1
|
Cai Y, Yang S, Zhao J, Zheng G, Han Y, Zhang Y, Qin Y, Yang C, Xiong Q, Chu X, Ju C, Yin H, Shi Y, Jiang F, Yong H, Zhu Y. Mechanism Exploration of Dietary Supplement Astaxanthin on Improving Atherosclerosis through an Integrated Strategy Encompassing Artificial Intelligence Virtual Screening and Experimental Validation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40265257 DOI: 10.1021/acs.jafc.4c11894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Atherosclerosis (AS) is a major and common pathological basis of ischemic intestinal infarction, myocardial infarction, stroke, renal failure, and other highly lethal and disabling diseases. Current pharmacological interventions (e.g., statins) often cause adverse effects, limiting their long-term use. Natural compounds, with their multitarget efficacy and superior safety profiles, have emerged as promising alternatives for AS treatment. As a potent antioxidant carotenoid, astaxanthin exhibits unique therapeutic potential by simultaneously targeting inflammation, oxidative stress, and lipid metabolism, which are key drivers of AS pathogenesis. This study will systematically decipher astaxanthin's therapeutic mechanisms through an integrative strategy encompassing artificial intelligence virtual screening and experimental validation. Notably, five proteins, including CTSD, DPP4, FABP5, ITGAL, and MMP9, were identified as core targets for astaxanthin intervention in AS via network pharmacology and machine learning. Meanwhile, the results from molecular dynamic simulations confirmed that these core targets can stable binding with astaxanthin. Furthermore, in vitro experiments further validated astaxanthin can inhibit foam cell formation, restore redox balance, and suppress inflammation. Moreover, a close correlation has been found between them. These findings position astaxanthin as a multitarget natural agent to combat AS, addressing both efficacy advantage and safety concerns of current therapies.
Collapse
Affiliation(s)
- Yisa Cai
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Health & Medicine Sciences (Xinhua Hospital Chongming Branch), Shanghai 202155, P. R. China
| | - Shiyan Yang
- Department of Internal Medicine, Huaian Hospital Affiliated to Xuzhou Medical University, Huai'an 223002, Jiangsu, P. R. China
| | - Jiajiang Zhao
- Yunnan Hongqingfu Biotechnology Co., LTD., Kunming 650000, Yunnan, P. R. China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Yun Han
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, Shandong, P. R. China
| | - Yuhan Zhang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Yiyuan Qin
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Chao Yang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Health & Medicine Sciences (Xinhua Hospital Chongming Branch), Shanghai 202155, P. R. China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Xinyi Chu
- Yunnan Hongqingfu Biotechnology Co., LTD., Kunming 650000, Yunnan, P. R. China
| | - Chunhan Ju
- Yunnan Hongqingfu Biotechnology Co., LTD., Kunming 650000, Yunnan, P. R. China
| | - Huixia Yin
- Yunnan Hongqingfu Biotechnology Co., LTD., Kunming 650000, Yunnan, P. R. China
| | - Yingying Shi
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Feng Jiang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Health & Medicine Sciences (Xinhua Hospital Chongming Branch), Shanghai 202155, P. R. China
| | - Hui Yong
- Department of Cardiology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an 223000, Jiangsu, P. R. China
| | - Yong Zhu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| |
Collapse
|
2
|
Deng Y, Wang J, Wang R, Wang Y, Shu X, Wang P, Chen C, Zhang F. Limosilactobacillus fermentum TY-S11 ameliorates hypercholesterolemia via promoting cholesterol excretion and regulating gut microbiota in high-cholesterol diet-fed apolipoprotein E-deficient mice. Heliyon 2024; 10:e32059. [PMID: 38882320 PMCID: PMC11180314 DOI: 10.1016/j.heliyon.2024.e32059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Hypercholesterolemia is a metabolic disease characterized by elevated cholesterol level in the blood, which is a risk factor for many diseases. Probiotic intervention may be one of the ways to improve hypercholesterolemia. In this study, three strains with better cholesterol removal ability were selected from 60 strains of lactic acid bacteria, and were orally administered to apolipoprotein E-deficient mice on a high-cholesterol diet. Among the three strains, only Limosilactobacillus fermentum TY-S11, which was isolated from the intestine of a longevity person, significantly improved serum and liver lipid levels in hypercholesterolemic mice. Further study found that L. fermentum TY-S11 promoted the excretion of cholesterol in the feces and inhibited the absorption of cholesterol in the small intestine. As for gut microbiota, the results showed that L. fermentum TY-S11 not only prevented the reduction of diversity caused by high-cholesterol diet, but also increased the contents of short-chain fatty acids in feces. These results confirmed the ameliorative effect of L. fermentum TY-S11 on hypercholesterolemia.
