1
|
Enzler T, Frankel TL. Pancreatic cancer precursor lesions - Can immunotherapy prevent progression into pancreatic ductal adenocarcinoma? Cancer Lett 2025; 619:217662. [PMID: 40127814 DOI: 10.1016/j.canlet.2025.217662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with a 5-year survival rate of only 12.5 %. Early detection of PDAC or addressing risk factors for PDAC development are ways to improve outcomes. PDAC can arise from precursor lesions, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and less frequent, mucinous cystic neoplasm (MCN), and other rare precursor variants. High-risk precursor lesions harbor a substantial chance of evolving into PDAC. Such lesions can often be found in resected PDAC specimens adjacent to the cancer. Unfortunately, recognizing precursor lesions that need to be resected is often tricky, and resections frequently end in major surgical interventions. Thus, better ways to handle precursor lesions are desperately needed. We mapped the immune microenvironments (IMEs) of PanINs, IPMNs, and MCNs on a cellular level using multiplex immunofluorescence and computational imaging technology and compared the findings to PDACs and normal pancreatic tissues. We found distinct and potentially targetable mechanisms of immunosuppression between the two main precursor lesions, PanIN and IMPN. Immunosuppression in IPMNs seems partly mediated by programmed cell death protein 1 ligand (PD-L1) expression on antigen-presenting cells (APCs). By contrast, elevated numbers of regulatory T cells (Tregs) seem to be key players in the immunosuppression of PanINs. Thus, treating high-risk IPMNs with anti-PD-1 and high-risk PanINs with agents targeting Tregs, such as anti-lymphocyte associated protein 4 (anti-CTLA-4) antibodies, could reverse their immunosuppressive state. Reversal of immunosuppression will restore immunosurveillance and eventually prevent progression into PDAC. We also review relevant published and ongoing non-surgical treatment approaches for high-risk IPMNs and PanINs.
Collapse
Affiliation(s)
- Thomas Enzler
- Department of Medicine, University of Michigan, Ann Arbor, MI, 40109, USA.
| | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, 40109, USA
| |
Collapse
|
2
|
Sharma R, Kumar S, Komal K, Ghosh R, Thakur S, Pal RR, Kumar M. Comprehensive insights into pancreatic cancer treatment approaches and cutting-edge nanocarrier solutions: from pathology to nanomedicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04094-y. [PMID: 40202672 DOI: 10.1007/s00210-025-04094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. It is characterized by poor prognosis, high mortality, and recurrence rates. Various modifiable and non-modifiable risk factors are associated with pancreatic cancer incidence. Available treatments for pancreatic cancer include surgery, chemotherapy, radiotherapy, photodynamic therapy, supportive care, targeted therapy, and immunotherapy. However, the survival rates for PC are very low. Regrettably, despite efforts to enhance prognosis, the survival rate of pancreatic cancer remains relatively low. Therefore, it is essential to investigate new approaches to improve pancreatic cancer treatment. By synthesizing current knowledge and identifying existing gaps, this article provides a comprehensive overview of risk factors, pathology, conventional treatments, targeted therapies, and recent advancements in nanocarriers for its treatment, along with various clinical trials and patents that justify the safety and efficacy of innovative carriers for drug delivery systems. Ultimately, this review underscores the potential of these innovative formulations to improve outcomes and contribute significantly to the advancement of Pancreatic Cancer treatment. Together, these insights highlight nano-formulations as a promising frontier for effectively treating Pancreatic Cancer.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ravi Raj Pal
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Liaki V, Rosas-Perez B, Guerra C. Unlocking the Genetic Secrets of Pancreatic Cancer: KRAS Allelic Imbalances in Tumor Evolution. Cancers (Basel) 2025; 17:1226. [PMID: 40227826 PMCID: PMC11987834 DOI: 10.3390/cancers17071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) belongs to the types of cancer with the highest lethality. It is also remarkably chemoresistant to the few available cytotoxic therapeutic options. PDAC is characterized by limited mutational heterogeneity of the known driver genes, KRAS, CDKN2A, TP53, and SMAD4, observed in both early-stage and advanced tumors. In this review, we summarize the two proposed models of genetic evolution of pancreatic cancer. The gradual or stepwise accumulated mutations model has been widely studied. On the contrary, less evidence exists on the more recent simultaneous model, according to which rapid tumor evolution is driven by the concurrent accumulation of genetic alterations. In both models, oncogenic KRAS mutations are the main initiating event. Here, we analyze the emerging topic of KRAS allelic imbalances and how it arises during tumor evolution, as it is often detected in advanced and metastatic PDAC. We also summarize recent evidence on how it affects tumor biology, metastasis, and response to therapy. To this extent, we highlight the necessity to include studies of KRAS allelic frequencies in the design of future therapeutic strategies against pancreatic cancer.
Collapse
Affiliation(s)
- Vasiliki Liaki
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Blanca Rosas-Perez
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Carmen Guerra
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Kashiro A, Jung G, Honda K. From discovery to clinical implementation of a pancreatic blood biomarker, apolipoprotein A2 isoform. Cancer Biomark 2025; 42:18758592251317405. [PMID: 40171807 DOI: 10.1177/18758592251317405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Pancreatic cancer is a rare and refractory cancer, and the development of blood biomarkers for the enrichment of high-risk individuals who have risk factors for pancreatic cancer from the asymptomatic population is an unmet medical need. We identified abnormalities in the C-terminal truncation of the apolipoprotein A2 dimer (apoA2-isoforms: apoA2-i) in the blood of pancreatic cancer patients through proteomic analysis, and we have reported the potential for diagnosing resectable pancreatic cancer by detecting these abnormalities. We successfully developed enzyme-linked immunosorbent assay (ELISA) reagents for measuring apoA2-i for research use only, and then the basic data for diagnosing pancreatic cancer were accumulated by several studies using these reagents. In 2023, ELISA for measuring apoA2-i was regenerated by the regulation under the Japanese Quality Management System (QMS), it received marketing approval in Japan as an in vitro diagnostic (IVD) kit to aid in the diagnosis of pancreatic cancer, and it is now used in clinical practice. This review chronicles the journey from the initial discovery through omics research, to demonstrating clinical utility via multicenter studies in Japan and international collaborative research using the research reagent and validating the clinical performance of the IVD ELISA kit through a regulatory, science-guided, clinical trial in Japan, and finally to recent activities in the USA.
Collapse
Affiliation(s)
- Ayumi Kashiro
- Institution for Advanced Medical Science, Nippon Medical School, Tokyo, Japan
| | - Giman Jung
- Bio-Tool Department, Toray International America, Inc., Brisbane, CA, USA
| | - Kazufumi Honda
- Institution for Advanced Medical Science, Nippon Medical School, Tokyo, Japan
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
5
|
Cocca S, Pontillo G, Lupo M, Lieto R, Marocchi M, Marsico M, Dell'Aquila E, Mangiafico S, Grande G, Conigliaro R, Bertani H. Pancreatic cancer: Future challenges and new perspectives for an early diagnosis. World J Clin Oncol 2025; 16:97248. [PMID: 39995556 PMCID: PMC11686566 DOI: 10.5306/wjco.v16.i2.97248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024] Open
Abstract
This editorial is a commentary on the case report by Furuya et al focusing on the challenging diagnosis of early pancreatic adenocarcinoma and new tools for an earlier diagnosis. Currently, pancreatic cancer still has a poor prognosis, mainly due to late diagnosis in an advanced stage. Two main precancerous routes have been identified as pathways to pancreatic adenocarcinoma: The first encompasses a large group of mucinous cystic lesions: intraductal papillary mucinous neoplasm and mucinous cystic neoplasm, and the second is pancreatic intraepithelial neoplasia. In the last decade the focus of research has been to identify high-risk patients, using advanced imaging techniques (magnetic resonance cholangiopancreatography or endoscopic ultrasonography) which could be helpful in finding "indirect signs" of early stage pancreatic lesions. Nevertheless, the survival rate still remains poor, and alternative screening methods are under investigation. Endoscopic retrograde cholangiopancreatography followed by serial pancreatic juice aspiration cytology could be a promising tool for identifying precursor lesions such as intraductal papillary mucinous neoplasm, but confirming data are still needed to validate its role. Probably a combination of cross-sectional imaging, endoscopic techniques (old and new ones) and genetic and biological biomarkers (also in pancreatic juice) could be the best solution to reach an early diagnosis. Biomarkers could help to predict and follow the progression of early pancreatic lesions. However, further studies are needed to validate their diagnostic reliability and to establish diagnostic algorithms to improve prognosis and survival in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Silvia Cocca
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Giuseppina Pontillo
- Gastroenterology and Endoscopy Unit, Presidio Ospedaliero San Giuseppe Moscati (Aversa, CE) – ASL Caserta, Caserta 81100, Italy
| | - Marinella Lupo
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Raffaele Lieto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Campania, Italy
| | - Margherita Marocchi
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Maria Marsico
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Emanuela Dell'Aquila
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome 0144, Italy
| | - Santi Mangiafico
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico “G Rodolico – San Marco”, Catania 95123, Sicilia, Italy
| | - Giuseppe Grande
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Rita Conigliaro
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Helga Bertani
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| |
Collapse
|
6
|
Xu X, Zhang X, Deng X, Sheng F, Cao G, Fu D, Guan M. Quantitative detection of miR-25 for early diagnosis, postoperative assessment and TNM staging of pancreatic cancer. HUMAN GENE 2024; 42:201350. [DOI: 10.1016/j.humgen.2024.201350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
|
7
|
Paranal RM, Wood LD, Klein AP, Roberts NJ. Understanding familial risk of pancreatic ductal adenocarcinoma. Fam Cancer 2024; 23:419-428. [PMID: 38609521 PMCID: PMC11660179 DOI: 10.1007/s10689-024-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is the result of an accumulation of sequential genetic alterations. These genetic alterations can either be inherited, such as pathogenic germline variants that are associated with an increased risk of cancer, or acquired, such as somatic mutations that occur during the lifetime of an individual. Understanding the genetic basis of inherited risk of PDAC is essential to advancing patient care and outcomes through improved clinical surveillance, early detection initiatives, and targeted therapies. In this review we discuss factors associated with an increased risk of PDAC, the prevalence of genetic variants associated with an increased risk in patients with PDAC, estimates of PDAC risk in carriers of pathogenic germline variants in genes associated with an increased risk of PDAC. The role of common variants in pancreatic cancer risk will also be discussed.
