1
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Hall WL, Alkoblan A, Gibson PS, D'Annibale M, Coekaerts A, Bauer M, Bruce JH, Lecomte B, Penhoat A, Laugerette F, Michalski MC, Salt LJ, Wilde PJ, Berry SE. Postprandial lipid and vascular responses following consumption of a commercially-relevant interesterified palmitic acid-rich spread in comparison to functionally-equivalent non-interesterified spread and spreadable butter: a randomised controlled trial in healthy adults. Food Funct 2024; 15:2733-2750. [PMID: 38380649 PMCID: PMC10911404 DOI: 10.1039/d3fo05324e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Background: Interesterification is an industrial processing technique used widely where hard fats are essential for functionality and consumer acceptability, e.g. margarines and lower fat spreads. Objective: The aim of this study was to compare acute cardiovascular effects of functionally equivalent spreads (similar solid fat content) made with interesterified (IE) or non-IE palm-based fats, or spreadable butter. Methods: A randomised, controlled, 4-armed crossover, double-blind study (25 men, 25 women; 35-75 years; healthy; mean BMI 24.5, SD 3.8), compared effects of mixed nutrient meals containing 50 g fat from functionally equivalent products [IE spread, non-IE spread and spreadable butter (SB), with rapeseed oil (RO) as a reference treatment: with 16.7%, 27.9%, 19.3% and 4% palmitic acid, respectively] on 8 h postprandial changes in plasma triacylglycerol (TAG) and endothelial dysfunction (flow-mediated dilatation; FMD). Circulating reactive oxygen species (estimated using a neutrophil oxidative burst assay), glucose, insulin, NEFA, lipoprotein particle profiles, inflammatory markers (glycoprotein acetylation (Glyc-A) and IL-6), and biomarkers of endotoxemia were measured. Results: Postprandial plasma TAG concentrations after test meals were similar. However following RO versus the 3 spreads, there were significantly higher postprandial apolipoprotein B concentrations, and small HDL and LDL particle concentrations, and lower postprandial extra-large, large, and medium HDL particle concentrations, as well as smaller average HDL and LDL particle sizes. There were no differences following IE compared to the other spreads. Postprandial FMD% did not decrease after high-fat test meals, and there were no differences between treatments. Postprandial serum IL-6 increased similarly after test meals, but RO provoked a greater increase in postprandial concentrations of glycoprotein acetyls (GlycA), as well as 8 h sCD14, an endotoxemia marker. All other postprandial outcomes were not different between treatments. Conclusions: In healthy adults, a commercially-available IE-based spread did not evoke a different postprandial triacylglycerol, lipoprotein subclass, oxidative stress, inflammatory or endotoxemic response to functionally-equivalent, but compositionally-distinct alternative spreads. Clinical trial registry number: NCT03438084 (https://ClinicalTrials.gov).
Collapse
Affiliation(s)
- Wendy L Hall
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | - Aseel Alkoblan
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Philippa S Gibson
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | - Maria D'Annibale
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | - Astrid Coekaerts
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | - Mathilde Bauer
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | | | - Beryle Lecomte
- CarMeN Laboratory INRAE, INSERM U1060, INRAE UMR1397, University of Lyon, France
| | - Armelle Penhoat
- CarMeN Laboratory INRAE, INSERM U1060, INRAE UMR1397, University of Lyon, France
| | - Fabienne Laugerette
- CarMeN Laboratory INRAE, INSERM U1060, INRAE UMR1397, University of Lyon, France
| | | | - Louise J Salt
- Food Innovation and Health Programme, Quadram Institute Bioscience, UK
| | - Peter J Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| |
Collapse
|
3
|
Khapchaev AY, Vorotnikov AV, Antonova OA, Samsonov MV, Shestakova EA, Sklyanik IA, Tomilova AO, Shestakova MV, Shirinsky VP. Shear Stress and the AMP-Activated Protein Kinase Independently Protect the Vascular Endothelium from Palmitate Lipotoxicity. Biomedicines 2024; 12:339. [PMID: 38397940 PMCID: PMC10886486 DOI: 10.3390/biomedicines12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Saturated free fatty acids are thought to play a critical role in metabolic disorders associated with obesity, insulin resistance, type 2 diabetes (T2D), and their vascular complications via effects on the vascular endothelium. The most abundant saturated free fatty acid, palmitate, exerts lipotoxic effects on the vascular endothelium, eventually leading to cell death. Shear stress activates the endothelial AMP-activated protein kinase (AMPK), a cellular energy sensor, and protects endothelial cells from lipotoxicity, however their relationship is uncertain. Here, we used isoform-specific shRNA-mediated silencing of AMPK to explore its involvement in the long-term protection of macrovascular human umbilical vein endothelial cells (HUVECs) against palmitate lipotoxicity and to relate it to the effects of shear stress. We demonstrated that it is the α1 catalytic subunit of AMPK that is critical for HUVEC protection under static conditions, whereas AMPK-α2 autocompensated a substantial loss of AMPK-α1, but failed to protect the cells from palmitate. Shear stress equally protected the wild type HUVECs and those lacking either α1, or α2, or both AMPK-α isoforms; however, the protective effect of AMPK reappeared after returning to static conditions. Moreover, in human adipose microvascular endothelial cells isolated from obese diabetic individuals, shear stress was a strong protector from palmitate lipotoxicity, thus highlighting the importance of circulation that is often obstructed in obesity/T2D. Altogether, these results indicate that AMPK is important for vascular endothelial cell protection against lipotoxicity in the static environment, however it may be dispensable for persistent and more effective protection exerted by shear stress.
Collapse
Affiliation(s)
- Asker Y. Khapchaev
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Alexander V. Vorotnikov
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Olga A. Antonova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Mikhail V. Samsonov
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Ekaterina A. Shestakova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Igor A. Sklyanik
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Alina O. Tomilova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Marina V. Shestakova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Vladimir P. Shirinsky
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| |
Collapse
|
4
|
Zhu W, Yang G, Chen N, Zhang W, Gao Q, Li T, Yuan N, Jin H. CTRP13 alleviates palmitic acid-induced inflammation, oxidative stress, apoptosis and endothelial cell dysfunction in HUVECs. Tissue Cell 2024; 86:102232. [PMID: 37976900 DOI: 10.1016/j.tice.2023.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
C1q/tumor necrosis factor-related protein 13 (CTRP13) has been reported to participate in cardiovascular diseases. However, the role and molecular mechanism of CTRP13 in obesity-induced endothelial cell damage is still unclear. In palmitic acid (PA)-induced human umbilical vein endothelial cells (HUVECs), qRT-PCR and western blot were used to examine CTRP13 expression. CCK-8 and TUNEL assays were adopted to assess cell viability and apoptosis, respectively. ROS level and MDA content were evaluated by their commercial kits and inflammatory cytokines were measured using ELISA. Endothelial cell dysfunction was evaluated by detecting NO production and eNOS expression, and tube formation assay was performed to assess angiogenesis. AMPK pathway-related proteins were detected by western blot. The results showed that CTRP13 was downregulated in PA-induced HUVECs. CTRP13 overexpression reduced PA-induced cell viability loss and oxidative stress in HUVECs. Moreover, CTRP13 overexpression suppressed PA-induced inflammation and apoptosis, improved angiogenesis ability, and alleviated endothelial cell dysfunction in HUVECs. In addition, CTRP13 overexpression activated AMPK pathway and regulated the expressions of downstream NOX1/p38 and KLF2. Furthermore, compound C countervailed the impacts of CTRP13 overexpression on cell viability, oxidative stress, inflammation, apoptosis and endothelial function in PA-induced HUVECs. To sum up, CTRP13 overexpression may alleviate PA-induced endothelial cell damage.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China.
| | - Guojun Yang
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Naijun Chen
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Wenjun Zhang
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Qian Gao
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Tingting Li
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Nan Yuan
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Huawei Jin
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
5
|
Silva AR, de Souza e Souza KFC, Souza TBD, Younes-Ibrahim M, Burth P, de Castro Faria Neto HC, Gonçalves-de-Albuquerque CF. The Na/K-ATPase role as a signal transducer in lung inflammation. Front Immunol 2024; 14:1287512. [PMID: 38299144 PMCID: PMC10827986 DOI: 10.3389/fimmu.2023.1287512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Thamires Bandeira De Souza
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mauricio Younes-Ibrahim
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Kim B, Zhao W, Tang SY, Levin MG, Ibrahim A, Yang Y, Roberts E, Lai L, Li J, Assoian RK, FitzGerald GA, Arany Z. Endothelial lipid droplets suppress eNOS to link high fat consumption to blood pressure elevation. J Clin Invest 2023; 133:e173160. [PMID: 37824206 PMCID: PMC10721151 DOI: 10.1172/jci173160] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Metabolic syndrome, today affecting more than 20% of the US population, is a group of 5 conditions that often coexist and that strongly predispose to cardiovascular disease. How these conditions are linked mechanistically remains unclear, especially two of these: obesity and elevated blood pressure. Here, we show that high fat consumption in mice leads to the accumulation of lipid droplets in endothelial cells throughout the organism and that lipid droplet accumulation in endothelium suppresses endothelial nitric oxide synthase (eNOS), reduces NO production, elevates blood pressure, and accelerates atherosclerosis. Mechanistically, the accumulation of lipid droplets destabilizes eNOS mRNA and activates an endothelial inflammatory signaling cascade that suppresses eNOS and NO production. Pharmacological prevention of lipid droplet formation reverses the suppression of NO production in cell culture and in vivo and blunts blood pressure elevation in response to a high-fat diet. These results highlight lipid droplets as a critical and unappreciated component of endothelial cell biology, explain how lipids increase blood pressure acutely, and provide a mechanistic account for the epidemiological link between obesity and elevated blood pressure.
Collapse
Affiliation(s)
- Boa Kim
- Department of Pathology and Lab Medicine, McAllister Heart Institute, Nutrition Obesity Research Center, and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Wencao Zhao
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Soon Y. Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and
| | - Michael G. Levin
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Ayon Ibrahim
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Yifan Yang
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Emilia Roberts
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ling Lai
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Jian Li
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| | - Richard K. Assoian
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garret A. FitzGerald
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine
| |
Collapse
|
7
|
Joo S, Dhaygude K, Westerberg S, Krebs R, Puhka M, Holmström E, Syrjälä S, Nykänen AI, Lemström K. Transcriptomic Landscape of Circulating Extracellular Vesicles in Heart Transplant Ischemia-Reperfusion. Genes (Basel) 2023; 14:2101. [PMID: 38003044 PMCID: PMC10671425 DOI: 10.3390/genes14112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable event during heart transplantation, which is known to exacerbate damage to the allograft. However, the precise mechanisms underlying IRI remain incompletely understood. Here, we profiled the whole transcriptome of plasma extracellular vesicles (EVs) by RNA sequencing from 41 heart transplant recipients immediately before and at 12 h after transplant reperfusion. We found that the expression of 1317 protein-coding genes in plasma EVs was changed at 12 h after reperfusion. Upregulated genes of plasma EVs were related to metabolism and immune activation, while downregulated genes were related to cell survival and extracellular matrix organization. In addition, we performed correlation analyses between EV transcriptome and intensity of graft IRI (i.e., cardiomyocyte injury), as well as EV transcriptome and primary graft dysfunction, as well as any biopsy-proven acute rejection after heart transplantation. We ultimately revealed that at 12 h after reperfusion, 4 plasma EV genes (ITPKA, DDIT4L, CD19, and CYP4A11) correlated with both cardiomyocyte injury and primary graft dysfunction, suggesting that EVs are sensitive indicators of reperfusion injury reflecting lipid metabolism-induced stress and imbalance in calcium homeostasis. In conclusion, we show that profiling plasma EV gene expression may enlighten the mechanisms of heart transplant IRI.
