1
|
Ma Q, Zhu Y, Zhang D, Su X, Jiang C, Zhang Y, Zhang X, Han N, Shu G, Yin G, Wang M. Reprogramming and targeting of cholesterol metabolism in tumor-associated macrophages. J Mater Chem B 2025. [PMID: 40266660 DOI: 10.1039/d5tb00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Cholesterol, as a major component of cell membranes, is closely related to the metabolic regulation of cells and organisms; tumor-associated macrophages play an important push role in tumor progression. We know that tumor-associated macrophages are polarized from macrophages, and the abnormalities of cholesterol metabolism that may be induced during their polarization are worth discussing. This manuscript focuses on metabolic abnormalities in tumor-associated macrophages, and first provides a basic summary of the regulatory mechanisms of abnormal macrophage polarization. Subsequently, it comprehensively describes the features of abnormal glucose, lipid and cholesterol metabolism in TAMs as well as the different regulatory pathways. Then, the paper also discusses the link between abnormal cholesterol metabolism in TAMs and tumors, chronic diseases and aging. Finally, the paper summarizes cancer therapeutic strategies targeting cholesterol metabolism that are already in clinical trials, as well as nanomaterials capable of targeting cholesterol metabolism that are in the research stage, in the hope of providing value for the design of targeting materials. Overall, elucidating metabolic abnormalities in tumor-associated macrophages, particularly cholesterol metabolism, could provide assistance in tumor therapy and the design of targeted drugs.
Collapse
Affiliation(s)
- Qiaoluo Ma
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Ying Zhu
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Dongya Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Xiaohan Su
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Can Jiang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Yuzhu Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Xingting Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Na Han
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
3
|
Zeng GG, Lei Q, Jiang WL, Zhang XX, Nie L, Gong X, Zheng K. A new perspective on the current and future development potential of ABCG1. Curr Probl Cardiol 2024; 49:102161. [PMID: 37875209 DOI: 10.1016/j.cpcardiol.2023.102161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
ABCG1 is an essential protein involved in the efflux of intracellular cholesterol to the extracellular space, thus playing a critical role in reducing cholesterol accumulation in neighboring tissues. Bibliometric analysis pertains to the interdisciplinary field of quantitative examination of diverse documents using mathematical and statistical techniques. It integrates the investigation of structural and temporal patterns in academic publications with an exploration of subject focus and forms of uncertainty. This research paper examines the historical evolution, current areas of interest, and future development trends of ABCG1 through bibliometric analysis. This study aims to offer readers insights into the research status and emerging trends of ABCG1, thereby assisting researchers in the exciting field to explore novel research avenues. Following rigorous selection, research on ABCG1 has remained highly active over the past two decades. ABCG1 has even started to emerge in previously unrelated fields, such as the field of cancer research. According to the analysis conducted by Citespace, a lot of keywords and influential citations were identified. ABCG1 has been found to establish a connection between cancer and cardiovascular disease, highlighting their interrelationship. This review aims to assist readers who have limited familiarity with ABCG1 research in gaining a rapid understanding of its developmental trajectory. Additionally, it aims to offer researchers potential areas of focus for future studies related to ABCG1.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Qiong Lei
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xing-Xing Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liluo Nie
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, China
| | - Xianghao Gong
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, China.
| | - Kang Zheng
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Galindo CL, Khan S, Zhang X, Yeh YS, Liu Z, Razani B. Lipid-laden foam cells in the pathology of atherosclerosis: shedding light on new therapeutic targets. Expert Opin Ther Targets 2023; 27:1231-1245. [PMID: 38009300 PMCID: PMC10843715 DOI: 10.1080/14728222.2023.2288272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Lipid-laden foam cells within atherosclerotic plaques are key players in all phases of lesion development including its progression, necrotic core formation, fibrous cap thinning, and eventually plaque rupture. Manipulating foam cell biology is thus an attractive therapeutic strategy at early, middle, and even late stages of atherosclerosis. Traditional therapies have focused on prevention, especially lowering plasma lipid levels. Despite these interventions, atherosclerosis remains a major cause of cardiovascular disease, responsible for the largest numbers of death worldwide. AREAS COVERED Foam cells within atherosclerotic plaques are comprised of macrophages, vascular smooth muscle cells, and other cell types which are exposed to high concentrations of lipoproteins accumulating within the subendothelial intimal layer. Macrophage-derived foam cells are particularly well studied and have provided important insights into lipid metabolism and atherogenesis. The contributions of foam cell-based processes are discussed with an emphasis on areas of therapeutic potential and directions for drug development. EXERT OPINION As key players in atherosclerosis, foam cells are attractive targets for developing more specific, targeted therapies aimed at resolving atherosclerotic plaques. Recent advances in our understanding of lipid handling within these cells provide insights into how they might be manipulated and clinically translated to better treat atherosclerosis.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Saifur Khan
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yu-Sheng Yeh
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ziyang Liu
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
| |
Collapse
|
5
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
6
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
7
|
Wu Y, Chen L, Xie Z, Wang C, Zhang J, Yan X. Effects of ABCG1 knockout on proteomic composition of HDL in mice on a chow diet and a High-Fat Diet. Proteomics 2022; 22:e2100028. [PMID: 35234362 DOI: 10.1002/pmic.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
ATP-binding cassette transporter G1 (ABCG1) is a cellular transmembrane protein that transports oxysterol efflux from cells to high-density lipoprotein (HDL) particles in the plasma. Previous studies have demonstrated that an ABCG1 deficiency exerts an antiatherosclerotic function through the effects of oxysterol accumulation in cells to enhance apoptosis and regulate inflammatory processes. However, whether the deficiency of ABCG1 and the corresponding changes in the efflux of oxysterols could take a series of impacts on the proteomic composition of HDL remains unclear. Here, plasma HDL of ABCG1(-/-) mice and their wild-type controls on a normal chow diet (NCD) or a high-fat diet (HFD) were isolated by ultracentrifugation. The proportion of 7-ketocholesterol and the proteomic composition of samples were comparatively analyzed by LC-MS/MS. In NCD-fed mice, lipid metabolism-related protein (arachidonate 12-lipoxygenase) and antioxidative protein (pantetheinase) exhibited increased accumulation, and inflammatory response protein (alpha-1-antitrypsin) was decreased in accumulation in ABCG1(-/-) mice HDL. In HFD-fed mice, fewer proteins were detected than that of NCD-fed mice. The ABCG1(-/-) mice HDL exhibited increased accumulation of lipid metabolism-related proteins (e.g., carboxylesterase 1C, apolipoprotein (apo)C-4) and decreased accumulation of alpha-1-antitrypsin, as well as significantly reduced proportion of 7-ketocholesterol. Additionally, positive correlations were found between 7-ketocholesterol and some essential proteins on HDL, such as alpha-1-antitrypsin, apoA-4, apoB-100 and serum amyloid A. These results suggest a detrimental impact of oxysterols on HDL composition, which might affect the antiatherosclerotic properties of HDL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanxiang Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfeng Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyan Xie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahao Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Xu C, Li H, Tang CK. Sterol Carrier Protein 2: A promising target in the pathogenesis of atherosclerosis. Genes Dis 2022; 10:457-467. [DOI: 10.1016/j.gendis.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
|
9
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
10
|
Lu X, Yang B, Yang H, Wang L, Li H, Chen S, Lu X, Gu D. MicroRNA-320b Modulates Cholesterol Efflux and Atherosclerosis. J Atheroscler Thromb 2021; 29:200-220. [PMID: 33536383 PMCID: PMC8803562 DOI: 10.5551/jat.57125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim:
ATP-binding cassette (ABC) transporters and endonuclease-exonuclease-phosphatase family domain containing 1 (EEPD1) are reported to regulate cellular cholesterol efflux in macrophages. Bioinformatics analysis has revealed that ABCG1 and EEPD1 might be potential targets of microRNA (miR)-320b. This study aimed to elucidate the roles of miR-320b in cholesterol efflux from macrophages and the pathogenesis of atherosclerosis.