Collapse
Affiliation(s)
- Raymond M Paranal
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Human Genetics Predoctoral Training Program, the McKusick-Nathans Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| | - Nicholas J Roberts
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Jin G, Liu K, Guo Z, Dong Z. Precision therapy for cancer prevention by targeting carcinogenesis. Mol Carcinog 2024; 63:2045-2062. [PMID: 39140807 DOI: 10.1002/mc.23798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Cancer represents a major global public health burden, with new cases estimated to increase from 14 million in 2012 to 24 million by 2035. Primary prevention is an effective strategy to reduce the costs associated with cancer burden. For example, measures to ban tobacco consumption have dramatically decreased lung cancer incidence and vaccination against human papillomavirus can prevent cervical cancer development. Unfortunately, the etiological factors of many cancer types are not completely clear or are difficult to actively control; therefore, the primary prevention of such cancers is not practical. In this review, we update the progress on precision therapy by targeting the whole carcinogenesis process, especially for three high-risk groups: (1) those with chronic inflammation, (2) those with inherited germline mutations, and (3) those with precancerous lesions like polyps, gastritis, actinic keratosis or dysplasia. We believe that attenuating chronic inflammation, treating precancerous lesions, and removing high-risk tissues harboring germline mutations are precision methods for cancer prevention.
Collapse
Affiliation(s)
- Guoguo Jin
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiping Guo
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Zhang D, Cui F, Zheng K, Li W, Liu Y, Wu C, Peng L, Yang Z, Chen Q, Xia C, Li S, Jin Z, Xu X, Jin G, Li Z, Huang H. Single-cell RNA sequencing reveals the process of CA19-9 production and dynamics of the immune microenvironment between CA19-9 (+) and CA19-9 (-) PDAC. Chin Med J (Engl) 2024; 137:2415-2428. [PMID: 38816396 PMCID: PMC11479433 DOI: 10.1097/cm9.0000000000003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated. METHODS We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (each from three CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. RESULTS Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A , AQP5 , and MUC5AC . CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. CONCLUSIONS Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Kailian Zheng
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yue Liu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhenghui Yang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qianqian Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shiyu Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70115 USA
- School of Medicine, Tulane University, New Orleans, LA 70115 USA
| | - Gang Jin
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Briones-Andrade J, Ramírez-Santiago G, Romero-Arias JR. A mathematical model for pancreatic cancer during intraepithelial neoplasia. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240702. [PMID: 39493299 PMCID: PMC11528534 DOI: 10.1098/rsos.240702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024]
Abstract
Cancer is the result of complex interactions of intrinsic and extrinsic cell processes, which promote sustained proliferation, resistance to apoptosis, reprogramming and reorganization. The evolution of any type of cancer emerges from the role of the microenvironmental conditions and their impact of some molecular complexes on certain signalling pathways. The understanding of the early onset of cancer requires a multiscale analysis of the cellular microenvironment. In this paper, we analyse a qualitative multiscale model of pancreatic adenocarcinoma by modelling the cellular microenvironment through elastic cell interactions and their intercellular communication mechanisms, such as growth factors and cytokines. We focus on the low-grade dysplasia (PanIN 1) and moderate dysplasia (PanIN 2) stages of pancreatic adenocarcinoma. To this end, we propose a gene-regulatory network associated with the processes of proliferation and apoptosis of pancreatic cells and its kinetics in terms of delayed differential equations to mimic cell development. Likewise, we couple the cell cycle with the spatial distribution of cells and the transport of growth factors to show that the adenocarcinoma evolution is triggered by inflammatory processes. We show that the oncogene RAS may be an important target for developing anti-inflammatory strategies that limit the emergence of more aggressive adenocarcinomas.
Collapse
Affiliation(s)
| | | | - J. Roberto Romero-Arias
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
11
|
Manukyan I, Hsiao SJ, Fazlollahi L, Remotti H, Mansukhani MM. Molecular and morphologic characterization of intraductal tubulopapillary neoplasms of pancreas with novel potentially targetable fusions. Hum Pathol 2024; 150:36-41. [PMID: 38914167 DOI: 10.1016/j.humpath.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Intraductal tubulopapillary neoplasms (ITPNs) are rare pancreatic tumors with distinct histological and molecular features. Distinction of ITPN from other pancreatic neoplasms is crucial given the known favorable prognosis and the high frequency and diversity of potentially targetable fusions in ITPN. While the histological features of ITPN are well documented, there are few reports on the cytological features, and molecular characterization of ITPN. The authors reported three cases diagnosed in their laboratory between 2016 and 2021. Clinical data, cytomorphological and histological features, with immunophenotypic and molecular characterizations of these cases are described and compared with those reported in the literature. All 3 cases were diagnosed as ITPN based on the microscopic presence of intraductal nodules composed of tightly packed small tubular glands lined by cuboidal cells lacking apparent mucin. On molecular profiling KRAS and TP53 variants were found in Case 1, FGFR2-INA fusion in Case 2, and STARD3NL-BRAF fusion was detected in Case 3. Immunohistochemistry (IHC) revealed that the neoplastic cells in Case 1 were MUC2 positive and MUC6 negative, but in Cases 2 and 3, were negative for MUC2 and positive for MUC6. These results demonstrate the immunophenotypic and molecular variabilities of histologically similar pancreatic neoplasms. The absence of alterations characteristic of more common pancreatic neoplasms should prompt the consideration of fusion studies in morphologically relevant cases. The combination of morphological, IHC, and molecular analyses is important for reliable identification of ITPN given its potential clinical management implications.
Collapse
Affiliation(s)
- Irena Manukyan
- Columbia University Irving Medical Center, United States.
| | - Susan J Hsiao
- Columbia University Irving Medical Center, United States.
| | | | - Helen Remotti
- Columbia University Irving Medical Center, United States.
| | | |
Collapse
|
12
|
Kiemen AL, Dequiedt L, Shen Y, Zhu Y, Matos-Romero V, Forjaz A, Campbell K, Dhana W, Cornish T, Braxton AM, Wu P, Fishman EK, Wood LD, Wirtz D, Hruban RH. PanIN or IPMN? Redefining Lesion Size in 3 Dimensions. Am J Surg Pathol 2024; 48:839-845. [PMID: 38764379 PMCID: PMC11189722 DOI: 10.1097/pas.0000000000002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops from 2 known precursor lesions: a majority (∼85%) develops from pancreatic intraepithelial neoplasia (PanIN), and a minority develops from intraductal papillary mucinous neoplasms (IPMNs). Clinical classification of PanIN and IPMN relies on a combination of low-resolution, 3-dimensional (D) imaging (computed tomography, CT), and high-resolution, 2D imaging (histology). The definitions of PanIN and IPMN currently rely heavily on size. IPMNs are defined as macroscopic: generally >1.0 cm and visible in CT, and PanINs are defined as microscopic: generally <0.5 cm and not identifiable in CT. As 2D evaluation fails to take into account 3D structures, we hypothesized that this classification would fail in evaluation of high-resolution, 3D images. To characterize the size and prevalence of PanINs in 3D, 47 thick slabs of pancreas were harvested from grossly normal areas of pancreatic resections, excluding samples from individuals with a diagnosis of an IPMN. All patients but one underwent preoperative CT scans. Through construction of cellular resolution 3D maps, we identified >1400 ductal precursor lesions that met the 2D histologic size criteria of PanINs. We show that, when 3D space is considered, 25 of these lesions can be digitally sectioned to meet the 2D histologic size criterion of IPMN. Re-evaluation of the preoperative CT images of individuals found to possess these large precursor lesions showed that nearly half are visible on imaging. These findings demonstrate that the clinical classification of PanIN and IPMN fails in evaluation of high-resolution, 3D images, emphasizing the need for re-evaluation of classification guidelines that place significant weight on 2D assessment of 3D structures.