Collapse
Affiliation(s)
- SeoJeong Joo
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, 00014 Helsinki, Finland; (S.J.); (K.D.); (S.W.); (R.K.); (E.H.); (S.S.); (A.I.N.)
| | - Kishor Dhaygude
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, 00014 Helsinki, Finland; (S.J.); (K.D.); (S.W.); (R.K.); (E.H.); (S.S.); (A.I.N.)
| | - Sofie Westerberg
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, 00014 Helsinki, Finland; (S.J.); (K.D.); (S.W.); (R.K.); (E.H.); (S.S.); (A.I.N.)
| | - Rainer Krebs
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, 00014 Helsinki, Finland; (S.J.); (K.D.); (S.W.); (R.K.); (E.H.); (S.S.); (A.I.N.)
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00014 Helsinki, Finland;
| | - Emil Holmström
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, 00014 Helsinki, Finland; (S.J.); (K.D.); (S.W.); (R.K.); (E.H.); (S.S.); (A.I.N.)
| | - Simo Syrjälä
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, 00014 Helsinki, Finland; (S.J.); (K.D.); (S.W.); (R.K.); (E.H.); (S.S.); (A.I.N.)
- Heart and Lung Center, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Antti I. Nykänen
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, 00014 Helsinki, Finland; (S.J.); (K.D.); (S.W.); (R.K.); (E.H.); (S.S.); (A.I.N.)
- Heart and Lung Center, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Karl Lemström
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, 00014 Helsinki, Finland; (S.J.); (K.D.); (S.W.); (R.K.); (E.H.); (S.S.); (A.I.N.)
- Heart and Lung Center, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Choroszy M, Środa-Pomianek K, Wawrzyńska M, Chmielarz M, Bożemska E, Sobieszczańska B. The Role of Palmitic Acid in the Co-Toxicity of Bacterial Metabolites to Endothelial Cells. Vasc Health Risk Manag 2023; 19:399-409. [PMID: 37426328 PMCID: PMC10329449 DOI: 10.2147/vhrm.s408897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Metabolic endotoxemia most often results from obesity and is accompanied by an increase in the permeability of the intestinal epithelial barrier, allowing co-absorption of bacterial metabolites and diet-derived fatty acids into the bloodstream. A high-fat diet (HFD) leading to obesity is a significant extrinsic factor in developing vascular atherosclerosis. In this study, we evaluated the effects of palmitic acid (PA) as a representative of long-chain saturated fatty acids (LCSFA) commonly present in HFDs, along with endotoxin (LPS; lipopolysaccharide) and uremic toxin indoxyl sulfate (IS), on human vascular endothelial cells (HUVECs). Methods HUVECs viability was measured based on tetrazolium salt metabolism, and cell morphology was assessed with fluorescein-phalloidin staining of cells' actin cytoskeleton. The effects of simultaneous treatment of endothelial cells with PA, LPS, and IS on nitro-oxidative stress in vascular cells were evaluated quantitatively with fluorescent probes. The expression of vascular cell adhesion molecule VCAM-1, E-selectin, and occludin, an essential tight junction protein, in HUVECs treated with these metabolites was evaluated in Western blot. Results PA, combined with LPS and IS, did not influence HUVECs viability but induced stress on actin fibers and focal adhesion complexes. Moreover, PA combined with LPS significantly enhanced reactive oxygen species (ROS) production in HUVECs but decreased nitric oxide (NO) generation. PA also considerably increased the expression of VCAM-1 and E-selectin in HUVECs treated with LPS or IS but decreased occludin expression. Conclusion Palmitic acid enhances the toxic effect of metabolic endotoxemia on the vascular endothelium.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Wawrzyńska
- Department of Preclinical Studies, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Chmielarz
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Edyta Bożemska
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
9
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
10
|
Dubsky M, Veleba J, Sojakova D, Marhefkova N, Fejfarova V, Jude EB. Endothelial Dysfunction in Diabetes Mellitus: New Insights. Int J Mol Sci 2023; 24:10705. [PMID: 37445881 DOI: 10.3390/ijms241310705] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Endothelial dysfunction (ED) is an important marker of future atherosclerosis and cardiovascular disease, especially in people with diabetes. This article summarizes the evidence on endothelial dysfunction in people with diabetes and adds different perspectives that can affect the presence and severity of ED and its consequences. We highlight that data on ED in type 1 diabetes are lacking and discuss the relationship between ED and arterial stiffness. Several interesting studies have been published showing that ED modulates microRNA, microvesicles, lipid levels, and the endoplasmatic reticulum. A better understanding of ED could provide important insights into the microvascular complications of diabetes, their treatment, and even their prevention.
Collapse
Affiliation(s)
- Michal Dubsky
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Jiri Veleba
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Dominika Sojakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Natalia Marhefkova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Vladimira Fejfarova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Edward B Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne OL6 9RW, UK
- Department of Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
11
|
Xiao F, Jiang H, Li Z, Jiang X, Chen S, Niu Y, Yin H, Shu Y, Peng B, Lu W, Li X, Li Z, Lan S, Xu X, Guo F. Reduced hepatic bradykinin degradation accounts for cold-induced BAT thermogenesis and WAT browning in male mice. Nat Commun 2023; 14:2523. [PMID: 37130842 PMCID: PMC10154316 DOI: 10.1038/s41467-023-38141-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
An important role for liver in the regulation of adipose tissue thermogenesis upon cold exposure has been suggested; however, the underlying mechanisms remain incompletely defined. Here, we identify elevated serum bradykinin levels in response to acute cold exposure in male mice. A bolus of anti-bradykinin antibodies reduces body temperature during acute cold exposure, whereas bradykinin has the opposite effect. We demonstrate that bradykinin induces brown adipose tissue thermogenesis and white adipose tissue browning, and bradykinin increases uncoupling protein 1 (UCP1) expression in adipose tissue. The bradykinin B2 receptor (B2R), adrenergic signaling and nitric oxide signaling are involved in regulating bradykinin-increased UCP1 expression. Moreover, acute cold exposure inhibits hepatic prolyl endopeptidase (PREP) activity, causing reduced liver bradykinin degradation and increased serum bradykinin levels. Finally, by blocking the breakdown of bradykinin, angiotensin-converting enzyme inhibitors (ACEIs) increase serum bradykinin levels and induce brown adipose tissue thermogenesis and white adipose tissue browning via B2R. Collectively, our data provide new insights into the mechanisms underlying organ crosstalk in whole-body physiology control during cold exposure and also suggest bradykinin as a possible anti-obesity target.
Collapse
Affiliation(s)
- Fei Xiao
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haizhou Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Jiang
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shanghai Chen
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuguo Niu
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hanrui Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yousheng Shu
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bo Peng
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Lu
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoying Li
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhigang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shujue Lan
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Xu
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Ahiawodzi P, Solaru KW, Chaves PHM, Ix JH, Kizer JR, Tracy RP, Newman A, Siscovick D, Djousse L, Mukamal KJ. Non-esterified fatty acids and risk of peripheral artery disease in older adults: The cardiovascular health study. Atherosclerosis 2023; 370:25-32. [PMID: 36754661 PMCID: PMC10079601 DOI: 10.1016/j.atherosclerosis.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Non-esterified fatty acids have been implicated in the pathogenesis of diabetes and cardiovascular disease. No longitudinal study has assessed their effects on peripheral artery disease (PAD). We determined the relationships between NEFAs and incident clinical PAD and abnormal ankle-brachial index (ABI) in a population-based cohort of older persons. METHODS We evaluated 4575 community living participants aged >65 years who underwent measurement of circulating NEFAs in fasting specimens and ABI in 1992-1993. Participants were assessed annually for clinical PAD until 2015 and underwent repeat ABI in 1998-1999. We used Cox proportional hazards regression to model the associations between NEFAs and risk of clinical PAD and logistic regression to model the associations of NEFAs with incident abnormal ABI. RESULTS Mean age was 74.8 years, 59% were female, and 17% were Black. NEFAs were associated with higher risk of clinical PAD in unadjusted and adjusted models. The adjusted hazard ratios for incident clinical PAD were 1.51 (95%CI = 1.06-2.13, p = 0.02) across extreme tertiles, and 1.14 (95%CI = 0.99-1.31, p = 0.08) per standard deviation higher NEFA. The corresponding odds ratios for abnormal ABI were 0.95 (95%CI = 0.69-1.32, p = 0.76) across extreme tertiles, and 1.03 (95%CI = 0.89-1.20, p = 0.68) per standard deviation higher NEFA. Relationships appeared similar irrespective of sex, race, or pre-existing cardiovascular disease, but were stronger later than earlier in follow-up. CONCLUSIONS Higher serum levels of NEFAs are significantly associated with increased likelihood of clinical PAD over long-term follow-up but not with 6-year decline in ABI. NEFAs may offer a potential target for intervention against clinical PAD.
Collapse
Affiliation(s)
- Peter Ahiawodzi
- Department of Public Health, Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC, USA.
| | - Khendi White Solaru
- Cardiology, Cardiology-Vascular Medicine, CWRU School of Medicine, Cleveland, OH, USA
| | - Paulo H M Chaves
- Benjamin Center for Geriatric Research and Education, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Joachim H Ix
- Divisions of Nephrology-Hypertension, University of California, San Diego, CA, USA
| | - Jorge R Kizer
- Division of Cardiology, Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | - Russell P Tracy
- Department of Pathology, Departments of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Anne Newman
- Departments of Epidemiology, Departments of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Siscovick
- Division of Research, Evaluation and Policy, The New York Academy of Medicine, New York, NY, USA
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Meister ML, Najjar RS, Danh JP, Knapp D, Wanders D, Feresin RG. Berry consumption mitigates the hypertensive effects of a high-fat, high-sucrose diet via attenuation of renal and aortic AT 1R expression resulting in improved endothelium-derived NO bioavailability. J Nutr Biochem 2023; 112:109225. [PMID: 36435288 DOI: 10.1016/j.jnutbio.2022.109225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Dysregulation of the renin-angiotensin system (RAS) is a contributor to high-fat diet-related blood pressure (BP) increases. Deleterious effects of dysregulated RAS result in an overproduction of reactive oxygen species and a decrease in endothelial nitric oxide (NO) bioavailability due to increased NADPH oxidase (NOX) expression. Dietary polyphenols have been shown to mitigate the imbalance in the redox state and protect against endothelial dysfunction induced by a high-fat diet. Thus, we aim to determine whether polyphenol-rich blackberry and raspberry, alone and in combination, attenuate the detrimental effects of a high-fat, high-sucrose (HFHS) diet on the vascular endothelium and kidneys of mice. We show that a HFHS diet increased the expression of renal and aortic angiotensin type 1 receptor (AT1R). Further, NOX1 and NOX4 expression were increased in the kidney contributing to fibrotic damage. In human aortic endothelial cells (HAECs), palmitic acid increased the expression of NOX4, potentially driving oxidative damage in the aorta, as evidenced by increased nitrotyrosine expression. Berries reduced the expression of renal and aortic AT1R, leading to a subsequent decrease in renal NOX expression and reduced aortic oxidative stress evidenced by reduced nitrotyrosine expression. Blackberry and raspberry in combination increased the expression of NRF2 and its downstream proteins in HAECs, thereby reducing the oxidative burden to the endothelium. In combination, blackberry and raspberry also increased serum levels of NO metabolites. These findings indicate that blackberry and raspberry unique polyphenols may act synergistically to favorably modulate the abovementioned pathways and attenuate HFHS diet-induced increases in BP.