Methods:
Microarray was conducted to profile microRNA (miRNA) expression, and quantitative real-time PCR (qPCR) was used to validate the differentially expressed miRNAs in peripheral blood mononuclear cells of coronary artery disease (CAD) patients and healthy controls. Luciferase assay was conducted to evaluate the activity of reporter construct containing the 3´-untranslated region (3´-UTR) of target genes. Besides, NBD-cholesterol efflux induced by high-density lipoprotein (HDL) and lipid-free apolipoprotein A1 (apoA1) was detected using fluorescence intensity, respectively.
Apoe−/−
mice were injected with adeno-associated virus (AAV)2-miR-320b or control via tail vein, thereafter fed with 14 week atherogenic diet to study the roles of miR-320b
in vivo
.
Results:
MiR-320b was highly expressed in CAD patients compared with that in the healthy controls in both the microarray analysis and qPCR analysis.
In vitro
study showed that miR-320b decreased HDL- and apoA1-mediated cholesterol efflux from macrophages partly by directly targeting
ABCG1
and
EEPD1
genes and partly via suppressing the LXRα-ABCA1/G1 pathway. Consistently,
in vivo
administration of AAV2-miR-320b into
Apoe−/−
mice attenuated cholesterol efflux from peritoneal macrophages, which showed reduced expression of ABCA1/G1 and EEPD1, and increased lipid LDL-C level, with a down-regulation of hepatic LDLR and ABCA1. AAV2-miR-320b treatment also increased atherosclerotic plaque size and lesional macrophage content and enhanced pro-inflammatory cytokines levels through the elevated phosphorylation level of nuclear factor-κB p65 in macrophages.
Conclusion:
We identify miR-320b as a novel modulator of macrophage cholesterol efflux and that it might be a promising therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xiaomei Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Bin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Huijun Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Hongfan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shufeng Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
11
|
Mammalian ABCG-transporters, sterols and lipids: To bind perchance to transport? Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158860. [PMID: 33309976 DOI: 10.1016/j.bbalip.2020.158860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Members of the ATP binding cassette (ABC) transporter family perform a critical function in maintaining lipid homeostasis in cells as well as the transport of drugs. In this review, we provide an update on the ABCG-transporter subfamily member proteins, which include the homodimers ABCG1, ABCG2 and ABCG4 as well as the heterodimeric complex formed between ABCG5 and ABCG8. This review focusses on progress made in this field of research with respect to their function in health and disease and the recognised transporter substrates. We also provide an update on post-translational regulation, including by transporter substrates, and well as the involvement of microRNA as regulators of transporter expression and activity. In addition, we describe progress made in identifying structural elements that have been recognised as important for transport activity. We furthermore discuss the role of lipids such as cholesterol on the transport function of ABCG2, traditionally thought of as a drug transporter, and provide a model of potential cholesterol binding sites for ABCG2.
Collapse
|
12
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
13
|
Morgan PK, Fang L, Lancaster GI, Murphy AJ. Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases. J Lipid Res 2020; 61:667-675. [PMID: 31471447 PMCID: PMC7193969 DOI: 10.1194/jlr.tr119000267] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis.jlr;61/5/667/F1F1f1.
Collapse
Affiliation(s)
- Pooranee K Morgan
- Division of Immunometabolism,Baker Heart and Diabetes Institute, Melbourne, Australia; School of Life Sciences,La Trobe University, Bundoora, Australia
| | - Longhou Fang
- Center for Cardiovascular Regeneration,Houston Methodist, Houston, TX
| | - Graeme I Lancaster
- Division of Immunometabolism,Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism,Baker Heart and Diabetes Institute, Melbourne, Australia; School of Life Sciences,La Trobe University, Bundoora, Australia
| |
Collapse
|
14
|
Cheng J, Cheng A, Clifford BL, Wu X, Hedin U, Maegdefessel L, Pamir N, Sallam T, Tarling EJ, de Aguiar Vallim TQ. MicroRNA-144 Silencing Protects Against Atherosclerosis in Male, but Not Female Mice. Arterioscler Thromb Vasc Biol 2020; 40:412-425. [PMID: 31852219 PMCID: PMC7018399 DOI: 10.1161/atvbaha.119.313633] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels. Here, we explore how miR-144 inhibition may protect against atherosclerosis. Approach and Results: We demonstrate that miR-144 silencing reduced atherosclerosis in male, but not female low-density lipoprotein receptor null (Ldlr-/-) mice. MiR-144 antagonism increased circulating HDL cholesterol levels, remodeled the HDL particle, and enhanced reverse cholesterol transport. Notably, the effects on HDL and reverse cholesterol transport were more pronounced in male mice suggesting sex-specific differences may contribute to the effects of silencing miR-144 on atherosclerosis. As a molecular mechanism, we identify the oxysterol metabolizing enzyme CYP7B1 (cytochrome P450 enzyme 7B1) as a miR-144 regulated gene in male, but not female mice. Consistent with miR-144-dependent changes in CYP7B1 activity, we show decreased levels of 27-hydroxycholesterol, a known proatherogenic sterol and the endogenous substrate for CYP7B1 in male, but not female mice. CONCLUSIONS Our data demonstrate silencing miR-144 has sex-specific effects and that treatment with antisense oligonucleotides to target miR-144 might result in enhancements in reverse cholesterol transport and oxysterol metabolism in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Joan Cheng
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
| | - Angela Cheng
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
| | - Bethan L. Clifford
- Department of Medicine, University of California Los Angeles, California, 90095, USA
| | - Xiaohui Wu
- Department of Medicine, University of California Los Angeles, California, 90095, USA
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar – Technical University Munich, Munich, Germany
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Tamer Sallam
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
| | - Elizabeth J. Tarling
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, California, 90095, USA
| | - Thomas Q. de Aguiar Vallim
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, California, 90095, USA
| |
Collapse
|
15
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
16
|
Wei S, Zhang L, Bailu Wang, Zhao Y, Dong Q, Pan C, Li C, He D, Yuan Q, Xu F, Chen Y. ALDH2 deficiency inhibits Ox-LDL induced foam cell formation via suppressing CD36 expression. Biochem Biophys Res Commun 2019; 512:41-48. [PMID: 30853183 DOI: 10.1016/j.bbrc.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/02/2019] [Indexed: 12/31/2022]
Abstract
Foam cell formation plays an important role in the initiation and progression of atherosclerosis. Aldehyde dehydrogenase 2 (ALDH2), a key enzyme for aldehyde metabolism, is associated with coronary artery disease and affects atherosclerotic plaque vulnerability. However, the role of ALDH2 in foam cell formation remains unclear. Using peritoneal macrophages from ALDH2-deficient and control mice, we found that ALDH2 deficiency suppressed foam cell formation induced by oxidized low-density lipoproteins (ox-LDL) but not acetylated low-density lipoproteins (ac-LDL) ex vivo. After incubation with ox-LDL, ALDH2-deficient macrophages expressed lower levels of CD36 but the expression of other lipid metabolism-related proteins including SRA, LOX-1, ABCA-1, ABCG-1 and ACAT-1 was not changed in ALDH2-/- macrophages. Using CD36 inhibitor, we confirmed that CD36 contributes to the effect of ALDH2 on foam cell formation. PPARγ was downregulated in ox-LDL treated ALDH2-/- macrophages. 4-HNE was increased by ALDH2 deficiency and high concentration of 4-HNE suppressed the expression of PPARγ. These data suggest that ALDH2 plays an important role in foam cell formation via 4-HNE/PPARγ/CD36 pathway.