Collapse
Affiliation(s)
- Ashley L. Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lucie Dequiedt
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Yu Shen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Yutong Zhu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Valentina Matos-Romero
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - André Forjaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Kurtis Campbell
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Will Dhana
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Toby Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Alicia M. Braxton
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC
| | - PeiHsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Elliot K. Fishman
- Department of Radiology and Radiological Science, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Laura D. Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Morera-Ocon FJ. Early detection of pancreatic cancer. World J Clin Cases 2024; 12:2935-2938. [PMID: 38898835 PMCID: PMC11185363 DOI: 10.12998/wjcc.v12.i17.2935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024] Open
Abstract
The diagnosis of pancreatic cancer associates an appalling significance. Detection of preinvasive stage of pancreatic cancer will ameliorate the survival of this deadly disease. Premalignant lesions such as Intraductal Papillary Mucinous Neoplasms or Mucinous Cystic Neoplasms of the pancreas are detectable on imaging exams and this permits their management prior their invasive development. Pancreatic intraepithelial neoplasms (PanIN) are the most frequent precursors of pancreatic adenocarcinoma (PDAC), and its particular type PanIN high-grade represents the malignant non-invasive form of PDAC. Unfortunately, PanINs are not detectable on radiologic exams. Nevertheless, they can associate indirect imaging signs which would rise the diagnostic suspicion. When this suspicion is established, the patient will be enrolled in a follow-up strategy that includes performing of blood test and serial imaging test such as computed tomography or magnetic resonance imaging, which will cost in the best-case scenario a burden of healthcare systems, and potential mortality in the worst-case scenario when the patient underwent resection surgery, worthless when there is no moderate or high grade dysplasia in the final histopathology. This issue will be avoid having at its disposal a diagnostic technique capable of detecting high-grade PanIN lesions, such is the cytology of pancreatic juice obtained by nasopancreatic intubation. Herein, we review the possibility of detection of early malignant lesions before they become invasive PADC.
Collapse
|
14
|
Silva LGDO, Lemos FFB, Luz MS, Rocha Pinheiro SL, Calmon MDS, Correa Santos GL, Rocha GR, de Melo FF. New avenues for the treatment of immunotherapy-resistant pancreatic cancer. World J Gastrointest Oncol 2024; 16:1134-1153. [PMID: 38660642 PMCID: PMC11037047 DOI: 10.4251/wjgo.v16.i4.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its extremely aggressive nature and ranks 14th in the number of new cancer cases worldwide. However, due to its complexity, it ranks 7th in the list of the most lethal cancers worldwide. The pathogenesis of PC involves several complex processes, including familial genetic factors associated with risk factors such as obesity, diabetes mellitus, chronic pancreatitis, and smoking. Mutations in genes such as KRAS, TP53, and SMAD4 are linked to the appearance of malignant cells that generate pancreatic lesions and, consequently, cancer. In this context, some therapies are used for PC, one of which is immunotherapy, which is extremely promising in various other types of cancer but has shown little response in the treatment of PC due to various resistance mechanisms that contribute to a drop in immunotherapy efficiency. It is therefore clear that the tumor microenvironment (TME) has a huge impact on the resistance process, since cellular and non-cellular elements create an immunosuppressive environment, characterized by a dense desmoplastic stroma with cancer-associated fibroblasts, pancreatic stellate cells, extracellular matrix, and immunosuppressive cells. Linked to this are genetic mutations in TP53 and immunosuppressive factors that act on T cells, resulting in a shortage of CD8+ T cells and limited expression of activation markers such as interferon-gamma. In this way, finding new strategies that make it possible to manipulate resistance mechanisms is necessary. Thus, techniques such as the use of TME modulators that block receptors and stromal molecules that generate resistance, the use of genetic manipulation in specific regions, such as microRNAs, the modulation of extrinsic and intrinsic factors associated with T cells, and, above all, therapeutic models that combine these modulation techniques constitute the promising future of PC therapy. Thus, this study aims to elucidate the main mechanisms of resistance to immunotherapy in PC and new ways of manipulating this process, resulting in a more efficient therapy for cancer patients and, consequently, a reduction in the lethality of this aggressive cancer.
Collapse
Affiliation(s)
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana dos Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
15
|
Vargas A, Dutta P, Carpenter ES, Machicado JD. Endoscopic Ultrasound-Guided Ablation of Premalignant Pancreatic Cysts and Pancreatic Cancer. Diagnostics (Basel) 2024; 14:564. [PMID: 38473035 DOI: 10.3390/diagnostics14050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic cancer is on the rise and expected to become the second leading cause of cancer-related death by 2030. Up to a one-fifth of pancreatic cancers may arise from mucinous pancreatic cysts, which are frequently present in the general population. Currently, surgical resection is the only curative approach for pancreatic cancer and its cystic precursors. However, only a dismal proportion of patients are eligible for surgery. Therefore, novel treatment approaches to treat pancreatic cancer and precancerous pancreatic cysts are needed. Endoscopic ultrasound (EUS)-guided ablation is an emerging minimally invasive method to treat pancreatic cancer and premalignant pancreatic cysts. Different ablative modalities have been used including alcohol, chemotherapy agents, and radiofrequency ablation. Cumulative data over the past two decades have shown that endoscopic ablation of mucinous pancreatic cysts can lead to cyst resolution in a significant proportion of the treated cysts. Furthermore, novel data are emerging about the ability to endoscopically ablate early and locally advanced pancreatic cancer. In this review, we aim to summarize the available data on the efficacy and safety of the different EUS-ablation modalities for the management of premalignant pancreatic cysts and pancreatic cancer.
Collapse
Affiliation(s)
- Alejandra Vargas
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA 23510, USA
| | - Priyata Dutta
- Department of Medicine, Trinity Health, Ann Arbor, MI 48197, USA
| | - Eileen S Carpenter
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jorge D Machicado
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Enzler T, Shi J, McGue J, Griffith BD, Sun L, Sahai V, Nathan H, Frankel TL. A Comparison of Spatial and Phenotypic Immune Profiles of Pancreatic Ductal Adenocarcinoma and Its Precursor Lesions. Int J Mol Sci 2024; 25:2953. [PMID: 38474199 PMCID: PMC10932200 DOI: 10.3390/ijms25052953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of 12.5%. PDAC predominantly arises from non-cystic pancreatic intraepithelial neoplasia (PanIN) and cystic intraductal papillary mucinous neoplasm (IPMN). We used multiplex immunofluorescence and computational imaging technology to characterize, map, and compare the immune microenvironments (IMEs) of PDAC and its precursor lesions. We demonstrate that the IME of IPMN was abundantly infiltrated with CD8+ T cells and PD-L1-positive antigen-presenting cells (APCs), whereas the IME of PanIN contained fewer CD8+ T cells and fewer PD-L1-positive APCs but elevated numbers of immunosuppressive regulatory T cells (Tregs). Thus, immunosuppression in IPMN and PanIN seems to be mediated by different mechanisms. While immunosuppression in IPMN is facilitated by PD-L1 expression on APCs, Tregs seem to play a key role in PanIN. Our findings suggest potential immunotherapeutic interventions for high-risk precursor lesions, namely, targeting PD-1/PD-L1 in IPMN and CTLA-4-positive Tregs in PanIN to restore immunosurveillance and prevent progression to cancer. Tregs accumulate with malignant transformation, as observed in PDAC, and to a lesser extent in IPMN-associated PDAC (IAPA). High numbers of Tregs in the microenvironment of PDAC went along with a markedly decreased interaction between CD8+ T cells and cancerous epithelial cells (ECs), highlighting the importance of Tregs as key players in immunosuppression in PDAC. We found evidence that a defect in antigen presentation, further aggravated by PD-L1 expression on APC, may contribute to immunosuppression in IAPA, suggesting a role for PD-L1/PD-1 immune checkpoint inhibitors in the treatment of IAPA.
