKV pathogenesis and suggest potential therapeutic strategies targeting the NRF2-BACH1 axis.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Daed El Safadi
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Mathilde Hoarau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France
| | - Pascale Krejbich-Trotot
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France; Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France.
| |
Collapse
|
6
|
De Angelis M, Anichini G, Palamara AT, Nencioni L, Gori Savellini G. Dysregulation of intracellular redox homeostasis by the SARS-CoV-2 ORF6 protein. Virol J 2023; 20:239. [PMID: 37853388 PMCID: PMC10585933 DOI: 10.1186/s12985-023-02208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
SARS-CoV-2 has evolved several strategies to overcome host cell defenses by inducing cell injury to favour its replication. Many viruses have been reported to modulate the intracellular redox balance, affecting the Nuclear factor erythroid 2-Related Factor 2 (NRF2) signaling pathway. Although antioxidant modulation by SARS-CoV-2 infection has already been described, the viral factors involved in modulating the NRF2 pathway are still elusive. Given the antagonistic activity of ORF6 on several cellular pathways, we investigated the role of the viral protein towards NRF2-mediated antioxidant response. The ectopic expression of the wt-ORF6 protein negatively impacts redox cell homeostasis, leading to an increase in ROS production, along with a decrease in NRF2 protein and its downstream controlled genes. Moreover, when investigating the Δ61 mutant, previously described as an inactive nucleopore proteins binding mutant, we prove that the oxidative stress induced by ORF6 is substantially related to its C-terminal domain, speculating that ORF6 mechanism of action is associated with the inhibition of nuclear mRNA export processes. In addition, activation by phosphorylation of the serine residue at position 40 of NRF2 is increased in the cytoplasm of wt-ORF6-expressing cells, supporting the presence of an altered redox state, although NRF2 nuclear translocation is hindered by the viral protein to fully antagonize the cell response. Furthermore, wt-ORF6 leads to phosphorylation of a stress-activated serine/threonine protein kinase, p38 MAPK, suggesting a role of the viral protein in regulating p38 activation. These findings strengthen the important role of oxidative stress in the pathogenesis of SARS-CoV-2 and identify ORF6 as an important viral accessory protein hypothetically involved in modulating the antioxidant response during viral infection.
Collapse
Affiliation(s)
- Marta De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Rome, Italy.
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | | |
Collapse
|
7
|
Dobrzyńska M, Moniuszko-Malinowska A, Skrzydlewska E. Metabolic response to CNS infection with flaviviruses. J Neuroinflammation 2023; 20:218. [PMID: 37775774 PMCID: PMC10542253 DOI: 10.1186/s12974-023-02898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses found worldwide that, when introduced into the human body, cause diseases, including neuroinfections, that can lead to serious metabolic consequences and even death. Some of the diseases caused by flaviviruses occur continuously in certain regions, while others occur intermittently or sporadically, causing epidemics. Some of the most common flaviviruses are West Nile virus, dengue virus, tick-borne encephalitis virus, Zika virus and Japanese encephalitis virus. Since all the above-mentioned viruses are capable of penetrating the blood-brain barrier through different mechanisms, their actions also affect the central nervous system (CNS). Like other viruses, flaviviruses, after entering the human body, contribute to redox imbalance and, consequently, to oxidative stress, which promotes inflammation in skin cells, in the blood and in CNS. This review focuses on discussing the effects of oxidative stress and inflammation resulting from pathogen invasion on the metabolic antiviral response of the host, and the ability of viruses to evade the consequences of metabolic changes or exploit them for increased replication and further progression of infection, which affects the development of sequelae and difficulties in therapy.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
8
|
Activation of Early Proinflammatory Responses by TBEV NS1 Varies between the Strains of Various Subtypes. Int J Mol Sci 2023; 24:ijms24021011. [PMID: 36674524 PMCID: PMC9863113 DOI: 10.3390/ijms24021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an emerging zoonosis that may cause long-term neurological sequelae or even death. Thus, there is a growing interest in understanding the factors of TBE pathogenesis. Viral genetic determinants may greatly affect the severity and consequences of TBE. In this study, nonstructural protein 1 (NS1) of the tick-borne encephalitis virus (TBEV) was tested as such a determinant. NS1s of three strains with similar neuroinvasiveness belonging to the European, Siberian and Far-Eastern subtypes of TBEV were studied. Transfection of mouse cells with plasmids encoding NS1 of the three TBEV subtypes led to different levels of NS1 protein accumulation in and secretion from the cells. NS1s of TBEV were able to trigger cytokine production either in isolated mouse splenocytes or in mice after delivery of NS1 encoding plasmids. The profile and dynamics of TNF-α, IL-6, IL-10 and IFN-γ differed between the strains. These results demonstrated the involvement of TBEV NS1 in triggering an immune response and indicated the diversity of NS1 as one of the genetic factors of TBEV pathogenicity.