Collapse
Affiliation(s)
- Maureen L Meister
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Jessica P Danh
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Denise Knapp
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
14
|
Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP. In Vitro Modeling of Diabetes Impact on Vascular Endothelium: Are Essentials Engaged to Tune Metabolism? Biomedicines 2022; 10:biomedicines10123181. [PMID: 36551937 PMCID: PMC9775148 DOI: 10.3390/biomedicines10123181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Angiopathy is a common complication of diabetes mellitus. Vascular endothelium is among the first targets to experience blood-borne metabolic alterations, such as hyperglycemia and hyperlipidemia, the hallmarks of type 2 diabetes. To explore mechanisms of vascular dysfunction and eventual damage brought by these pathologic conditions and to find ways to protect vasculature in diabetic patients, various research approaches are used including in vitro endothelial cell-based models. We present an analysis of the data available from these models that identifies early endothelial cell apoptosis associated with oxidative stress as the major outcome of mimicking hyperglycemia and hyperlipidemia in vitro. However, the fate of endothelial cells observed in these studies does not closely follow it in vivo where massive endothelial damage occurs mainly in the terminal stages of diabetes and in conjunction with comorbidities. We propose that the discrepancy is likely in missing essentials that should be available to cultured endothelial cells to adjust the metabolic state and withstand the immediate apoptosis. We discuss the role of carnitine, creatine, and AMP-activated protein kinase (AMPK) in suiting the endothelial metabolism for long-term function in diabetic type milieu in vitro. Engagement of these essentials is anticipated to expand diabetes research options when using endothelial cell-based models.
Collapse
|
15
|
Wang D, Wang X. Diosgenin and Its Analogs: Potential Protective Agents Against Atherosclerosis. Drug Des Devel Ther 2022; 16:2305-2323. [PMID: 35875677 PMCID: PMC9304635 DOI: 10.2147/dddt.s368836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall associated with lipid metabolism imbalance and maladaptive immune response, which mediates most cardiovascular events. First-line drugs such as statins and antiplatelet drug aspirin have shown good effects against atherosclerosis but may lead to certain side effects. Thus, the development of new, safer, and less toxic agents for atherosclerosis is urgently needed. Diosgenin and its analogs have gained importance for their efficacy against life-threatening diseases, including cardiovascular, endocrine, nervous system diseases, and cancer. Diosgenin and its analogs are widely found in the rhizomes of Dioscore, Solanum, and other species and share similar chemical structures and pharmacological effects. Recent data suggested diosgenin plays an anti-atherosclerosis role through its anti-inflammatory, antioxidant, plasma cholesterol-lowering, anti-proliferation, and anti-thrombotic effects. However, a review of the effects of diosgenin and its natural structure analogs on AS is still lacking. This review summarizes the effects of diosgenin and its analogs on vascular endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation, migration and calcification, lipid metabolism, and inflammation, and provides a new overview of its anti-atherosclerosis mechanism. Besides, the structures, sources, safety, pharmacokinetic characteristics, and biological availability are introduced to reveal the limitations and challenges of current studies, hoping to provide a theoretical basis for the clinical application of diosgenin and its analogs and provide a new idea for developing new agents for atherosclerosis.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
- Correspondence: Xiaolong Wang, Tel +86 13501991450, Fax +86 21 51322445, Email
| |
Collapse
|
16
|
Gu YY, Tan XH, Song WP, Song WD, Yuan YM, Xin ZC, Wang JD, Fang D, Guan RL. Icariside Ⅱ Attenuates Palmitic Acid-Induced Endothelial Dysfunction Through SRPK1-Akt-eNOS Signaling Pathway. Front Pharmacol 2022; 13:920601. [PMID: 35846993 PMCID: PMC9280058 DOI: 10.3389/fphar.2022.920601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Endothelial dysfunction is commonly accompanied by a reduced capacity for nitric oxide (NO) production and decreased NO sensitivity, playing a central role in numerous vascular diseases. Saturated free fatty acids are known to reduce NO production and then induce endothelial dysfunction. Alternative splicing participates in the regulation of cellular and tissular homeostasis and is highly regulated by serine-arginine protein kinase (SRPK1). The role of SRPK1 in the biology of endothelial cells remains elusive. Icariside Ⅱ (ICA Ⅱ) has been reported to have protective effects on endothelial function. However, the specific molecular mechanisms are still unknown. The purpose of this study is to explore the role of SRPK1 in the biology of endothelial cells and the underlying mechanism of ICA Ⅱ on palmitic acid (PA) induced endothelial dysfunction. Methods: Endothelial dysfunction was induced using PA in human umbilical vein endothelial cells (HUVECs). The expression and phosphorylation of related proteins in the SRPK1-Akt-eNOS signaling pathway were detected by Western Blot. Cell Counting Kit-8 assay and Ki-67 immunofluorescence were used to estimate cell viability. Endothelial cell function was assessed by detecting NO production using DAF-FM DA. Interaction between ICA Ⅱ and SRPK1 was demonstrated by a biotinylated protein interaction pull-down assay. Results: The expressions of eNOS, Akt, and SRPK1 were down-regulated in the endothelial dysfunction stimulated by PA. SRPK1 inhibitor SPHINX31 restrained endothelial cell viability in a dose-dependent manner. Moreover, inhibition of SRPK1 using SPHINX31 and knockdown of SRPK1 by shRNA also showed a down-regulation of the proteins associated with the SRPK1-Akt-eNOS signaling pathway. Biotinylated protein interaction pull-down assay revealed that ICA Ⅱ could be directly bound with SRPK1. On the other hand, ICA Ⅱ could attenuate the PA-induced endothelial dysfunction and restore cell viability through the SRPK1-Akt-eNOS pathway. Conclusions: ICA Ⅱ, bound with SRPK1, could attenuate the endothelial dysfunction induced by the PA in HUVECs via the SRPK1-Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Yang-Yang Gu
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Xiao-Hui Tan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Wen-Peng Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei-Dong Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yi-Ming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhong-Cheng Xin
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Jia-Dong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Rui-Li Guan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
17
|
Differential effects of single fatty acids and fatty acid mixtures on the phosphoinositide 3-kinase/Akt/eNOS pathway in endothelial cells. Eur J Nutr 2022; 61:2463-2473. [PMID: 35157107 PMCID: PMC9279250 DOI: 10.1007/s00394-022-02821-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Dietary fat composition is an important modulator of vascular function. Non-esterified fatty acids (NEFA) enriched in saturated fatty acids (SFA) are thought to reduce vascular reactivity by attenuating insulin signalling via vasodilator pathways (phosphoinositide 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS)) and enhancing signalling via pro-inflammatory pathways. METHODS To examine the effects of fatty acids on these pathways, human aortic endothelial cells were incubated with single fatty acids, and mixtures of these fatty acids to mimic typical NEFA composition and concentrations achieved in our previous human study. RNA was extracted to determine gene expression using real-time RT-PCR and cell lysates prepared to assess protein phosphorylation by Western blotting. RESULTS Oleic acid (OA, 100 µM) was shown to down regulate expression of the insulin receptor, PTEN and a PI3K catalytic (p110β) and regulatory (p85α) subunit compared to palmitic, linoleic and stearic acids (P < 0.04), and promote greater eNOS phosphorylation at Ser1177. Both concentration and composition of the SFA and SFA plus n-3 polyunsaturated fatty acids (PUFA) mixtures had significant effects on genes involved in the PI3K/Akt pathway. Greater up-regulation was found with 800 than 400 µM concentration (respective of concentrations in insulin resistant and normal individuals), whereas greater down-regulation was evident with SFA plus n-3 PUFA than SFA mixture alone. CONCLUSION Our findings provide novel insights into the modulation of the PI3K/Akt/eNOS pathway by single fatty acids and fatty acid mixtures. In particular, OA appears to promote signalling via this pathway, with further work required to determine the primary molecular site(s) of action.
Collapse
|
18
|
Liu X, Zhan Y, Xu W, Liu L, Liu X, Da J, Zhang K, Zhang X, Wang J, Liu Z, Jin H, Zhang B, Li Y. Characterization of transcriptional landscape in bone marrow-derived mesenchymal stromal cells treated with aspirin by RNA-seq. PeerJ 2022; 10:e12819. [PMID: 35127290 PMCID: PMC8793730 DOI: 10.7717/peerj.12819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Aspirin is a common antipyretic, analgesic, and anti-inflammatory drug, which has been reported to extend life in animal models and application in the treatment of aging-related diseases. However, it remains unclear about the effects of aspirin on bone marrow-derived mesenchymal stromal cells (BM-MSCs). Here, we aimed to analyze the influence of aspirin on senescence and young BM-MSCs. METHODS BM-MSCs were serially passaged to construct a replicative senescence model. SA-β-gal staining, PCR, western blot, and RNA-sequencing were performed on BM-MSCs with or without aspirin treatment, to examine aspirin's impact on bone marrow-derived mesenchymal stem cells. RESULTS SA-β-gal staining, PCR, and western blot revealed that aspirin could alleviate the cellular expression of senescence-related indicators of BM-MSCs, including a decrease of SA-β-gal-positive cells and staining intensity, and downregulation of p16, p21, and p53 expression after aspirin treatment. RNA-sequencing results shown in the biological processes related to aging, aspirin could influence cellular immune response and lipid metabolism. CONCLUSION The efficacy of aspirin for retarding senescence of BM-MSCs was demonstrated. Our study indicated that the mechanisms of this delay might involve influencing immune response and lipid metabolism.
Collapse
Affiliation(s)
- Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,The Second Affiliated Hospital of Harbin Medical University, Department of Periodontology and Oral Mucosa, Harbin, China
| | - Wenxia Xu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyao Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinjian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziqi Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Samsonov MV, Podkuychenko NV, Khapchaev AY, Efremov EE, Yanushevskaya EV, Vlasik TN, Lankin VZ, Stafeev IS, Skulachev MV, Shestakova MV, Vorotnikov AV, Shirinsky VP. AICAR Protects Vascular Endothelial Cells from Oxidative Injury Induced by the Long-Term Palmitate Excess. Int J Mol Sci 2021; 23:ijms23010211. [PMID: 35008640 PMCID: PMC8745318 DOI: 10.3390/ijms23010211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Hyperlipidemia manifested by high blood levels of free fatty acids (FFA) and lipoprotein triglycerides is critical for the progression of type 2 diabetes (T2D) and its cardiovascular complications via vascular endothelial dysfunction. However, attempts to assess high FFA effects in endothelial culture often result in early cell apoptosis that poorly recapitulates a much slower pace of vascular deterioration in vivo and does not provide for the longer-term studies of endothelial lipotoxicity in vitro. Here, we report that palmitate (PA), a typical FFA, does not impair, by itself, endothelial barrier and insulin signaling in human umbilical vein endothelial cells (HUVEC), but increases NO release, reactive oxygen species (ROS) generation, and protein labeling by malondialdehyde (MDA) hallmarking oxidative stress and increased lipid peroxidation. This PA-induced stress eventually resulted in the loss of cell viability coincident with loss of insulin signaling. Supplementation with 5-aminoimidazole-4-carboxamide-riboside (AICAR) increased endothelial AMP-activated protein kinase (AMPK) activity, supported insulin signaling, and prevented the PA-induced increases in NO, ROS, and MDA, thus allowing to maintain HUVEC viability and barrier, and providing the means to study the long-term effects of high FFA levels in endothelial cultures. An upgraded cell-based model reproduces FFA-induced insulin resistance by demonstrating decreased NO production by vascular endothelium.