Collapse
Affiliation(s)
- Thomas Enzler
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Brian D. Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Vaibhav Sahai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| |
Collapse
|
17
|
Kashiro A, Kobayashi M, Oh T, Miyamoto M, Atsumi J, Nagashima K, Takeuchi K, Nara S, Hijioka S, Morizane C, Kikuchi S, Kato S, Kato K, Ochiai H, Obata D, Shizume Y, Konishi H, Nomura Y, Matsuyama K, Xie C, Wong C, Huang Y, Jung G, Srivastava S, Kutsumi H, Honda K. Clinical development of a blood biomarker using apolipoprotein-A2 isoforms for early detection of pancreatic cancer. J Gastroenterol 2024; 59:263-278. [PMID: 38261000 PMCID: PMC10904523 DOI: 10.1007/s00535-023-02072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND We have previously reported apolipoprotein A2-isoforms (apoA2-is) as candidate plasma biomarkers for early-stage pancreatic cancer. The aim of this study was the clinical development of apoA2-is. METHODS We established a new enzyme-linked immunosorbent sandwich assay for apoA2-is under the Japanese medical device Quality Management System requirements and performed in vitro diagnostic tests with prespecified end points using 2732 plasma samples. The clinical equivalence and significance of apoA2-is were compared with CA19-9. RESULTS The point estimate of the area under the curve to distinguish between pancreatic cancer (n = 106) and healthy controls (n = 106) was higher for apoA2-ATQ/AT [0.879, 95% confidence interval (CI): 0.832-0.925] than for CA19-9 (0.849, 95% CI 0.793-0.905) and achieved the primary end point. The cutoff apoA2-ATQ/AT of 59.5 μg/mL was defined based on a specificity of 95% in 2000 healthy samples, and the reliability of specificities was confirmed in two independent healthy cohorts as 95.3% (n = 106, 95% CI 89.4-98.0%) and 95.8% (n = 400, 95% CI 93.3-97.3%). The sensitivities of apoA2-ATQ/AT for detecting both stage I (47.4%) and I/II (50%) pancreatic cancers were higher than those of CA19-9 (36.8% and 46.7%, respectively). The combination of apoA2-ATQ/AT (cutoff, 59.5 μg/mL) and CA19-9 (37 U/mL) increased the sensitivity for pancreatic cancer to 87.7% compared with 69.8% for CA19-9 alone. The clinical performance of apoA2-is was blindly confirmed by the National Cancer Institute Early Detection Research Network. CONCLUSIONS The clinical performance of ApoA2-ATQ/AT as a blood biomarker is equivalent to or better than that of CA19-9.
Collapse
Affiliation(s)
- Ayumi Kashiro
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan
- Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan
| | - Michimoto Kobayashi
- Toray Industries, Inc., 2-1-1 Muromachi Nihonbashi, Chuo-Ku, Tokyo, 103-8666, Japan
| | - Takanori Oh
- Toray Industries, Inc., 2-1-1 Muromachi Nihonbashi, Chuo-Ku, Tokyo, 103-8666, Japan
| | - Mitsuko Miyamoto
- Toray Industries, Inc., 2-1-1 Muromachi Nihonbashi, Chuo-Ku, Tokyo, 103-8666, Japan
| | - Jun Atsumi
- Toray Industries, Inc., 2-1-1 Muromachi Nihonbashi, Chuo-Ku, Tokyo, 103-8666, Japan
| | - Kengo Nagashima
- Keio University Hospital, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keiko Takeuchi
- Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan
| | - Satoshi Nara
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shojiro Kikuchi
- Institute of Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Shingo Kato
- Department of Clinical Cancer Genomics, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Ken Kato
- Department of Head and Neck Esophageal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroki Ochiai
- Department of Gastroenterological Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Daisuke Obata
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Tsukiwamachi Seta, Otsu, Shiga, 520-2192, Japan
| | - Yuya Shizume
- Toray Industries, Inc., 2-1-1 Muromachi Nihonbashi, Chuo-Ku, Tokyo, 103-8666, Japan
| | - Hiroshi Konishi
- Japan Cancer Society, 5-3-3 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yumiko Nomura
- Japan Cancer Society, 5-3-3 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Kotone Matsuyama
- Department of Health Policy and Management, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan
| | - Cassie Xie
- Biostatistics, Bioinformatics and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109-1024, USA
| | - Christin Wong
- Bio Tool Department (Toray Molecular Oncology Lab.), Toray International America Inc., Brisbane, CA, 94005, USA
| | - Ying Huang
- Biostatistics, Bioinformatics and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109-1024, USA
| | - Giman Jung
- Bio Tool Department (Toray Molecular Oncology Lab.), Toray International America Inc., Brisbane, CA, 94005, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, 20850, USA
- National Cancer Institute Early Detection Research Network, Rockville, MD, 20850, USA
| | - Hiromu Kutsumi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Tsukiwamachi Seta, Otsu, Shiga, 520-2192, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan.
- Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
18
|
Revoredo Rego F, Reaño Paredes G, de Vinatea de Cárdenas J, Herrera Chávez G, Kometter Barrios F, Arenas Gamio J. Intraductal papillary mucinous neoplasm of pancreas: Clinicopathological features and long-term survival after surgical resection. Cir Esp 2023; 101:736-745. [PMID: 36716959 DOI: 10.1016/j.cireng.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 10/30/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Intraductal papillary mucinous neoplasm (IPMN) of the pancreas can progress from low-grade dysplasia to high-grade dysplasia and invasive carcinoma. METHODS In this single-center retrospective series, we analyze the clinicopathological features and long-term follow up of patients who underwent pancreatic resection for IPMN, from January 2009 to December 2019. RESULTS 31 patients were diagnosed with IPMN: 9 males and 22 females. Mean age was 67 years. Twenty-seven patients (87%) were symptomatic. Seven patients had main duct IPMN, 11 branch-type IPMN and 13 mixed-type IPMN. High-risk stigmata were found in 20 patients (64.5%) and worrisome features in 10 patients (32.2%). Thirteen patients (41.9%) had an associated invasive carcinoma, 4 (12.9%) high-grade dysplasia and 14 (45.2%) low-grade dysplasia. The follow-up was from 2 to 12 years. Median survival for patients with IPMN and associated invasive carcinoma was 45.8 months, and disease-free survival was 40.8 months. CONCLUSIONS IPMN had a higher prevalence in females, mostly symptomatic and high incidence of associated invasive carcinoma with branch type. The 5-year survival was good even with associated invasive carcinoma.
Collapse
Affiliation(s)
- Fernando Revoredo Rego
- Servicio de Cirugía de Páncreas, Bazo y Retroperitoneo, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru.
| | - Gustavo Reaño Paredes
- Servicio de Cirugía de Páncreas, Bazo y Retroperitoneo, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru
| | - José de Vinatea de Cárdenas
- Servicio de Cirugía de Páncreas, Bazo y Retroperitoneo, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru
| | - Guillermo Herrera Chávez
- Servicio de Cirugía de Páncreas, Bazo y Retroperitoneo, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru
| | - Fritz Kometter Barrios
- Servicio de Cirugía de Páncreas, Bazo y Retroperitoneo, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru
| | - José Arenas Gamio
- Servicio de Anatomía Patológica, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru
| |
Collapse
|
19
|
Pinkert-Leetsch D, Frohn J, Ströbel P, Alves F, Salditt T, Missbach-Guentner J. Three-dimensional analysis of human pancreatic cancer specimens by phase-contrast based X-ray tomography - the next dimension of diagnosis. Cancer Imaging 2023; 23:43. [PMID: 37131262 PMCID: PMC10152799 DOI: 10.1186/s40644-023-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The worldwide increase of pancreatic ductal adenocarcinoma (PDAC), which still has one of the lowest survival rates, requires novel imaging tools to improve early detection and to refine diagnosis. Therefore, the aim of this study was to assess the feasibility of propagation-based phase-contrast X-ray computed tomography of already paraffin-embedded and unlabeled human pancreatic tumor tissue to achieve a detailed three-dimensional (3D) view of the tumor sample in its entirety. METHODS Punch biopsies of areas of particular interest were taken from paraffin blocks after initial histological analysis of hematoxylin and eosin stained tumor sections. To cover the entire 3.5 mm diameter of the punch biopsy, nine individual tomograms with overlapping regions were acquired in a synchrotron parallel beam configuration and stitched together after data reconstruction. Due to the intrinsic contrast based on electron density differences of tissue components and a voxel size of 1.3 μm achieved PDAC and its precursors were clearly identified. RESULTS Characteristic tissue structures for PDAC and its precursors, such as dilated pancreatic ducts, altered ductal epithelium, diffuse immune cell infiltrations, increased occurrence of tumor stroma and perineural invasion were clearly identified. Certain structures of interest were visualized in three dimensions throughout the tissue punch. Pancreatic duct ectasia of different caliber and atypical shape as well as perineural infiltration could be contiguously traced by viewing serial tomographic slices and by applying semi-automatic segmentation. Histological validation of corresponding sections confirmed the former identified PDAC features. CONCLUSION In conclusion, virtual 3D histology via phase-contrast X-ray tomography visualizes diagnostically relevant tissue structures of PDAC in their entirety, preserving tissue integrity in label-free, paraffin embedded tissue biopsies. In the future, this will not only enable a more comprehensive diagnosis but also a possible identification of new 3D imaging tumor markers.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany.
