1
|
Vinceti M, Urbano T, Filippini T, Bedin R, Simonini C, Sorarù G, Trojsi F, Michalke B, Mandrioli J. Changes in Cerebrospinal Fluid Concentrations of Selenium Species Induced by Tofersen Administration in Subjects with Amyotrophic Lateral Sclerosis Carrying SOD1 Gene Mutations. Biol Trace Elem Res 2025; 203:2355-2364. [PMID: 39017978 PMCID: PMC11920394 DOI: 10.1007/s12011-024-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the brain and spinal cord motor neurons. On 25 April 2023, the drug tofersen, an antisense oligonucleotide, received the US Food and Drug Administration approval for treating ALS in adults carrying mutations of the SOD1 gene. We aimed at assessing whether cerebrospinal fluid concentrations of selenium, an element of both toxicological and nutritional interest possibly involved in disease etiology and progression, are modified by tofersen administration. We determined concentrations of selenium species by anion exchange chromatography hyphenated to inductively coupled plasma-dynamic reaction cell-mass spectrometry and overall selenium by using inductively coupled plasma sector-field mass spectrometry, at baseline and 6 months after active tofersen treatment in ten Italian ALS patients carrying the SOD1 gene mutation. Concentrations of total selenium and many selenium species substantially increased after the intervention, particularly of inorganic (tetravalent and hexavalent) selenium and of the organic species selenomethionine and a compound co-eluting with the selenocystine standard. Overall, these findings suggest that tofersen treatment markedly alters selenium status and probably the redox status within the central nervous system, possibly due to a direct effect on neurons and/or the blood-brain barrier. Further studies are required to investigate the biological and clinical relevance of these findings and how they might relate to the pharmacological effects of the drug and to disease progression.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Teresa Urbano
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Roberta Bedin
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Modena University Hospital, Modena, Italy
| | - Cecilia Simonini
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Modena University Hospital, Modena, Italy
| | - Gianni Sorarù
- Department of Neurosciences, Neuromuscular Center, University of Padua, Padua, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center, Luigi Vanvitelli Campania University, Naples, Italy
- First Division of Neurology, University Hospital, Luigi Vanvitelli Campania University, Naples, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jessica Mandrioli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Modena University Hospital, Modena, Italy
| |
Collapse
|
2
|
Vinceti M, Mazzoli R, Wise LA, Veneri F, Filippini T. Calling for a comprehensive risk assessment of selenium in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178700. [PMID: 39923476 DOI: 10.1016/j.scitotenv.2025.178700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
In the last two decades, research has elucidated that selenium, a trace element, has both nutritional and toxicological effects on human health, depending on its dose and chemical form. Recent animal, laboratory, and human studies have shown harmful effects of certain selenium species at specific exposure levels, prompting the need to reassess overall exposure to this element, including that occurring through drinking water, a primary source of inorganic selenium. Drinking water selenium standards worldwide are scarce and existing standards are inconsistent, likely because they have been informed by an incomplete and outdated assessment of the scientific evidence. Incorporating all the available human and laboratory evidence into a precautionary regulatory framework indicates that a drinking water limit of around 5 μg/L of selenium is needed to protect human health, i.e. with an uncertainty factor of 2 versus the lowest adverse effect level observed in human studies, and that higher values may pose unacceptable risks to humans. Despite the rarity of such high levels of selenium in underground and potable waters, coal mining and other sources of environmental pollution as well as geological factors may raise drinking water selenium content above a safe threshold, triggering the need to protect consumers, and to face challenging technological issues for selenium removal, currently under active investigation.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America.
| | - Riccardo Mazzoli
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America
| | - Federica Veneri
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Unit of Dentistry and Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
3
|
Benatar M, Heiman-Patterson TD, Cooper-Knock J, Brickman D, Casaletto KB, Goutman SA, Vinceti M, Dratch L, Arias JJ, Swidler J, Turner MR, Shefner J, Westeneng HJ, van den Berg LH, Al-Chalabi A. Guidance for clinical management of pathogenic variant carriers at elevated genetic risk for ALS/FTD. J Neurol Neurosurg Psychiatry 2025; 96:jnnp-2024-334339. [PMID: 39572211 PMCID: PMC12015018 DOI: 10.1136/jnnp-2024-334339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/19/2024] [Indexed: 02/02/2025]
Abstract
There is a growing understanding of the presymptomatic stages of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and nascent efforts aiming to prevent these devastating neurodegenerative diseases have emerged. This progress is attributable, in no small part, to the altruism of people living with pathogenic variants at elevated genetic risk for ALS/FTD via their willingness to participate in natural history studies and disease prevention trials. Increasingly, this community has also highlighted the urgent need to develop paradigms for providing appropriate clinical care for those at elevated risk for ALS and FTD. This manuscript summarises recommendations emanating from a multi-stakeholder Workshop (Malvern, Pennsylvania, 2023) that aimed to develop guidance for at-risk carriers and their treating physicians. Clinical care recommendations span genetic testing (including counselling and sociolegal implications); monitoring for the emergence of early motor, cognitive and behavioural signs of disease; and the use of Food and Drug Administration-approved small molecule drugs and gene-targeting therapies. Lifestyle recommendations focus on exercise, smoking, statin use, supplement use, caffeine intake and head trauma, as well as occupational and environmental exposures. While the evidence base to inform clinical and lifestyle recommendations is limited, this guidance document aims to appraise carriers and clinicians of the issues and best available evidence, and also to define the research agenda that could yield more evidence-informed guidelines.
Collapse
Affiliation(s)
- Michael Benatar
- Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Terry D Heiman-Patterson
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Daniel Brickman
- Genetic ALS & FTD: End the Legacy, Philadelphia, Pennsylvania, USA
| | - Kaitlin B Casaletto
- Department of Neurology, UCSF Memory and Aging Center, San Francisco, California, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Laynie Dratch
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jalayne J Arias
- Department of Health Policy & Behavioral Sciences, Georgia State University School of Public Health, Atlanta, Georgia, USA
| | - Jean Swidler
- Genetic ALS & FTD: End the Legacy, Philadelphia, Pennsylvania, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Henk-Jan Westeneng
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Le NT, Pham YTH, Le CTK, Le LT, Le TD, Dao HV, Ha TH, Kuchipudi SV, Luu HN. A U-shaped association between selenium intake and cancer risk. Sci Rep 2024; 14:21378. [PMID: 39271688 PMCID: PMC11399399 DOI: 10.1038/s41598-024-66553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/02/2024] [Indexed: 09/15/2024] Open
Abstract
While selenium is a cofactor of several antioxidant enzymes against cancer and is essential for human health, its excess intake may also be harmful. Though a safe intake of selenium has recently been recommended, it is not well understood in the Asian population. We aimed to determine the association between dietary intake of selenium and cancer risk in a case-control study of 3758 incident cancer cases (i.e., stomach, colon, rectum, lung cancers, and other sites) and 2929 control subjects in Vietnam. Daily intake of selenium was derived from a semiquantitative food frequency questionnaire. The unconditional logistic regression model was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between selenium intake and cancer risk. We observed a U-shaped association between selenium intake and cancer risk. A safe intake ranged from 110.8 to 124.4 µg/day (mean 117.8 µg/day). Compared to individuals with the safe intake of selenium, individuals with the lowest intake (i.e., 27.8-77.2 µg/day) were associated with an increased risk of cancer (OR = 3.78, 95% CI 2.89-4.95) and those with the highest intake (169.1-331.7 µg/day) also had an increased cancer risk (OR = 1.86, 95% CI 1.45-2.39). A U-shaped pattern of association between selenium intake and cancer risk was stronger among participants with body mass index (BMI) < 23 kg/m2 and never smokers than BMI ≥ 23 kg/m2 and ever smokers (P'sheterogeneity = 0.003 and 0.021, respectively) but found in both never and ever-drinkers of alcohol (Pheterogeneity = 0.001). A U-shaped association between selenium intake and cancer risk was seen in cancer sites of the stomach, colon, rectum, and lung cancers. In summary, we found a U-shaped association between selenium intake and cancer risk and a safe selenium intake (mean: 117.8 µg/day) in the Vietnamese population. Further mechanistic investigation is warranted to understand better a U-shaped association between selenium intake and cancer risk.
Collapse
Affiliation(s)
- Ngoan Tran Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
- Department of Occupational Health, Institute of Preventive Medicine and Public Health, Hanoi Medical University, 1 Ton That Tung, Hanoi, Vietnam.
| | - Yen Thi-Hai Pham
- The University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chung Thi-Kim Le
- Laboratory Center, School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Thuy Le
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR, Paris, France
| | - Thanh-Do Le
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
| | - Hang Viet Dao
- Department of Internal Medicine, Hanoi Medical University, Hanoi, Vietnam
| | - Toan H Ha
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suresh V Kuchipudi
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hung N Luu
- The University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
He L, Zhou Q, Xiu C, Shao Y, Shen D, Meng H, Le W, Chen S. Circulating proteomic biomarkers for diagnosing sporadic amyotrophic lateral sclerosis: a cross-sectional study. Neural Regen Res 2024; 19:1842-1848. [PMID: 38103252 PMCID: PMC10960292 DOI: 10.4103/1673-5374.389357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 08/29/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00039/figure1/v/2023-12-16T180322Z/r/image-tiff Biomarkers are required for the early detection, prognosis prediction, and monitoring of amyotrophic lateral sclerosis, a progressive disease. Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarkers. In this study, we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral sclerosis compared with five healthy controls. Substantial upregulation of serum proteins related to multiple functional clusters was observed in patients with sporadic amyotrophic lateral sclerosis. Potential biomarkers were selected based on functionality and expression specificity. To validate the proteomics profiles, blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay. Eight substantially upregulated serum proteins in patients with sporadic amyotrophic lateral sclerosis were selected, of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls (area under the curve [AUC] = 0.713, P < 0.0001). To further enhance diagnostic accuracy, a multi-protein combined discriminant algorithm was developed incorporating five proteins (hemoglobin beta, cathelicidin-related antimicrobial peptide, talin-1, zyxin, and translationally-controlled tumor protein). The algorithm achieved an AUC of 0.811 and a P-value of < 0.0001, resulting in 79% sensitivity and 71% specificity for the diagnosis of sporadic amyotrophic lateral sclerosis. Subsequently, the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls, as well as patients with different disease severities, was examined. A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls (AUC = 0.766, P < 0.0001). Moreover, the expression of three proteins (FK506 binding protein 1A, cathelicidin-related antimicrobial peptide, and hemoglobin beta-1) was found to increase with disease progression. The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in combination with current clinical-based parameters.