Collapse
Affiliation(s)
- Mikhail V. Samsonov
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Nikita V. Podkuychenko
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Asker Y. Khapchaev
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Eugene E. Efremov
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Elena V. Yanushevskaya
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Tatiana N. Vlasik
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Vadim Z. Lankin
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Iurii S. Stafeev
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Maxim V. Skulachev
- Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | | | - Alexander V. Vorotnikov
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
- Correspondence: (A.V.V.); (V.P.S.)
| | - Vladimir P. Shirinsky
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
- Correspondence: (A.V.V.); (V.P.S.)
| |
Collapse
|
20
|
Geng X, Ji J, Liu Y, Li X, Chen Y, Su L, Zhao L. Cyanidin-3-O-Glucoside Supplementation Ameliorates Metabolic Insulin Resistance via Restoration of Nitric Oxide-Mediated Endothelial Insulin Transport. Mol Nutr Food Res 2021; 66:e2100742. [PMID: 34841692 DOI: 10.1002/mnfr.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Indexed: 11/06/2022]
Abstract
SCOPE Anthocyanin cyanidin-3-O-glucoside (Cy3G) possesses a great potential in prevention of diabetes and its vascular complications while the underlying mechanisms are still far from clear. Accumulating evidence suggests that endothelial insulin transport plays a critical role in regulating metabolic insulin sensitivity. Whether Cy3G can modulate metabolic insulin resistance via regulating endothelial insulin transport is not reported yet. METHODS AND RESULTS Palmitic acid (PA)-treated mouse aortic endothelial cells (MAECs) model and high-fat diet (HFD) fed mice model are used. Compared with HFD mice, Cy3G supplementation decrease exogenous insulin content in skeletal muscle and ameliorate metabolic insulin resistance. In culture, Cy3G can directly ameliorate PA-induced impairment on FITC-insulin uptake in MAECs. Mechanistically, Cy3G can effectively decrease inflammatory cytokines and toll-like receptor 4 (TLR4)/nuclear factor-kappa-B inhibitor alpha (IκBα) activation, and restore the attenuated Akt/eNOS signaling pathway. Blunted nitric oxide (NO) synthase with N-nitro-l-arginine methyl ester (L-NAME) can effectively abolish the protective role of Cy3G on endothelial insulin transport and insulin-stimulated glucose utilization in HFD-fed mice. CONCLUSIONS These findings suggest that Cy3G supplementation can directly restore the attenuated nitic oxide-mediated endothelial insulin transport and thereby ameliorate metabolic insulin resistance. Our finding can provide a novel explanation for the anti-diabetic effects of Cy3G.
Collapse
Affiliation(s)
- Xiuwen Geng
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, P.R. China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, P.R. China
| | - Jiajun Ji
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, P.R. China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, P.R. China
| | - Yuanhua Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, P.R. China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, P.R. China
| | - Xueyan Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, P.R. China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, P.R. China
| | - Yunan Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, P.R. China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, P.R. China
| | - Lei Su
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, P.R. China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, P.R. China
| | - Lina Zhao
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, P.R. China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, P.R. China
| |
Collapse
|
21
|
Zhou D, Wang J, Li X. The Red Blood Cell Distribution Width-Albumin Ratio Was a Potential Prognostic Biomarker for Diabetic Ketoacidosis. Int J Gen Med 2021; 14:5375-5380. [PMID: 34522133 PMCID: PMC8434876 DOI: 10.2147/ijgm.s327733] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background The red blood cell distribution width (RDW)–albumin ratio (RA) is a new biomarker, which is d-efined as RDW divided by albumin. This study aimed at determining the prognostic values of RA for diabetic ketoacidosis (DKA). Methods Data were obtained from Medical Information Mart for Intensive Care Database III V1.4 (MIMIC-III) and the RA calculated. Multivariate Cox regression analysis was performed to determine the correlation between RA and 90-day mortality or 365-day mortality. To further investigate the association with RA and mortality, the patients were divided into two groups. The second outcome was the association between the incidence of DKA-related infections and RA. Results For DKA patients in the ICU, RA was significantly correlated with 90-day mortality (HR: 2.1, 95% CI: 1.5, 3.0, p < 0.001) and 365-day mortality (HR: 1.9, 95% CI: 1.5, 2.5, p < 0.001). A high RA was independently correlated with increased 90-day mortality (HR: 7.8, 95% CI: 1.8, 34.0, p for trend <0.001) and 365-day mortality (HR: 5.2, 95% CI: 2.4, 11.3, p for trend <0.001). Moreover, RA was found to be an independent predictor for sepsis and septic shock in patients with DKA (HR: 2.9, 95% CI: 2.0, 4.1, p < 0.001). After adjusting for confounders, the statistical outcome was the same. Conclusion A high RA is significantly correlated with increased all-cause mortality of DKA as well as an increased incidence of DKA-related infections. RA is a potential prognostic marker for DKA.
Collapse
Affiliation(s)
- Depu Zhou
- Department of Endocrinology, Yanbian University Hospital, Yanji, Jilin Province, People's Republic of China
| | - Jie Wang
- Department of Endocrinology, Yanbian University Hospital, Yanji, Jilin Province, People's Republic of China
| | - Xiaokun Li
- Department of Endocrinology, Yanbian University Hospital, Yanji, Jilin Province, People's Republic of China
| |
Collapse
|
22
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
23
|
Xu W, Grindler S, Dänicke S, Frahm J, Kenéz Á, Huber K. Increased plasma and milk short-chain acylcarnitine concentrations reflect systemic LPS response in mid-lactation dairy cows. Am J Physiol Regul Integr Comp Physiol 2021; 321:R429-R440. [PMID: 34318701 DOI: 10.1152/ajpregu.00072.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharides (LPS) challenge the metabolic integrity of high-yielding dairy cows, activating the immune system and altering energy metabolism. Fatty acid oxidation, a major energy-gaining pathway, can be improved by supplementary carnitine, facilitating the transport of fatty acids into mitochondria. The metabolic response to the LPS challenge could alter both the plasma and the milk metabolome. Plasma and milk samples collected from cows treated with (n = 27) or without (n = 27) dietary carnitine, before and after intravenous administration of LPS, were subjected to a targeted metabolomics analysis. Multivariate statistical analyses revealed that both plasma and milk metabolome changed in response to the LPS challenge in both the carnitine-supplemented and the control cows. Short-chain acylcarnitines (carbon chain length C2, C3, C4, and C5) and long-chain acylcarnitines (C14, C16, and C18) had the highest performance to indicate LPS response when testing the predictive power of single metabolites using receiver-operator characteristics (ROC) analysis. The maximum area under a ROC curve (AUC) was 0.93. Biogenic amines, including sarcosine, and amino acids such as glutamine and isoleucine had AUC > 0.80 indicating metabolic changes due to the LPS challenge. In summary, the metabolites involved in the LPS response were acylcarnitines C2 and C5, sarcosine, glutamine, and isoleucine in plasma, and acylcarnitines C4 and C5 in milk. The interrelationship of plasma and milk metabolome included correlation of acylcarnitines C2, C4, and C5 between plasma and milk.
Collapse
Affiliation(s)
- Wei Xu
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing, People's Republic of China
| | - Sandra Grindler
- Faculty of Agricultural Sciences, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institute), Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institute), Braunschweig, Germany
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Korinna Huber
- Faculty of Agricultural Sciences, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
24
|
Cutruzzolà A, Parise M, Vallelunga R, Lamanna F, Gnasso A, Irace C. Effect of Extra Virgin Olive Oil and Butter on Endothelial Function in Type 1 Diabetes. Nutrients 2021; 13:nu13072436. [PMID: 34371945 PMCID: PMC8308536 DOI: 10.3390/nu13072436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Post-prandial hyperglycemia can be relevant in developing early manifestations of atherosclerosis. EVOO (Extra Virgin Olive Oil), rich in saturated fatty acids and commonly used in the Mediterranean diet, seems to control post-prandial hyperglycemia better than butter. Subjects with type 1 diabetes are at higher risk of developing cardiovascular disease and show endothelial dysfunction, an early manifestation of atherosclerosis in the first years of the disease. Our study aims to evaluate whether EVOO and butter influence endothelial function in subjects with type 1 diabetes when added to a single high glycemic index (HGI) meal. In this exploratory cross-over study, 10 subjects with type 1 diabetes and 6 healthy subjects were scheduled to receive two types of HGI meals: one enriched with EVOO and one with butter. Before and after each test meal at different time points, all subjects underwent the evaluation of endothelial function by flow-mediated dilation technique, glucose and lipids measurements, and gastric emptying assessment by ultrasound. Flow-mediated dilation significantly increased after EVOO-enriched meal compared with butter in subjects with type 1 diabetes (two-way-repeated measurements ANOVA, p = 0.007). In patients with type 1 diabetes, the add-on of EVOO to HGI meal improves vascular function compared to butter, which has detrimental effects.
Collapse
Affiliation(s)
- Antonio Cutruzzolà
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (R.V.); (F.L.); (A.G.)
| | - Martina Parise
- Dipartimento di Scienze della Salute, University Magna Græcia, 88100 Catanzaro, Italy;
| | - Rosarina Vallelunga
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (R.V.); (F.L.); (A.G.)
| | - Francesco Lamanna
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (R.V.); (F.L.); (A.G.)
| | - Agostino Gnasso
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (R.V.); (F.L.); (A.G.)
| | - Concetta Irace
- Dipartimento di Scienze della Salute, University Magna Græcia, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-0961-3647039
| |
Collapse
|
25
|
Morfoisse F, De Toni F, Nigri J, Hosseini M, Zamora A, Tatin F, Pujol F, Sarry JE, Langin D, Lacazette E, Prats AC, Tomasini R, Galitzky J, Bouloumié A, Garmy-Susini B. Coordinating Effect of VEGFC and Oleic Acid Participates to Tumor Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13122851. [PMID: 34200994 PMCID: PMC8227717 DOI: 10.3390/cancers13122851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary In cancer, the lymphatic system is hijacked by tumor cells that escape from primary tumor and metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatic neovessel growth has not been fully determined. Here, we showed that tumor lymphangiogenesis developed in tumoral lesions and in their surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase in circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We showed that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in a tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA released from adipocytes is taken up by LECs to stimulate the fatty acid β-oxidation, leading to increased adipose tissue lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer. Abstract In cancer, the lymphatic system is hijacked by tumor cells that escape from primary tumor and metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatics growth has not been fully determined. We showed that lymphangiogenesis developed in tumoral lesions and in surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase in circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We showed that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in a tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA stimulates fatty acid β-oxidation in LECs, leading to increased AT lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer.
Collapse
Affiliation(s)
- Florent Morfoisse
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Fabienne De Toni
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Jeremy Nigri
- CRCM, Inserm UMR 1068, 13001 Marseille, France; (J.N.); (R.T.)
| | - Mohsen Hosseini
- CRCT, Université de Toulouse, Inserm UMR 1037, UPS, 31000 Toulouse, France; (M.H.); (J.-E.S.)
| | - Audrey Zamora
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Florence Tatin
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Françoise Pujol
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Jean-Emmanuel Sarry
- CRCT, Université de Toulouse, Inserm UMR 1037, UPS, 31000 Toulouse, France; (M.H.); (J.-E.S.)
| | - Dominique Langin
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Eric Lacazette
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Anne-Catherine Prats
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | | | - Jean Galitzky
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Anne Bouloumié
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Barbara Garmy-Susini
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
- Correspondence:
| |
Collapse
|
26
|
Differential Deleterious Impact of Highly Saturated Versus Monounsaturated Fat Intake on Vascular Function, Structure, and Mechanics in Mice. Nutrients 2021; 13:nu13031003. [PMID: 33808927 PMCID: PMC8003613 DOI: 10.3390/nu13031003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable oils such as palm oil (enriched in saturated fatty acids, SFA) and high-oleic-acid sunflower oil (HOSO, containing mainly monounsaturated fatty acids, MUFA) have emerged as the most common replacements for trans-fats in the food industry. The aim of this study is to analyze the impact of SFA and MUFA-enriched high-fat (HF) diets on endothelial function, vascular remodeling, and arterial stiffness compared to commercial HF diets. Five-week-old male C57BL6J mice were fed a standard (SD), a HF diet enriched with SFA (saturated oil-enriched Food, SOLF), a HF diet enriched with MUFA (unsaturated oil-enriched Food, UOLF), or a commercial HF diet for 8 weeks. Vascular function was analyzed in the thoracic aorta. Structural and mechanical parameters were assessed in mesenteric arteries by pressure myography. SOLF, UOLF, and HF diet reduced contractile responses to phenylephrine and induced endothelial dysfunction in the thoracic aorta. A significant increase in the β-index, and thus in arterial stiffness, was also detected in mesenteric arteries from the three HF groups, due to enhanced deposition of collagen in the vascular wall. SOLF also induced hypotrophic inward remodeling. In conclusion, these data demonstrate a deleterious effect of HF feeding on obesity-related vascular alterations that is exacerbated by SFA.