Collapse
|
9
|
Gupta A, Gawandi S, Vandna, Yadav I, Mohan H, Desai VG, Kumar S. Analysis of fluoro based pyrazole analogues as a potential therapeutics candidate against Japanese encephalitis virus infection. Virus Res 2023; 323:198955. [PMID: 36202293 PMCID: PMC10194371 DOI: 10.1016/j.virusres.2022.198955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/17/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022]
Abstract
Japanese encephalitis virus (JEV) is the leading causative agent of encephalitis and its associated mortality among children. JEV modulates host cell machinery for its advantage, such as oxidative damage which subsequently leads to stress responsive pathways. The present study analyzes new series of dinitroaryl substituted derivatives (1a-1f), containing pyrazole moiety and explores its potential ensuing anti-JEV activity. Out of all synthesized derivatives, compounds 1b and 1f were selected based on minimal cytotoxicity. In vitro inhibition of more than 70% and 90% were observed with compounds 1b and 1f, respectively, in neuronal cells. Dose-response analyses highlighted 1f exhibiting better antiviral activity than 1b. The mice treated with compound 1b or 1f did not show any noticeable toxicity at a dose of 100mg/kg/day when administered intraperitoneally till 96th h. Inhibition of up to 41% and 70% JEV mRNA in spleen and 33% to 43% in brain tissue was observed with compounds 1b and 1f, respectively. Both the compounds suppressed JEV induced ROS generation by up-regulating the NQO1 and HO-1 proteins. Our result suggests the interlocked positive feedback loops of NRF2-SQSTM1 signaling pathway to be regulated by the synthesized compounds. The potential of these compounds can be further tested for broad-spectrum antiviral effects with other flaviviruses in the path towards the development of therapeutics.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sinthiya Gawandi
- Department of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao-Bardez, Goa, India
| | - Vandna
- Center for Medical Biotechnology, M.D. University, Rohtak, Haryana 124001, India
| | - Inderjeet Yadav
- National Brain Research Centre, Manesar, Gurugram, Haryana 122051, India
| | - Hari Mohan
- Center for Medical Biotechnology, M.D. University, Rohtak, Haryana 124001, India
| | - Vidya G Desai
- Department of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao-Bardez, Goa, India.