Collapse
Affiliation(s)
- Shujian Wei
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Luetao Zhang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital, Shandong University, Jinan, China
| | - Yu Zhao
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Qianqian Dong
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Chuanbao Li
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Dayu He
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
17
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
18
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
19
|
Analysis of differential gene expression by RNA-seq data in ABCG1 knockout mice. Gene 2018; 689:24-33. [PMID: 30528268 DOI: 10.1016/j.gene.2018.11.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022]
Abstract
AIMS The previous studies on ABCG1 using genetically modified mice showed inconsistent results on atherosclerosis. The aim of this study was to determine whether accurate target knockout of ABCG1 would result in transcriptional changes of other atherosclerosis-related genes. METHODS ABCG1 knockout mouse model was obtained by precise gene targeting without affecting non-target DNA sequences in C57BL/6 background. The wildtype C57BL/6 mice were regarded as control group. 12-week-old male mice were used in current study. We performed whole transcriptome analysis on the peripheral blood mononuclear cells obtained from ABCG1 knockout mice (n = 3) and their wildtype controls (n = 3) by RNA-seq. RESULTS Compared with wildtype group, 605 genes were modified at the time of ABCG1 knockout and expressed differentially in knockout group, including 306 up-regulated genes and 299 down-regulated genes. 54 genes were associated with metabolism regulation, of which 13 were related to lipid metabolism. We also found some other modified genes in knockout mice involved in cell adhesion, leukocyte transendothelial migration and apoptosis, which might also play roles in the process of atherosclerosis. 7 significantly enriched GO terms and 19 significantly enriched KEGG pathways were identified, involving fatty acid biosynthesis, immune response and intracellular signal transduction. CONCLUSIONS ABCG1 knockout mice exhibited an altered expression of multiple genes related to many aspects of atherosclerosis, which might affect the further studies to insight into the effect of ABCG1 on atherosclerosis with this animal model.
Collapse
|
20
|
Shi Y, Lv X, Liu Y, Li B, Liu M, Yan M, Liu Y, Li Q, Zhang X, He S, Zhu M, He J, Zhu Y, Zhu Y, Ai D. Elevating ATP‐binding cassette transporter G1 improves re‐endothelialization function of endothelial progenitor cells
via
Lyn/Akt/eNOS in diabetic mice. FASEB J 2018; 32:6525-6536. [DOI: 10.1096/fj.201800248rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Shi
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Xue Lv
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yanan Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Bochuan Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Mingming Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Meng Yan
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Qi Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Shuang He
- Tianjin Institute of Cardiovascular DiseaseTianjin Chest HospitalTianjinChina
| | - Mason Zhu
- Department of Molecular BiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yan Zhu
- Tianjin Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| |
Collapse
|
21
|
Yu P, Qian AS, Chathely KM, Trigatti BL. PDZK1 in leukocytes protects against cellular apoptosis and necrotic core development in atherosclerotic plaques in high fat diet fed ldl receptor deficient mice. Atherosclerosis 2018; 276:171-181. [DOI: 10.1016/j.atherosclerosis.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 02/09/2023]
|
22
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
23
|
Anastasius M, Luquain-Costaz C, Kockx M, Jessup W, Kritharides L. A critical appraisal of the measurement of serum 'cholesterol efflux capacity' and its use as surrogate marker of risk of cardiovascular disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1257-1273. [PMID: 30305243 DOI: 10.1016/j.bbalip.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.
Collapse
Affiliation(s)
- Malcolm Anastasius
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Wendy Jessup
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia; Cardiology Department, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Wang K, Zelnick LR, Hoofnagle AN, Vaisar T, Henderson CM, Imrey PB, Robinson-Cohen C, de Boer IH, Shiu YT, Himmelfarb J, Beck GJ. Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 2018; 13:1225-1233. [PMID: 30045914 PMCID: PMC6086713 DOI: 10.2215/cjn.11321017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES HDL particles obtained from patients on chronic hemodialysis exhibit lower cholesterol efflux capacity and are enriched in inflammatory proteins compared with those in healthy individuals. Observed alterations in HDL proteins could be due to effects of CKD, but also may be influenced by the hemodialysis procedure, which stimulates proinflammatory and prothrombotic pathways. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We compared HDL-associated proteins in 143 participants who initiated hemodialysis within the previous year with those of 110 participants with advanced CKD from the Hemodialysis Fistula Maturation Study. We quantified concentrations of 38 HDL-associated proteins relative to total HDL protein using targeted mass spectrometry assays that included a stable isotope-labeled internal standard. We used linear regression to compare the relative abundances of HDL-associated proteins after adjustment and required a false discovery rate q value ≤10% to control for multiple testing. We further assessed the association between hemodialysis initiation and cholesterol efflux capacity in a subset of 80 participants. RESULTS After adjustment for demographics, comorbidities, and other clinical characteristics, eight HDL-associated proteins met the prespecified false discovery threshold for association. Recent hemodialysis initiation was associated with higher HDL-associated concentrations of serum amyloid A1, A2, and A4; hemoglobin-β; haptoglobin-related protein; cholesterylester transfer protein; phospholipid transfer protein; and apo E. The trend for participants recently initiating hemodialysis for lower cholesterol efflux capacity compared with individuals with advanced CKD did not reach statistical significance. CONCLUSIONS Compared with advanced CKD, hemodialysis initiation within the previous year is associated with higher concentrations of eight HDL proteins related to inflammation and lipid metabolism. Identified associations differ from those recently observed for nondialysis-requiring CKD. Hemodialysis initiation may further impair cholesterol efflux capacity. Further work is needed to clarify the clinical significance of the identified proteins with respect to cardiovascular risk. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2018_07_25_CJASNPodcast_18_8_W.mp3.