Collapse
Affiliation(s)
- Yadan Deng
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Yuying Wang
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Xi Shu
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Chong Chen
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Feng Zhang
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| |
Collapse
|
3
|
Yan M, Wang Z, An Y, Li Z, Li Y, Zhang H, Li C, Wang L, Chen L, Gao C, Wang D, Gao C. OxLDL enhances procoagulant activity of endothelial cells by TMEM16F-mediated phosphatidylserine exposure. Cell Biol Int 2024; 48:848-860. [PMID: 38444077 DOI: 10.1002/cbin.12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/28/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+, reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3-induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.
Collapse
Affiliation(s)
- Meishan Yan
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Zelong Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Yao An
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Zhanni Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Yun Li
- Hematology Department, Daqing Oil Field General Hospital, Daqing, China
| | - Hongyu Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Caixia Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Lifeng Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Li Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Chao Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Dongsheng Wang
- Department of Emergency, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Chunyan Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| |
Collapse
|
4
|
Behnam M, Deyhim MR, Yaghmaei P. Can Rosuvastatin Reduce the Risk of Thrombosis in Patients with Hypercholesterolemia with its Effect on Coagulation Factors and Homocysteine Levels? Cardiovasc Hematol Agents Med Chem 2024; 22:495-502. [PMID: 38279709 DOI: 10.2174/0118715257279903231205110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND AND OBJECTIVES Hypercholesterolemia is one of the main risk factors for vascular thrombosis in individuals. Therefore, the use of statins is very effective in reducing cholesterol and can reduce the risk of thrombosis in these patients. Rosuvastatin, a member of the statin family which, inhibits cholesterol synthesis. Very few studies have been done in relation to how rosuvastatin can affect thrombosis. So, this research has been tried whether rosuvastatin can have an effect on coagulation factors and homocysteine as risk factors for thrombosis in hypercholesterolemia? METHODS In this experimental study, 60 patients (30 men and 30 women with a mean age of 40- 70 years) diagnosed with hypercholesterolemia (cholesterol > 250 mg/dl) participated in this research. 30 patients were prescribed rosuvastatin (20 mg/day), and 30 patients were simultaneously taken placebo for three months. All parameters, including FVIII, FV, Fibrinogen, DDimer, plasma homocysteine level and lipid profile, were measured before and after treatment. All the results were statistically compared between the two groups. RESULTS In patients who took rosuvastatin, the drug was able to significantly reduce the concentrations of total cholesterol, triglycerides, and low-density lipoprotein (LDL) (P < 0.001). Also, rosuvastatin was able to reduce the concentrations of homocysteine significantly, D-Dimer (P < 0.001), coagulation factor VIII and factor V (P < 0.05). In patients with hypercholesterolemia who took the placebo, did not affect the mentioned variables (P > 0.05). CONCLUSION According to the results, it seems that rosuvastatin may be able to reduce the risk of thrombosis in patients by affecting coagulation factors and homocysteine levels.
Collapse
Affiliation(s)
- Mostafa Behnam
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Reza Deyhim
- Clinical Chemistry, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| |
Collapse
|
5
|
The binding of autotaxin to integrins mediates hyperhomocysteinemia-potentiated platelet activation and thrombosis in mice and humans. Blood Adv 2022; 6:46-61. [PMID: 34559203 PMCID: PMC8753216 DOI: 10.1182/bloodadvances.2021004572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Hcy increases integrin αIIbβ3 activation by promoting phospholipid hydrolysis and ATX interaction in platelets. Targeting ATX-mediated integrin αIIbβ3 activation alleviates HHcy-potentiated thrombosis.
