1
|
Doello S, Sauerwein J, von Manteuffel N, Burkhardt M, Neumann N, Appel J, Rapp J, Just P, Link H, Gutekunst K, Forchhammer K. Metabolite-level regulation of enzymatic activity controls awakening of cyanobacteria from metabolic dormancy. Curr Biol 2025; 35:77-86.e4. [PMID: 39626669 DOI: 10.1016/j.cub.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
Transitioning into and out of dormancy is a crucial survival strategy for many organisms. In unicellular cyanobacteria, surviving nitrogen-starved conditions involves tuning down their metabolism and reactivating it once nitrogen becomes available. Glucose-6-phosphate dehydrogenase (G6PDH), the enzyme that catalyzes the first step of the oxidative pentose phosphate (OPP) pathway, plays a key role in this process. G6PDH is produced at the onset of nitrogen starvation but remains inactive in dormant cells, only to be rapidly reactivated when nitrogen is restored. In this study, we investigated the mechanisms underlying this enzymatic regulation and found that G6PDH inactivation is primarily due to the accumulation of inhibitory metabolites. Moreover, our findings demonstrate that metabolite-level regulation is the driving force behind the resuscitation program. This study highlights the critical importance of metabolite-level regulation in ensuring rapid and precise enzymatic control, enabling microorganisms to swiftly adapt to environmental changes and undergo developmental transitions.
Collapse
Affiliation(s)
- Sofía Doello
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Jakob Sauerwein
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Nathan von Manteuffel
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Markus Burkhardt
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Niels Neumann
- University of Tübingen, Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jens Appel
- University of Kassel, Bioenergetics in Photoautotrophs, Molecular Plant Physiology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Johanna Rapp
- University of Tübingen, Bacterial Metabolomics, Interfaculty Institute of Microbiology and Infection Medicine, Otfried-Müller-Straße 37, 72076 Tübingen, Germany; University of Tübingen, Cluster of Excellence "Controlling Microbes to Fight Infections", Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Pauline Just
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Hannes Link
- University of Tübingen, Bacterial Metabolomics, Interfaculty Institute of Microbiology and Infection Medicine, Otfried-Müller-Straße 37, 72076 Tübingen, Germany; University of Tübingen, Cluster of Excellence "Controlling Microbes to Fight Infections", Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Kirstin Gutekunst
- University of Kassel, Bioenergetics in Photoautotrophs, Molecular Plant Physiology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Karl Forchhammer
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Doello S, Forchhammer K. Microbial ecophysiology: Shedding light on the re-greening of chlorotic cyanobacteria. Curr Biol 2024; 34:R893-R895. [PMID: 39378846 DOI: 10.1016/j.cub.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cyanobacteria, key contributors to aquatic CO2 fixation, employ sophisticated acclimation strategies for survival under nitrogen-limited conditions. A new study reveals that red light influences the resuscitation of chlorotic cells through mechanisms involving the dark-operative protochlorophyllide reductase, which facilitates chlorophyll biosynthesis and re-greening under low-light conditions.
Collapse
Affiliation(s)
- Sofía Doello
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Xu HF, Yu C, Bai Y, Zuo AW, Ye YT, Liu YR, Li ZK, Dai GZ, Chen M, Qiu BS. Red-light-dependent chlorophyll synthesis kindles photosynthetic recovery of chlorotic dormant cyanobacteria using a dark-operative enzyme. Curr Biol 2024; 34:4424-4435.e3. [PMID: 39146941 DOI: 10.1016/j.cub.2024.07.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Chlorosis dormancy resulting from nitrogen starvation and its resuscitation upon available nitrogen contributes greatly to the fitness of cyanobacterial population under nitrogen-fluctuating environments. The reinstallation of the photosynthetic machinery is a key process for resuscitation from a chlorotic dormant state; however, the underlying regulatory mechanism is still elusive. Here, we reported that red light is essential for re-greening chlorotic Synechocystis sp. PCC 6803 (a non-diazotrophic cyanobacterium) after nitrogen supplement under weak light conditions. The expression of dark-operative protochlorophyllide reductase (DPOR) governed by the transcriptional factor RpaB was strikingly induced by red light in chlorotic cells, and its deficient mutant lost the capability of resuscitation from a dormant state, indicating DPOR catalyzing chlorophyll synthesis is a key step in the photosynthetic recovery of dormant cyanobacteria. Although light-dependent protochlorophyllide reductase is widely considered as a master switch in photomorphogenesis, this study unravels the primitive DPOR as a spark to activate the photosynthetic recovery of chlorotic dormant cyanobacteria. These findings provide new insight into the biological significance of DPOR in cyanobacteria and even some plants thriving in extreme environments.