Collapse
Affiliation(s)
- Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyang Xiu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yaping Shao
- Center for Translational Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dingding Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huanyu Meng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, Sichuan Province, China
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Xinrui Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
6
|
Diao L, Zheng W, Zhao Q, Liu M, Fu Z, Zhang X, Bao L, Cong Y. Cryo-EM of α-tubulin isotype-containing microtubules revealed a contracted structure of α4A/β2A microtubules. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1551-1560. [PMID: 37439022 PMCID: PMC10577476 DOI: 10.3724/abbs.2023130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 07/14/2023] Open
Abstract
Microtubules are hollow α/β-tubulin heterodimeric polymers that play critical roles in cells. In vertebrates, both α- and β-tubulins have multiple isotypes encoded by different genes, which are intrinsic factors in regulating microtubule functions. However, the structures of microtubules composed of different tubulin isotypes, especially α-tubulin isotypes, remain largely unknown. Here, we purify recombinant tubulin heterodimers composed of different mouse α-tubulin isotypes, including α1A, α1C and α4A, with the β-tubulin isotype β2A. We further assemble and determine the cryo-electron microscopy (cryo-EM) structures of α1A/β2A, α1C/β2A, and α4A/β2A microtubules. Our structural analysis demonstrates that α4A/β2A microtubules exhibit longitudinal contraction between tubulin interdimers compared with α1A/β2A and α1C/β2A microtubules. Collectively, our findings reveal that α-tubulin isotype composition can tune microtubule structures, and also provide evidence for the "tubulin code" hypothesis.
Collapse
Affiliation(s)
- Lei Diao
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Wei Zheng
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mingyi Liu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhenglin Fu
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xu Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Lan Bao
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yao Cong
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
7
|
Goutman SA, Savelieff MG, Jang DG, Hur J, Feldman EL. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 2023; 19:617-634. [PMID: 37709948 PMCID: PMC11027963 DOI: 10.1038/s41582-023-00867-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Solovyev N, Lucio M, Mandrioli J, Forcisi S, Kanawati B, Uhl J, Vinceti M, Schmitt-Kopplin P, Michalke B. Interplay of Metallome and Metabolome in Amyotrophic Lateral Sclerosis: A Study on Cerebrospinal Fluid of Patients Carrying Disease-Related Gene Mutations. ACS Chem Neurosci 2023; 14:3035-3046. [PMID: 37608584 PMCID: PMC10485893 DOI: 10.1021/acschemneuro.3c00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal progressive neurodegenerative disease, characterized by a loss of function of upper and lower motor neurons. This study aimed to explore probable pathological alterations occurring in individuals with ALS compared to neurologically healthy controls through the analysis of cerebrospinal fluid (CSF), a medium, which directly interacts with brain parenchyma. A total of 7 ALS patients with disease-associated mutations (ATXN2, C9ORF72, FUS, SOD1, and TARDBP) and 13 controls were included in the study. Multiple analytical approaches were employed, including metabolomic and metallomics profiling, as well as genetic screening, using CSF samples obtained from the brain compartment. Data analysis involved the application of multivariate statistical methods. Advanced hyphenated selenium and redox metal (iron, copper, and manganese) speciation techniques and nontargeted Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics were used for data acquisition. Nontargeted metabolomics showed reduced steroids, including sex hormones; additionally, copper and manganese species were found to be the most relevant features for ALS patients. This indicates a potential alteration of sex hormone pathways in the ALS-affected brain, as reflected in the CSF.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Marianna Lucio
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Jessica Mandrioli
- Department
of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department
of Neurosciences, Azienda Ospedaliero Universitaria
di Modena, 41126 Modena, Italy
| | - Sara Forcisi
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Basem Kanawati
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Jenny Uhl
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Marco Vinceti
- CREAGEN
Research Center of Environmental, Genetic and Nutritional Epidemiology,
Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Philippe Schmitt-Kopplin
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Bernhard Michalke
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
9
|
Barros ANDAB, Felipe MLDN, Barbosa IR, Leite-Lais L, Pedrosa LFC. Dietary Intake of Micronutrients and Disease Severity in Patients with Amyotrophic Lateral Sclerosis. Metabolites 2023; 13:696. [PMID: 37367854 DOI: 10.3390/metabo13060696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Vitamins and essential metals have been studied as potential risk and prognostic factors in amyotrophic lateral sclerosis (ALS). This study aimed to evaluate the prevalence of inadequate micronutrient intake in ALS patients, comparing subgroups according to the disease severity. Data were obtained from the medical records of 69 individuals. Assessment of disease severity was determined by the revised ALS Functional Scale (ALSFRS-R), using the median as the cutoff. The prevalence of inadequate micronutrient intake was estimated using the Estimated Average Requirements (EAR) cut-point method. The prevalence of inadequate vitamin D, E, riboflavin, pyridoxine, folate, cobalamin, calcium, zinc, and magnesium intake was considered severe. Patients with lower ALSFRS-R scores had lower intakes of vitamin E (p < 0.001), niacin (p = 0.033), pantothenic acid (p = 0.037), pyridoxin (p = 0.008), folate (p = 0.009) and selenium (p = 0.001). Therefore, ALS patients should be monitored regarding dietary intake of micronutrients essential in neurological processes.
Collapse
Affiliation(s)
- Acsa Nara de Araújo Brito Barros
- Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Maria Luisa do Nascimento Felipe
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Isabelle Ribeiro Barbosa
- Faculty of Health Sciences of Trairi (FACISA), Federal University of Rio Grande do Norte, Santa Cruz 59200-000, RN, Brazil
| | - Lucia Leite-Lais
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Lucia Fátima Campos Pedrosa
- Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Faculty of Health Sciences of Trairi (FACISA), Federal University of Rio Grande do Norte, Santa Cruz 59200-000, RN, Brazil
| |
Collapse
|
10
|
The effect of a high-calorie diet on the total content of chemical elements and metal-ligand forms of zinc in the blood serum and liver of Wistar rats. ACTA BIOMEDICA SCIENTIFICA 2023. [DOI: 10.29413/abs.2023-8.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Background. Worldwide, there is a rapid increase in the number of people suffering from various forms of carbohydrate and lipid metabolism disorders. Modern studies show that the transport, distribution, excretion and accumulation of chemical elements in these types of metabolic disorders change in different ways and affect the further functional state of the body differently.The aim. To evaluate the level of macro- and microelements in the blood serum and liver, as well as the content of metal-ligand forms of zinc in the blood serum of a Wistar rat in a high-calorie diet.Materials and methods. Thirty male rats were selected for the experiment, from which two groups were formed: control (n = 15) and experimental (n = 15). The animals of the control group received the basic diet (270 kcal/100 g), and the animals of the experimental group received a high-calorie diet. During the experiment, the caloric content of the diet of the experimental group gradually increased from the caloric content of the total diet. During the study, body weight, biochemical parameters of blood and urine were evaluated. The analysis of macro- and microelements in the samples was carried out using inductively coupled plasma mass spectrometry. Determination of the content of individual zinc compounds in blood serum was carried out using a combination of a chromatograph and a mass spectrometer.Results. It was found that a high-calorie diet led to a decrease in the level of iron, chromium, iodine, zinc, potassium, calcium, and an increase in vanadium in blood serum. In the liver, there was a decrease in the level of lithium and an increase in the level of calcium, vanadium, chromium, iron, zinc, cobalt. When assessing the chemical forms of zinc in the blood serum, a percentage increase in the albumin fraction was recorded against the background of a decrease in amino acid complexes and low-molecular-weight forms of zinc.Conclusion. The data obtained suggest that a high-calorie diet leads to an imbalance of chemical elements, which can serve as one of the triggers for dysregulation of a number of physiological functions of the body.
Collapse
|
11
|
Notova SV, Lebedev SV, Marshinskaia OV, Kazakova TV, Ajsuvakova OP. Speciation analysis of manganese against the background of its different content in the blood serum of dairy cows. Biometals 2023; 36:35-48. [PMID: 36282443 DOI: 10.1007/s10534-022-00456-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
Abstract
Studies in the field of microelement speciation in the body of farm animals, in particular dairy cattle, are almost completely absent. The average concentration of Mn in the blood serum of all the studied animals (n = 80) was 2.5 μg/L, which corresponds to normal values. Of the total number of animals, 21% were the cows with the low normal values (serum Mn concentration ≤ 2 µg/L, i.e. less than Q25 of the total sample) and 25% were the animals with the high normal values (serum Mn concentration ≥ 2.72 µg/L, i.e. more than Q75 of the total sample). The data obtained in the course of the study indicate that the change in the Mn level, even in the range of normal values, is accompanied by the redistribution of this element over various protein fractions. The six found Mn blood serum forms are presumably represented by α2-macroglobulin (tetramer, dimer, and monomer), transferrin/albumine, manganese citrates, and "free" metal ions. The analyzed fractions of Mn found in the blood serum of cows had the following hierarchy of concentrations: in the group with low-normal values of Mn ("free" Mn >> tetrameric form of α2-macroglobulin >> transferrin/albumine >> dimeric form of α2-macroglobulin >> monomeric form of α2-macroglobulin >> citrate), in the group with high normal manganese values ("free" Mn >> monomeric form of α2-macroglobulin >> transferring/albumine >> citrate >> tetrameric form of α2-macroglobulin >> dimeric form of α2-macroglobulin). In the group with high normal Mn values relative to the group with low normal values, there was a percentage decrease in the tetrameric fraction of a2-macroglobulin from 17.2 to 4.4%, dimeric fraction of a2-macroglobulin from 6.9 to 2.2%, "free" Mn from 54.3 to 44.4% and an increase in monomeric fraction of a2-macroglobulin from 6.7 to 23.1%, transferrin/albumine from 10.1 to 17.7%, citrate from 4.8 to 8.2%. Our data demonstrate the features of Mn redistribution of dairy cows, which can be used for an extended assessment of the microelement status of animals.