| | - Jasper Frohn
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center, Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Goettingen, Germany
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | | |
Collapse
|
20
|
Revoredo Rego F, Reaño Paredes G, de Vinatea de Cárdenas J, Herrera Chávez G, Kometter Barrios F, Arenas Gamio J. Neoplasia mucinosa papilar intraductal del páncreas: características clínico-patológicas y supervivencia a largo plazo de pacientes sometidos a pancreatectomía. Cir Esp 2023. [DOI: 10.1016/j.ciresp.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
21
|
Mafficini A, Simbolo M, Shibata T, Hong SM, Pea A, Brosens LA, Cheng L, Antonello D, Sciammarella C, Cantù C, Mattiolo P, Taormina SV, Malleo G, Marchegiani G, Sereni E, Corbo V, Paolino G, Ciaparrone C, Hiraoka N, Pallaoro D, Jansen C, Milella M, Salvia R, Lawlor RT, Adsay V, Scarpa A, Luchini C. Integrative characterization of intraductal tubulopapillary neoplasm (ITPN) of the pancreas and associated invasive adenocarcinoma. Mod Pathol 2022; 35:1929-1943. [PMID: 36056133 PMCID: PMC9708572 DOI: 10.1038/s41379-022-01143-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic intraductal tubulopapillary neoplasm (ITPN) is a recently recognized intraductal neoplasm. This study aimed to clarify the clinicopathologic and molecular features of this entity, based on a multi-institutional cohort of 16 pancreatic ITPNs and associated adenocarcinomas. The genomic profiles were analyzed using histology-driven multi-regional sequencing to provide insight on tumor heterogeneity and evolution. Furthermore, an exploratory transcriptomic characterization was performed on eight invasive adenocarcinomas. The clinicopathologic parameters and molecular alterations were further analyzed based on survival indices. The main findings were as follows: 1) the concomitant adenocarcinomas, present in 75% of cases, were always molecularly associated with the intraductal components. These data definitively establish ITPN as origin of invasive pancreatic adenocarcinoma; 2) alterations restricted to infiltrative components included mutations in chromatin remodeling genes ARID2, ASXL1, and PBRM1, and ERBB2-P3H4 fusion; 3) pancreatic ITPN can arise in the context of genetic syndromes, such as BRCA-germline and Peutz-Jeghers syndrome; 4) mutational profile: mutations in the classical PDAC drivers are present, but less frequently, in pancreatic ITPN; 5) novel genomic alterations were observed, including amplification of the Cyclin and NOTCH family genes and ERBB2, fusions involving RET and ERBB2, and RB1 disruptive variation; 6) chromosomal alterations: the most common was 1q gain (75% of cases); 7) by transcriptome analysis, ITPN-associated adenocarcinomas clustered into three subtypes that correlate with the activation of signaling mechanism pathways and tumor microenvironment, displaying squamous features in their majority; and 8) TP53 mutational status is a marker for adverse prognosis. ITPNs are precursor lesions of pancreatic cancer with a high malignant transformation risk. A personalized approach for patients with ITPN should recognize that such neoplasms could arise in the context of genetic syndromes. BRCA alterations, ERBB2 and RET fusions, and ERBB2 amplification are novel targets in precision oncology. The TP53 mutation status can be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Center, University of Verona, Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, and Laboratory of Molecular Medicine, The Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Antonio Pea
- Department of General and Pancreatic Surgery - The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Lodewijk A Brosens
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University and Lifespan Academic Medical Center, Providence, RI, USA
| | - Davide Antonello
- Department of General and Pancreatic Surgery - The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | | | - Cinzia Cantù
- ARC-Net Research Center, University of Verona, Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | | | - Giuseppe Malleo
- Department of General and Pancreatic Surgery - The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Giovanni Marchegiani
- Department of General and Pancreatic Surgery - The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Elisabetta Sereni
- Department of General and Pancreatic Surgery - The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Gaetano Paolino
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Chiara Ciaparrone
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Daniel Pallaoro
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Casper Jansen
- Laboratory for Pathology Eastern Nertherlands, Hengelo, The Netherlands
| | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery - The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- ARC-Net Research Center, University of Verona, Verona, Italy
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.
- ARC-Net Research Center, University of Verona, Verona, Italy.
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.
- ARC-Net Research Center, University of Verona, Verona, Italy.
| |
Collapse
|
22
|
Abstract
It has been 30 years since the first member of the protease-activated receptor (PAR) family was discovered. This was followed by the discovery of three other receptors, including PAR2. PAR2 is a G protein-coupled receptor activated by trypsin site-specific proteolysis. The process starts with serine proteases acting between arginine and serine, creating an N-terminus that functions as a tethered ligand that binds, after a conformational change, to the second extracellular loop of the receptor, leading to activation of G-proteins. The physiological and pathological functions of this ubiquitous receptor are still elusive. This review focuses on PAR2 activation and its distribution under physiological and pathological conditions, with a particular focus on the pancreas, a significant producer of trypsin, which is the prototype activator of the receptor. The role in acute or chronic pancreatitis, pancreatic cancer, and diabetes mellitus will be highlighted.
Collapse
Affiliation(s)
- Petr SUHAJ
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas OLEJAR
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav MATEJ
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Department of Pathology, University Hospital Kralovske Vinohrady, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
23
|
Paolino G, Esposito I, Hong S, Basturk O, Mattiolo P, Kaneko T, Veronese N, Scarpa A, Adsay V, Luchini C. Intraductal tubulopapillary neoplasm (ITPN) of the pancreas: a distinct entity among pancreatic tumors. Histopathology 2022; 81:297-309. [PMID: 35583805 PMCID: PMC9544156 DOI: 10.1111/his.14698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
AIMS Intraductal tubulopapillary neoplasm (ITPN) of the pancreas is a recently recognized pancreatic tumor entity. Here we aimed to determine the most important features with a systematic review coupled with an integrated statistical approach. METHODS AND RESULTS PubMed, SCOPUS, and Embase were searched for studies reporting data on pancreatic ITPN. The clinicopathological, immunohistochemical, and molecular data were summarized. Then a comprehensive survival analysis and a comparative analysis of the molecular alterations of ITPN with those of pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasm (IPMN) from reference cohorts (including the International Cancer Genome Consortium- ICGC dataset and The Cancer Genome Atlas, TCGA program) were conducted. The core findings of 128 patients were as follows: (i) Clinicopathological parameters: pancreatic head is the most common site; presence of an associated adenocarcinoma was reported in 60% of cases, but with rare nodal metastasis. (ii) Immunohistochemistry: MUC1 (>90%) and MUC6 (70%) were the most frequently expressed mucins. ITPN lacked the intestinal marker MUC2; unlike IPMN, it did not express MUC5AC. (iii) Molecular landscape: Compared with PDAC/IPMN, the classic pancreatic drivers KRAS, TP53, CDKN2A, SMAD4, GNAS, and RNF43 were less altered in ITPN (P < 0.001), whereas MCL amplifications, FGFR2 fusions, and PI3KCA mutations were commonly altered (P < 0.001). (iv) Survival analysis: ITPN with a "pure" branch duct involvement showed the lowest risk of recurrence. CONCLUSION ITPN is a distinct pancreatic neoplasm with specific clinicopathological and molecular characteristics. Its recognition is fundamental for its clinical/prognostic implications and for the enrichment of potential targets for precision oncology.