Collapse
Affiliation(s)
- Ke Wang
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Leila R. Zelnick
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Andrew N. Hoofnagle
- Departments of Medicine and
- Laboratory Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | | | | | - Peter B. Imrey
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | | - Ian H. de Boer
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jonathan Himmelfarb
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Gerald J. Beck
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - KestenbaumBryan12on behalf of the HFM Study
- Departments of Medicine and
- Laboratory Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
25
|
Ooi BK, Goh BH, Yap WH. Oxidative Stress in Cardiovascular Diseases: Involvement of Nrf2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation. Int J Mol Sci 2017; 18:ijms18112336. [PMID: 29113088 PMCID: PMC5713305 DOI: 10.3390/ijms18112336] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an important risk factor contributing to the pathogenesis of cardiovascular diseases. Oxidative stress that results from excessive reactive oxygen species (ROS) production accounts for impaired endothelial function, a process which promotes atherosclerotic lesion or fatty streaks formation (foam cells). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in cellular redox homeostasis. Upon exposure to oxidative stress, Nrf2 is dissociated from its inhibitor Keap-1 and translocated into the nucleus, where it results in the transcriptional activation of cell defense genes. Nrf2 has been demonstrated to be involved in the protection against foam cells formation by regulating the expression of antioxidant proteins (HO-1, Prxs, and GPx1), ATP-binding cassette (ABC) efflux transporters (ABCA1 and ABCG1) and scavenger receptors (scavenger receptor class B (CD36), scavenger receptor class A (SR-A) and lectin-type oxidized LDL receptor (LOX-1)). However, Nrf2 has also been reported to exhibit pro-atherogenic effects. A better understanding on the mechanism of Nrf2 in oxidative stress-induced cardiac injury, as well as the regulation of cholesterol uptake and efflux, are required before it can serve as a novel therapeutic target for cardiovascular diseases prevention and treatment.
Collapse
Affiliation(s)
- Bee Kee Ooi
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia.
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
26
|
Oxidative Stress in Cardiovascular Diseases: Involvement of Nrf2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation. Int J Mol Sci 2017. [PMID: 29113088 DOI: 10.3390/ijms18112336.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is an important risk factor contributing to the pathogenesis of cardiovascular diseases. Oxidative stress that results from excessive reactive oxygen species (ROS) production accounts for impaired endothelial function, a process which promotes atherosclerotic lesion or fatty streaks formation (foam cells). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in cellular redox homeostasis. Upon exposure to oxidative stress, Nrf2 is dissociated from its inhibitor Keap-1 and translocated into the nucleus, where it results in the transcriptional activation of cell defense genes. Nrf2 has been demonstrated to be involved in the protection against foam cells formation by regulating the expression of antioxidant proteins (HO-1, Prxs, and GPx1), ATP-binding cassette (ABC) efflux transporters (ABCA1 and ABCG1) and scavenger receptors (scavenger receptor class B (CD36), scavenger receptor class A (SR-A) and lectin-type oxidized LDL receptor (LOX-1)). However, Nrf2 has also been reported to exhibit pro-atherogenic effects. A better understanding on the mechanism of Nrf2 in oxidative stress-induced cardiac injury, as well as the regulation of cholesterol uptake and efflux, are required before it can serve as a novel therapeutic target for cardiovascular diseases prevention and treatment.
Collapse
|
27
|
Critical Role of the Human ATP-Binding Cassette G1 Transporter in Cardiometabolic Diseases. Int J Mol Sci 2017; 18:ijms18091892. [PMID: 28869506 PMCID: PMC5618541 DOI: 10.3390/ijms18091892] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) is a member of the large family of ABC transporters which are involved in the active transport of many amphiphilic and lipophilic molecules including lipids, drugs or endogenous metabolites. It is now well established that ABCG1 promotes the export of lipids, including cholesterol, phospholipids, sphingomyelin and oxysterols, and plays a key role in the maintenance of tissue lipid homeostasis. Although ABCG1 was initially proposed to mediate cholesterol efflux from macrophages and then to protect against atherosclerosis and cardiovascular diseases (CVD), it becomes now clear that ABCG1 exerts a larger spectrum of actions which are of major importance in cardiometabolic diseases (CMD). Beyond a role in cellular lipid homeostasis, ABCG1 equally participates to glucose and lipid metabolism by controlling the secretion and activity of insulin and lipoprotein lipase. Moreover, there is now a growing body of evidence suggesting that modulation of ABCG1 expression might contribute to the development of diabetes and obesity, which are major risk factors of CVD. In order to provide the current understanding of the action of ABCG1 in CMD, we here reviewed major findings obtained from studies in mice together with data from the genetic and epigenetic analysis of ABCG1 in the context of CMD.
Collapse
|
28
|
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95:1153-1165. [DOI: 10.1007/s00109-017-1575-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
|
29
|
Harada A, Toh R, Murakami K, Kiriyama M, Yoshikawa K, Miwa K, Kubo T, Irino Y, Mori K, Tanaka N, Nishimura K, Ishida T, Hirata KI. Cholesterol Uptake Capacity: A New Measure of HDL Functionality for Coronary Risk Assessment. J Appl Lab Med 2017; 2:186-200. [PMID: 32630971 DOI: 10.1373/jalm.2016.022913] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/28/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Recent studies have shown that the cholesterol efflux capacity of HDL is a better predictor of cardiovascular disease (CVD) than HDL cholesterol. However, the standard procedures used for measuring cholesterol efflux capacity involve radioisotope-labeled cholesterol and cultured macrophages. Thus, a simpler method to measure HDL functionality is needed for clinical application. METHODS We established a cell-free assay system to evaluate the capacity of HDL to accept additional cholesterol, which we named cholesterol "uptake capacity," using fluorescently labeled cholesterol and an anti-apolipoprotein A1 antibody. We quantified cholesterol uptake capacity of apolipoprotein B (apoB)-depleted serum samples from patients with coronary artery disease who had previously undergone revascularization. RESULTS This assay system exhibited high reproducibility (CV <10%) and a short processing time (<6 h). The myeloperoxidase-mediated oxidation of apoB-depleted serum impaired cholesterol uptake capacity. Cholesterol uptake capacity correlated significantly with cholesterol efflux capacity (r2 = 0.47, n = 30). Furthermore, cholesterol uptake capacity correlated inversely with the requirement for revascularization because of recurrence of coronary lesions in patients with optimal control of LDL cholesterol (P < 0.01, n = 156). A multivariate analysis adjusted for traditional coronary risk factors showed that only cholesterol uptake capacity remained significant (odds ratio, 0.48; 95% CI, 0.29-0.80; P = 0.0048). CONCLUSIONS Cholesterol uptake capacity assay evaluates the functionality of HDL in a sensitive and high-throughput manner without using radioisotope label and cells. This assay system could be used for the assessment of CVD risk in the clinical settings.