Collapse
Affiliation(s)
- S V Notova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - S V Lebedev
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - O V Marshinskaia
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000.
| | - T V Kazakova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - O P Ajsuvakova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| |
Collapse
|
12
|
Urbano T, Vinceti M, Mandrioli J, Chiari A, Filippini T, Bedin R, Tondelli M, Simonini C, Zamboni G, Shimizu M, Saito Y. Selenoprotein P Concentrations in the Cerebrospinal Fluid and Serum of Individuals Affected by Amyotrophic Lateral Sclerosis, Mild Cognitive Impairment and Alzheimer's Dementia. Int J Mol Sci 2022; 23:9865. [PMID: 36077261 PMCID: PMC9456314 DOI: 10.3390/ijms23179865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 02/06/2023] Open
Abstract
Selenoprotein P, a selenium-transporter protein, has been hypothesized to play a role in the etiology of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's dementia (AD). However, data in humans are scarce and largely confined to autoptic samples. In this case-control study, we determined selenoprotein P concentrations in both the cerebrospinal fluid (CSF) and the serum of 50 individuals diagnosed with ALS, 30 with AD, 54 with mild cognitive impairment (MCI) and of 30 controls, using sandwich enzyme-linked immunosorbent assay (ELISA) methods. We found a positive and generally linear association between CSF and serum selenoprotein P concentrations in all groups. CSF selenoprotein P and biomarkers of neurodegeneration were positively associated in AD, while for MCI, we found an inverted-U-shaped relation. CSF selenoprotein P concentrations were higher in AD and MCI than in ALS and controls, while in serum, the highest concentrations were found in MCI and ALS. Logistic and cubic spline regression analyses showed an inverse association between CSF selenoprotein P levels and ALS risk, and a positive association for AD risk, while an inverted-U-shaped relation with MCI risk emerged. Conversely, serum selenoprotein P concentrations were positively associated with risk of all conditions but only in their lower range. Overall, these findings indicate some abnormalities of selenoprotein P concentrations in both the central nervous system and blood associated with ALS and neurocognitive disorders, though in different directions. These alterations may reflect either phenomena of etiologic relevance or disease-induced alterations of nutritional and metabolic status.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Marco Vinceti
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA
| | - Jessica Mandrioli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Tommaso Filippini
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA
| | - Roberta Bedin
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Cecilia Simonini
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Misaki Shimizu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Michalke B. Review about Powerful Combinations of Advanced and Hyphenated Sample Introduction Techniques with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for Elucidating Trace Element Species in Pathologic Conditions on a Molecular Level. Int J Mol Sci 2022; 23:ijms23116109. [PMID: 35682788 PMCID: PMC9181184 DOI: 10.3390/ijms23116109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Element analysis in clinical or biological samples is important due to the essential role in clinical diagnostics, drug development, and drug-effect monitoring. Particularly, the specific forms of element binding, actual redox state, or their spatial distribution in tissue or in single cells are of interest in medical research. This review summarized exciting combinations of sophisticated sample delivery systems hyphenated to inductively coupled plasma-mass spectrometry (ICP-MS), enabling a broadening of information beyond the well-established outstanding detection capability. Deeper insights into pathological disease processes or intracellular distribution of active substances were provided, enabling a better understanding of biological processes and their dynamics. Examples were presented from spatial elemental mapping in tissue, cells, or spheroids, also considering elemental tagging. The use of natural or artificial tags for drug monitoring was shown. In the context of oxidative stress and ferroptosis iron, redox speciation gained importance. Quantification methods for Fe2+, Fe3+, and ferritin-bound iron were introduced. In Wilson’s disease, free and exchangeable copper play decisive roles; the respective paragraph provided information about hyphenated Cu speciation techniques, which provide their fast and reliable quantification. Finally, single cell ICP-MS provides highly valuable information on cell-to-cell variance, insights into uptake of metal-containing drugs, and their accumulation and release on the single-cell level.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| |
Collapse
|
14
|
Violi F, Solovyev N, Vinceti M, Mandrioli J, Lucio M, Michalke B. The study of levels from redox-active elements in cerebrospinal fluid of amyotrophic lateral sclerosis patients carrying disease-related gene mutations shows potential copper dyshomeostasis. Metallomics 2021; 12:668-681. [PMID: 32373852 DOI: 10.1039/d0mt00051e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease characterized by a loss of function of motor neurons. The etiology of this disorder is still largely unknown. Gene-environment interaction arises as a possible key factor in the development of amyotrophic lateral sclerosis. We assessed the levels of trace metals, copper (Cu), iron (Fe), and manganese (Mn), of 9 amyotrophic lateral sclerosis cases and 40 controls by measuring their content in cerebrospinal fluid. The following trace element species were quantified using ion chromatography-inductively coupled plasma mass spectrometry: univalent copper (Cu-I), divalent Cu (Cu-II), divalent Fe (Fe-II), trivalent Fe (Fe-III), divalent Mn (Mn-II), trivalent Mn (Mn-III), and also unidentified Mn species (Mn-unknown) were present in some samples. When computing the relative risks for amyotrophic lateral sclerosis through an unconditional logistic regression model, we observed a weak and imprecise positive association for iron (Fe III, adjusted odds ratio 1.48, 95% CI 0.46-4.76) and manganese (total-Mn and Mn-II; adjusted odds ratio 1.11, 95% CI 0.74-1.67, and 1.13, 95% CI 0.79-1.61, respectively). Increased risk for copper was found both in the crude analysis (odds ratio 1.14, 95% CI 0.99-1.31) and in multivariable analysis after adjusting for sex, age, and year of storage (1.09, 95% CI 0.90-1.32). Our results suggest a possible positive association between Cu and genetic amyotrophic lateral sclerosis, while they give little indication of involvement of Fe and Mn in disease, though some correlations found also for these elements deserve further investigation.
Collapse
Affiliation(s)
- Federica Violi
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
16
|
Filippini T, Tesauro M, Fiore M, Malagoli C, Consonni M, Violi F, Iacuzio L, Arcolin E, Oliveri Conti G, Cristaldi A, Zuccarello P, Zucchi E, Mazzini L, Pisano F, Gagliardi I, Patti F, Mandrioli J, Ferrante M, Vinceti M. Reply to Comment on "Environmental and Occupational Risk Factors of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study". INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186492. [PMID: 32906597 PMCID: PMC7559024 DOI: 10.3390/ijerph17186492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022]
Abstract
We much appreciate the positive comments and interest concerning our study on the environmental and occupational risk factors of amyotrophic lateral sclerosis (ALS) [...].
Collapse
Affiliation(s)
- Tommaso Filippini
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Correspondence:
| | - Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.T.); (M.C.)
| | - Maria Fiore
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Carlotta Malagoli
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.T.); (M.C.)
| | - Federica Violi
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Laura Iacuzio
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Department of Public Health, Local Health Unit, 41121 Modena, Italy
| | - Elisa Arcolin
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Antonio Cristaldi
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Elisabetta Zucchi
- Neurology Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Letizia Mazzini
- ALS Centre Department of Neurology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Fabrizio Pisano
- Neurological Rehabilitation Division, Policlinico San Marco di Zingonia, 24046 Zingonia (BG), Italy;
| | - Ileana Gagliardi
- ALS Centre Department of Neurology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Francesco Patti
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, S. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy;
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Marco Vinceti
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
17
|
Patti F, Fiore M, Chisari CG, D'Amico E, Lo Fermo S, Toscano S, Copat C, Ferrante M, Zappia M. CSF neurotoxic metals/metalloids levels in amyotrophic lateral sclerosis patients: comparison between bulbar and spinal onset. ENVIRONMENTAL RESEARCH 2020; 188:109820. [PMID: 32615355 DOI: 10.1016/j.envres.2020.109820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of the central nervous system (CNS) that causes progressive and irreversible damage in motor neurons. Different causal hypotheses include genetic, viral, traumatic and environmental mechanisms, such as exposure to heavy metals. The aim of this study was to compare metal/metalloid levels in cerebro-spinal fluid of ALS subtypes (spinal vs bulbar clinical onset). MATERIAL AND METHODS This observational study consecutively screened all ALS patients referring to the Neurology Clinic of the University of Catania (Italy). Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify magnesium (Mg), cuprum (Cu), selenium (Se), iron (Fe), manganese (Mn), vanadium (V), zinc (Zn), alluminium (Al), arsenic (As), cobalt (Co), nickel (Ni), mercury (Hg), lead (Pb), cadmium (Cd) and palladium (Pd) levels. RESULTS Thirty-seven patients were enrolled (62.2% females), median age of 65 years (IQR: 59-71 years). Thirty-one (83.8%) patients had a spinal onset and 6 (16.2%) a bulbar onset. Se and As levels were higher compared to the reference values (RV) both in spinal and bulbar onset, while Cu was higher than RV only in bulbar onset. Moreover, Cu (129.8 μg/L vs 29.8 μg/L), Fe (54.5 μg/L vs 33.3 μg/L), Mn (3.4 μg/L vs 1.8 μg/L), Zn (46.1 μg/L vs 35.7 μg/L), Al (12.2 μg/L vs 6.7 μg/L), Ni (2.80 μg/L vs 1.40 μg/L), and Pb (0.60 μg/L vs 0.30 μg/L) levels were higher in bulbar than in spinal onset, conversely As was slightly higher in spinal than in bulbar onset (1.40 μg/L vs 1.10 μg/L). Overall, Cu (129 μg/L vs 31 μg/L), Fe (92.2 μg/L vs 32.9 μg/L), Mn (3.35 μg/L vs 1.80 μg/L), Zn (56.5 μg/L vs 35.2 μg/L), Al (14.45 μg/L vs 6.70 μg/L), and Cd (0.40 μg/L vs 0.08 μg/L) levels were higher in patients with disease duration less than 19 months. CONCLUSION Our results supported the hypothesis that metals/metalloids with neurotoxic effects could be involved in the etiology of ALS, showing higher levels of Cu, Se and As. Relevant differences in Cu and Mn levels were found between bulbar and spinal onset patients.