Collapse
Affiliation(s)
- Gaetano Paolino
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Irene Esposito
- Institute of PathologyUniversity Hospital of DuesseldorfDuesseldorfGermany
| | - Seung‐Mo Hong
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Olca Basturk
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Takuma Kaneko
- Department of Hepato‐Biliary‐Pancreatic MedicineNTT Medical CenterTokyoJapan
| | - Nicola Veronese
- Department of Internal MedicineUniversity of PalermoPalermoItaly
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
- ARC‐Net Research CenterUniversity and Hospital Trust of VeronaVeronaItaly
| | - Volkan Adsay
- Department of PathologyKoç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM)IstanbulTurkey
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
- ARC‐Net Research CenterUniversity and Hospital Trust of VeronaVeronaItaly
| |
Collapse
|
24
|
Fukunaga Y, Fukuda A, Omatsu M, Namikawa M, Sono M, Masuda T, Araki O, Nagao M, Yoshikawa T, Ogawa S, Hiramatsu Y, Muta Y, Tsuda M, Maruno T, Nakanishi Y, Ferrer J, Tsuruyama T, Masui T, Hatano E, Seno H. Loss of Arid1a and Pten in Pancreatic Ductal Cells Induces Intraductal Tubulopapillary Neoplasm via the YAP/TAZ Pathway. Gastroenterology 2022; 163:466-480.e6. [PMID: 35483445 DOI: 10.1053/j.gastro.2022.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) arises from several types of premalignant lesions, including intraductal tubulopapillary neoplasm (ITPN); however, the molecular pathogenesis of ITPN remains unknown. METHODS We performed studies with Hnf1b-CreERT2; Ptenf/f; Arid1af/f mice to investigate the consequence of genetic deletion of Arid1a in adult pancreatic ductal cells in the context of oncogenic PI3K/Akt pathway activation. RESULTS Simultaneous deletion of Arid1a and Pten in pancreatic ductal cells resulted in the development of ITPN, which progressed to PDAC, in mice. Simultaneous loss of Arid1a and Pten induced dedifferentiation of pancreatic ductal cells and Yes-associated protein 1/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway activation. Consistent with the mouse data, TAZ expression was found elevated in human ITPNs and ITPN-derived PDACs but not in human intraductal papillary mucinous neoplasms, indicating that activation of the TAZ pathway is a distinctive feature of ITPN. Furthermore, pharmacological inhibition of the YAP/TAZ pathway suppressed the dedifferentiation of pancreatic ductal cells and development of ITPN in Arid1a and Pten double-knockout mice. CONCLUSION Concurrent loss of Arid1a and Pten in adult pancreatic ductal cells induced ITPN and ITPN-derived PDAC in mice through aberrant activation of the YAP/TAZ pathway, and inhibition of the YAP/TAZ pathway prevented the development of ITPN. These findings provide novel insights into the pathogenesis of ITPN-derived PDAC and highlight the YAP/TAZ pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- Yuichi Fukunaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; DSP Cancer Institute, Sumitomo Dainippon Pharma Co., Osaka, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Araki
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaaki Yoshikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Brindl N, Boekhoff H, Bauer AS, Gaida MM, Dang HT, Kaiser J, Hoheisel JD, Felix K. Use of Autoreactive Antibodies in Blood of Patients with Pancreatic Intraductal Papillary Mucinous Neoplasms (IPMN) for Grade Distinction and Detection of Malignancy. Cancers (Basel) 2022; 14:cancers14153562. [PMID: 35892825 PMCID: PMC9332220 DOI: 10.3390/cancers14153562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: A reliable non-invasive distinction between low- and high-risk pancreatic intraductal papillary mucinous neoplasms (IPMN) is needed to effectively detect IPMN with malignant potential. This would improve preventative care and reduce the risk of developing pancreatic cancer and overtreatment. The present study aimed at exploring the presence of autoreactive antibodies in the blood of patients with IPMN of various grades of dysplasia. (2) Methods: A single-center cohort was studied composed of 378 serum samples from patients with low-grade IPMN (n = 91), high-grade IPMN (n = 66), IPMN with associated invasive cancer (n = 30), pancreatic ductal adenocarcinoma (PDAC) stages T1 (n = 24) and T2 (n = 113), and healthy controls (n = 54). A 249 full-length recombinant human protein microarray was used for profiling the serum samples. (3) Results: 14 proteins were identified as potential biomarkers for grade distinction in IPMN, yielding high specificity but mediocre sensitivity. (4) Conclusions: The identified autoantibodies are potential biomarkers that may assist in the detection of malignancy in IPMN patients.
Collapse
Affiliation(s)
- Niall Brindl
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
- Correspondence: (N.B.); (K.F.); Tel.: +49-163-638-1860 (N.B.)
| | - Henning Boekhoff
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Andrea S. Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- TRON, Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hien T. Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA;
| | - Jörg Kaiser
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Correspondence: (N.B.); (K.F.); Tel.: +49-163-638-1860 (N.B.)
| |
Collapse
|
26
|
Kartsonaki C, Pang Y, Millwood I, Yang L, Guo Y, Walters R, Lv J, Hill M, Yu C, Chen Y, Chen X, O’Neill E, Chen J, Travis RC, Clarke R, Li L, Chen Z, Holmes MV. Circulating proteins and risk of pancreatic cancer: a case-subcohort study among Chinese adults. Int J Epidemiol 2022; 51:817-829. [PMID: 35064782 PMCID: PMC9189974 DOI: 10.1093/ije/dyab274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/31/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer has a very poor prognosis. Biomarkers that may help predict or diagnose pancreatic cancer may lead to earlier diagnosis and improved survival. METHODS The prospective China Kadoorie Biobank (CKB) recruited 512 891 adults aged 30-79 years during 2004-08, recording 702 incident cases of pancreatic cancer during 9 years of follow-up. We conducted a case-subcohort study measuring 92 proteins in 610 cases and a subcohort of 623 individuals, using the OLINK immuno-oncology panel in stored baseline plasma samples. Cox regression with the Prentice pseudo-partial likelihood was used to estimate adjusted hazard ratios (HRs) for risk of pancreatic cancer by protein levels. RESULTS Among 1233 individuals (including 610 cases), several chemokines, interleukins, growth factors and membrane proteins were associated with risk of pancreatic cancer, with adjusted HRs per 1 standard deviation (SD) of 0.86 to 1.86, including monocyte chemotactic protein 3 (MCP3/CCL7) {1.29 [95% CI (confidence interval) (1.10, 1.51)]}, angiopoietin-2 (ANGPT2) [1.27 (1.10, 1.48)], interleukin-18 (IL18) [1.24 (1.07, 1.43)] and interleukin-6 (IL6) [1.21 (1.06, 1.38)]. Associations between some proteins [e.g. matrix metalloproteinase-7 (MMP7), hepatocyte growth factor (HGF) and tumour necrosis factor receptor superfamily member 9 [TNFRSF9)] and risk of pancreatic cancer were time-varying, with higher levels associated with higher short-term risk. Within the first year, the discriminatory ability of a model with known risk factors (age, age squared, sex, region, smoking, alcohol, education, diabetes and family history of cancer) was increased when several proteins were incorporated (weighted C-statistic changed from 0.85 to 0.99; P for difference = 4.5 × 10-5), although only a small increase in discrimination (0.77 to 0.79, P = 0.04) was achieved for long-term risk. CONCLUSIONS Several plasma proteins were associated with subsequent diagnosis of pancreatic cancer. The potential clinical utility of these biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Iona Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yu Guo
- CKB Project Department, Chinese Academy of Medical Sciences, Beijing, China
| | - Robin Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Michael Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaofang Chen
- NCDs Prevention and Control Department, Pengzhou CDC, Pengzhou City, Sichuan Province, China
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Junshi Chen
- NHD Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Ruth C Travis
- Cancer Epidemiology Unit (CEU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robert Clarke
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Michael V Holmes
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe University Hospital, Oxford, UK
| |
Collapse
|
27
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
28
|
Dielectrophoresis-Based Biosensor for Detection of the Cancer Biomarkers CEA and CA 242 in Serum. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We show that dielectrophoresis (DEP) spectroscopy is an effective transduction mechanism for detection of the concentration levels of the pancreatic cancer biomarkers cancer antigen (CA) 242 and carcinoembryonic antigen (CEA) in serum. We noticed a frequency dependence of the negative DEP force applied by interdigitated electrodes on functionalized polystyrene microspheres (PM) with respect to changes in the number of these cancer antigens bound to the PM. An electrode array with a well-defined gradient of the electric field was designed and used, which enabled the automation of the signal processing and reproducibility of the signal acquired by the biosensor.
Collapse
|
29
|
The Impact of Biomarkers in Pancreatic Ductal Adenocarcinoma on Diagnosis, Surveillance and Therapy. Cancers (Basel) 2022; 14:cancers14010217. [PMID: 35008381 PMCID: PMC8750069 DOI: 10.3390/cancers14010217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a leading cause of cancer death worldwide. Due to the frequently late diagnosis, early metastasis and high therapy resistance curation is rare and prognosis remains poor overall. To provide early diagnostic and therapeutic predictors, various molecules from blood, tissue and other origin e.g., saliva, urine and stool, have been identified as biomarkers. This review summarizes current trends in biomarkers for diagnosis and therapy of pancreatic ductal adenocarcinoma. Abstract Pancreatic ductal adenocarcinoma (PDAC) is still difficult to treat due to insufficient methods for early diagnosis and prediction of therapy response. Furthermore, surveillance after curatively intended surgery lacks adequate methods for timely detection of recurrence. Therefore, several molecules have been analyzed as predictors of recurrence or early detection of PDAC. Enhanced understanding of molecular tumorigenesis and treatment response triggered the identification of novel biomarkers as predictors for response to conventional chemotherapy or targeted therapy. In conclusion, progress has been made especially in the prediction of therapy response with biomarkers. The use of molecules for early detection and recurrence of PDAC is still at an early stage, but there are promising approaches in noninvasive biomarkers, composite panels and scores that can already ameliorate the current clinical practice. The present review summarizes the current state of research on biomarkers for diagnosis and therapy of pancreatic cancer.