Collapse
Affiliation(s)
- Hai-Feng Xu
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Chen Yu
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yang Bai
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ai-Wei Zuo
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ying-Tong Ye
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yan-Ru Liu
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zheng-Ke Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Guo-Zheng Dai
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China.
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Bao-Sheng Qiu
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
4
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Schniete JK, Brüser T, Horn MA, Tschowri N. Specialized biopolymers: versatile tools for microbial resilience. Curr Opin Microbiol 2024; 77:102405. [PMID: 38070462 DOI: 10.1016/j.mib.2023.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
Bacteria produce a wide range of specialized biopolymers that can be classified into polysaccharides, polyamides, and polyesters and are considered to fulfill storage functions. In this review, we highlight recent developments in the field linking metabolism of biopolymers to stress and signaling physiology of the producers and demonstrating that biopolymers contribute to bacterial stress resistance and shape structure and composition of microenvironments. While specialized biopolymers are currently the focus of much attention in biotechnology as innovative and biodegradable materials, our understanding about the regulation and functions of these valuable compounds for the producers, microbial communities, and our environment is still very limited. Addressing open questions about signals, mechanisms, and functions in the area of biopolymers harbors potential for exciting discoveries with high relevance for biotechnology and fundamental research.
Collapse
Affiliation(s)
- Jana K Schniete
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany.
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| |
Collapse
|
7
|
Akiyama M, Osanai T. Regulation of organic acid and hydrogen production by NADH/NAD + ratio in Synechocystis sp. PCC 6803. Front Microbiol 2024; 14:1332449. [PMID: 38249449 PMCID: PMC10797119 DOI: 10.3389/fmicb.2023.1332449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Cyanobacteria serve as useful hosts in the production of substances to support a low-carbon society. Specifically, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) can produce organic acids, such as acetate, lactate, and succinate, as well as hydrogen, under dark, anaerobic conditions. The efficient production of these compounds appears to be closely linked to the regulation of intracellular redox balance. Notably, alterations in intracellular redox balance have been believed to influence the production of organic acids and hydrogen. To achieve these alterations, genetic manipulations involved overexpressing malate dehydrogenase (MDH), knocking out d-lactate dehydrogenase (DDH), or knocking out acetate kinase (AK), which subsequently modified the quantities and ratios of organic acids and hydrogen under dark, anaerobic conditions. Furthermore, the mutants generated displayed changes in the oxidation of reducing powers and the nicotinamide adenine dinucleotide hydrogen (NADH)/NAD+ ratio when compared to the parental wild-type strain. These findings strongly suggest that intracellular redox balance, especially the NADH/NAD+ ratio, plays a pivotal role in the production of organic acids and hydrogen in Synechocystis 6803.
Collapse
Affiliation(s)
| | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
8
|
Yamane M, Osanai T. Nondiazotrophic cyanobacteria metabolic engineering for succinate and lactate production. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Wang Y, Ge H, Xiao Z, Huang C, Wang G, Duan X, Zheng L, Dong J, Huang X, Zhang Y, An H, Xu W, Wang Y. Spatial Proteome Reorganization of a Photosynthetic Model Cyanobacterium in Response to Abiotic Stresses. J Proteome Res 2023; 22:1255-1269. [PMID: 36930737 DOI: 10.1021/acs.jproteome.2c00759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stress-induced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold-induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiency- and nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| |
Collapse
|
10
|
Burkhardt M, Rapp J, Menzel C, Link H, Forchhammer K. The Global Influence of Sodium on Cyanobacteria in Resuscitation from Nitrogen Starvation. BIOLOGY 2023; 12:biology12020159. [PMID: 36829438 PMCID: PMC9952445 DOI: 10.3390/biology12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Dormancy and resuscitation are key to bacterial survival under fluctuating environmental conditions. In the absence of combined nitrogen sources, the non-diazotrophic model cyanobacterium Synechocystis sp. PCC 6803 enters into a metabolically quiescent state during a process termed chlorosis. This state enables the cells to survive until nitrogen sources reappear, whereupon the cells resuscitate in a process that follows a highly orchestrated program. This coincides with a metabolic switch into a heterotrophic-like mode where glycogen catabolism provides the cells with reductant and carbon skeletons for the anabolic reactions that serve to re-establish a photosynthetically active cell. Here we show that the entire resuscitation process requires the presence of sodium, a ubiquitous cation that has a broad impact on bacterial physiology. The requirement for sodium in resuscitating cells persists even at elevated CO2 levels, a condition that, by contrast, relieves the requirement for sodium ions in vegetative cells. Using a multi-pronged approach, including the first metabolome analysis of Synechocystis cells resuscitating from chlorosis, we reveal the involvement of sodium at multiple levels. Not only does sodium play a role in the bioenergetics of chlorotic cells, as previously shown, but it is also involved in nitrogen compound assimilation, pH regulation, and synthesis of key metabolites.