Collapse
Affiliation(s)
- Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy.
| | - Maria Fiore
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Clara G Chisari
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Emanuele D'Amico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Salvatore Lo Fermo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Simona Toscano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Chiara Copat
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| |
Collapse
|
18
|
Abstract
Selenium (Se) is an essential micronutrient present in human diet, entering in the composition of selenoproteins as selenocysteine (Se-Cys) amino acid. At the thyroid level, these proteins play an important role as antioxidant and in hormone metabolism. Selenoproteins are essential for the balance of redox homeostasis and antioxidant defense of mammalian organisms, while the corresponding imbalance is now recognized as the cause of many diseases including cancer. The food chain is the main source of Se in human body. Dietary intake is strongly correlated with Se content in soil and varies according to several factors such as geology and atmospheric input. Both Se deficiency and toxicity have been associated with adverse health effects. This review synthesizes recent data on the transfer of Se from soil to humans, Se U-shaped deficiency and toxicity uptake effects and particularly the impact of Se deficiency on thyroid cancer.
Collapse
|
19
|
A Systematic Review of Genotype-Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS. J Pers Med 2020; 10:jpm10030058. [PMID: 32610599 PMCID: PMC7564886 DOI: 10.3390/jpm10030058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a rare and fatal neurodegenerative disease characterised by progressive deterioration of upper and lower motor neurons that eventually culminates in severe muscle atrophy, respiratory failure and death. There is a concerning lack of understanding regarding the mechanisms that lead to the onset of ALS and as a result there are no reliable biomarkers that aid in the early detection of the disease nor is there an effective treatment. This review first considers the clinical phenotypes associated with ALS, and discusses the broad categorisation of ALS and ALS-mimic diseases into upper and lower motor neuron diseases, before focusing on the genetic aetiology of ALS and considering the potential relationship of mutations of different genes to variations in phenotype. For this purpose, a systematic review is conducted collating data from 107 original published clinical studies on monogenic forms of the disease, surveying the age and site of onset, disease duration and motor neuron involvement. The collected data highlight the complexity of the disease's genotype-phenotype relationship, and thus the need for a nuanced approach to the development of clinical assays and therapeutics.
Collapse
|
20
|
BALKAN BM, MERAL Ö, KİSMALİ G, SEL T. Antioxidant Enzyme Activities in Ascorbic Acid and Selenium Applied Hepatocellular Carcinoma Cells. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.724117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
ALSUntangled No. 54: “LEAP2BFIT”. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:314-319. [DOI: 10.1080/21678421.2020.1743470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Tian FY, Everson TM, Lester B, Punshon T, Jackson BP, Hao K, Lesseur C, Chen J, Karagas MR, Marsit CJ. Selenium-associated DNA methylation modifications in placenta and neurobehavioral development of newborns: An epigenome-wide study of two U.S. birth cohorts. ENVIRONMENT INTERNATIONAL 2020; 137:105508. [PMID: 32007686 PMCID: PMC7722519 DOI: 10.1016/j.envint.2020.105508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND/AIM Selenium (Se) levels in pregnancy have been linked to neurobehavioral development of the offspring. DNA methylation is a potential mechanism underlying the impacts of environmental exposures on fetal development; however, very few studies have been done elucidating the role of DNA methylation linking prenatal Se and child neurobehavior. We aimed to investigate the associations between placental Se concentration and epigenome-wide DNA methylation in two U.S. cohorts, and to assess the association between Se-related DNA methylation modifications and newborns' neurobehavior. METHODS We measured placental Se concentrations in 343 newborns enrolled in the New Hampshire Birth Cohort Study and in 141 newborns in the Rhode Island Child Health Study. Genome-wide placental DNA methylation was measured by HumanMethylation450 BeadChip, and newborn neurobehavioral development was assessed by the NICU Network Neurobehavioral Scales (NNNS). We meta-analyzed the associations between placental Se concentration and DNA methylation in each cohort, adjusting for covariates. We also fit multiple linear regression and ordinal logistic regression for methylation and newborn NNNS summary scores. RESULTS We identified five Se-related differentially methylated CpG sites. Among them was cg09674502 (GFI1), where selenium concentration was positively associated with methylation (β-coefficient = 1.11, FDR-adjusted p-value = 0.045), and where we observed that a one percent methylation level increase was associated with a 15% reduced odds of higher muscle tone in the arms, legs and trunk of newborns, (OR [95% Confidence Interval, CI] = 0.85 [0.77, 0.95]). We also observed for each interquartile range (IQR) increase in selenium concentration in the placenta, there was 1.76 times greater odds of higher hypotonicity (OR [95% CI] = 1.76 [1.12, 2.82]). CONCLUSIONS Placental selenium concentration was inversely associated with muscle tone of newborns, and hypermethylation of GFI1 could be a potential mechanism underlying this association.
Collapse
Affiliation(s)
- Fu-Ying Tian
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Barry Lester
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Warren Alpert School of Medicine of Brown University, Providence, RI, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Ke Hao
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA; Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Dartmouth College, Lebanon, NH, USA.
| |
Collapse
|
23
|
Solovyev N. Selenoprotein P and its potential role in Alzheimer's disease. Hormones (Athens) 2020; 19:73-79. [PMID: 31250406 DOI: 10.1007/s42000-019-00112-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with cognitive decline, loss of memory, and progressive cerebral atrophy. The trace element selenium (Se) is known to be involved in brain pathology. Selenoprotein P (SELENOP), as the main Se transport protein, is, to a great extent, responsible for maintaining Se homeostasis and the hierarchy of selenoprotein expression in the body. Adequate Se supply through SELENOP is vital for proper brain development and function. Additionally, SELENOP may be implicated in pathological processes in the central nervous system, including those in AD. The current review summarizes recent findings on the possible role of SELENOP in AD, with a focus on probable mechanisms: Se delivery to neurons, antioxidant activity, cytoskeleton assembly, interaction with redox-active metals (e.g., copper and iron), and misfolded proteins (amyloid beta and tau protein). The use of SELENOP as a biomarker of Se status is also briefly discussed. Epidemiological studies on Se supplementation are beyond the scope of the current review.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russian Federation, 199034.
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan, 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
24
|
Maass F, Michalke B, Willkommen D, Schulte C, Tönges L, Boerger M, Zerr I, Bähr M, Lingor P. Selenium speciation analysis in the cerebrospinal fluid of patients with Parkinson's disease. J Trace Elem Med Biol 2020; 57:126412. [PMID: 31582281 DOI: 10.1016/j.jtemb.2019.126412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aim of the study was to investigate if speciation analysis by liquid chromatography coupled to mass spectrometry could be used to detect organic and inorganic binding forms of selenium in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD) and age-matched control subjects (AMC). METHODS PD patients and control subjects were enrolled from three different neurological departments. CSF samples were collected according to standardized biomarker protocols and subjected to inductively coupled plasma mass spectrometry (ICP-MS) for total selenium determination and ion exchange chromatography (IEC) hyphenated to ICP-MS for selenium speciation analysis. RESULTS 75 PD patients and 68 age-matched controls were enrolled for speciation analysis. 8 different species could be detected, but only selenoprotein P (SELENOP), human serum albumin-bound Se (Se-HSA), selenomethionine (Se-Met) and an unidentified Se-compound (U2) presented with more than 50% values above the limit of quantification, without showing significant differences between both groups (p > 0.05). The Se-HSA / Se-Met ratio yielded a significant difference between PD and AMC (p = 0.045). The inorganic species Se-IV and Se-VI were only detectable in a minor part of PD and AMC samples. A highly significant correlation between total selenium levels and SELENOP (PD p < 0.0001; AMC p < 0.0001) and Se-HSA (PD p < 0.0001; AMC p < 0.0001) could be demonstrated, respectively. CONCLUSIONS Speciation analysis yielded new insight into selenium homeostasis in PD but cannot be used to establish a diagnostic biomarker. The small number of detectable values for Se-IV and Se-VI suggests an inferior role of these potentially neurotoxic binding forms in PD pathology in contrast to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Fabian Maass
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Desiree Willkommen
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Claudia Schulte
- German Center for Neurodegenerative Diseases, University of Tübingen, Germany; Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany.
| | - Matthias Boerger
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Inga Zerr
- Department of Neurology, University Medical Center, Göttingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Mathias Bähr
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Paul Lingor
- Department of Neurology, University Medical Center, Göttingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, München, Germany.
| |
Collapse
|
25
|
Solovyev N, Vanhaecke F, Michalke B. Selenium and iodine in diabetes mellitus with a focus on the interplay and speciation of the elements. J Trace Elem Med Biol 2019; 56:69-80. [PMID: 31442957 DOI: 10.1016/j.jtemb.2019.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease caused by insulin deficiency (type I) or dysfunction (type II). Diabetes is a threatening public health concern. It is considered as one of the priority non-communicable diseases, due to its high and increasing incidence, the associated healthcare costs, and threatening medical complications. Two trace elements selenium (Se) and iodine (I) were intensively discussed in the context of diabetic pathology and, possibly, etiology. It seems there is a multilayer involvement of these essential nutrients in glucose tolerance, energy metabolism, insulin signaling and resistance, which are mainly related to the antioxidant selenoenzymes and the thyroid hormones. Other factors might be related to (auto)immunity, protection against endoplasmic reticulum stress, and leptin signaling. The aim of the current review is to evaluate the current understanding of the role of selenium and iodine in diabetes with a focus on the biochemical interplay between the elements, their possible role as biomarkers, and their chemical speciation. Possible impacts from novel analytical techniques related to trace element speciation and isotopic analysis are outlined.