Collapse
Affiliation(s)
- Amane Harada
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine and
| | | | - Maria Kiriyama
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Keiko Yoshikawa
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Takuya Kubo
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | | | - Kenta Mori
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Tanaka
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiologic Informatics, Office of Evidence-Based Medicine and Risk Analysis, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Evidence-Based Laboratory Medicine and.,Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
30
|
Pulakazhi Venu VK, Adijiang A, Seibert T, Chen YX, Shi C, Batulan Z, O'Brien ER. Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE -/- mice. FASEB J 2017; 31:2364-2379. [PMID: 28232480 DOI: 10.1096/fj.201601188r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
Recently, we demonstrated that heat shock protein (HSP)-27 is protective against the development of experimental atherosclerosis, reducing plaque cholesterol content by more than 30%. Moreover, elevated HSP-27 levels are predictive of relative freedom from clinical cardiovascular events. HSP-27 signaling occurs via the activation of NF-κB, which induces a marked up-regulation in expression of granulocyte-monocyte colony-stimulating factor (GM-CSF), a cytokine that is known to alter ABC transporters involved in reverse cholesterol transport (RCT). Therefore, we hypothesized that HSP-27-derived GM-CSF has a potent role in impeding plaque formation by promoting macrophage RCT and sought to better characterize this pathway. Treatment of THP-1 cells, RAW-Blue cells, and primary macrophages with recombinant HSP-27 resulted in NF-κB activation via TLR-4 and was inhibited by various pharmacologic blockers of this pathway. Moreover, HSP-27-induced upregulation of GM-CSF expression was dependent on TLR-4 signaling. Recombinant (r)HSP-27 treatment of ApoE-/- female (but not male) mice for 4 wk yielded reductions in plaque area and cholesterol clefts of 33 and 47%, respectively, with no effect on GM-CSF-/-ApoE-/- mice. With 12 wk of rHSP-27 treatment, both female and male mice showed reductions in plaque burden (55 and 42%, respectively) and a 60% reduction in necrotic core area but no treatment effect in GM-CSF-/-ApoE-/- mice. In vitro functional studies revealed that HSP-27 enhanced the expression of ABCA1 and ABCG1, as well as facilitated cholesterol efflux in vitro by ∼10%. These novel findings establish a paradigm for HSP-27-mediated RCT and set the stage for the development of HSP-27 atheroprotective therapeutics.-Pulakazhi Venu, V. K., Adijiang, A., Seibert, T., Chen, Y.-X., Shi, C., Batulan, Z., O'Brien, E. R. Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE-/- mice.
Collapse
Affiliation(s)
- Vivek Krishna Pulakazhi Venu
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ayinuer Adijiang
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tara Seibert
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yong-Xiang Chen
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chunhua Shi
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zarah Batulan
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Edward R O'Brien
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Ormseth MJ, Yancey PG, Yamamoto S, Oeser AM, Gebretsadik T, Shintani A, Linton MF, Fazio S, Davies SS, Roberts LJ, Vickers KC, Raggi P, Kon V, Stein CM. Net cholesterol efflux capacity of HDL enriched serum and coronary atherosclerosis in rheumatoid arthritis. ACTA ACUST UNITED AC 2016; 13:6-11. [PMID: 28243578 DOI: 10.1016/j.ijcme.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/OBJECTIVES Cardiovascular (CV) risk is increased in patients with rheumatoid arthritis (RA), but not fully explained by traditional risk factors such as LDL and HDL cholesterol concentrations. The cholesterol efflux capacity of HDL may be a better CV risk predictor than HDL concentrations. We hypothesized that HDL's cholesterol efflux capacity is impaired and inversely associated with coronary atherosclerosis in patients with RA. METHODS We measured the net cholesterol efflux capacity of apolipoprotein B depleted serum and coronary artery calcium score in 134 patients with RA and 76 control subjects, frequency-matched for age, race and sex. The relationship between net cholesterol efflux capacity and coronary artery calcium score and other clinical variables of interest was assessed in patients with RA. RESULTS Net cholesterol efflux capacity was similar among RA (median [IQR]: 34% removal [28, 41%]) and control subjects (35% removal [27%, 39%]) (P=0.73). In RA, increasing net cholesterol efflux capacity was not significantly associated with decreased coronary calcium score (OR=0.78 (95% CI 0.51-1.19), P=0.24, adjusted for age, race and sex, Framingham risk score and presence of diabetes). Net cholesterol efflux capacity was not significantly associated with RA disease activity score, C-reactive protein, urinary F2-isoprostanes, or degree of insulin resistance in RA. CONCLUSIONS Net cholesterol efflux capacity is not significantly altered in patients with relatively well-controlled RA nor is it significantly associated with coronary artery calcium score.
Collapse
Affiliation(s)
| | | | | | | | | | - Ayumi Shintani
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Sergio Fazio
- Oregon Health and Science University, Portland, OR, USA
| | - Sean S Davies
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Valentina Kon
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
32
|
Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep 2016; 13:4527-34. [PMID: 27082419 PMCID: PMC4878557 DOI: 10.3892/mmr.2016.5099] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Accumulation of atherosclerotic plaques in arterial walls leads to major cardiovascular diseases and stroke. Macrophages/foam cells are central components of atherosclerotic plaques, which populate the arterial wall in order to remove harmful modified low‑density lipoprotein (LDL) particles, resulting in the accumulation of lipids, mostly LDL‑derived cholesterol ester, in cytosolic lipid droplets (LDs). At present, LDs are recognized as dynamic organelles that govern cellular metabolic processes. LDs consist of an inner core of neutral lipids surrounded by a monolayer of phospholipids and free cholesterol, and contain LD‑associated proteins (LDAPs) that regulate LD functions. Foam cells are characterized by an aberrant accumulation of cytosolic LDs, and are considered a hallmark of atherosclerotic lesions through all stages of development. Previous studies have investigated the mechanisms underlying foam cell formation, aiming to discover therapeutic strategies that target foam cells and intervene against atherosclerosis. It is well established that LDAPs have a major role in the pathogenesis of metabolic diseases caused by dysfunction of lipid metabolism, and several studies have linked LDAPs to the development of atherosclerosis. In this review, several foam cell‑targeting pathways have been described, with an emphasis on the role of LDAPs in cholesterol mobilization from macrophages. In addition, the potential of LDAPs as therapeutic targets to prevent the progression and/or facilitate the regression of the disease has been discussed.