Collapse
|
27
|
|
28
|
Deng Y, Huang C, Su J, Pan CW, Ke C. Identification of biomarkers for essential hypertension based on metabolomics. Nutr Metab Cardiovasc Dis 2021; 31:382-395. [PMID: 33495028 DOI: 10.1016/j.numecd.2020.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023]
Abstract
AIM Essential hypertension (EH) is one of the most important public health problems worldwide. However, the pathogenesis of EH is unclear and early diagnostic methods are lacking. Metabolomics demonstrates great potential for biomarker discovery and the mechanistic exploration of metabolic diseases. DATA SYNTHESIS This review included human and animal metabolomics studies related to EH in the PubMed and Web of Science databases between February 1996 and May 2020. The study designs, EH standards, and reported metabolic biomarkers were systematically examined and compared. The pathway analysis was conducted through the online software MetaboAnalyst 4.0. Twenty-two human studies and fifteen animal studies were included in this systematic review. There were many frequently reported biomarkers with consistent trends (e.g., pyruvate, lactic acid, valine, and tryptophan) in human and animal studies, and thus had potential as biomarkers of EH. In addition, several shared metabolic pathways, including alanine, aspartate, and glutamate metabolism, aminoacyl-tRNA biosynthesis, and arginine biosynthesis, were identified in human and animal metabolomics studies. These biomarkers and pathways, closely related to insulin resistance, the inflammatory state, and impaired nitric oxide production, were demonstrated to contribute to EH development. CONCLUSIONS This study summarized valuable metabolic biomarkers and pathways that could offer opportunities for the early diagnosis or prediction of EH and the discovery of the metabolic mechanisms of EH.
Collapse
Affiliation(s)
- Yueting Deng
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Chen Huang
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Jingyue Su
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, PR China.
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, PR China.
| |
Collapse
|
29
|
Lee J, Yoo JH, Kim HS, Cho YK, Lee YL, Lee WJ, Park JY, Jung CH. C1q/TNF-related protein-9 attenuates palmitic acid-induced endothelial cell senescence via increasing autophagy. Mol Cell Endocrinol 2021; 521:111114. [PMID: 33301838 DOI: 10.1016/j.mce.2020.111114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is an important process in the pathogenesis of atherosclerosis. C1q/tumor necrosis factor-related protein 9 (CTRP9) is the closest adiponectin paralog. CTRP9 has anti-aging and anti-atherogenic effects, but its roles in autophagy and endothelial senescence are currently unknown. This study aimed to evaluate whether CTRP9 prevents palmitic acid (PA)-induced endothelial senescence by promoting autophagy. After no treatment or pre-treatment of human umbilical vein endothelial cells with CTRP9 prior to PA treatment, the level of senescence was measured by senescence associated acidic β-galactosidase staining and the level of hyperphosphorylated pRB protein. Autophagy was evaluated by LC3 conversion and the level of p62/SQSTM1, a protein degraded during autophagy. Autophagosome-lysosome fusion was detected by fluorescence microscopy. Pre-treatment with CTRP9 attenuated PA-induced endothelial senescence. CTRP9 increased the conversion of LC3-I to LC3-II and decreased p62 levels in a time- and dose-dependent manner. Although both CTRP9 and PA treatment increased LC3 conversion, treatment with PA increased the expression level of p62 and decreased the fusion of autophagosomes and lysosomes, which represented decreased autophagic flux. However, pre-treatment with CTRP9 recovered the autophagic flux inhibited by PA. AMP-activated kinase (AMPK) activation was involved in LC3 conversion and decreased p62 levels induced by CTRP9. CTRP9 inhibits PA-induced endothelial senescence by recovering autophagy and autophagic flux through AMPK activation.
Collapse
Affiliation(s)
- Jiwoo Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jee Hee Yoo
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Hwi Seung Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun Kyung Cho
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Yoo La Lee
- Asan Institute of Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Kwon YJ, Lee H, Nam CM, Chang HJ, Yoon YR, Lee HS, Lee JW. Effects of Orlistat/Phentermine versus Phentermine on Vascular Endothelial Cell Function in Obese and Overweight Adults: A Randomized, Double-Blinded, Placebo-Controlled Trial. Diabetes Metab Syndr Obes 2021; 14:941-950. [PMID: 33688228 PMCID: PMC7936679 DOI: 10.2147/dmso.s300342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In clinical practice, concomitant treatment of orlistat with phentermine is commonly used off-label. However, clinical trials have not been performed to evaluate whether their combination improves metabolic parameters and cardiovascular risk factors other than weight loss. Therefore, we aimed to compare the efficacy of concomitant administration of orlistat and phentermine versus phentermine alone on the endothelial cell function in overweight and obese adults with back pain. METHODS We conducted a 12-week, double-blinded, placebo-controlled clinical trial involving 114 patients with a body mass index of ≥30 (obese) or ≥27 (overweight) with weight-related comorbidities. We randomly assigned patients in a 1:1 ratio to receive orlistat (120mg) three times daily and phentermine (37.5mg) once daily, or a placebo three times daily and phentermine (37.5mg) once daily. Primary endpoint was changes in endothelium-dependent vasodilatation measured using ultrasound assessment of flow-mediated dilatation (FMD). Differences within groups after intervention were compared using the paired t-test or Wilcoxon signed-rank test. Differences in changes between the groups were calculated using an analysis of covariance after adjusting for each baseline value. RESULTS Mean weight loss during the 12-week study period was 6.1kg in the orlistat/phentermine group and in the placebo/phentermine group. Adjusted mean changes in total and non-high-density lipoprotein cholesterol were significantly greater in the orlistat/phentermine group than in the placebo/phentermine group. Adjusted mean changes in endothelium-dependent FMD were significantly greater in the orlistat/phentermine group than in the placebo/phentermine group (4.97±0.98% vs 2.05±0.99%, respectively; p=0.038). Changes in endothelium-independent nitroglycerin-mediated dilatation were not significantly different between the groups. CONCLUSION Orlistat/phentermine significantly improved the vascular endothelial cell function compared with phentermine alone. Orlistat might have beneficial effects on the decrease of the risk of cardiovascular disease, especially in overweight and obese patients with comorbidities. TRIAL REGISTRATION ClinicalTrails.gov number, NCT03675191.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Hyangkyu Lee
- Yonsei University College of Nursing, Mo-Im Kim Nursing Research Institute, Seoul, Republic of Korea
| | - Chung Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jae Chang
- Department of Internal Medicine, Division of Cardiology, Severance Cardiovascular Hosp, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Won Lee
- Department of Family Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
- Correspondence: Ji-Won Lee Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju‐ro, Gangnam‐gu, 06273, Seoul, 135-720, Republic of KoreaTel +82 2 2019 3480Fax +82 3462 8209 Email
| |
Collapse
|
31
|
Long B, Willis GC, Lentz S, Koyfman A, Gottlieb M. Evaluation and Management of the Critically Ill Adult With Diabetic Ketoacidosis. J Emerg Med 2020; 59:371-383. [DOI: 10.1016/j.jemermed.2020.06.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
|
32
|
Kim HS, Ren G, Kim T, Bhatnagar S, Yang Q, Bahk YY, Kim JA. Metformin reduces saturated fatty acid-induced lipid accumulation and inflammatory response by restoration of autophagic flux in endothelial cells. Sci Rep 2020; 10:13523. [PMID: 32782332 PMCID: PMC7419289 DOI: 10.1038/s41598-020-70347-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy, an integral part of the waste recycling process, plays an important role in cellular physiology and pathophysiology. Impaired autophagic flux causes ectopic lipid deposition, which is defined as the accumulation of lipids in non-adipose tissue. Ectopic lipid accumulation is observed in patients with cardiometabolic syndrome, including obesity, diabetes, insulin resistance, and cardiovascular complications. Metformin is the first line of treatment for type 2 diabetes, and one of the underlying mechanisms for the anti-diabetic effect of metformin is mediated by the stimulation of AMP-activated protein kinase (AMPK). Because the activation of AMPK is crucial for the initiation of autophagy, we hypothesize that metformin reduces the accumulation of lipid droplets by increasing autophagic flux in vascular endothelial cells. Incubation of vascular endothelial cells with saturated fatty acid (SFA) increased the accumulation of lipid droplets and impaired autophagic flux. We observed that the accumulation of lipid droplets was reduced, and the autophagic flux was enhanced by treatment with metformin. The knock-down of AMPKα by using siRNA blunted the effect of metformin. Furthermore, treatment with SFA or inhibition of autophagy increased leukocyte adhesion, whereas treatment with metformin decreased the SFA-induced leukocyte adhesion. The results suggest a novel mechanism by which metformin protects vascular endothelium from SFA-induced ectopic lipid accumulation and pro-inflammatory responses. In conclusion, improving autophagic flux may be a therapeutic strategy to protect endothelial function from dyslipidemia and diabetic complications.
Collapse
Affiliation(s)
- Hae-Suk Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Teayoun Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Qinglin Yang
- Department of Nutrition, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
33
|
Abstract
Diabetic ketoacidosis (DKA) is the most common acute hyperglycaemic emergency in people with diabetes mellitus. A diagnosis of DKA is confirmed when all of the three criteria are present - 'D', either elevated blood glucose levels or a family history of diabetes mellitus; 'K', the presence of high urinary or blood ketoacids; and 'A', a high anion gap metabolic acidosis. Early diagnosis and management are paramount to improve patient outcomes. The mainstays of treatment include restoration of circulating volume, insulin therapy, electrolyte replacement and treatment of any underlying precipitating event. Without optimal treatment, DKA remains a condition with appreciable, although largely preventable, morbidity and mortality. In this Primer, we discuss the epidemiology, pathogenesis, risk factors and diagnosis of DKA and provide practical recommendations for the management of DKA in adults and children.