Collapse
Affiliation(s)
- Nikolay Solovyev
- St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation; Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Bernhard Michalke
- Helmhotz Zentrum München - German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
26
|
Vinceti M, Filippini T, Malagoli C, Violi F, Mandrioli J, Consonni D, Rothman KJ, Wise LA. Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water: A long-term follow-up. ENVIRONMENTAL RESEARCH 2019; 179:108742. [PMID: 31629180 DOI: 10.1016/j.envres.2019.108742] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Some studies have reported an association between overexposure to selenium and risk of amyotrophic lateral sclerosis (ALS), a rare degenerative disease of motor neurons. From 1986 through 2015, we followed a cohort in Northern Italy that had been inadvertently consuming tap water with unusually high concentrations of inorganic hexavalent selenium from 1974 to 1985. We had previously documented an excess incidence of ALS in this cohort during 1986-1994. Here, we report extended follow-up of the cohort for an additional 21 years, encompassing 50,100 person-years of the exposed cohort and 2,233,963 person-years of the unexposed municipal cohort. We identified 7 and 112 incident ALS cases in the exposed and unexposed cohorts, respectively, yielding crude incidence rates of 14 and 5 cases per 100,000 person-years. A Poisson regression analysis, adjusting for age, sex and calendar year, produced an overall incidence rate ratio (IRR) for ALS of 2.8 (95% confidence interval (CI) 1.3, 6), with a substantially stronger IRR in 1986-1994 (8.2, 95% CI 2.7, 24.7) than in 1995-2015 (1.5, 95% CI 0.5, 4.7), and among women (5.1, 95% CI 1.8, 14.3) than men (1.7, 95% CI 0.5, 5.4). Overall, these results indicate an association between high exposure to inorganic selenium, a recognized neurotoxicant, and ALS incidence, with declining rates after cessation of exposure and stronger effects among women.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States.
| | - Tommaso Filippini
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Carlotta Malagoli
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Federica Violi
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, St. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States
| |
Collapse
|
27
|
Abstract
Selenium is an essential trace element for maintenance of overall health, whose deficiency and dyshomeostasis have been linked to a variety of diseases and disorders. The majority of previous researches focused on characterization of genes encoding selenoproteins or proteins involved in selenium metabolism as well as their functions. Many studies in humans also investigated the relationship between selenium and complex diseases, but their results have been inconsistent. In recent years, systems biology and "-omics" approaches have been widely used to study complex and global variations of selenium metabolism and function in physiological and different pathological conditions. The present paper reviews recent progress in large-scale and systematic analyses of the relationship between selenium status or selenoproteins and several complex diseases, mainly including population-based cohort studies and meta-analyses, genetic association studies, and some other omics-based studies. Advances in ionomics and its application in studying the interaction between selenium and other trace elements in human health and diseases are also discussed.
Collapse
Affiliation(s)
- Huimin Ying
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang, People's Republic of China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Maraldi T, Beretti F, Anselmi L, Franchin C, Arrigoni G, Braglia L, Mandrioli J, Vinceti M, Marmiroli S. Influence of selenium on the emergence of neuro tubule defects in a neuron-like cell line and its implications for amyotrophic lateral sclerosis. Neurotoxicology 2019; 75:209-220. [PMID: 31585128 DOI: 10.1016/j.neuro.2019.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
Impairment of the axonal transport system mediated by intracellular microtubules (MTs) is known to be a major drawback in neurodegenerative processes. Due to a growing interest on the neurotoxic effects of selenium in environmental health, our study aimed to assess the relationship between selenium and MTs perturbation, that may favour disease onset over a genetic predisposition to amyotrophic lateral sclerosis. We treated a neuron-like cell line with sodium selenite, sodium selenate and seleno-methionine and observed that the whole cytoskeleton was affected. We then investigated the protein interactome of cells overexpressing αTubulin-4A (TUBA4A) and found that selenium increases the interaction of TUBA4A with DNA- and RNA-binding proteins. TUBA4A ubiquitination and glutathionylation were also observed, possibly due to a selenium-dependent increase of ROS, leading to perturbation and degradation of MTs. Remarkably, the TUBA4A mutants R320C and A383 T, previously described in ALS patients, showed the same post-translational modifications to a similar extent. In conclusion this study gives insights into a specific mechanism characterizing selenium neurotoxicity.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy.
| | - Francesca Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy.
| | - Laura Anselmi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, via G. Basso 58/B, 35131, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129, Padova, Italy.
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, via G. Basso 58/B, 35131, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129, Padova, Italy.
| | - Luca Braglia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Jessica Mandrioli
- Neurology Unit, Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy.
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States.
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Selenium, a trace element, is ubiquitous in the environment. The main source of human exposure is diet. Despite its nutritional benefits, it is one of the most toxic naturally occurring elements. Selenium deficiency and overexposure have been associated with adverse health effects. Its level of toxicity may depend on its chemical form, as inorganic and organic species have distinct biological properties. RECENT FINDINGS Nonexperimental and experimental studies have generated insufficient evidence for a role of selenium deficiency in human disease, with the exception of Keshan disease, a cardiomyopathy. Conversely, recent randomized trials have indicated that selenium overexposure is positively associated with type 2 diabetes and high-grade prostate cancer. In addition, a natural experiment has suggested an association between overexposure to inorganic hexavalent selenium and two neurodegenerative diseases, amyotrophic lateral sclerosis and Parkinson's disease. Risk assessments should be revised to incorporate the results of studies demonstrating toxic effects of selenium. Additional observational studies and secondary analyses of completed randomized trials are needed to address the uncertainties regarding the health risks of selenium exposure.
Collapse
|
30
|
Vinceti M, Michalke B, Malagoli C, Eichmüller M, Filippini T, Tondelli M, Bargellini A, Vinceti G, Zamboni G, Chiari A. Selenium and selenium species in the etiology of Alzheimer's dementia: The potential for bias of the case-control study design. J Trace Elem Med Biol 2019; 53:154-162. [PMID: 30910200 DOI: 10.1016/j.jtemb.2019.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Several human studies imply that the trace element selenium and its species may influence the onset of neurological disease, including Alzheimer's dementia (AD). Nevertheless, the literature is conflicting, with reported associations between exposure and risk in opposite direction, possibly due to biases in exposure assessment. After conducting a cohort study that detected an excess AD risk associated with higher levels of inorganic-hexavalent selenium in subjects with mild cognitive impairment (MCI), we investigated the relation between selenium and AD using a case-control study design. We determined cerebrospinal fluid levels of selenium species in 56 MCI participants already included in the cohort study, considered as referents, and in 33 patients with established AD. AD risk was inversely correlated with inorganic selenium species and with the organic form bound to selenoprotein P. Selenium bound to other organo-selenium species was positively correlated with AD risk, suggesting compensatory selenoprotein upregulation following increased oxidative stress. The finding of an increased AD risk associated with inorganic-hexavalent selenium from the cohort study was not replicated. This case-control study yielded entirely different results than those generated by a cohort study with a partially overlapping participant population, suggesting that case-control design does not allow to reliably assess the role of selenium exposure in AD etiology. This inability appears to be due to exposure misclassification, falsely indicating an etiologic role of selenium deficiency likely due to reverse causation, and involving most selenium species. The case-control design may instead lend insights into the pathologic process underlying disease progression.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA.
| | - Bernhard Michalke
- Helmholtz Center Munich - German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg 85764, Germany
| | - Carlotta Malagoli
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Marcel Eichmüller
- Helmholtz Center Munich - German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg 85764, Germany
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Annalisa Bargellini
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Giulia Vinceti
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Annalisa Chiari
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| |
Collapse
|
31
|
Mitropoulos K, Katsila T, Patrinos GP, Pampalakis G. Multi-Omics for Biomarker Discovery and Target Validation in Biofluids for Amyotrophic Lateral Sclerosis Diagnosis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:52-64. [PMID: 29356625 DOI: 10.1089/omi.2017.0183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare but usually fatal neurodegenerative disease characterized by motor neuron degeneration in the brain and the spinal cord. Two forms are recognized, the familial that accounts for 5-10% and the sporadic that accounts for the rest. New studies suggest that ALS is a highly heterogeneous disease, and this diversity is a major reason for the lack of successful therapeutic treatments. Indeed, only two drugs (riluzole and edaravone) have been approved that provide a limited improvement in the quality of life. Presently, the diagnosis of ALS is based on clinical examination and lag period from the onset of symptoms to the final diagnosis is ∼12 months. Therefore, the discovery of robust molecular biomarkers that can assist in the diagnosis is of major importance. DNA sequencing to identify pathogenic gene variants can be applied in the cases of familial ALS. However, it is not a routinely used diagnostic procedure and most importantly, it cannot be applied in the diagnosis of sporadic ALS. In this expert review, the current approaches in identification of new ALS biomarkers are discussed. The advent of various multi-omics biotechnology platforms, including miRNomics, proteomics, metabolomics, metallomics, volatolomics, and viromics, has assisted in the identification of new biomarkers. The biofluids are the most preferable material for the analysis of potential biomarkers (such as proteins and cell-free miRNAs), since they are easily obtained. In the near future, the biofluid-based biomarkers will be indispensable to classify different ALS subtypes and understand the molecular heterogeneity of the disease.