Collapse
|
33
|
Gu HM, Wang F, Alabi A, Deng S, Qin S, Zhang DW. Identification of an Amino Acid Residue Critical for Plasma Membrane Localization of ATP-Binding Cassette Transporter G1—Brief Report. Arterioscler Thromb Vasc Biol 2016; 36:253-5. [DOI: 10.1161/atvbaha.115.306592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Hong-mei Gu
- From the Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada (H.-M.G., F.W., A.A., S.D., D.-W.Z.); and Institute of Atherosclerosis in Taishan Medical University, Taian, China (S.Q., D.-W.Z.)
| | - Faqi Wang
- From the Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada (H.-M.G., F.W., A.A., S.D., D.-W.Z.); and Institute of Atherosclerosis in Taishan Medical University, Taian, China (S.Q., D.-W.Z.)
| | - Adekunle Alabi
- From the Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada (H.-M.G., F.W., A.A., S.D., D.-W.Z.); and Institute of Atherosclerosis in Taishan Medical University, Taian, China (S.Q., D.-W.Z.)
| | - Shijun Deng
- From the Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada (H.-M.G., F.W., A.A., S.D., D.-W.Z.); and Institute of Atherosclerosis in Taishan Medical University, Taian, China (S.Q., D.-W.Z.)
| | - Shucun Qin
- From the Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada (H.-M.G., F.W., A.A., S.D., D.-W.Z.); and Institute of Atherosclerosis in Taishan Medical University, Taian, China (S.Q., D.-W.Z.)
| | - Da-wei Zhang
- From the Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada (H.-M.G., F.W., A.A., S.D., D.-W.Z.); and Institute of Atherosclerosis in Taishan Medical University, Taian, China (S.Q., D.-W.Z.)
| |
Collapse
|
34
|
Cholesterol Transporters ABCA1 and ABCG1 Gene Expression in Peripheral Blood Mononuclear Cells in Patients with Metabolic Syndrome. CHOLESTEROL 2015; 2015:682904. [PMID: 26788366 PMCID: PMC4692991 DOI: 10.1155/2015/682904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023]
Abstract
ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran) during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75%) compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P < 0.05). Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression.
Collapse
|
35
|
Mimura J, Itoh K. Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic Biol Med 2015; 88:221-232. [PMID: 26117321 DOI: 10.1016/j.freeradbiomed.2015.06.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 01/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular arterial walls. A number of studies have revealed the biological and genetic bases of atherosclerosis, and over 100 genes influence atherosclerosis development. Nrf2 plays an important role in oxidative stress response and drug metabolism, but the Nrf2 signaling pathway is closely associated with atherosclerosis development. During atherosclerosis progression, Nrf2 signaling modulates many physiological and pathophysiological processes, such as lipid homeostasis regulation, foam cell formation, macrophage polarization, redox regulation and inflammation. Interestingly, Nrf2 exhibits both pro- and anti-atherogenic effects in experimental animal models. These observations make the Nrf2 pathway a promising target to prevent atherosclerosis.
Collapse
Affiliation(s)
- Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
36
|
Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med 2015; 20:17-28. [PMID: 26493158 PMCID: PMC4717859 DOI: 10.1111/jcmm.12689] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023] Open
Abstract
Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Division of Laboratory Medicine, Department of Molecular Genetic Diagnostics and Cell Biology, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Yuri V Bobryshev
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW, Australia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Department of Biophysics, Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
37
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Association of ATP-Binding Cassette Transporter G1 Polymorphisms with Risk of Ischemic Stroke in the Chinese Han Population. J Stroke Cerebrovasc Dis 2015; 24:1397-404. [PMID: 25890853 DOI: 10.1016/j.jstrokecerebrovasdis.2015.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The adenosine triphosphate (ATP)-binding cassette transporter G1 (ABCG1), a member of the superfamily of ATP-binding cassette transporters, is involved in the transport of cholesterol and phospholipids in macrophages. As such, ABCG1 plays a crucial role in the development of atherosclerosis in humans. In this study, we investigate the association between ABCG1 polymorphisms and the risk of developing ischemic stroke in a Chinese Han population. METHODS This case-control study included 389 ischemic stroke patients and 380 healthy subjects. ABCG1 rs1378577 and rs57137919 polymorphisms were analyzed by a polymerase chain reaction-ligation detection reaction. RESULTS We found that the genotypic distribution and allelic frequency of these polymorphisms were similar in patients and controls. In a subgroup with hypertriglyceridemia (144 patients and 115 controls), the frequency of rs1378577 GG genotype and G allele as well as rs57137919 AA genotype was lower in the patient group compared with that in the control group (P = .018, P = .035, and P = .023, respectively). Logistic regression analysis revealed a reduced risk of ischemic stroke in a recessive model for both rs1378577 and rs57137919. Subtype analyses demonstrated that rs1378577 TG and GG genotypes and the G allele were associated with reduced risk of atherothrombotic stroke (P = .030, P = .006, and P = .004, respectively), even after adjusting for confounding factors in a dominant model. CONCLUSIONS Data from the present study demonstrate that ABCG1 polymorphisms are associated with reduced risk of developing ischemic stroke in hypertriglyceridemic population and atherothrombotic stroke in this cohort of Chinese Han population.
Collapse
|
39
|
Sag D, Cekic C, Wu R, Linden J, Hedrick CC. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun 2015; 6:6354. [PMID: 25724068 PMCID: PMC4347884 DOI: 10.1038/ncomms7354] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/22/2015] [Indexed: 02/07/2023] Open
Abstract
ATP-binding Cassette Transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here, we demonstrate a role of ABCG1 as a mediator of tumor immunity. Abcg1−/− mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumor growth in Abcg1−/− mice is myeloid cell-intrinsic and is associated with a phenotypic shift of the macrophages from a tumor-promoting M2 to a tumor-fighting M1 within the tumor. Abcg1−/− macrophages exhibit an intrinsic bias toward M1 polarization with increased NF-κB activation and direct cytotoxicity for tumor cells in vitro. Overall, our study demonstrates that absence of ABCG1 inhibits tumor growth through modulation of macrophage function within the tumor and illustrates a link between cholesterol homeostasis and cancer.