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
10
|
Perna A, Hay E, Sellitto C, Del Genio E, De Falco M, Guerra G, De Luca A, De Blasiis P, Lucariello A. Antiinflammatory Activities of Curcumin and Spirulina: Focus on Their Role against COVID-19. J Diet Suppl 2023; 20:372-389. [PMID: 36729019 DOI: 10.1080/19390211.2023.2173354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nutraceuticals have for several years aroused the interest of researchers for their countless properties, including the management of viral infections. In the context of the COVID-19 pandemic, studies and research on the antiviral properties of nutraceuticals have greatly increased. More specifically, over the past two years, researchers have focused on analyzing the possible role of nutraceuticals in reducing the risk of SARS-CoV-2 infection or mitigating the symptoms of COVID-19. Among nutraceuticals, turmeric, extracted from the rhizome of the Curcuma Longa plant, and spirulina, commercial name of the cyanobacterium Arthrospira platensis, have assumed considerable importance in recent years. The purpose of this review is to collect, through a search of the most recent articles on Pubmed, the scientific evidence on the role of these two compounds in the fight against COVID-19. In the last two years many hypotheses, some confirmed by clinical and experimental studies, have been made on the possible use of turmeric against COVID-19, while on spirulina and its possible role against SARS-CoV-2 infection information is much less. The demonstrated antiviral properties of spirulina and the fact that these cyanobacteria may modulate or modify some mechanisms also involved in the onset of COVID-19, lead us to think that it may have the same importance as curcumin in fighting this disease and to speculate on the possible combined use of these two substances to obtain a synergistic effect.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmine Sellitto
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emiliano Del Genio
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ''Federico II'', Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo De Blasiis
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
11
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
12
|
Ambivalent Roles of Oxidative Stress in Triangular Relationships among Arthropod Vectors, Pathogens and Hosts. Antioxidants (Basel) 2022; 11:antiox11071254. [PMID: 35883744 PMCID: PMC9312350 DOI: 10.3390/antiox11071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-feeding arthropods, particularly ticks and mosquitoes are considered the most important vectors of arthropod-borne diseases affecting humans and animals. While feeding on blood meals, arthropods are exposed to high levels of reactive oxygen species (ROS) since heme and other blood components can induce oxidative stress. Different ROS have important roles in interactions among the pathogens, vectors, and hosts. ROS influence various metabolic processes of the arthropods and some have detrimental effects. In this review, we investigate the various roles of ROS in these arthropods, including their innate immunity and the homeostasis of their microbiomes, that is, how ROS are utilized to maintain the balance between the natural microbiota and potential pathogens. We elucidate the mechanism of how ROS are utilized to fight off invading pathogens and how the arthropod-borne pathogens use the arthropods’ antioxidant mechanism to defend against these ROS attacks and their possible impact on their vector potentials or their ability to acquire and transmit pathogens. In addition, we describe the possible roles of ROS in chemical insecticide/acaricide activity and/or in the development of resistance. Overall, this underscores the importance of the antioxidant system as a potential target for the control of arthropod and arthropod-borne pathogens.
Collapse
|
13
|
Gęgotek A, Moniuszko-Malinowska A, Groth M, Pancewicz S, Czupryna P, Dunaj J, Atalay S, Radziwon P, Skrzydlewska E. Plasma Proteomic Profile of Patients with Tick-Borne Encephalitis and Co-Infections. Int J Mol Sci 2022; 23:ijms23084374. [PMID: 35457192 PMCID: PMC9031133 DOI: 10.3390/ijms23084374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the increasing number of patients suffering from tick-borne encephalitis (TBE), Lyme disease, and their co-infection, the mechanisms of the development of these diseases and their effects on the human body are still unknown. Therefore, the aim of this study was to evaluate the changes in the proteomic profile of human plasma induced by the development of TBE and to compare it with changes in TBE patients co-infected with other tick-borne pathogens. The results obtained by proteomic analysis using a nanoLC-Q Exactive HF mass spectrometer showed that the most highly elevated groups of proteins in the plasma of TBE patients with co-infection were involved in the pro-inflammatory response and protein degradation, while the antioxidant proteins and factors responsible for protein biosynthesis were mainly downregulated. These results were accompanied by enhanced GSH- and 4-HNE-protein adducts formation, observed in TBE and co-infected patients at a higher level than in the case of patients with only TBE. In conclusion, the differences in the proteomic profiles between patients with TBE and co-infected patients indicate that these diseases are significantly diverse and, consequently, require different treatment, which is particularly important for further research, including the development of novel diagnostics tools.