Collapse
Affiliation(s)
- Konstantinos Mitropoulos
- 1 Department of Histology and Embryology, University of Athens School of Medicine , Athens, Greece
| | - Theodora Katsila
- 2 Department of Pharmacy, University of Patras School of Health Sciences , Patras, Greece
| | - George P Patrinos
- 2 Department of Pharmacy, University of Patras School of Health Sciences , Patras, Greece .,3 Department of Pharmacy, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain, UAE
| | - Georgios Pampalakis
- 2 Department of Pharmacy, University of Patras School of Health Sciences , Patras, Greece
| |
Collapse
|
32
|
Iridoy MO, Zubiri I, Zelaya MV, Martinez L, Ausín K, Lachen-Montes M, Santamaría E, Fernandez-Irigoyen J, Jericó I. Neuroanatomical Quantitative Proteomics Reveals Common Pathogenic Biological Routes between Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Int J Mol Sci 2018; 20:E4. [PMID: 30577465 PMCID: PMC6337647 DOI: 10.3390/ijms20010004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with an overlap in clinical presentation and neuropathology. Common and differential mechanisms leading to protein expression changes and neurodegeneration in ALS and FTD were studied trough a deep neuroproteome mapping of the spinal cord. (2) Methods: A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the spinal cord from ALS-TAR DNA-binding protein 43 (TDP-43) subjects, ubiquitin-positive frontotemporal lobar degeneration (FTLD-U) subjects and controls without neurodegenerative disease was performed. (3) Results: 281 differentially expressed proteins were detected among ALS versus controls, while 52 proteins were dysregulated among FTLD-U versus controls. Thirty-three differential proteins were shared between both syndromes. The resulting data was subjected to network-driven proteomics analysis, revealing mitochondrial dysfunction and metabolic impairment, both for ALS and FTLD-U that could be validated through the confirmation of expression levels changes of the Prohibitin (PHB) complex. (4) Conclusions: ALS-TDP-43 and FTLD-U share molecular and functional alterations, although part of the proteostatic impairment is region- and disease-specific. We have confirmed the involvement of specific proteins previously associated with ALS (Galectin 2 (LGALS3), Transthyretin (TTR), Protein S100-A6 (S100A6), and Protein S100-A11 (S100A11)) and have shown the involvement of proteins not previously described in the ALS context (Methanethiol oxidase (SELENBP1), Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN-1), Calcyclin-binding protein (CACYBP) and Rho-associated protein kinase 2 (ROCK2)).
Collapse
Affiliation(s)
- Marina Oaia Iridoy
- Department of Neurology ComplejoHospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Irene Zubiri
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - María Victoria Zelaya
- Pathological Anatomyservice Complejo Hospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Leyre Martinez
- Department of Neurology ComplejoHospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Mercedes Lachen-Montes
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Joaquín Fernandez-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Ivonne Jericó
- Department of Neurology ComplejoHospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
33
|
Solovyev N, Prakash NT, Bhatia P, Prakash R, Drobyshev E, Michalke B. Selenium-rich mushrooms cultivation on a wheat straw substrate from seleniferous area in Punjab, India. J Trace Elem Med Biol 2018; 50:362-366. [PMID: 30262305 DOI: 10.1016/j.jtemb.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Intensive rice-wheat cultivation cycle in Northern belt of India in general and in the State of Punjab in particular results in large volumes of straw and other post-harvest residue annually. The agricultural area, bordering the districts of Nawanshahr and Hoshiarpur, is popularly known as the seleniferous belt of India. The agri-residues, generated in seleniferous region of this state, are observed to contain significantly high concentration of selenium (Se). The present study was aimed to evaluate the Se uptake by different mushroom species: Pleurotus sajor-caju, Pleurotus ostreatus, Pleurotus citrinopileatus, Agaricus bisporus, and Volvariella volvacea, cultivated on Se-rich wheat and paddy straw from the seleniferous region. Wheat (Pleurotus species and A. bisporus) and paddy straw (V. volvacea) was inoculated with the mycelium spawn and left for 7-20 days, depending on the species, to grow. Control mushrooms were grown analogously using the agricultural residues from non-seleniferous area of the State of Punjab. All fruiting bodies were collected and analyzed in triplicate. Se was quantified using inductively coupled plasma sector field mass spectrometry. The Se accumulation was high in all species under study, being the highest in A. bisporus (1396 μg/g vs. 46.8 μg/g in controls - dry weight) and V. volvacea (231 μg/g vs. 3.77 μg/g - dry weight). The observed biological efficiency and total yield for all mushroom species showed good and unaltered productivity in Se-rich conditions, if compared to the controls. The Se-rich mushrooms can be prospective Se-supplements sourcing and biofortified foods, providing readily bioavailable and accessible Se for the diets deficient of this biologically essential element.
Collapse
Affiliation(s)
- Nikolay Solovyev
- St. Petersburg State University, Institute of Chemistry, 199034 Universitetkaya nab. 7/9, St. Petersburg, Russia.
| | - N Tejo Prakash
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, India
| | - Poonam Bhatia
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Ranjana Prakash
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558 Potsdam, Germany
| | - Bernhard Michalke
- Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany
| |
Collapse
|
34
|
Filippini T, Cilloni S, Malavolti M, Violi F, Malagoli C, Tesauro M, Bottecchi I, Ferrari A, Vescovi L, Vinceti M. Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. J Trace Elem Med Biol 2018; 50:508-517. [PMID: 29548610 DOI: 10.1016/j.jtemb.2018.03.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 02/06/2023]
Abstract
This study provides the dietary intakes of six trace elements (cadmium, chromium, copper, manganese, selenium and zinc), generally characterized by both nutritional and toxicological features depending on their exposure. Being diet the most relevant source of exposure to trace elements in non-professionally exposed subjects, we measured content of these trace elements in foods composing the typical Italian diet using inductively coupled plasma-mass spectrometry, and assessing dietary habits using a validated semi-quantitative food frequency questionnaire we eventually estimated dietary daily intake of trace elements in a Northern Italian community. In the 890 analyzed food samples, the main contributors to cadmium intake are cereals, vegetables and sweets, while cereals, beverages and vegetable are to primary source of manganese. The primary contributors for copper are cereals, fresh fruits and vegetables, while for chromium are beverages, cereals and meat. The main source of selenium intake are cereals and meat, followed by fish, seafood and milk and dairy products, while of zinc intake are meat, cereals, milk and dairy products. In our Italian population sample, the estimated median (interquartile range) dietary daily intakes are 5.00 (3.17-7.65), 56.70 (36.08-86.70) and 66.53 (40.04-101.32) μg/day for cadmium, chromium and selenium, and corresponding figures are 0.98 (0.61-1.49), 2.34 (1.46-3.52) and 8.50 (5.21-12.48) mg/day for copper, manganese and zinc. The estimated intakes are generally within the average intake reported in other European populations, and in such cases well above the daily dietary intakes recommended by national international agencies, avoiding the risk of excess or deficiency. The present estimated intake data can be used to examine a specific trace element of interest and would afford enhanced health protection from those trace elements characterized by both nutritional and toxicological effects.
Collapse
Affiliation(s)
- Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health - Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Silvia Cilloni
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health - Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Marcella Malavolti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health - Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Federica Violi
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health - Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Carlotta Malagoli
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health - Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Ilaria Bottecchi
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health - Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Angela Ferrari
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health - Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | | | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health - Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
35
|
Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R, Rayman MP. Selenium, selenoprotein P, and Alzheimer's disease: is there a link? Free Radic Biol Med 2018; 127:124-133. [PMID: 29481840 DOI: 10.1016/j.freeradbiomed.2018.02.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
Abstract
The essential trace element, selenium (Se), is crucial to the brain but it may be potentially neurotoxic, depending on dosage and speciation; Se has been discussed for decades in relation to Alzheimer's disease (AD). Selenoprotein P (SELENOP) is a secreted heparin-binding glycoprotein which serves as the main Se transport protein in mammals. In vivo studies showed that this protein might have additional functions such as a contribution to redox regulation. The current review focuses on recent research on the possible role of SELENOP in AD pathology, based on model and human studies. The review also briefly summarizes results of epidemiological studies on Se supplementation in relation to brain diseases, including PREADViSE, EVA, and AIBL. Although mainly positive effects of Se are assessed in this review, possible detrimental effects of Se supplementation or exposure, including potential neurotoxicity, are also mentioned. In relation to AD, various roles of SELENOP are discussed, i.e. as the means of Se delivery to neurons, as an antioxidant, in cytoskeleton assembly, in interaction with redox-active metals (copper, iron, and mercury) and with misfolded proteins (amyloid-beta and hyperphosphorylated tau-protein).
Collapse
Affiliation(s)
- Nikolay Solovyev
- St. Petersburg State University, Institute of Chemistry, St. Petersburg, Russian Federation.
| | - Evgenii Drobyshev
- Universität Potsdam, Institut für Ernährungswissenschaft, Potsdam, Germany
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Yaroslav Dubrovskii
- St. Petersburg State University, Institute of Chemistry, St. Petersburg, Russian Federation
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Margaret P Rayman
- Department of Nutritional Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
36
|
Filippini T, Michalke B, Mandrioli J, Tsatsakis AM, Weuve J, Vinceti M. Selenium Neurotoxicity and Amyotrophic Lateral Sclerosis: An Epidemiologic Perspective. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-95390-8_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Willkommen D, Lucio M, Schmitt-Kopplin P, Gazzaz M, Schroeter M, Sigaroudi A, Michalke B. Species fractionation in a case-control study concerning Parkinson's disease: Cu-amino acids discriminate CSF of PD from controls. J Trace Elem Med Biol 2018; 49:164-170. [PMID: 29472131 DOI: 10.1016/j.jtemb.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parkinson's disease is affecting about 1% of the population above 65 years. Improvements in medicine support prolonged lifetime which increases the total concentration of humans affected by the disease. It is suggested that occupational and environmental exposure to metals like iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) can influence the risk for Parkinson's disease. These metals play a key role as cofactors in many enzymes and proteins. METHODS In this case-control study, we investigated the Mn-, Fe-, Cu- and Zn-species in cerebrospinal fluid (CSF) by size-exclusion chromatography hyphenated to inductively coupled plasma mass spectrometry (SEC-ICP-MS) and the total concentration of these metals by inductively coupled plasma sector field mass spectrometry (ICP-sf-MS). RESULTS The investigation of total metal concentration and speciation provided only minor changes, but it produced strong significance for a number of ratios. The analysis revealed a strong change in the ratio between total concentration of Fe and the amino acid-fraction of Cu. This could be observed when analyzing both the respective element concentrations of the fraction (which also depends on individual variation of the total element concentration) as well as when being expressed as percentage of total concentration (normalization) which more clearly shows changes of distribution pattern independent of individual variation of total element concentrations. CONCLUSION Speciation analysis, therefore, is a powerful technique to investigate changes in a case-control study where ratios of different species play an important role.