Collapse
Affiliation(s)
- Ketan K Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Colney Lane, Norwich, Norfolk, UK.,Norwich Medical School, University of East Anglia, Norfolk, UK
| | - Nicole S Glaser
- Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Ethel Codner
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | | |
Collapse
|
34
|
Modeling Cardiovascular Risks of E-Cigarettes With Human-Induced Pluripotent Stem Cell-Derived Endothelial Cells. J Am Coll Cardiol 2020; 73:2722-2737. [PMID: 31146818 DOI: 10.1016/j.jacc.2019.03.476] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Electronic cigarettes (e-cigarettes) have experienced a tremendous increase in use. Unlike cigarette smoking, the effects of e-cigarettes and their constituents on mediating vascular health remain understudied. However, given their increasing popularity, it is imperative to evaluate the health risks of e-cigarettes, including the effects of their ingredients, especially nicotine and flavorings. OBJECTIVES The purpose of this study was to investigate the effects of flavored e-cigarette liquids (e-liquids) and serum isolated from e-cigarette users on endothelial health and endothelial cell-dependent macrophage activation. METHODS Human-induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) and a high-throughput screening approach were used to assess endothelial integrity following exposure to 6 different e-liquids with varying nicotine concentrations and to serum from e-cigarette users. RESULTS The cytotoxicity of the e-liquids varied considerably, with the cinnamon-flavored product being most potent and leading to significantly decreased cell viability, increased reactive oxygen species (ROS) levels, caspase 3/7 activity, and low-density lipoprotein uptake, activation of oxidative stress-related pathway, and impaired tube formation and migration, confirming endothelial dysfunction. Upon exposure of ECs to e-liquid, conditioned media induced macrophage polarization into a pro-inflammatory state, eliciting the production of interleukin-1β and -6, leading to increased ROS. After exposure of human iPSC-ECs to serum of e-cigarette users, increased ROS linked to endothelial dysfunction was observed, as indicated by impaired pro-angiogenic properties. There was also an observed increase in inflammatory cytokine expression in the serum of e-cigarette users. CONCLUSIONS Acute exposure to flavored e-liquids or e-cigarette use exacerbates endothelial dysfunction, which often precedes cardiovascular diseases.
Collapse
|
35
|
Lin F, Yang Y, Wei S, Huang X, Peng Z, Ke X, Zeng Z, Song Y. Hydrogen Sulfide Protects Against High Glucose-Induced Human Umbilical Vein Endothelial Cell Injury Through Activating PI3K/Akt/eNOS Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:621-633. [PMID: 32103904 PMCID: PMC7027865 DOI: 10.2147/dddt.s242521] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
Abstract
Purpose Dysfunction of endothelial cells plays a key role in the pathogenesis of diabetic atherosclerosis. High glucose (HG) has been found as a key factor in the progression of diabetic complications, including atherosclerosis. PI3K/Akt/eNOS signaling pathway has been shown to involve in HG-induced vascular injuries. Hydrogen sulfide (H2S) has been found to exhibit protective effects on HG-induced vascular injuries. Moreover, H2S activates PI3K/Akt/eNOS pathway in endothelial cells. Thus, the present study aimed to determine if H2S exerts protective effects against HG-induced injuries of human umbilical vein endothelial cells (HUVECs) via activating PI3K/Akt/eNOS signaling. Materials and Methods The endothelial protective effects of H2S were evaluated and compared to the controlled groups. Cell viability, cell migration and tube formation were determined by in vitro functional assays; protein levels were evaluated by Western blot assay and ELISA; cell apoptosis was determined by Hoechst 33258 nuclear staining; Reactive oxygen species (ROS) production was evaluated by the ROS detection kit. Results HG treatment significantly inhibited PI3K/Akt/eNOS signaling in HUVECs, which was partially reversed by the H2S treatment. HG treatment inhibited cell viability of HUVECs, which were markedly prevented by H2S or PI3K agonist Y-P 740. HG treatment also induced HUVEC cell apoptosis by increasing the protein levels of cleaved caspase 3, Bax and Bcl-2, which were significantly attenuated by H2S or 740 Y-P. ROS production and gp91phox protein level were increased by HG treatment in HUVECs and this effect can be blocked by the treatment with H2S or Y-P 740. Moreover, HG treatment increased the protein levels of pro-inflammatory cytokines, caspase-1 and phosphorylated JNK, which was significantly attenuated by H2S or Y-P 740. Importantly, the cytoprotective effect of H2S against HG-induced injury was inhibited by LY294002 (an inhibitor of PI3K/Akt/eNOS signaling pathway). Conclusion The present study demonstrated that exogenous H2S protects endothelial cells against HG-induced injuries by activating PI3K/Akt/eNOS pathway. Based on the above findings, we proposed that reduced endogenous H2S levels and the subsequent PI3K/Akt/eNOS signaling impairment may be the important pathophysiological mechanism underlying hyperglycemia-induced vascular injuries.
Collapse
Affiliation(s)
- Fengxia Lin
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Yiying Yang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Shanyin Wei
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Xiaojing Huang
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Zhijian Peng
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen 518057, People's Republic of China
| | - Zhicong Zeng
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| |
Collapse
|
36
|
Dick BP, McMahan R, Knowles T, Becker L, Gharib SA, Vaisar T, Wietecha T, O'Brien KD, Bornfeldt KE, Chait A, Kim F. Hematopoietic Cell-Expressed Endothelial Nitric Oxide Protects the Liver From Insulin Resistance. Arterioscler Thromb Vasc Biol 2020; 40:670-681. [PMID: 31996027 DOI: 10.1161/atvbaha.119.313648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Mice genetically deficient in endothelial nitric oxide synthase (Nos3-/-) have fasting hyperinsulinemia and hepatic insulin resistance, indicating the importance of Nos3 (nitric oxide synthase) in maintaining metabolic homeostasis. Although the current paradigm holds that these metabolic effects are derived specifically from the expression of Nos3 in the endothelium, it has been established that bone marrow-derived cells also express Nos3. The aim of this study was to investigate whether bone marrow-derived cell Nos3 is important in maintaining metabolic homeostasis. Approach and Results: To test the hypothesis that bone marrow-derived cell Nos3 contributes to metabolic homeostasis, we generated chimeric male mice deficient or competent for Nos3 expression in circulating blood cells. These mice were placed on a low-fat diet for 5 weeks, a time period which is known to induce hepatic insulin resistance in global Nos3-deficient mice but not in wild-type C57Bl/6 mice. Surprisingly, we found that the absence of Nos3 in the bone marrow-derived component is associated with hepatic insulin resistance and that restoration of Nos3 in the bone marrow-derived component in global Nos3-deficient mice is sufficient to restore hepatic insulin sensitivity. Furthermore, we found that overexpression of Nos3 in bone marrow-derived component in wild-type mice attenuates the development of hepatic insulin resistance during high-fat feeding. Finally, compared with wild-type macrophages, the loss of macrophage Nos3 is associated with increased inflammatory responses to lipopolysaccharides and reduced anti-inflammatory responses to IL-4, a macrophage phenotype associated with the development of hepatic and systemic insulin resistance. CONCLUSIONS These results would suggest that the metabolic and hepatic consequences of high-fat feeding are mediated by loss of Nos3/nitric oxide actions in bone marrow-derived cells, not in endothelial cells.
Collapse
Affiliation(s)
- Brian P Dick
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Ryan McMahan
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Taft Knowles
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Lev Becker
- Ben May Department for Cancer Research, University of Chicago, IL (L.B.)
| | - Sina A Gharib
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Tomas Vaisar
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Tomasz Wietecha
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Kevin D O'Brien
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Karin E Bornfeldt
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Alan Chait
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Francis Kim
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| |
Collapse
|
37
|
Široká M, Franco C, Guľašová Z, Hertelyová Z, Tomečková V, Rodella LF, Rezzani R. Nuclear factor-kB and nitric oxide synthases in red blood cells: good or bad in obesity? A preliminary study. Eur J Histochem 2020; 64. [PMID: 31988533 PMCID: PMC7003140 DOI: 10.4081/ejh.2020.3081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that red blood cells (RBCs) are involved in many functions essential for life. Nuclear factor-kB (NF-kB), nitric oxide synthases (inducible nitric oxide synthase -iNOS-, endothelial nitric oxide synthase -eNOS-) and interleukin-1β (-IL-1β-) are all proteins that have been identified in RBCs. In nucleated cells, such as white blood cells (WBCs), these proteins have well investigated roles, linked to stress and inflammation. It is not the same in erythrocytes, for this reason, we considered obese patients for studying the morphology of RBCs. We studied a possible correlation between their morphological changes and several protein expressions. Moreover, we compared the results about the aforementioned proteins and antioxidant markers with those obtained in WBCs from healthy and obese patients before and after omega-3 polyunsaturated fatty acid supplementation. This latter scientific point is important in order to determine whether there are differences in the expression of nucleated and anucleated cells. The morphology of RBCs changed in obese patients, but it is significantly restored after six weeks of supplementation. The expression of antioxidant enzymes changed in RBCs and WBCs in obesity but all proteins restore their positivity after supplementation. We found that: the presence of NF-kB, antioxidant enzymes and eNOS in healthy RBCs could indicate a role of these proteins as regulators of cellular metabolism; obese WBCs showed a higher NF-kB, iNOS and IL-1β positivity, whereas eNOS presence did not significantly change in these cells. We tried to explain the different positivity of NF-kB, proposing a dual role for this protein, as prolifespan and as proinflammatory processes, depending on examined cells. In conclusion, we have considered the literature that focuses on the omega-6/omega-3 ratio. The ratio changed from the past, especially in people whose diet is strongly westernized worsening the state of health of the patient and leading to an higher incidence of obesity. Our study hypothesizes that the supplementation could help to restore the correct ratio.
Collapse
Affiliation(s)
- Monika Široká
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, P.J. Šafárik University, Košice.
| | | | | | | | | | | | | |
Collapse
|
38
|
Moran M, Cheng X, Shihabudeen Haider Ali MS, Wase N, Nguyen N, Yang W, Zhang C, DiRusso C, Sun X. Transcriptome analysis-identified long noncoding RNA CRNDE in maintaining endothelial cell proliferation, migration, and tube formation. Sci Rep 2019; 9:19548. [PMID: 31863035 PMCID: PMC6925215 DOI: 10.1038/s41598-019-56030-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is a leading risk factor for type-2 diabetes. Diabetes often leads to the dysregulation of angiogenesis, although the mechanism is not fully understood. Previously, long noncoding RNAs (lncRNAs) have been found to modulate angiogenesis. In this study, we asked how the expression levels of lncRNAs change in endothelial cells in response to excessive palmitic acid treatment, an obesity-like condition. Bioinformatics analysis revealed that 305 protein-coding transcripts were upregulated and 70 were downregulated, while 64 lncRNAs were upregulated and 46 were downregulated. Gene ontology and pathway analysis identified endoplasmic reticulum stress, HIF-1 signaling, and Toll-like receptor signaling as enriched after palmitic acid treatment. Moreover, we newly report enrichment of AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling, and cysteine and methionine metabolism by palmitic acid. One lncRNA, Colorectal Neoplasia Differentially Expressed (CRNDE), was selected for further investigation. Palmitic acid induces CRNDE expression by 1.9-fold. We observed that CRNDE knockdown decreases endothelial cell proliferation, migration, and capillary tube formation. These decreases are synergistic under palmitic acid stress. These data demonstrated that lncRNA CRNDE is a regulator of endothelial cell proliferation, migration, and tube formation in response to palmitic acid, and a potential target for therapies treating the complications of obesity-induced diabetes.