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
- Correspondence: ; Tel.: +48-857485883
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, M. Sklodowskiej-Curie 23, 15-950 Bialystok, Poland;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| |
Collapse
|
14
|
Metabolic Response to Tick-Borne Encephalitis Virus Infection and Bacterial Co-Infections. Pathogens 2022; 11:pathogens11040384. [PMID: 35456059 PMCID: PMC9030592 DOI: 10.3390/pathogens11040384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ticks are vectors of various pathogens, including tick-borne encephalitis virus and bacteria such as B. burgdorferi and A. phagocytophilum, causing infections/co-infections, which are still a diagnostic and therapeutic problem. Therefore, the aim of this study was to compare the effects of TBEV infection/bacterial co-infection on metabolic changes in the blood of patients before and after treatment. It was found that those infections promote plasma ROS enhanced generation and antioxidant defence reduction, especially in relation to glutathione and thioredoxin systems, despite the increased effectiveness of Nrf2 transcription factor in granulocytes. Observed oxidative stress promotes the oxidative modifications of phospholipids containing polyunsaturated fatty acids (LA, AA, EPA) with increased lipid peroxidation (estimated as 8-isoPGF2α, 4-HNE). It is accompanied by protein modifications measured as 4-HNE-protein adducts, carbonyl groups, dityrosine increase, and tryptophan level decrease, which promote structural and functional modification of the following transcription factors: Nrf2 and NFkB inhibitors. The lower level of 8-iso-PGF2α in co-infections indicates an impairment of the body’s ability to intensify inflammation and fight co-infections, while an increased level of Trx after therapy may contribute to the intensification of the inflammatory process. The obtained results indicate the potential possibility of using the assessed metabolic parameters to introduce targeted pharmacotherapy in cases of TBEV infections/bacterial co-infections.
Collapse
|
15
|
Andrey M, Yana K, Olga G, Bogdana K, Sergey T, Lyudmila E, Nina T. Tick-borne encephalitis nonstructural protein NS1 expressed in E. coli retains immunological properties of the native protein. Protein Expr Purif 2022; 191:106031. [DOI: 10.1016/j.pep.2021.106031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
|
16
|
NRF2 in Viral Infection. Antioxidants (Basel) 2021; 10:antiox10091491. [PMID: 34573123 PMCID: PMC8472116 DOI: 10.3390/antiox10091491] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor NRF2 is central to redox homeostasis in animal cells and is a well-known driver of chemoresistance in many types of cancer. Recently, new roles have been ascribed to NRF2 which include regulation of antiviral interferon responses and inflammation. In addition, NRF2 is emerging as an important factor in antiviral immunity through interferon-independent mechanisms. In the review, we give an overview of the scientific progress on the involvement and importance of NRF2 in the context of viral infection.
Collapse
|
17
|
Hejrati A, Nurzadeh M, Roham M. Association of coronavirus pathogencity with the level of antioxidants and immune system. J Family Med Prim Care 2021; 10:609-614. [PMID: 34041049 PMCID: PMC8138403 DOI: 10.4103/jfmpc.jfmpc_1007_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/31/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses are non-living organisms that annually cause many problems for human societies. The spread of some of the most dangerous viruses causing acute pneumonia, including novel Corona virus has led to the largest death toll in the world. With a long incubation period, Corona virus causes many problems for the immune system. Studies have shown that antioxidant enzymes play an important role in reducing infection and boosting the immune system. The immune system of people with chronic infections is often weak. Specific immunity is one of the most important responses to the virus. The present study therefore investigates association of Coronavirus pathogenicity with the level of antioxidants and immune system.