Collapse
Affiliation(s)
- Duygu Sag
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Caglar Cekic
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| |
Collapse
|
40
|
Luo X, Yu C, Fu C, Shi W, Wang X, Zeng C, Wang H. Identification of the differentially expressed genes associated with familial combined hyperlipidemia using bioinformatics analysis. Mol Med Rep 2015; 11:4032-8. [PMID: 25625967 PMCID: PMC4394960 DOI: 10.3892/mmr.2015.3263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to screen the differentially expressed genes (DEGs) associated with familial combined hyperlipidemia (FCHL) and examine the changing patterns. The transcription profile of GSE18965 was obtained from the NCBI Gene Expression Omnibus database, including 12 FCHL samples and 12 control specimens. The DEGs were identified using a linear models for microarray data package in the R programming language. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was also performed. Protein-protein interaction (PPI) networks of the DEGs were constructed using the EnrichNet online tool. In addition, cluster analysis of the genes in networks was performed using ClusterONE. A total of 879 DEGs were screened, including 394 upregulated and 485 downregulated genes. Enrichment analysis identified four important KEGG pathways associated with FCHL: One carbon pool by folate, α-linolenic acid metabolism, asthma and the glycosphingolipid biosynthesis-globo series. GO annotation identified 12 enriched biological processes, including one associated with hematopoiesis and four associated with bone cell differentiation. This identification was in accordance with clinical data and experiments into hyperlipidemia and bone lesions. Based on PPI networks, these DEGs had a close association with immune responses, hormone responses and cytokine-cytokine receptors. In conclusion, these DEGs may be used as specific therapeutic molecular targets in the treatment of FCHL. The present findings may provide the basis for understanding the pathogenesis of FCHL in future studies. However, further experiments are required to confirm these results.
Collapse
Affiliation(s)
- Xiaoli Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Changqing Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Weibin Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Xukai Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| |
Collapse
|
41
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
42
|
Abstract
High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands,
| | | |
Collapse
|
43
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
44
|
Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, Neeland IJ, Yuhanna IS, Rader DR, de Lemos JA, Shaul PW. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 2014; 371:2383-93. [PMID: 25404125 PMCID: PMC4308988 DOI: 10.1056/nejmoa1409065] [Citation(s) in RCA: 1091] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND It is unclear whether high-density lipoprotein (HDL) cholesterol concentration plays a causal role in atherosclerosis. A more important factor may be HDL cholesterol efflux capacity, the ability of HDL to accept cholesterol from macrophages, which is a key step in reverse cholesterol transport. We investigated the epidemiology of cholesterol efflux capacity and its association with incident atherosclerotic cardiovascular disease outcomes in a large, multiethnic population cohort. METHODS We measured HDL cholesterol level, HDL particle concentration, and cholesterol efflux capacity at baseline in 2924 adults free from cardiovascular disease who were participants in the Dallas Heart Study, a probability-based population sample. The primary end point was atherosclerotic cardiovascular disease, defined as a first nonfatal myocardial infarction, nonfatal stroke, or coronary revascularization or death from cardiovascular causes. The median follow-up period was 9.4 years. RESULTS In contrast to HDL cholesterol level, which was associated with multiple traditional risk factors and metabolic variables, cholesterol efflux capacity had minimal association with these factors. Baseline HDL cholesterol level was not associated with cardiovascular events in an adjusted analysis (hazard ratio, 1.08; 95% confidence interval [CI], 0.59 to 1.99). In a fully adjusted model that included traditional risk factors, HDL cholesterol level, and HDL particle concentration, there was a 67% reduction in cardiovascular risk in the highest quartile of cholesterol efflux capacity versus the lowest quartile (hazard ratio, 0.33; 95% CI, 0.19 to 0.55). Adding cholesterol efflux capacity to traditional risk factors was associated with improvement in discrimination and reclassification indexes. CONCLUSIONS Cholesterol efflux capacity, a new biomarker that characterizes a key step in reverse cholesterol transport, was inversely associated with the incidence of cardiovascular events in a population-based cohort. (Funded by the Donald W. Reynolds Foundation and others.).
Collapse
Affiliation(s)
- Anand Rohatgi
- From the Division of Cardiology, Department of Internal Medicine (A.R., A.K., J.D.B., E.G.G., C.R.A., I.J.N., J.A.L.), and the Center for Pulmonary and Vascular Biology, Department of Pediatrics (I.S.Y., P.W.S.), University of Texas Southwestern Medical Center, Dallas; the Department of Internal Medicine, Emory University, Atlanta (K.E.W.); and the Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.R.R.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Uehara Y, Saku K. High-density lipoprotein and atherosclerosis: Roles of lipid transporters. World J Cardiol 2014; 6:1049-1059. [PMID: 25349649 PMCID: PMC4209431 DOI: 10.4330/wjc.v6.i10.1049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/10/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023] Open
Abstract
Various previous studies have found a negative correlation between the risk of cardiovascular events and serum high-density lipoprotein (HDL) cholesterol levels. The reverse cholesterol transport, a pathway of cholesterol from peripheral tissue to liver which has several potent antiatherogenic properties. For instance, the particles of HDL mediate to transport cholesterol from cells in arterial tissues, particularly from atherosclerotic plaques, to the liver. Both ATP-binding cassette transporters (ABC) A1 and ABCG1 are membrane cholesterol transporters and have been implicated in mediating cholesterol effluxes from cells in the presence of HDL and apolipoprotein A-I, a major protein constituent of HDL. Previous studies demonstrated that ABCA1 and ABCG1 or the interaction between ABCA1 and ABCG1 exerted antiatherosclerotic effects. As a therapeutic approach for increasing HDL cholesterol levels, much focus has been placed on increasing HDL cholesterol levels as well as enhancing HDL biochemical functions. HDL therapies that use injections of reconstituted HDL, apoA-I mimetics, or full-length apoA-I have shown dramatic effectiveness. In particular, a novel apoA-I mimetic peptide, Fukuoka University ApoA-I Mimetic Peptide, effectively removes cholesterol via specific ABCA1 and other transporters, such as ABCG1, and has an antiatherosclerotic effect by enhancing the biological functions of HDL without changing circulating HDL cholesterol levels. Thus, HDL-targeting therapy has significant atheroprotective potential, as it uses lipid transporter-targeting agents, and may prove to be a therapeutic tool for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Yoshinari Uehara
- Yoshinari Uehara, Keijiro Saku, Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Yoshinari Uehara, Keijiro Saku, Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
46
|
Baldan A, Gonen A, Choung C, Que X, Marquart TJ, Hernandez I, Bjorkhem I, Ford DA, Witztum JL, Tarling EJ. ABCG1 is required for pulmonary B-1 B cell and natural antibody homeostasis. THE JOURNAL OF IMMUNOLOGY 2014; 193:5637-48. [PMID: 25339664 DOI: 10.4049/jimmunol.1400606] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many metabolic diseases, including atherosclerosis, type 2 diabetes, pulmonary alveolar proteinosis, and obesity, have a chronic inflammatory component involving both innate and adaptive immunity. Mice lacking the ATP-binding cassette transporter G1 (ABCG1) develop chronic inflammation in the lungs, which is associated with the lipid accumulation (cholesterol, cholesterol ester, and phospholipid) and cholesterol crystal deposition that are characteristic of atherosclerotic lesions and pulmonary alveolar proteinosis. In this article, we demonstrate that specific lipids, likely oxidized phospholipids and/or sterols, elicit a lung-specific immune response in Abcg1(-/-) mice. Loss of ABCG1 results in increased levels of specific oxysterols, phosphatidylcholines, and oxidized phospholipids, including 1-palmitoyl-2-(5'-oxovaleroyl)-sn-glycero-3-phosphocholine, in the lungs. Further, we identify a niche-specific increase in natural Ab (NAb)-secreting B-1 B cells in response to this lipid accumulation that is paralleled by increased titers of IgM, IgA, and IgG against oxidation-specific epitopes, such as those on oxidized low-density lipoprotein and malondialdehyde-modified low-density lipoprotein. Finally, we identify a cytokine/chemokine signature that is reflective of increased B cell activation, Ab secretion, and homing. Collectively, these data demonstrate that the accumulation of lipids in Abcg1(-/-) mice induces the specific expansion and localization of B-1 B cells, which secrete NAbs that may help to protect against the development of atherosclerosis. Indeed, despite chronic lipid accumulation and inflammation, hyperlipidemic mice lacking ABCG1 develop smaller atherosclerotic lesions compared with controls. These data also suggest that Abcg1(-/-) mice may represent a new model in which to study the protective functions of B-1 B cells/NAbs and suggest novel targets for pharmacologic intervention and treatment of disease.