Collapse
Affiliation(s)
- Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | | | - Nishikant Wase
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Nghi Nguyen
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Weilong Yang
- Center for Plant Science Innovation, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Chi Zhang
- Center for Plant Science Innovation, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Concetta DiRusso
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA. .,Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
39
|
Valsdottir TD, Henriksen C, Odden N, Nellemann B, Jeppesen PB, Hisdal J, Westerberg AC, Jensen J. Effect of a Low-Carbohydrate High-Fat Diet and a Single Bout of Exercise on Glucose Tolerance, Lipid Profile and Endothelial Function in Normal Weight Young Healthy Females. Front Physiol 2019; 10:1499. [PMID: 31920704 PMCID: PMC6931312 DOI: 10.3389/fphys.2019.01499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Low-carbohydrate-high-fat (LCHF) diets are efficient for weight loss, and are also used by healthy people to maintain bodyweight. The main aim of this study was to investigate the effect of 3-week energy-balanced LCHF-diet, with >75 percentage energy (E%) from fat, on glucose tolerance and lipid profile in normal weight, young, healthy women. The second aim of the study was to investigate if a bout of exercise would prevent any negative effect of LCHF-diet on glucose tolerance. Seventeen females participated, age 23.5 ± 0.5 years; body mass index 21.0 ± 0.4 kg/m2, with a mean dietary intake of 78 ± 1 E% fat, 19 ± 1 E% protein and 3 ± 0 E% carbohydrates. Measurements were performed at baseline and post-intervention. Fasting glucose decreased from 4.7 ± 0.1 to 4.4 mmol/L (p < 0.001) during the dietary intervention whereas fasting insulin was unaffected. Glucose area under the curve (AUC) and insulin AUC did not change during an OGTT after the intervention. Before the intervention, a bout of aerobic exercise reduced fasting glucose (4.4 ± 0.1 mmol/L, p < 0.001) and glucose AUC (739 ± 41 to 661 ± 25, p = 0.008) during OGTT the following morning. After the intervention, exercise did not reduce fasting glucose the following morning, and glucose AUC during an OGTT increased compared to the day before (789 ± 43 to 889 ± 40 mmol/L∙120min–1, p = 0.001). AUC for insulin was unaffected. The dietary intervention increased total cholesterol (p < 0.001), low-density lipoprotein (p ≤ 0.001), high-density lipoprotein (p = 0.011), triglycerides (p = 0.035), and free fatty acids (p = 0.021). In conclusion, 3-week LCHF-diet reduced fasting glucose, while glucose tolerance was unaffected. A bout of exercise post-intervention did not decrease AUC glucose as it did at baseline. Total cholesterol increased, mainly due to increments in low-density lipoprotein. LCHF-diets should be further evaluated and carefully considered for healthy individuals.
Collapse
Affiliation(s)
- Thorhildur Ditta Valsdottir
- Department of Medicine, Atlantis Medical University College, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nancy Odden
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonny Hisdal
- Oslo Vascular Center, Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| | - Ane C Westerberg
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway.,Institute of Health Sciences, Kristiania University College, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
40
|
Yuan S, Bäck M, Bruzelius M, Mason AM, Burgess S, Larsson S. Plasma Phospholipid Fatty Acids, FADS1 and Risk of 15 Cardiovascular Diseases: A Mendelian Randomisation Study. Nutrients 2019; 11:E3001. [PMID: 31817859 PMCID: PMC6950527 DOI: 10.3390/nu11123001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Whether circulating fatty acids (FAs) play a causal role in the development of cardiovascular disease (CVD) remains unclear. We conducted a Mendelian randomisation study to explore the associations between plasma phospholipid FA levels and 15 CVDs. Summary-level data from the CARDIoGRAMplusC4D, MEGASTROKE, and Atrial Fibrillation consortia and UK Biobank were used. Sixteen single-nucleotide polymorphisms (SNPs) associated with ten plasma FAs were used as instrumental variables. SNPs in or close to the FADS1 gene were associated with most FAs. We performed a secondary analysis of the association between a functional variant (rs174547) in FADS1, which encodes ?5-desaturase (a key enzyme in the endogenous FA synthesis), and CVD. Genetic predisposition to higher plasma α-linolenic, linoleic, and oleic acid levels was associated with lower odds of large-artery stroke and venous thromboembolism, whereas higher arachidonic and stearic acid levels were associated with higher odds of these two CVDs. The associations were driven by SNPs in or close to FADS1. In the secondary analysis, the minor allele of rs174547 in FADS1 was associated with significantly lower odds of any ischemic stroke, large-artery stroke, and venous thromboembolism and showed suggestive evidence of inverse association with coronary artery disease, abdominal aortic aneurysm and aortic valve stenosis. Genetically higher plasma α-linolenic, linoleic, and oleic acid levels are inversely associated with large-artery stroke and venous thromboembolism, whereas arachidonic and stearic acid levels are positively associated with these CVDs. The associations were driven by FADS1, which was also associated with other CVDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
- Department of Surgical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Magnus Bäck
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden;
- Heart and Vascular Theme—Division of Valvular and Coronary Disease, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Maria Bruzelius
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden;
- Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Amy M. Mason
- Department of Public Health and Primary Care, University of Cambridge, CB1 8RN Cambridge, UK; (A.M.M.); (S.B.)
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, CB1 8RN Cambridge, UK; (A.M.M.); (S.B.)
- MRC Biostatistics Unit, University of Cambridge, CB2 0SR Cambridge, UK
| | - Susanna Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
- Department of Surgical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
41
|
Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, Ho HK, Leong DT. Nanoparticles' interactions with vasculature in diseases. Chem Soc Rev 2019; 48:5381-5407. [PMID: 31495856 DOI: 10.1039/c9cs00309f] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever-growing use of inorganic nanoparticles (NPs) in biomedicine provides an exciting approach to develop novel imaging and drug delivery systems, owing to the ease with which these NPs can be functionalized to cater to various applications. In cancer therapeutics, nanomedicine generally relies on the enhanced permeability and retention (EPR) effect observed in tumour vasculature to deliver anti-cancer drugs across the endothelium. However, such a phenomenon is dependent on the tumour microenvironment and is not consistently observed in all tumour types, thereby limiting drug transport to the tumour site. On the other hand, there is a rise in utilizing inorganic NPs to intentionally induce endothelial leakiness, creating a window of opportunity to control drug delivery across the endothelium. While this active targeting approach creates a similar phenomenon compared to the EPR effect arising from tumour tissues, its drug delivery applications extend beyond cancer therapeutics and into other vascular-related diseases. In this review, we summarize the current findings of the EPR effect and assess its limitations in the context of anti-cancer drug delivery systems. While the EPR effect offers a possible route for drug passage, we further explore alternative uses of NPs to create controllable endothelial leakiness within short exposures, a phenomenon we coined as nanomaterial-induced endothelial leakiness (NanoEL). Furthermore, we discuss the main mechanistic features of the NanoEL effect that make it unique from conventionally established endothelial leakiness in homeostatic and pathologic conditions, as well as examine its potential applicability in vascular-related diseases, particularly cancer. Therefore, this new paradigm changes the way inorganic NPs are currently being used for biomedical applications.
Collapse
Affiliation(s)
- Jie Kai Tee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Xing JH, Li R, Gao YQ, Wang MY, Liu YZ, Hong J, Dong JZ, Gu HP, Li L. NLRP3 inflammasome mediate palmitate-induced endothelial dysfunction. Life Sci 2019; 239:116882. [PMID: 31705915 DOI: 10.1016/j.lfs.2019.116882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
AIMS Free fatty acids (FFA) is a key contributor to insulin resistance and endothelial dysfunction. However, the precise mechanism underlying the role of FFA remains elusive. This study aimed to investigate the role of NLRP3 (NOD-like receptor pyrin domain containing-3) inflammasome in FFA induced endothelial dysfunction. MAIN METHODS HUVECs were transfected with NLRP3 siRNA and then stimulated with LPS and palmitate. C57 BL/6 J mice transfected with NLRP3 Lenti-Virus were fed with a high-fat diet (HFD). The levels of NLRP3 inflammasome, AMPKα (AMP-activated protein kinase), endothelial nitric oxide synthase (eNOS) and the activity of the insulin signal pathway, in endothelial cells were determined via Western blotting. Endothelial function was determined by measuring the level of endothelium-dependent vasodilatation. KEY FINDINGS FFA could activate NLRP3 inflammasome and induce IL-1β release both in vitro. and in vivo. Using siRNA and Lenti-Virus to inhibit NLRP3 abolished palmitate-induced IL-1β release and restored impaired phosphorylation of IRS-1 (Tyr), Akt (Ser473) and eNOS (Ser1177) and ACh-mediated endothelium-dependent vasorelaxation induced by palmitate. AMPKα activator AICAR(5-aminoimidazole-4-carbox-amide-1-β-d-ribofuranoside) inhibited NLRP3 inflammasome activation and decreased IL-1β release and restored impaired insulin signal pathway induced by palmitate. SIGNIFICANCE NLRP3 inflammasome activation via AMPKα inactivation mediated palmitate-induced endothelial dysfunction through involves IL-1β-induced insulin signal pathway.
Collapse
Affiliation(s)
- Jun-Hui Xing
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rui Li
- Department of Health Care, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
| | - Yue-Qiao Gao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Yu Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu-Zhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Hong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Zeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - He-Ping Gu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
43
|
Aday AW, Goldfine AB, Gregory JM, Beckman JA. Impact of Acipimox Therapy on Free Fatty Acid Efflux and Endothelial Function in the Metabolic Syndrome: A Randomized Trial. Obesity (Silver Spring) 2019; 27:1812-1819. [PMID: 31571412 PMCID: PMC6832806 DOI: 10.1002/oby.22602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Insulin resistance is associated with increased lipolysis and elevated concentrations of free fatty acids (FFA), which in turn contribute to impaired vascular function. It was hypothesized that lowering FFA with acipimox, a nicotinic acid derivative that impairs FFA efflux, would improve endothelial function, measured by flow-mediated dilation (FMD), in individuals with metabolic syndrome. METHODS A total of 18 participants with metabolic syndrome and 17 healthy controls were enrolled and treated with acipimox 250 mg orally every 6 hours or placebo for 7 days in a randomized, double-blind, crossover trial. RESULTS Acipimox reduced FFA concentrations among individuals with metabolic syndrome to near normal levels (P = 0.01), but there was no change among healthy controls (P = 0.17). Acipimox did not improve endothelial-dependent FMD in either group (metabolic syndrome: P = 0.42; healthy controls: P = 0.16), although endothelial-independent nitroglycerin-mediated dilation among those with metabolic syndrome tended to increase (20.3%, P = 0.06). There were no changes in blood lipids or markers of inflammation following therapy. There was minimal correlation between change in FMD and baseline measures of BMI ( ρ = -0.09) or waist circumference ( ρ = -0.15). CONCLUSIONS In groups with normal or elevated baseline FFA, short-term reductions do not improve endothelial function assessed by FMD.
Collapse
Affiliation(s)
- Aaron W. Aday
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Correspondence: Dr. Aaron W. Aday, Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2525 West End Ave. Suit 300, Nashville, TN 37203, Phone: (615) 875-8788, Fax: (615) 322-3837,
| | - Allison B. Goldfine
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Justin M. Gregory
- Ian M. Burr Division of Pediatric Endocrinology and Diabetes, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Joshua A. Beckman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
44
|
Buso G, Depairon M, Tomson D, Raffoul W, Vettor R, Mazzolai L. Lipedema: A Call to Action! Obesity (Silver Spring) 2019; 27:1567-1576. [PMID: 31544340 PMCID: PMC6790573 DOI: 10.1002/oby.22597] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/30/2019] [Indexed: 01/31/2023]
Abstract
Lipedema is a chronic progressive disease characterized by abnormal fat distribution resulting in disproportionate, painful limbs. It almost exclusively affects women, leading to considerable disability, daily functioning impairment, and psychosocial distress. Literature shows both scarce and conflicting data regarding its prevalence. Lipedema has been considered a rare entity by several authors, though it may be a far more frequent condition than thought. Despite the clinical impact on women's health, lipedema is in fact mostly unknown, underdiagnosed, and too often misdiagnosed with other similarly presenting diseases. Polygenic susceptibility combined with hormonal, microvascular, and lymphatic disorders may be partly responsible for its development. Furthermore, consistent information on lipedema pathophysiology is still lacking, and an etiological treatment is not yet available. Weight loss measures exhibit minimal effect on the abnormal body fat distribution, resulting in eating disorders, increased obesity risk, depression, and other psychological complaints. Surgical techniques, such as liposuction and excisional lipectomy, represent therapeutic options in selected cases. This review aims to outline current evidence regarding lipedema epidemiology, pathophysiology, clinical presentation, differential diagnosis, and management. Increased awareness and a better understanding of its clinical presentation and pathophysiology are warranted to enable clinicians to diagnose and treat affected patients at an earlier stage.