Collapse
Affiliation(s)
- Alireza Hejrati
- Department of Internal Medicine, School of Medicine, Hazrat-e Rasool Hospital, Iran University of Medical Sciences. Tehran, Iran
| | - Maryam Nurzadeh
- Department of Fetomaternal, Faculty of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Roham
- Infectious Disease Specialist, Antimicrobial-Resistant Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Hernandez EP, Talactac MR, Vitor RJS, Yoshii K, Tanaka T. An Ixodes scapularis glutathione S-transferase plays a role in cell survival and viability during Langat virus infection of a tick cell line. Acta Trop 2021; 214:105763. [PMID: 33242485 DOI: 10.1016/j.actatropica.2020.105763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Ticks are important vectors of diseases affecting both humans and animals. To be an efficient vector, ticks have to survive infection by pathogens such as the Langat virus (LGTV). One method utilized by ticks is their complex antioxidant mechanism. Included in the vast antioxidant processes are several enzymes involved in redox homeostasis. The ubiquitous glutathione S-transferases (GSTs) belong to the antioxidant family of enzymes. In this study, we evaluated the role of a GST during LGTV infection. ISE6 cells were infected with LGTV with a multiplicity of infection (MOI) of 0.01 and observed daily. The infection success was monitored via indirect immunofluorescent antibody test (IFAT) for LGTV for up to 4 days. The gene expression of IsGST1 was determined by real-time polymerase chain reaction (PCR) using IsGST1 gene-specific primers. Knockdown of the IsGST1 gene with subsequent LGTV infection was also performed. Afterward, ISE6 cell mortality and viability were checked daily until the fourth day. The virus titer from supernatants of IsGST1-knockdown cells was quantified using a focus-formation assay. IFAT data showed that LGTV infects ISE6 cells in a time-dependent manner with increasing infection from day 0 to day 4. The IsGST1 genes showed an increasing expression until day 2 of infection, while decreased expression was observed from day 3 to day 4 post-infection. Knockdown of the IsGST1 resulted in increased mortality on the third day of infection, while the cell viability was also negatively affected by the knockdown of the IsGST1 genes from day 0 to day 4 post-infection. Knockdown of the IsGST1 genes also resulted in a decreased viral titer from the supernatants of the ISE6 cells infected with LGTV. Based on the results, GSTs are possibly utilized both by cells and the virus for mutual survival and proliferation.
Collapse
|
19
|
Yadav PD, Patil S, Jadhav SM, Nyayanit DA, Kumar V, Jain S, Sampath J, Mourya DT, Cherian SS. Phylogeography of Kyasanur Forest Disease virus in India (1957-2017) reveals evolution and spread in the Western Ghats region. Sci Rep 2020; 10:1966. [PMID: 32029759 PMCID: PMC7005018 DOI: 10.1038/s41598-020-58242-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/08/2020] [Indexed: 01/25/2023] Open
Abstract
The Kyasanur Forest Disease (KFD) has become a major public health problem in the State of Karnataka, India where the disease was first identified and in Tamil Nadu, Maharashtra, Kerala, and Goa covering the Western Ghats region of India. The incidence of positive cases and distribution of the Kyasanur Forest Disease virus (KFDV) in different geographical regions raises the need to understand the evolution and spatiotemporal transmission dynamics. Phylogeography analysis based on 48 whole genomes (46 from this study) and additionally 28 E-gene sequences of KFDV isolated from different regions spanning the period 1957-2017 was thus undertaken. The mean evolutionary rates based the E-gene was marginally higher than that based on the whole genomes. A subgroup of KFDV strains (2006-2017) differing from the early Karnataka strains (1957-1972) by ~2.76% in their whole genomes and representing spread to different geographical areas diverged around 1980. Dispersal from Karnataka to Goa and Maharashtra was indicated. Maharashtra represented a new source for transmission of KFDV since ~2013. Significant evidence of adaptive evolution at site 123 A/T located in the vicinity of the envelope protein dimer interface may have functional implications. The findings indicate the need to curtail the spread of KFDV by surveillance measures and improved vaccination strategies.