Collapse
Affiliation(s)
- Markus Burkhardt
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Johanna Rapp
- CMFI, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Claudia Menzel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Hannes Link
- CMFI, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
11
|
Schumacher MA, Wörmann ME, Henderson M, Salinas R, Latoscha A, Al-Bassam MM, Singh KS, Barclay E, Gunka K, Tschowri N. Allosteric regulation of glycogen breakdown by the second messenger cyclic di-GMP. Nat Commun 2022; 13:5834. [PMID: 36192422 PMCID: PMC9530166 DOI: 10.1038/s41467-022-33537-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Streptomyces are our principal source of antibiotics, which they generate concomitant with a complex developmental transition from vegetative hyphae to spores. c-di-GMP acts as a linchpin in this transition by binding and regulating the key developmental regulators, BldD and WhiG. Here we show that c-di-GMP also binds the glycogen-debranching-enzyme, GlgX, uncovering a direct link between c-di-GMP and glycogen metabolism in bacteria. Further, we show c-di-GMP binding is required for GlgX activity. We describe structures of apo and c-di-GMP-bound GlgX and, strikingly, their comparison shows c-di-GMP induces long-range conformational changes, reorganizing the catalytic pocket to an active state. Glycogen is an important glucose storage compound that enables animals to cope with starvation and stress. Our in vivo studies reveal the important biological role of GlgX in Streptomyces glucose availability control. Overall, we identify a function of c-di-GMP in controlling energy storage metabolism in bacteria, which is widespread in Actinobacteria.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Mirka E Wörmann
- Institute for Biology/Microbiology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
- Bundesinstitut für Risikobewertung, 12277, Berlin, Germany
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Andreas Latoscha
- Institute for Biology/Microbiology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Mahmoud M Al-Bassam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Elaine Barclay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Katrin Gunka
- Institute of Microbiology, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419, Hannover, Germany.
| |
Collapse
|
12
|
Barteneva NS, Meirkhanova A, Malashenkov D, Vorobjev IA. To Die or Not to Die-Regulated Cell Death and Survival in Cyanobacteria. Microorganisms 2022; 10:1657. [PMID: 36014075 PMCID: PMC9415839 DOI: 10.3390/microorganisms10081657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Regulated cell death (RCD) is central to the development, integrity, and functionality of multicellular organisms. In the last decade, evidence has accumulated that RCD is a universal phenomenon in all life domains. Cyanobacteria are of specific interest due to their importance in aquatic and terrestrial habitats and their role as primary producers in global nutrient cycling. Current knowledge on cyanobacterial RCD is based mainly on biochemical and morphological observations, often by methods directly transferred from vertebrate research and with limited understanding of the molecular genetic basis. However, the metabolism of different cyanobacteria groups relies on photosynthesis and nitrogen fixation, whereas mitochondria are the central executioner of cell death in vertebrates. Moreover, cyanobacteria chosen as biological models in RCD studies are mainly colonial or filamentous multicellular organisms. On the other hand, unicellular cyanobacteria have regulated programs of cellular survival (RCS) such as chlorosis and post-chlorosis resuscitation. The co-existence of different genetically regulated programs in cyanobacterial populations may have been a top engine in life diversification. Development of cyanobacteria-specific methods for identification and characterization of RCD and wider use of single-cell analysis combined with intelligent image-based cell sorting and metagenomics would shed more light on the underlying molecular mechanisms and help us to address the complex colonial interactions during these events. In this review, we focus on the functional implications of RCD in cyanobacterial communities.