Collapse
Affiliation(s)
- Angel Baldan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095; Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University, St. Louis, MO 63104
| | - Ayelet Gonen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Christina Choung
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Xuchu Que
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Tyler J Marquart
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University, St. Louis, MO 63104
| | - Irene Hernandez
- Instituto de Investigaciones Biomédicas "Alberto Sols" Consejo Superior de Investigaciones Cientificas - Universidad Autonoma de Madrid, Madrid 28006; Unidad Asociada de Biomedicina IIBM-Universidad de Las Palmas de Gran Canaria, Las Palmas 35016, Spain; and
| | | | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University, St. Louis, MO 63104
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Elizabeth J Tarling
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
47
|
Liu F, Wang W, Xu Y, Wang Y, Chen LF, Fang Q, Yan XW. ABCG1 rs57137919G>a polymorphism is functionally associated with varying gene expression and apoptosis of macrophages. PLoS One 2014; 9:e97044. [PMID: 24972087 PMCID: PMC4074052 DOI: 10.1371/journal.pone.0097044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/14/2014] [Indexed: 01/16/2023] Open
Abstract
ATP-binding cassette transporter G1 (ABCG1) is a transmembrane cholesterol transporter involved in macrophage sterol homeostasis, reverse cholesterol transport (RCT), and atherosclerosis. The role of ABCG1 in atherosclerosis remains controversial, especially in animal models. Our previous study showed that single nucleotide polymorphism rs57137919 (-367G>A) in the ABCG1 promoter region was associated with reduced risk for atherosclerotic coronary artery disease (CAD). This study was designed to provide functional evidence for the role of rs57137919G>A in atherosclerosis in humans. We combined in vitro and ex vivo studies using cell lines and human monocyte-derived macrophages to investigate the functional consequences of the promoter polymorphism by observing the effects of the rs57137919A allele on promoter activity, transcription factor binding, gene expression, cholesterol efflux, and apoptosis levels. The results showed that the rs57137919A allele was significantly associated with decreased ABCG1 gene expression possibly due to the impaired ability of protein-DNA binding. ABCG1-mediated cholesterol efflux decreased by 23% with rs57137919 A/A versus the G/G genotype. Cholesterol-loaded macrophage apoptosis was induced 2-fold with the A/A genotype compared with the G/G genotype. Proapoptotic genes Bok and Bid mRNA levels were significantly increased in macrophages from the A/A genotype compared with those from the G/G genotype. These findings demonstrated that the ABCG1 promoter rs57137919G>A variant had an allele-specific effect on ABCG1 expression and was associated with an increased apoptosis in cholesterol-loaded macrophages, providing functional evidence to explain the reduced risk for atherosclerosis in subjects with the ABCG1 promoter rs57137919A allele as reported in our previous study.
Collapse
Affiliation(s)
- Fang Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Feng Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Fang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Wei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
48
|
Abstract
Low plasma levels of HDL-cholesterol (HDL-C) represent a strong and independent risk factor for cardiovascular disease. HDL particles display a wide spectrum of atheroprotective activities, which include effluxing cellular cholesterol, diminishing cellular death, decreasing vascular constriction, reducing inflammatory response, protecting from pathological oxidation, combating bacterial infection, lessening platelet activation, regulating gene expression by virtue of microRNAs, and improving glucose metabolism. It remains presently indeterminate as to whether some biological activities of HDL are more relevant for the protection of the endothelium from atherogenesis when compared with others. The multitude of such activities raises the question of a proper assay to assess HDL functionality ex vivo. Together with clear understanding of molecular mechanisms underlying atheroprotective properties of HDL, such assay will provide a basis to resolve the ultimate question of the HDL field to allow the development of efficient HDL-targeting therapies.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6, Pitié - Salpétrière University Hospital, ICAN, 75651 Paris Cedex 13, France
| |
Collapse
|
49
|
Sekiya M, Yamamuro D, Ohshiro T, Honda A, Takahashi M, Kumagai M, Sakai K, Nagashima S, Tomoda H, Igarashi M, Okazaki H, Yagyu H, Osuga JI, Ishibashi S. Absence of Nceh1 augments 25-hydroxycholesterol-induced ER stress and apoptosis in macrophages. J Lipid Res 2014; 55:2082-92. [PMID: 24891333 DOI: 10.1194/jlr.m050864] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An excess of cholesterol and/or oxysterols induces apoptosis in macrophages, contributing to the development of advanced atherosclerotic lesions. In foam cells, these sterols are stored in esterified forms, which are hydrolyzed by two enzymes: neutral cholesterol ester hydrolase 1 (Nceh1) and hormone-sensitive lipase (Lipe). A deficiency in either enzyme leads to accelerated growth of atherosclerotic lesions in mice. However, it is poorly understood how the esterification and hydrolysis of sterols are linked to apoptosis. Remarkably, Nceh1-deficient thioglycollate-elicited peritoneal macrophages (TGEMs), but not Lipe-deficient TGEMs, were more susceptible to apoptosis induced by oxysterols, particularly 25-hydroxycholesterol (25-HC), and incubation with 25-HC caused massive accumulation of 25-HC ester in the endoplasmic reticulum (ER) due to its defective hydrolysis, thereby activating ER stress signaling such as induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). These changes were nearly reversed by inhibition of ACAT1. In conclusion, deficiency of Nceh1 augments 25-HC-induced ER stress and subsequent apoptosis in TGEMs. In addition to reducing the cholesteryl ester content of foam cells, Nceh1 may protect against the pro-apoptotic effect of oxysterols and modulate the development of atherosclerosis.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taichi Ohshiro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masayoshi Kumagai
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Kent Sakai
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroshi Tomoda
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Masaki Igarashi
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Okazaki
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Jun-ichi Osuga
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
50
|
Gu HM, Wang FQ, Zhang DW. Caveolin-1 interacts with ATP binding cassette transporter G1 (ABCG1) and regulates ABCG1-mediated cholesterol efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:847-58. [DOI: 10.1016/j.bbalip.2014.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
|