Collapse
Affiliation(s)
- Pragya D Yadav
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | - Savita Patil
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | | | - Dimpal A Nyayanit
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | - Vimal Kumar
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | - Shilpi Jain
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | - Jagadish Sampath
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | - Devendra T Mourya
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | - Sarah S Cherian
- Bioinformatics Group, ICMR-National Institute of Virology, Pune, 411001, India.
| |
Collapse
|
20
|
Kusakisako K, Morokuma H, Talactac MR, Hernandez EP, Yoshii K, Tanaka T. A Peroxiredoxin From the Haemaphysalis longicornis Tick Affects Langat Virus Replication in a Hamster Cell Line. Front Cell Infect Microbiol 2020; 10:7. [PMID: 32047725 PMCID: PMC6997474 DOI: 10.3389/fcimb.2020.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Ticks are hematophagous arthropods, and their blood feeding on vertebrate hosts is essential for their development. The vertebrate blood contains high levels of free iron that can react with oxygen in ticks, resulting in the production of hydrogen peroxide (H2O2), one of the reactive oxygen species. Peroxiredoxins (Prxs), H2O2-scavenging enzymes, take on an important role in the ticks' oxidative stress coping mechanism. Ticks also transmit several disease-causing pathogens, including tick-borne encephalitis virus (TBEV), in animals and humans. Therefore, the control of ticks and tick-borne pathogens is a key issue that needs to be addressed. Infection with an arthropod-borne flavivirus is known to induce oxidative stress in insect cells. We hypothesize that vector-derived Prxs could have an effect on the infection and/or replication of flaviviruses in the hosts, since ticks Prxs are possibly transmitted from ticks to their hosts. In this study, we established stable strains of baby hamster kidney (BHK) cells expressing two types of H2O2-scavenging Prxs from the hard tick Haemaphysalis longicornis (BHK-HlPrx and BHK-HlPrx2 cells). Although the infection of TBEV surrogate Langat virus (LGTV) did not induce H2O2 production in normal BHK cells, the mortality rate and the virus titer of LGTV infected BHK-HlPrx cells increased. In addition, HlPrx proteins in BHK cells can facilitate LGTV replication in cells, while HlPrx2 proteins in BHK cells cannot. The results also demonstrated that this facilitation of LGTV replication by the 1-Cys Prx in the BHK cells is not by scavenging H2O2 but by an unknown mechanism. In order to understand this mechanism, more studies using tick-derived cells and ticks are necessary.
Collapse
Affiliation(s)
- Kodai Kusakisako
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Haruki Morokuma
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Melbourne Rio Talactac
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang, Philippines
| | - Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
21
|
Sahoo M, M D, Thakor JC, Baloni S, Saxena S, Shrivastava S, Dhama K, Singh K, Singh R. Neuropathology mediated through caspase dependent extrinsic pathway in goat kids naturally infected with PPRV. Microb Pathog 2019; 140:103949. [PMID: 31875517 DOI: 10.1016/j.micpath.2019.103949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/18/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
Abstract
Peste des petits ruminant (PPR), a highly contagious viral disease of small ruminants, is characterized by erosive stomatitis and pneumo-enteritis. However, its neurovirulence potential as observed with other morbilliviruses has not been fully investigated. The present study describes the neuropathological alterations induced by PPR virus through apoptotic pathway. A total number of 12 carcasses of local breed goat kids of either sex were received for postmortem examination. The clinical history was described as symptoms of mucopurulent nasal discharge, high to low grade fever, erosive stomatitis, dyspnoea and profuse watery diarrhoea followed by mortality of 35 goat kids within a week. The pathoanatomical lesions and immunohistochemical demonstration of PPRV antigen in lungs, intestine, spleen and lymph nodes confirmed PPR disease in goats. Grossly, five brain specimens showed moderate to severe leptomeningeal congestion during necropsy. Microscopically, brain sections showed leptomeningitis and nonsuppurative encephalitis characterized by vascular congestion, haemorrhages in the parenchyma, perivascular cuffing with mild to moderate mononuclear cells (mainly lymphocytes and few macrophages), focal to diffuse microgliosis, neuronal degeneration, satellitosis and neuronophagia. Immunolabelling of viral antigen was observed in the cytoplasm of neurons and glial cells. The RT-PCR amplification of N gene fragment also confirmed the presence of PPRV in the brain. The strong immunoreactivity of Caspase-3, Caspase-8 and comparatively lower expression of caspase-9 along with the absence of any reactivity for Apaf-1 antigen in the brain sections indicated the role of caspase dependent extrinsic pathway in inducing neuropathological changes. The presence of apoptotic neurons in the brain by TUNEL assay further confirmed the apoptosis and strong immunoreactivity of iNOS in neurons which suggested the generation of oxidative stress, that might have induced the apoptosis. The overall findings confirm the neurovirulence potential of PPR virus, via the extrinsic pathway of apoptosis, in natural cases of PPR disease in goat kids.