Collapse
Affiliation(s)
- Natasha S. Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 000010, Kazakhstan
| | | | | | | |
Collapse
|
13
|
Mukherjee M, Geeta A, Ghosh S, Prusty A, Dutta S, Sarangi AN, Behera S, Adhikary SP, Tripathy S. Genome Analysis Coupled With Transcriptomics Reveals the Reduced Fitness of a Hot Spring Cyanobacterium Mastigocladus laminosus UU774 Under Exogenous Nitrogen Supplement. Front Microbiol 2022; 13:909289. [PMID: 35847102 PMCID: PMC9284123 DOI: 10.3389/fmicb.2022.909289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The present study focuses on the stress response of a filamentous, AT-rich, heterocystous cyanobacterium Mastigocladus laminosus UU774, isolated from a hot spring, Taptapani, located in the eastern part of India. The genome of UU774 contains an indispensable fragment, scaffold_38, of unknown origin that is implicated during severe nitrogen and nutrition stress. Prolonged exposure to nitrogen compounds during starvation has profound adverse effects on UU774, leading to loss of mobility, loss of ability to fight pathogens, reduced cell division, decreased nitrogen-fixing ability, reduced ability to form biofilms, reduced photosynthetic and light-sensing ability, and reduced production of secreted effectors and chromosomal toxin genes, among others. Among genes showing extreme downregulation when grown in a medium supplemented with nitrogen with the fold change > 5 are transcriptional regulator gene WalR, carbonic anhydrases, RNA Polymerase Sigma F factor, fimbrial protein, and twitching mobility protein. The reduced expression of key enzymes involved in the uptake of phosphate and enzymes protecting oxygen-sensitive nitrogenases is significant during the presence of nitrogen. UU774 is presumed to withstand heat by overexpressing peptidases that may be degrading abnormally folded proteins produced during heat. The absence of a key gene responsible for heterocyst pattern formation, patS, and an aberrant hetN without a functional motif probably lead to the formation of a chaotic heterocyst pattern in UU774. We suggest that UU774 has diverged from Fischerella sp. PCC 9339, another hot spring species isolated in the United States.
Collapse
Affiliation(s)
- Mayuri Mukherjee
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aribam Geeta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samrat Ghosh
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asharani Prusty
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhajeet Dutta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Narayan Sarangi
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | - Smrutisanjita Behera
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | | | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
The Self-Bleaching Process of Microcystis aeruginosa is Delayed by a Symbiotic Bacterium Pseudomonas sp. MAE1-K and Promoted by Methionine Deficiency. Microbiol Spectr 2022; 10:e0181422. [PMID: 35771009 PMCID: PMC9430746 DOI: 10.1128/spectrum.01814-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Various interactions between marine cyanobacteria and heterotrophic bacteria have been known, but the symbiotic relationships between Microcystis and heterotrophic bacteria remain unclear. An axenic M. aeruginosa culture (NIES-298) was quickly bleached after exponential growth, whereas a xenic M. aeruginosa culture (KW) showed a normal growth curve, suggesting that some symbiotic bacteria may delay this bleaching. The bleaching process of M. aeruginosa was distinguished from the phenomena of previously proposed chlorosis and programmed cell death in various characteristics. Bleached cultures of NIES-298 quickly bleached actively growing M. aeruginosa cultures, suggesting that M. aeruginosa itself produces bleach-causing compounds. Pseudomonas sp. MAE1-K delaying the bleaching of NIES-298 cultures was isolated from the KW culture. Bleached cultures of NIES-298 treated with strain MAE1-K lost their bleaching ability, suggesting that strain MAE1-K rescues M. aeruginosa from bleaching via inactivation of bleaching compounds. From Tn5 transposon mutant screening, a metZ mutant of strain MAE1-K (F-D3) unable to synthesize methionine, promoting the bleaching of NIES-298 cultures but capable of inactivating bleaching compounds, was obtained. The bleaching process of NIES-298 cultures was promoted with the coculture of mutant F-D3 and delayed by methionine supplementation, suggesting that the bleaching process of M. aeruginosa is promoted by methionine deficiency. IMPORTANCE Cyanobacterial blooms in freshwaters represent serious global concerns for the ecosystem and human health. In this study, we found that one of the major species in cyanobacterial blooms, Microcystis aeruginosa, was quickly collapsed after exponential growth by producing self-bleaching compounds and that a symbiotic bacterium, Pseudomonas sp. MAE1-K delayed the bleaching process via the inactivation of bleaching compounds. In addition, we found that a metZ mutant of strain MAE1-K (F-D3) causing methionine deficiency promoted the bleaching process of M. aeruginosa, suggesting that methionine deficiency may induce the production of bleaching compounds. These results will provide insights into the symbiotic relationships between M. aeruginosa and heterotrophic bacteria that will contribute to developing novel strategies to control cyanobacterial blooms.