Collapse
Affiliation(s)
- Giacomo Buso
- Angiology Division, Heart and Vessel DepartmentLausanne University HospitalLausanneSwitzerland
| | - Michele Depairon
- Angiology Division, Heart and Vessel DepartmentLausanne University HospitalLausanneSwitzerland
| | - Didier Tomson
- Angiology Division, Heart and Vessel DepartmentLausanne University HospitalLausanneSwitzerland
| | - Wassim Raffoul
- Plastic Surgery Division, Locomotor System DepartmentLausanne University HospitalLausanneSwitzerland
| | - Roberto Vettor
- Department of Medicine, Center for the Study and the Integrated Management of Obesity (EASO COM)Padova University HospitalPadovaItaly
| | - Lucia Mazzolai
- Angiology Division, Heart and Vessel DepartmentLausanne University HospitalLausanneSwitzerland
| |
Collapse
|
45
|
Gorzelak-Pabiś P, Wozniak E, Wojdan K, Chalubinski M, Broncel M. Single Triglyceride-Rich Meal Destabilizes Barrier Functions and Initiates Inflammatory Processes of Endothelial Cells. J Interferon Cytokine Res 2019; 40:43-53. [PMID: 31460824 DOI: 10.1089/jir.2018.0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Postprandial hypertriglyceridemia is an independent risk factor for cardiovascular disease. The aim of this study was to assess the effects of a single fat-rich meal on barrier functions and inflammatory status on human umbilical vascular endothelial cells (HUVECs), furthermore we assess the effects of mixture of palmitic acid and 25-hydroxycholesterol (PA +25OHCH) on integrity of endothelial cells and their inflammatory properties. HUVECs were induced with serum of healthy volunteers taken before, and 3 h after, the consumption of a meal with a standardized daily required dose of fats. In addition, endothelial cells were induced with PA +25OHCH (800 μM/L+10 μg/mL). Total cholesterol, triglycerides (TGs), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, high sensitivity c-reactive protein, and glucose were measured at fasting and postprandially. HUVEC integrity was measured in the RTCA-DP xCELLigence system. mRNA expression of interleukin (IL)-33, IL-32, intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), CX3C-chemokine, vascular endothelial growth factor (VEGF) occludin, and VE-cadherin was analyzed by real-time polymerase chain reaction. Viability and apoptosis were assessed in flow cytometry. The level of VEGF and IL-33 in fasting and postprandial serum was assessed by enzyme-linked immunosorbent assay (ELISA). Three hours after consumption of a fatty meal, all patients displayed increased levels of TGs and Toll-like receptors (110 ± 37 mg/dL versus 182 ± 64 mg/dL P < 0.05) (24 ± 11 mg/dL versus 42 ± 14 mg/dL P < 0.05). Postprandial serum and PA +25OHCH caused >20% decrease of HUVEC integrity than fasting serum (P < 0.001). HUVEC disintegration was accompanied by a decrease of occludin mRNA expression as compared with fasting serum (P < 0.05). The fatty meal affected neither VE-cadherin mRNA expression nor its apoptosis (P > 0.05). Mixture of PA +25OHCH caused decrease of VE-cadherin mRNA expression as compared with fasting serum (P < 0.01). PA +25OHCH did not affect HUVEC apoptosis (P > 0.05). Postprandial serum and PA +25OHCH caused increase of IL-33, MCP-1, ICAM-1, IL-32, VEGF, and CX3C-chemokine mRNA expression as compared with fasting serum (P < 0.05). Moreover, level of VEGF in fatty serum was significantly higher (P < 0.001). Postprandial lipemia after a single fatty meal may destabilize the endothelial barrier and initiate inflammatory processes.
Collapse
Affiliation(s)
- Paulina Gorzelak-Pabiś
- The Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Wozniak
- The Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Wojdan
- The Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Maciej Chalubinski
- The Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Marlena Broncel
- The Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
46
|
Toral M, Robles-Vera I, Romero M, de la Visitación N, Sánchez M, O'Valle F, Rodriguez-Nogales A, Gálvez J, Duarte J, Jiménez R. Lactobacillus fermentum CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus. FASEB J 2019; 33:10005-10018. [PMID: 31173526 DOI: 10.1096/fj.201900545rr] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of the present study was to examine whether the immune-modulatory bacteria Lactobacillus fermentum CECT5716 (LC40) ameliorates disease activity and cardiovascular complications in a female mouse model of lupus. Eighteen-week-old NZBWF1 [systemic lupus erythematosus (SLE)] and NZW/LacJ (control) mice were treated with vehicle or LC40 (5 × 108 colony-forming units/d) for 15 wk. LC40 treatment reduced lupus disease activity, blood pressure, cardiac and renal hypertrophy, and splenomegaly in SLE mice. LC40 reduced the elevated T, B, regulatory T cells (Treg), and T helper (Th)-1 cells in mesenteric lymph nodes of lupus mice. LC40 lowered the higher plasma concentration of proinflammatory cytokines observed in lupus mice. Aortas from SLE mice showed reduced endothelium-dependent vasodilator responses to acetylcholine. Endothelial dysfunction found in SLE is related to an increase of both NADPH oxidase-driven superoxide production and eNOS phosphorylation at the inhibitory Thr495. These activities returned to normal values after a treatment with LC40. Probiotic administration to SLE mice reduced plasma LPS levels, which might be related to an improvement of the gut barrier integrity. LC40 treatment increases the Bifidobacterium count in gut microbiota of SLE mice. In conclusion, our findings identify the gut microbiota manipulation with LC40 as an alternative approach to the prevention of SLE and its associated vascular damage.-Toral, M., Robles-Vera, I., Romero, M., de la Visitación, N., Sánchez, M., O'Valle, F., Rodriguez-Nogales, A., Gálvez, J., Duarte, J., Jiménez, R. Lactobacillus fermentum CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | | | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Francisco O'Valle
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain.,Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - Alba Rodriguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBER-EHD), University of Granada, Granada, Spain.,Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain.,Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Granada, Spain
| |
Collapse
|
47
|
Shi X, Wang S, Luan H, Tuerhong D, Lin Y, Liang J, Xiong Y, Rui L, Wu F. Clinopodium chinense Attenuates Palmitic Acid-Induced Vascular Endothelial Inflammation and Insulin Resistance through TLR4-Mediated NF- κ B and MAPK Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:97-117. [PMID: 30776912 DOI: 10.1142/s0192415x19500058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elevated palmitic acid (PA) levels are associated with the development of inflammation, insulin resistance (IR) and endothelial dysfunction. Clinopodium chinense (Benth.) O. Kuntze has been shown to lower blood glucose and attenuate high glucose-induced vascular endothelial cells injury. In the present study we investigated the effects of ethyl acetate extract of C. chinense (CCE) on PA-induced inflammation and IR in the vascular endothelium and its molecular mechanism. We found that CCE significantly inhibited PA-induced toll-like receptor 4 (TLR4) expression in human umbilical vein endothelial cells (HUVECs). Consequently, this led to the inhibition of the following downstream adapted proteins myeloid differentiation primary response gene 88, Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon- β and TNF receptor-associated factor 6. Moreover, CCE inhibited the phosphorylation of Ikappa B kinase β , nuclear factor kappa-B (NF- κ B), c-Jun N-terminal kinase, extracellular regulated protein kinases, p38-mitogen-activated protein kinase (MAPK) and subsequently suppressed the release of tumor necrosis factor- α , interleukin-1 β (IL-1 β ) and IL-6. CCE also inhibited IRS-1 serine phosphorylation and ameliorated insulin-mediated tyrosine phosphorylation of IRS-1. Moreover, CCE restored serine/threonine kinase and endothelial nitric oxide synthase (eNOS) activation and thus increased insulin-mediated nitric oxide (NO) production in PA-treated HUVECs. This led to reverse insulin mediated endothelium-dependent relaxation, eNOS phosphorylation and NO production in PA-treated rat thoracic aortas. These results suggest that CCE can significantly inhibit the inflammatory response and alleviate impaired insulin signaling in the vascular endothelium by suppressing TLR4-mediated NF- κ B and MAPK pathways. Therefore, CCE can be considered as a potential therapeutic candidate for endothelial dysfunction associated with IR and diabetes.
Collapse
Affiliation(s)
- Xiaoji Shi
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Shanshan Wang
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Huiling Luan
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Dina Tuerhong
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yining Lin
- † Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jingyu Liang
- ‡ Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yi Xiong
- § Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Liangyou Rui
- § Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Feihua Wu
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,§ Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
48
|
Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW, Sun X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res 2019; 47:1505-1522. [PMID: 30476192 PMCID: PMC6379667 DOI: 10.1093/nar/gky1190] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023] Open
Abstract
The role of long non-coding RNAs (lncRNAs) in regulating endothelial function through the DNA damage response (DDR) remains poorly understood. In this study, we demonstrate that lncRNA maternally expressed gene 3 (Meg3) interacts with the RNA binding protein polypyrimidine tract binding protein 3 (PTBP3) to regulate gene expression and endothelial function through p53 signaling ─ a major coordinator of apoptosis and cell proliferation triggered by the DDR. Meg3 expression is induced in endothelial cells (ECs) upon p53 activation. Meg3 silencing induces DNA damage, activates p53 signaling, increases the expression of p53 target genes, promotes EC apoptosis, and inhibits EC proliferation. Mechanistically, Meg3 silencing reduces the interaction of p53 with Mdm2, induces p53 expression, and promotes the association of p53 with the promoters of a subset of p53 target genes. PTBP3 silencing recapitulates the effects of Meg3 deficiency on the expression of p53 target genes, EC apoptosis and proliferation. The Meg3-dependent association of PTBP3 with the promoters of p53 target genes suggests that Meg3 and PTBP3 restrain p53 activation. Our studies reveal a novel role of Meg3 and PTBP3 in regulating p53 signaling and endothelial function, which may serve as novel targets for therapies to restore endothelial homeostasis.
Collapse
Affiliation(s)
| | - Xiao Cheng
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
49
|
Abstract
The effects of diosgenin are discussed with respect to endothelial dysfunction, lipid profile, macrophage foam cell formation, VSMC viability, thrombosis and inflammation during the formation of atherosclerosis.
Collapse
Affiliation(s)
- Fang-Chun Wu
- College of Food and Bioengineering
- South China University of Technology
- Guangzhou
- China
| | - Jian-Guo Jiang
- College of Food and Bioengineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
50
|
Widlansky ME, Hill RB. Mitochondrial regulation of diabetic vascular disease: an emerging opportunity. Transl Res 2018; 202:83-98. [PMID: 30144425 PMCID: PMC6218302 DOI: 10.1016/j.trsl.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-related vascular complication rates remain unacceptably high despite guideline-based medical therapies that are significantly more effective in individuals without diabetes. This critical gap represents an opportunity for researchers and clinicians to collaborate on targeting mechanisms and pathways that specifically contribute to vascular pathology in patients with diabetes mellitus. Dysfunctional mitochondria producing excessive mitochondrial reactive oxygen species (mtROS) play a proximal cell-signaling role in the development of vascular endothelial dysfunction in the setting of diabetes. Targeting the mechanisms of production of mtROS or mtROS themselves represents an attractive method to reduce the prevalence and severity of diabetic vascular disease. This review focuses on the role of mitochondria in the development of diabetic vascular disease and current developments in methods to improve mitochondrial health to improve vascular outcomes in patients with DM.
Collapse
Affiliation(s)
- Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - R Blake Hill
- Department of Biochemisty, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|