Collapse
|
30
|
Yan TB, Huang JQ, Huang SY, Ahir BK, Li LM, Mo ZN, Zhong JH. Advances in the Detection of Pancreatic Cancer Through Liquid Biopsy. Front Oncol 2021; 11:801173. [PMID: 34993149 PMCID: PMC8726483 DOI: 10.3389/fonc.2021.801173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer refers to the development of malignant tumors in the pancreas: it is associated with high mortality rates and mostly goes undetected in its early stages for lack of symptoms. Currently, surgical treatment is the only effective way to improve the survival of pancreatic cancer patients. Therefore, it is crucial to diagnose the disease as early as possible in order to improve the survival rate of patients with pancreatic cancer. Liquid biopsy is a unique in vitro diagnostic technique offering the advantage of earlier detection of tumors. Although liquid biopsies have shown promise for screening for certain cancers, whether they are effective for early diagnosis of pancreatic cancer is unclear. Therefore, we reviewed relevant literature indexed in PubMed and collated updates and information on advances in the field of liquid biopsy with respect to the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Bao Yan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jia-Qi Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Shi-Yun Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Bhavesh K. Ahir
- Section of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Long-Man Li
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zeng-Nan Mo
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jian-Hong Zhong,
| |
Collapse
|
31
|
Felix K, Honda K, Nagashima K, Kashiro A, Takeuchi K, Kobayashi T, Hinterkopf S, Gaida MM, Dang H, Brindl N, Kaiser J, Büchler MW, Strobel O. Noninvasive risk stratification of intraductal papillary mucinous neoplasia with malignant potential by serum apolipoprotein-A2-isoforms. Int J Cancer 2021; 150:881-894. [PMID: 34778955 DOI: 10.1002/ijc.33875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are premalignant lesions of pancreatic cancer. An accurate serum biomarker, which allows earlier identification of asymptomatic individuals with high-risk for developing cancer, is of urgent need. Apolipoprotein A2-isoforms (apoA2-i) have previously been identified as biomarkers in pancreatic cancer. This study investigates a potential clinical application of the serum apoA2-i for risk stratification of IPMN and associated cancer. The concentrations of apoA2-i were retrospectively determined in 523 patient sera specimen, composed of 305 IPMNs with preinvasive lesions with different grades of dysplasia and invasive cancer, 140 pancreatic ductal adenocarcinoma, 78 with other cystic lesions and healthy controls cohorts, using an apoA2-i enzyme-linked immunosorbent assay kit. The diagnostic performance of serum apoA2-i was assessed and compared to routine clinical marker CA 19-9. ApoA2-i levels were significantly reduced in all IPMN samples regardless of stage compared to healthy controls. Receiver operating characteristic curve analysis of IPMNs with high-grade dysplasia and IPMN with associated carcinoma revealed the area under curve (AUC) of 0.91 and >0.94, respectively. The respective sensitivities were 70% and 83% with a specificity of 95%, and significantly higher than the gold standard biomarker CA 19-9. AUC values of apoA2-i for detecting IPMN-associated carcinoma of colloid and ductal subtypes were 0.990 and 0.885, respectively. ApoA2-i has the potential to early detect the risk of malignancy of patients with IPMN. The serological apoA2-i test in combination with imaging modalities could help improve the diagnosis of IPMN malignancy. Further validation in larger and independent international cohort studies is needed.
Collapse
Affiliation(s)
- Klaus Felix
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Kazufumi Honda
- Department of Biomarkers for Cancer Early Detection, National Cancer Center Research Institute, Tokyo, Japan.,Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kengo Nagashima
- Department of Biomarkers for Cancer Early Detection, National Cancer Center Research Institute, Tokyo, Japan.,Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo, Japan.,Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Ayumi Kashiro
- Department of Biomarkers for Cancer Early Detection, National Cancer Center Research Institute, Tokyo, Japan.,Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Keiko Takeuchi
- Department of Biomarkers for Cancer Early Detection, National Cancer Center Research Institute, Tokyo, Japan.,Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sascha Hinterkopf
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Hien Dang
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Niall Brindl
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jörg Kaiser
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
The Role of CDK4 in the Pathogenesis of Pancreatic Cancer. Healthcare (Basel) 2021; 9:healthcare9111478. [PMID: 34828525 PMCID: PMC8620733 DOI: 10.3390/healthcare9111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (PC) continues to have the lowest overall survival and the lack of effective early diagnosis. Cyclin-dependent kinase 4 (CDK4) plays a fundamental role in the orderly progression of the cell cycle, binding to cyclin D to promote the progression through the G1/2 transition. The inhibition of CDK4/6 has therefore gained substantial interest in the hope of new and effective therapeutics in multiple cancers, such as advanced metastatic breast cancer. While the use of these agents is encouraging, their potential is yet to be fully explored. In this study we used the GLOBOCAN database to understand the most recent epidemiology of PC, Human Protein Atlas and KEGG to highlight the role, prevalence, and significance on patient survival of CDK4 in PC. We found that CDK4 cannot be used as prognostic in PC and no significant differences were observed between CDK4 expression and the patient's clinical status, though larger studies, especially concerning CDK4 protein expressions, are required for a more thorough understanding. The use of CDK4/6 inhibitors in PC is still in clinical trials. However, due to only modest improvements observed in the use of single-agent therapies, efforts have focused on combinatorial approaches.
Collapse
|
33
|
Pappalardo A, Giunta EF, Tirino G, Pompella L, Federico P, Daniele B, De Vita F, Petrillo A. Adjuvant Treatment in Pancreatic Cancer: Shaping the Future of the Curative Setting. Front Oncol 2021; 11:695627. [PMID: 34485130 PMCID: PMC8415474 DOI: 10.3389/fonc.2021.695627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease even in the early stages, despite progresses in surgical and pharmacological treatment in recent years. High potential for metastases is the main cause of therapeutic failure in localized disease, highlighting the current limited knowledge of underlying pathological processes. However, nowadays research is focusing on the search for personalized approaches also in the adjuvant setting for PDAC, by implementing the use of biomarkers and investigating new therapeutic targets. In this context, the aim of this narrative review is to summarize the current treatment scenario and new potential therapeutic approaches in early stage PDAC, from both a preclinical and clinical point of view. Additionally, the review examines the role of target therapies in localized PDAC and the influence of neoadjuvant treatments on survival outcomes.
Collapse
Affiliation(s)
- Annalisa Pappalardo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Emilio Francesco Giunta
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Giuseppe Tirino
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Luca Pompella
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
34
|
Dobre M, Herlea V, Vlăduţ C, Ciocîrlan M, Balaban VD, Constantinescu G, Diculescu M, Milanesi E. Dysregulation of miRNAs Targeting the IGF-1R Pathway in Pancreatic Ductal Adenocarcinoma. Cells 2021; 10:1856. [PMID: 34440625 PMCID: PMC8391367 DOI: 10.3390/cells10081856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), the most prevalent neoplastic lethal pancreatic disease, has a poor prognosis and an increasing incidence. The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is considered to be a contributing factor to the progression, metastasis, and therapy resistance of PDAC. Currently available treatment options for PDAC are limited, but microRNAs (miRNAs) may represent a new therapeutic strategy for targeting genes involved in the IGF-1R signaling pathway. METHOD We investigated the expression levels of 21 miRNAs involved in the IGF-1R signaling pathway in pancreatic tissue from 38 patients with PDAC and 11 controls (five patients with chronic pancreatitis and six patients with normal pancreatic tissue). RESULTS We found 19 differentially expressed miRNAs between the PDAC cases and the controls. In particular, miR-100-5p, miR-145-5p, miR-29c-3p, miR-9-5p, and miR-195-5p were exclusively downregulated in PDAC tissue but not in chronic pancreatitis or normal pancreatic tissues; both control types presented similar levels. We also identified miR-29a-3p, miR-29b-3p, and miR-7-5p as downregulated miRNAs in PDAC tissues as compared with normal tissues but not with pancreatitis tissues. CONCLUSIONS We identified a panel of miRNAs that could represent putative therapeutic targets for the development of new miRNA-based therapies for PDAC.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (E.M.)
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Cătălina Vlăduţ
- Department of Gastroenterology, “Prof Dr Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
| | - Mihai Ciocîrlan
- Department of Gastroenterology, “Prof Dr Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
| | - Vasile Daniel Balaban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
- Department of Gastroenterology, Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Gabriel Constantinescu
- Department of Gastroenterology, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania;
| | - Mircea Diculescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
- Department of Gastroenterology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (E.M.)
| |
Collapse
|
35
|
Schorr F, Essig MW. [Early detection of pancreatic cancer - The role of endoscopic and transabdominal ultrasound]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1083-1090. [PMID: 34243212 DOI: 10.1055/a-1515-3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pancreatic neoplasms are less common tumors and have a poor prognosis when advanced. Early diagnosis would be beneficial for survival, but screening of the whole population cannot be justified with a satisfying benefit-effort correlation. Subgroups of patients with a higher than average risk are those with germ-like mutations, familial cancers risks, and mucinous cystadenomas that would benefit from surveillance programs. Other risk groups, like patients with pancreatitis, new onset diabetes, and heavy smokers, should be considered as well. Transabdominal ultrasonography is of great advantage as a first-line imaging method because of its easy access. The accuracy for adenocarcinoma diagnosis is nearly 90% while using CEUS. Endosonography is of extraordinary importance in the diagnostic approach of pancreatic tumors because of high sensitivity and specificity while using advanced imaging techniques like CEUS, elastography, and fine needle biopsy. Screening by means of EUS is also possible in high-risk situations, and a favourable cost-benefit ratio must be shown by future data.