Collapse
|
15
|
Doello S, Neumann N, Forchhammer K. Regulatory phosphorylation event of phosphoglucomutase 1 tunes its activity to regulate glycogen metabolism. FEBS J 2022; 289:6005-6020. [PMID: 35509259 DOI: 10.1111/febs.16471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
Regulation of glycogen metabolism is of vital importance in organisms of all three kingdoms of life. Although the pathways involved in glycogen synthesis and degradation are well known, many regulatory aspects around the metabolism of this polysaccharide remain undeciphered. Here, we used the unicellular cyanobacterium Synechocystis as a model to investigate how glycogen metabolism is regulated in nitrogen-starved dormant cells, which entirely rely on glycogen catabolism to resume growth upon nitrogen repletion. We identified phosphoglucomutase 1 (PGM1) as a key regulatory point in glycogen metabolism, and post-translational modification as an essential mechanism for controlling its activity. We could show that PGM1 is phosphorylated ata residue in the regulatory latch domain (Ser 47) during nitrogen starvation, which inhibits its activity. Inactivation of PGM1 by phosphorylation at Ser 47 prevents premature degradation of the glycogen stores and appears to be essential for survival of Synechocystis in the dormant state. Remarkably, this regulatory mechanism seems to be evolutionary conserved in PGM1 enzymes, from bacteria to humans.
Collapse
Affiliation(s)
- Sofía Doello
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Niels Neumann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| |
Collapse
|
16
|
Daignan-Fornier B, Laporte D, Sagot I. Quiescence Through the Prism of Evolution. Front Cell Dev Biol 2021; 9:745069. [PMID: 34778256 PMCID: PMC8586652 DOI: 10.3389/fcell.2021.745069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
Being able to reproduce and survive is fundamental to all forms of life. In primitive unicellular organisms, the emergence of quiescence as a reversible proliferation arrest has most likely improved cell survival under unfavorable environmental conditions. During evolution, with the repeated appearances of multicellularity, several aspects of unicellular quiescence were conserved while new quiescent cell intrinsic abilities arose. We propose that the formation of a microenvironment by neighboring cells has allowed disconnecting quiescence from nutritional cues. In this new context, non-proliferative cells can stay metabolically active, potentially authorizing the emergence of new quiescent cell properties, and thereby favoring cell specialization. Through its co-evolution with cell specialization, quiescence may have been a key motor of the fascinating diversity of multicellular complexity.
Collapse
|
17
|
Pearman JK, Biessy L, Howarth JD, Vandergoes MJ, Rees A, Wood SA. Deciphering the molecular signal from past and alive bacterial communities in aquatic sedimentary archives. Mol Ecol Resour 2021; 22:877-890. [PMID: 34562066 DOI: 10.1111/1755-0998.13515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
Lake sediments accumulate information on biological communities thus acting as natural archives. Traditionally paleolimnology has focussed on fossilized remains of organisms, however, many organisms do not leave fossil evidence, meaning major ecosystem components are missing from environmental reconstructions. Many paleolimnology studies now incorporate molecular methods, including investigating microbial communities using environmental DNA (eDNA), but there is uncertainty about the contribution of living organisms to molecular inventories. In the present study, we obtained DNA and RNA inventories from sediment spanning 700 years to investigate the contribution of past and active communities to the molecular signal from sedimentary archives. Additionally, a droplet digital PCR (ddPCR) targeting the 16S ribosomal RNA (16S rRNA) gene of the photosynthetic cyanobacterial genera Microcystis was used to explore if RNA signals were from legacy RNA. We posit that the RNA signal is a mixture of legacy RNA, dormant cells, living bacteria and modern-day trace level contaminants that were introduced during sampling and preferentially amplified. The presence of legacy RNA was confirmed by the detection of Microcystis in sediments aged to ~200 years ago. Recent comparisons between 16S rRNA gene metabarcoding and traditional paleo proxies showed that past changes in bacterial communities can be reconstructed from sedimentary archives. The recovery of RNA in the present study has provided new insights into the origin of these signals. However, caution is required during analysis and interpretation of 16S rRNA gene metabarcoding data especially in recent sediments were there are potentially active bacteria.
Collapse
Affiliation(s)
- John K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Laura Biessy
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | | | - Andrew Rees
- University of Victoria, Wellington, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
18
|
Forchhammer K. Editorial for Article Collection on "Bacterial Survival Strategies". Microb Physiol 2021; 31:195-197. [PMID: 34198291 DOI: 10.1159/000517629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|