Collapse
Affiliation(s)
- Desiree Willkommen
- Helmholtz Zentrum München, Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Marianna Lucio
- Helmholtz Zentrum München, Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; TU München, Lehrstuhl für Analytische Lebensmittelchemie, Wissenschaftszentrum Weihenstephan, Alte Akademie 10, 85354 Freising, Germany
| | - Malaz Gazzaz
- Uniklinik Köln, Institut I für Pharmakologie, Zentrum für Pharmakologie, Gleueler Straße 24, 50931 Köln, Germany
| | - Michael Schroeter
- Uniklinik Köln, Klinik und Poliklinik für Neurologie und Psychiatrie, Kerpener Str. 62, 50924 Köln, Germany
| | - Ali Sigaroudi
- Uniklinik Köln, Institut I für Pharmakologie, Zentrum für Pharmakologie, Gleueler Straße 24, 50931 Köln, Germany; Universitätsspital Zürich, Klinik für Klinische Pharmakologie und Toxikologie, Rämistraße 100, 8091 Zürich, Switzerland
| | - Bernhard Michalke
- Helmholtz Zentrum München, Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
38
|
|
39
|
Diet composition and serum levels of selenium species: A cross-sectional study. Food Chem Toxicol 2018; 115:482-490. [PMID: 29621579 DOI: 10.1016/j.fct.2018.03.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022]
Abstract
Selenium is a trace element of both nutritional and toxicological interest, depending on its dose and chemical form. Diet is the primary source of exposure for most individuals. We sought to investigate the influence of food intake on serum levels of selenium species. Among fifty subjects randomly selected from a Northern Italian population, we assessed dietary habits using a validated semi-quantitative food frequency questionnaire. We also measured circulating levels of selenium species in serum using high pressure liquid chromatography associated with inductively-coupled plasma dynamic reaction cell mass spectrometer. Circulating levels of inorganic selenium, the most toxic selenium species, were positively associated with intake of fish, legumes and dry fruits, and inversely associated with intake of dairy products and mushrooms. Concerning the organic selenium species, selenoproteinP-bound selenium was inversely associated with intake of fish, fresh fruits, vegetables, and legumes, while selenocysteine-bound selenium positively associated with intake of fresh fruit, potato, legume and mushroom. In the present study, intakes of different foods were correlated with different types of selenium species. These results have important public health implications when assessing the nutritional and toxicological potential of diet composition with reference to selenium exposure.
Collapse
|
40
|
Copat C, Grasso A, Fiore M, Cristaldi A, Zuccarello P, Signorelli SS, Conti GO, Ferrante M. Trace elements in seafood from the Mediterranean sea: An exposure risk assessment. Food Chem Toxicol 2018; 115:13-19. [PMID: 29510219 DOI: 10.1016/j.fct.2018.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/18/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Fish and shellfish belonging to five different species among pelagic, benthonic and molluscs, were collected from the Gulf of Catania in 2017 to evaluate arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), manganese (Mn), nickel (Ni), selenium (Se) vanadium (V) and zinc (Zn). Risk of developing chronic systemic effects derived from seafood consumption was evaluated with the Target Hazard Quotient (THQ) and compared with the results obtained from the same area and the species, collected in 2012. Hg, Cd and Pb concentrations were found below the limits set by European Community for human consumption in all the analysed species. The total risk is reduced from 1.1 to 0.49, and this result is strongly associated with the lower bioaccumulations levels found for Hg, Mn, Se and V. Others metals such as As, Pb, Ni and Zn bioaccumulation levels remain approximately the same, conversely, it is revealed a slight increase of Cd and Cr. Overall, the present study show a positive picture of the studied area, the Gulf of Catania, highlighting not only a decreased metal availability of the study area, but, above all, a decreased risk to develop chronic systemic effects derived from consumption of local seafood.
Collapse
Affiliation(s)
- Chiara Copat
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy.
| | - Alfina Grasso
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Maria Fiore
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Antonio Cristaldi
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Pietro Zuccarello
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Salvatore Santo Signorelli
- Departments of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| |
Collapse
|
41
|
Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M, Zeegers MPA, Horneber M, D'Amico R, Crespi CM. Selenium for preventing cancer. Cochrane Database Syst Rev 2018; 1:CD005195. [PMID: 29376219 PMCID: PMC6491296 DOI: 10.1002/14651858.cd005195.pub4] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND This review is the third update of the Cochrane review "Selenium for preventing cancer". Selenium is a naturally occurring element with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancer. OBJECTIVES To gather and present evidence needed to address two research questions:1. What is the aetiological relationship between selenium exposure and cancer risk in humans?2. Describe the efficacy of selenium supplementation for cancer prevention in humans. SEARCH METHODS We updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE (Ovid, 2013 to January 2017, week 4), and Embase (2013 to 2017, week 6), as well as searches of clinical trial registries. SELECTION CRITERIA We included randomised controlled trials (RCTs) and longitudinal observational studies that enrolled adult participants. DATA COLLECTION AND ANALYSIS We performed random-effects (RE) meta-analyses when two or more RCTs were available for a specific outcome. We conducted RE meta-analyses when five or more observational studies were available for a specific outcome. We assessed risk of bias in RCTs and in observational studies using Cochrane's risk assessment tool and the Newcastle-Ottawa Scale, respectively. We considered in the primary analysis data pooled from RCTs with low risk of bias. We assessed the certainty of evidence by using the GRADE approach. MAIN RESULTS We included 83 studies in this updated review: two additional RCTs (10 in total) and a few additional trial reports for previously included studies. RCTs involved 27,232 participants allocated to either selenium supplements or placebo. For analyses of RCTs with low risk of bias, the summary risk ratio (RR) for any cancer incidence was 1.01 (95% confidence interval (CI) 0.93 to 1.10; 3 studies, 19,475 participants; high-certainty evidence). The RR for estimated cancer mortality was 1.02 (95% CI 0.80 to 1.30; 1 study, 17,444 participants). For the most frequently investigated site-specific cancers, investigators provided little evidence of any effect of selenium supplementation. Two RCTs with 19,009 participants indicated that colorectal cancer was unaffected by selenium administration (RR 0.99, 95% CI 0.69 to 1.43), as were non-melanoma skin cancer (RR 1.16, 95% CI 0.30 to 4.42; 2 studies, 2027 participants), lung cancer (RR 1.16, 95% CI 0.89 to 1.50; 2 studies, 19,009 participants), breast cancer (RR 2.04, 95% CI 0.44 to 9.55; 1 study, 802 participants), bladder cancer (RR 1.07, 95% CI 0.76 to 1.52; 2 studies, 19,009 participants), and prostate cancer (RR 1.01, 95% CI 0.90 to 1.14; 4 studies, 18,942 participants). Certainty of the evidence was high for all of these cancer sites, except for breast cancer, which was of moderate certainty owing to imprecision, and non-melanoma skin cancer, which we judged as moderate certainty owing to high heterogeneity. RCTs with low risk of bias suggested increased melanoma risk.Results for most outcomes were similar when we included all RCTs in the meta-analysis, regardless of risk of bias. Selenium supplementation did not reduce overall cancer incidence (RR 0.99, 95% CI 0.86 to 1.14; 5 studies, 21,860 participants) nor mortality (RR 0.81, 95% CI 0.49 to 1.32; 2 studies, 18,698 participants). Summary RRs for site-specific cancers showed limited changes compared with estimates from high-quality studies alone, except for liver cancer, for which results were reversed.In the largest trial, the Selenium and Vitamin E Cancer Trial, selenium supplementation increased risks of alopecia and dermatitis, and for participants with highest background selenium status, supplementation also increased risk of high-grade prostate cancer. RCTs showed a slightly increased risk of type 2 diabetes associated with supplementation. A hypothesis generated by the Nutritional Prevention of Cancer Trial - that individuals with low blood selenium levels could reduce their risk of cancer (particularly prostate cancer) by increasing selenium intake - has not been confirmed. As RCT participants have been overwhelmingly male (88%), we could not assess the potential influence of sex or gender.We included 15 additional observational cohort studies (70 in total; over 2,360,000 participants). We found that lower cancer incidence (summary odds ratio (OR) 0.72, 95% CI 0.55 to 0.93; 7 studies, 76,239 participants) and lower cancer mortality (OR 0.76, 95% CI 0.59 to 0.97; 7 studies, 183,863 participants) were associated with the highest category of selenium exposure compared with the lowest. Cancer incidence was lower in men (OR 0.72, 95% CI 0.46 to 1.14, 4 studies, 29,365 men) than in women (OR 0.90, 95% CI 0.45 to 1.77, 2 studies, 18,244 women). Data show a decrease in risk of site-specific cancers for stomach, colorectal, lung, breast, bladder, and prostate cancers. However, these studies have major weaknesses due to study design, exposure misclassification, and potential unmeasured confounding due to lifestyle or nutritional factors covarying with selenium exposure beyond those taken into account in multi-variable analyses. In addition, no evidence of a dose-response relation between selenium status and cancer risk emerged. Certainty of evidence was very low for each outcome. Some studies suggested that genetic factors might modify the relation between selenium and cancer risk - an issue that merits further investigation. AUTHORS' CONCLUSIONS Well-designed and well-conducted RCTs have shown no beneficial effect of selenium supplements in reducing cancer risk (high certainty of evidence). Some RCTs have raised concerns by reporting a higher incidence of high-grade prostate cancer and type 2 diabetes in participants with selenium supplementation. No clear evidence of an influence of baseline participant selenium status on outcomes has emerged in these studies.Observational longitudinal studies have shown an inverse association between selenium exposure and risk of some cancer types, but null and direct relations have also been reported, and no systematic pattern suggesting dose-response relations has emerged. These studies suffer from limitations inherent to the observational design, including exposure misclassification and unmeasured confounding.Overall, there is no evidence to suggest that increasing selenium intake through diet or supplementation prevents cancer in humans. However, more research is needed to assess whether selenium may modify the risk of cancer in individuals with a specific genetic background or nutritional status, and to investigate possible differential effects of various forms of selenium.