Collapse
Affiliation(s)
- Friedrich Schorr
- Gastroenterologie - Division Stadtspital/Landspitäler, Insel Gruppe AG, Bern, Switzerland
| | - Manfred Walter Essig
- Gastroenterologie - Division Stadtspital/Landspitäler, Insel Gruppe AG, Bern, Switzerland
| |
Collapse
|
36
|
Britain CM, Bhalerao N, Silva AD, Chakraborty A, Buchsbaum DJ, Crowley MR, Crossman DK, Edwards YJK, Bellis SL. Glycosyltransferase ST6Gal-I promotes the epithelial to mesenchymal transition in pancreatic cancer cells. J Biol Chem 2021; 296:100034. [PMID: 33148698 PMCID: PMC7949065 DOI: 10.1074/jbc.ra120.014126] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
ST6Gal-I, an enzyme upregulated in numerous malignancies, adds α2-6-linked sialic acids to select membrane receptors, thereby modulating receptor signaling and cell phenotype. In this study, we investigated ST6Gal-I's role in epithelial to mesenchymal transition (EMT) using the Suit2 pancreatic cancer cell line, which has low endogenous ST6Gal-I and limited metastatic potential, along with two metastatic Suit2-derived subclones, S2-013 and S2-LM7AA, which have upregulated ST6Gal-I. RNA-Seq results suggested that the metastatic subclones had greater activation of EMT-related gene networks than parental Suit2 cells, and forced overexpression of ST6Gal-I in the Suit2 line was sufficient to activate EMT pathways. Accordingly, we evaluated expression of EMT markers and cell invasiveness (a key phenotypic feature of EMT) in Suit2 cells with or without ST6Gal-I overexpression, as well as S2-013 and S2-LM7AA cells with or without ST6Gal-I knockdown. Cells with high ST6Gal-I expression displayed enrichment in mesenchymal markers (N-cadherin, slug, snail, fibronectin) and cell invasiveness, relative to ST6Gal-I-low cells. Contrarily, epithelial markers (E-cadherin, occludin) were suppressed in ST6Gal-I-high cells. To gain mechanistic insight into ST6Gal-I's role in EMT, we examined the activity of epidermal growth factor receptor (EGFR), a known EMT driver. ST6Gal-I-high cells had greater α2-6 sialylation and activation of EGFR than ST6Gal-I-low cells. The EGFR inhibitor, erlotinib, neutralized ST6Gal-I-dependent differences in EGFR activation, mesenchymal marker expression, and invasiveness in Suit2 and S2-LM7AA, but not S2-013, lines. Collectively, these results advance our understanding of ST6Gal-I's tumor-promoting function by highlighting a role for ST6Gal-I in EMT, which may be mediated, at least in part, by α2-6-sialylated EGFR.
Collapse
Affiliation(s)
- Colleen M Britain
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Austin D Silva
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Asmi Chakraborty
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yvonne J K Edwards
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Susan L Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
37
|
Holmström MO, Andersen MH. Healthy Donors Harbor Memory T Cell Responses to RAS Neo-Antigens. Cancers (Basel) 2020; 12:cancers12103045. [PMID: 33086698 PMCID: PMC7589254 DOI: 10.3390/cancers12103045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/22/2022] Open
Abstract
The RAS mutations are the most frequently occurring somatic mutations in humans, and several studies have established that T cells from patients with RAS-mutant cancer recognize and kill RAS-mutant cells. Enhancing the T cell response via therapeutic cancer vaccination against mutant RAS results in a clinical benefit to patients; thus, T cells specific to RAS mutations are effective at battling cancer. As the theory of cancer immuno-editing indicates that healthy donors may clear malignantly transformed cells via immune-mediated killing, and since T cells have been shown to recognize RAS-mutant cancer cells, we investigated whether healthy donors harbor T-cell responses specific to mutant RAS. We identified strong and frequent responses against several epitopes derived from the RAS codon 12 and codon 13 mutations. Some healthy donors demonstrated a response to several mutant epitopes, and some, but not all, exhibited cross-reactivity to the wild-type RAS epitope. In addition, several T cell responses were identified against mutant RAS epitopes in healthy donors directly ex vivo. Clones against mutant RAS epitopes were established from healthy donors, and several of these clones did not cross-react with the wild-type epitope. Finally, CD45RO+ memory T cells from healthy donors demonstrated a strong response to several mutant RAS epitopes. Taken together, these data suggest that the immune system in healthy donors spontaneously clears malignantly transformed RAS-mutant cells, and the immune system consequently generates T-cell memory against the mutations.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, DK-2730 Herlev, Denmark;
- Correspondence: ; Tel.: +45-38-682-602
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, DK-2730 Herlev, Denmark;
- Institute for Immunology and Microbiology, Copenhagen University, DK-2200 Copenhagen, Denmark
| |
Collapse
|
38
|
Survival Outcomes of Pancreatic Intraepithelial Neoplasm (PanIN) versus Intraductal Papillary Mucinous Neoplasm (IPMN) Associated Pancreatic Adenocarcinoma. J Clin Med 2020; 9:jcm9103102. [PMID: 32992976 PMCID: PMC7600023 DOI: 10.3390/jcm9103102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic intraepithelial neoplasms (PanINs) and intraductal papillary mucinous neoplasms (IPMNs) are common pancreatic adenocarcinoma precursor lesions. However, data regarding their respective associations with survival rate and prognosis are lacking. We retrospectively evaluated 72 pancreatic adenocarcinoma tumor resection patients at the University of Kansas Hospital between August 2009 and March 2019. Patients were divided into one of two groups, PanIN or IPMN, based on the results of the surgical pathology report. We compared baseline characteristics, overall survival (OS), and progression free survival (PFS) between the two groups, as well as OS and PFS based on local or distant tumor recurrence for both groups combined. 52 patients had PanINs and 20 patients had IPMNs. Patients who had an IPMN precursor lesion had better median PFS and OS when compared to patients with PanIN precursor lesions. However, the location of tumor recurrence (local or distant) did not show a statistically significant difference in OS.
Collapse
|
39
|
Hadden M, Mittal A, Samra J, Zreiqat H, Sahni S, Ramaswamy Y. Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188418. [PMID: 32827581 DOI: 10.1016/j.bbcan.2020.188418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies in the world due to its insensitivity to current therapies and its propensity to metastases from the primary tumor mass. This is largely attributed to its complex microenvironment composed of unique stromal cell populations and extracellular matrix (ECM). The recruitment and activation of these cell populations cause an increase in deposition of ECM components, which highly influences the behavior of malignant cells through disrupted forms of signaling. As PDAC progresses from premalignant lesion to invasive carcinoma, this dynamic landscape shields the mass from immune defenses and cytotoxic intervention. This microenvironment influences an invasive cell phenotype through altered forms of mechanical signaling, capable of enacting biochemical changes within cells through activated mechanotransduction pathways. The effects of altered mechanical cues on malignant cell mechanotransduction have long remained enigmatic, particularly in PDAC, whose microenvironment significantly changes over time. A more complete and thorough understanding of PDAC's physical surroundings (microenvironment), mechanosensing proteins, and mechanical properties may help in identifying novel mechanisms that influence disease progression, and thus, provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Matthew Hadden
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative Bioengineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia.
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
40
|
Morani AC, Hanafy AK, Ramani NS, Katabathina VS, Yedururi S, Dasyam AK, Prasad SR. Hereditary and Sporadic Pancreatic Ductal Adenocarcinoma: Current Update on Genetics and Imaging. Radiol Imaging Cancer 2020; 2:e190020. [PMID: 33778702 DOI: 10.1148/rycan.2020190020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a genetically heterogeneous, biologically aggressive malignancy with a uniformly poor prognosis. While most pancreatic cancers arise sporadically, a small subset of PDACs develop in patients with hereditary and familial predisposition. Detailed studies of the rare hereditary syndromes have led to identification of specific genetic abnormalities that contribute to malignancy. For example, germline mutations involving BRCA1, BRCA2, PRSS1, and mismatch repair genes predispose patients to PDAC. While patients with Lynch syndrome develop a rare "medullary" variant of adenocarcinoma, intraductal papillary mucinous tumors are observed in patients with McCune-Albright syndrome. It is now well established that PDACs originate via a multistep progression from microscopic and macroscopic precursors due to cumulative genetic abnormalities. Improved knowledge of tumor genetics and oncologic pathways has contributed to a better understanding of tumor biology with attendant implications on diagnosis, management, and prognosis. In this article, the genetic landscape of PDAC and its precursors will be described, the hereditary syndromes that predispose to PDAC will be reviewed, and the current role of imaging in screening and staging assessment, as well as the potential role of molecular tumor-targeted imaging for evaluation of patients with PDAC and its precursors, will be discussed. Keywords: Abdomen/GI, Genetic Defects, Oncology, Pancreas Supplemental material is available for this article. © RSNA, 2020.
Collapse
Affiliation(s)
- Ajaykumar C Morani
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Abdelrahman K Hanafy
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Nisha S Ramani
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Venkata S Katabathina
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Sireesha Yedururi
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Anil K Dasyam
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Srinivasa R Prasad
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| |
Collapse
|
41
|
Feldmann G, Brossart P, Maitra A. ‘Diseases Desperate Grown by Desperate Appliance Are Relieved, or Not at all' - Towards Finding a Cure for Pancreatic Cancer, Where Do We Stand Today? Oncol Res Treat 2018; 41:588-589. [DOI: 10.1159/000493023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
|