Collapse
Affiliation(s)
- Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India.
| | - Dinesh M
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | | | - Suraj Baloni
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Karampal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| |
Collapse
|
22
|
Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1409582. [PMID: 31531178 PMCID: PMC6720866 DOI: 10.1155/2019/1409582] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Oxidative stress is induced once the balance of generation and neutralization of reactive oxygen species (ROS) is broken in the cell, and it plays crucial roles in a variety of natural and diseased processes. Infections of Flaviviridae viruses trigger oxidative stress, which affects both the cellular metabolism and the life cycle of the viruses. Oxidative stress associated with specific viral proteins, experimental culture systems, and patient infections, as well as its correlations with the viral pathogenesis attracts much research attention. In this review, we primarily focus on hepatitis C virus (HCV), dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV) as representatives of Flaviviridae viruses and we summarize the mechanisms involved in the relevance of oxidative stress for virus-associated pathogenesis. We discuss the current understanding of the pathogenic mechanisms of oxidative stress induced by Flaviviridae viruses and highlight the relevance of autophagy and DNA damage in the life cycle of viruses. Understanding the crosstalk between viral infection and oxidative stress-induced molecular events may offer new avenues for antiviral therapeutics.
Collapse
|
23
|
Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics 2019; 12:61. [PMID: 31122248 PMCID: PMC6533173 DOI: 10.1186/s12920-019-0503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. Results Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4,ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. Conclusions Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery. Electronic supplementary material The online version of this article (10.1186/s12920-019-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Andrey A Yurchenko
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail I Voevoda
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630004, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
24
|
Kellman EM, Offerdahl DK, Melik W, Bloom ME. Viral Determinants of Virulence in Tick-Borne Flaviviruses. Viruses 2018; 10:v10060329. [PMID: 29914165 PMCID: PMC6024809 DOI: 10.3390/v10060329] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
Tick-borne flaviviruses have a global distribution and cause significant human disease, including encephalitis and hemorrhagic fever, and often result in neurologic sequelae. There are two distinct properties that determine the neuropathogenesis of a virus. The ability to invade the central nervous system (CNS) is referred to as the neuroinvasiveness of the agent, while the ability to infect and damage cells within the CNS is referred to as its neurovirulence. Examination of laboratory variants, cDNA clones, natural isolates with varying pathogenicity, and virally encoded immune evasion strategies have contributed extensively to our understanding of these properties. Here we will review the major viral determinants of virulence that contribute to pathogenesis and influence both neuroinvasiveness and neurovirulence properties of tick-borne flaviviruses, focusing particularly on the envelope protein (E), nonstructural protein 5 (NS5), and the 3′ untranslated region (UTR).
Collapse
Affiliation(s)
- Eliza M Kellman
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Danielle K Offerdahl
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Wessam Melik
- School of Medical Sciences, Orebro University, SE-703 62 Örebro, Sweden.
| | - Marshall E Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
25
|
Ramezani A, Nahad MP, Faghihloo E. The role of Nrf2 transcription factor in viral infection. J Cell Biochem 2018; 119:6366-6382. [DOI: 10.1002/jcb.26897] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Ramezani
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Hepatitis Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mehdi Parsa Nahad
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ebrahim Faghihloo
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
26
|
Smirnova OA, Bartosch B, Zakirova NF, Kochetkov SN, Ivanov AV. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int J Mol Sci 2018; 19:1219. [PMID: 29673197 PMCID: PMC5979612 DOI: 10.3390/ijms19041219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H₂O₂ production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), Lyon 69003, France.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| |
Collapse
|