Collapse
Affiliation(s)
- Marco Vinceti
- Boston University School of Public HealthDepartment of Epidemiology715 Albany StreetBoston, MAUSA02118
- University of Modena and Reggio EmiliaResearch Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural SciencesVia Campi 287ModenaItaly41125
| | - Tommaso Filippini
- University of Modena and Reggio EmiliaResearch Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural SciencesVia Campi 287ModenaItaly41125
| | - Cinzia Del Giovane
- University of BernInstitute of Primary Health Care (BIHAM)Gesellschaftsstrasse 49BernSwitzerland3012
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo, 71ModenaItaly41100
| | - Gabriele Dennert
- University of Applied Sciences DortmundSocial Medicine and Public Health with Focus on Gender and Diversity, Department of Applied Social SciencesEmil‐Figge‐Str. 44DortmundGermanyD‐44227
| | - Marcel Zwahlen
- University of BernInstitute of Social and Preventive Medicine (ISPM)Finkelhubelweg11BernSwitzerland3012
| | - Maree Brinkman
- Nutrition Biomed Research InstituteDepartment of Nutritional Epidemiology and Clinical StudiesArgyle Place SouthMelbourneVictoriaAustralia3053
- Chairgroup of Complex Genetics and Epidemiology, School for Nutrition and Translational Research in Metabolism, Care and Public Health Research InstituteUnit of Nutritional and Cancer EpidemiologyMaastricht UniversityMaastrichtNetherlands
| | | | - Markus Horneber
- Paracelsus Medical University, Klinikum NurembergDepartment of Internal Medicine, Division of Oncology and HematologyProf.‐Ernst‐Nathan‐Str. 1NurembergGermanyD‐90419
| | - Roberto D'Amico
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo, 71ModenaItaly41100
| | - Catherine M Crespi
- University of California Los AngelesBiostatisticsFielding School of Public Health650 Charles Young Drive South, A2‐125 CHS, Box 956900Los AngelesCaliforniaUSA90095‐6900
| | | |
Collapse
|
42
|
Vinceti M, Chiari A, Eichmüller M, Rothman KJ, Filippini T, Malagoli C, Weuve J, Tondelli M, Zamboni G, Nichelli PF, Michalke B. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer's dementia in persons with mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2017; 9:100. [PMID: 29258624 PMCID: PMC5735937 DOI: 10.1186/s13195-017-0323-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
Background Little is known about factors influencing progression from mild cognitive impairment to Alzheimer’s dementia. A potential role of environmental chemicals and specifically of selenium, a trace element of nutritional and toxicological relevance, has been suggested. Epidemiologic studies of selenium are lacking, however, with the exception of a recent randomized trial based on an organic selenium form. Methods We determined concentrations of selenium species in cerebrospinal fluid sampled at diagnosis in 56 participants with mild cognitive impairment of nonvascular origin. We then investigated the relation of these concentrations to subsequent conversion from mild cognitive impairment to Alzheimer’s dementia. Results Twenty-one out of the 56 subjects developed Alzheimer’s dementia during a median follow-up of 42 months; four subjects developed frontotemporal dementia and two patients Lewy body dementia. In a Cox proportional hazards model adjusting for age, sex, duration of sample storage, and education, an inorganic selenium form, selenate, showed a strong association with Alzheimer’s dementia risk, with an adjusted hazard ratio of 3.1 (95% confidence interval 1.0–9.5) in subjects having a cerebrospinal fluid content above the median level, compared with those with lower concentration. The hazard ratio of Alzheimer’s dementia showed little departure from unity for all other inorganic and organic selenium species. These associations were similar in analyses that measured exposure on a continuous scale, and also after excluding individuals who converted to Alzheimer’s dementia at the beginning of the follow-up. Conclusions These results indicate that higher amounts of a potentially toxic inorganic selenium form in cerebrospinal fluid may predict conversion from mild cognitive impairment to Alzheimer’s dementia. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0323-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy. .,Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy. .,Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA.
| | - Annalisa Chiari
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Marcel Eichmüller
- Helmholtz Zentrum München GmbH-German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg, 85764, Germany
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA.,Research Triangle Institute, Research Triangle Park, 3040 E Cornwallis Road, Durham, NC, 27709, USA
| | - Tommaso Filippini
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Carlotta Malagoli
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Paolo F Nichelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Bernhard Michalke
- Helmholtz Zentrum München GmbH-German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg, 85764, Germany
| |
Collapse
|
43
|
Abstract
The relation between selenium and cancer has been one of the most hotly debated topics in human health over the last decades. Early observational studies reported an inverse relation between selenium exposure and cancer risk. Subsequently, randomized controlled trials showed that selenium supplementation does not reduce the risk of cancer and may even increase it for some types, including advanced prostate cancer and skin cancer. An increased risk of diabetes has also been reported. These findings have been consistent in the most methodologically sound trials, suggesting that the early observational studies were misleading. Other studies have investigated selenium compounds as adjuvant therapy for cancer. Though there is currently insufficient evidence regarding the utility and safety of selenium compounds for such treatments, this issue is worthy of further investigation. The study of selenium and cancer is complicated by the existence of a diverse array of organic and inorganic selenium compounds, each with distinct biological properties, and this must be taken into consideration in the interpretation of both observational and experimental human studies.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy; Boston University School of Public Health, Boston, MA, United States.
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Cilloni
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine M Crespi
- Jonsson Comprehensive Cancer Center, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, United States
| |
Collapse
|
44
|
Redox speciation of iron, manganese, and copper in cerebrospinal fluid by strong cation exchange chromatography – sector field inductively coupled plasma mass spectrometry. Anal Chim Acta 2017; 973:25-33. [DOI: 10.1016/j.aca.2017.03.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
45
|
Vinceti M, Violi F, Tzatzarakis M, Mandrioli J, Malagoli C, Hatch EE, Fini N, Fasano A, Rakitskii VN, Kalantzi OI, Tsatsakis A. Pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in cerebrospinal fluid of amyotrophic lateral sclerosis patients: a case-control study. ENVIRONMENTAL RESEARCH 2017; 155:261-267. [PMID: 28242563 DOI: 10.1016/j.envres.2017.02.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
Neurotoxic chemicals including several pesticides have been suggested to play a role in the etiology of amyotrophic lateral sclerosis (ALS). We investigated the relation between organochlorine pesticides and their metabolites (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in the etiology of sporadic ALS, determining for the first time their levels in cerebrospinal fluid as indicator of antecedent exposure. We recruited 38 ALS patients and 38 controls referred to an Italian clinical center for ALS care, who underwent a lumbar puncture for diagnostic purposes between 1994-2013, and had 1mL of cerebrospinal fluid available for the determination of OCPs, PCBs and PAHs. Many chemicals were undetectable in both case and control CSF samples, and we found little evidence of any increased disease risk according to higher levels of exposure. Among males >60 years, we found a slight but statistically very unstable increased ALS risk with higher levels of the congener PCB 28 and the OCP metabolite p,p'-DDE. Overall, these results do not suggest an involvement of the neurotoxic chemicals investigated in this study in disease etiology, although small numbers limited the precision of our results.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia; via Campi 287, Modena (MO) 41125, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany St., Boston, 02118 MA, United States.
| | - Federica Violi
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia; via Campi 287, Modena (MO) 41125, Italy
| | - Manolis Tzatzarakis
- Department of Forensic Sciences and Toxicology, University of Crete, 71409 Heraklion, Greece
| | - Jessica Mandrioli
- Department of Neurology, Sant'Agostino-Estense Hospital, Local Health Unit of Modena, Via P. Giardini 1355, 41126 Baggiovara, Modena MO, Italy
| | - Carlotta Malagoli
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia; via Campi 287, Modena (MO) 41125, Italy
| | - Elizabeth E Hatch
- Department of Epidemiology, Boston University School of Public Health, 715 Albany St., Boston, 02118 MA, United States
| | - Nicola Fini
- Department of Neurology, Sant'Agostino-Estense Hospital, Local Health Unit of Modena, Via P. Giardini 1355, 41126 Baggiovara, Modena MO, Italy
| | - Antonio Fasano
- Department of Neurology, Sant'Agostino-Estense Hospital, Local Health Unit of Modena, Via P. Giardini 1355, 41126 Baggiovara, Modena MO, Italy
| | - Valerii N Rakitskii
- Federal Scientific Center of Hygiene, F.F. Erisman, 2, Semashko street, Mytishchi, Moscow region 141014 Russia
| | - Olga-Ioanna Kalantzi
- Department of the Environment, University of the Aegean, University Hill, Mytilene 8110 Greece
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, 71409 Heraklion, Greece
| |
Collapse
|