Hyperhomocysteinemia (HHcy) is associated with an exaggerated platelet thrombotic response at sites of vascular injury. In this study, human medical examination showed that elevated human plasma Hcy levels correlated positively with enhanced blood coagulation and platelet activity, suggesting that humans with HHcy are more prone to thrombus formation at the sites of vascular injury. Accordingly, we observed accelerated platelet activation, primary hemostasis, and thrombus formation in apolipoprotein E-deficient (ApoE−/−) mice with acute or chronic HHcy. Upon homocysteine (Hcy) administration in C57BL/6J mice, platelet aggregation, spreading and clot retraction were markedly induced. More important, Hcy increased the affinity of platelet integrin αIIbβ3 with ligands and enhanced integrin outside-in signaling by promoting membrane phosphatidylserine exposure in vitro. Mechanistically, lipidomics analysis showed that lysophosphatidylcholines were the primary metabolites leading to clustering of HHcy-stimulated platelets. Cytosolic phospholipase A2 (cPLA2) activity and autotaxin (ATX, a secreted lysophospholipase D) secretion were upregulated by Hcy, leading to membrane phospholipid hydrolysis and PS exposure. Moreover, secreted ATX directly interacted with integrin β3. Inhibitors of cPLA2 and ATX activity blocked integrin αIIbβ3 outside-in signaling and thrombosis in HHcy ApoE−/− mice. In this study, we identified a novel mechanism by which HHcy promotes platelet membrane phospholipid catabolism and extracellular ATX secretion to activate integrin outside-in signaling, consequently exacerbating thrombosis and the results revealed an innovative approach to treating HHcy-related thrombotic diseases.
Collapse
|
6
|
No Effect of Diet-Induced Mild Hyperhomocysteinemia on Vascular Methylating Capacity, Atherosclerosis Progression, and Specific Histone Methylation. Nutrients 2020; 12:nu12082182. [PMID: 32717800 PMCID: PMC7468910 DOI: 10.3390/nu12082182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for atherosclerosis through mechanisms which are still incompletely defined. One possible mechanism involves the hypomethylation of the nuclear histone proteins to favor the progression of atherosclerosis. In previous cell studies, hypomethylating stress decreased a specific epigenetic tag (the trimethylation of lysine 27 on histone H3, H3K27me3) to promote endothelial dysfunction and activation, i.e., an atherogenic phenotype. Here, we conducted a pilot study to investigate the impact of mild HHcy on vascular methylating index, atherosclerosis progression and H3K27me3 aortic content in apolipoprotein E-deficient (ApoE -/-) mice. In two different sets of experiments, male mice were fed high-fat, low in methyl donors (HFLM), or control (HF) diets for 16 (Study A) or 12 (Study B) weeks. At multiple time points, plasma was collected for (1) quantification of total homocysteine (tHcy) by high-performance liquid chromatography; or (2) the methylation index of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH ratio) by liquid chromatography tandem-mass spectrometry; or (3) a panel of inflammatory cytokines previously implicated in atherosclerosis by a multiplex assay. At the end point, aortas were collected and used to assess (1) the methylating index (SAM:SAH ratio); (2) the volume of aortic atherosclerotic plaque assessed by high field magnetic resonance imaging; and (3) the vascular content of H3K27me3 by immunohistochemistry. The results showed that, in both studies, HFLM-fed mice, but not those mice fed control diets, accumulated mildly elevated tHcy plasmatic concentrations. However, the pattern of changes in the inflammatory cytokines did not support a major difference in systemic inflammation between these groups. Accordingly, in both studies, no significant differences were detected for the aortic methylating index, plaque burden, and H3K27me3 vascular content between HF and HFLM-fed mice. Surprisingly however, a decreased plasma SAM: SAH was also observed, suggesting that the plasma compartment does not always reflect the vascular concentrations of these two metabolites, at least in this model. Mild HHcy in vivo was not be sufficient to induce vascular hypomethylating stress or the progression of atherosclerosis, suggesting that only higher accumulations of plasma tHcy will exhibit vascular toxicity and promote specific epigenetic dysregulation.
Collapse
|
7
|
Xiao Y, Su X, Huang W, Zhang J, Peng C, Huang H, Wu X, Huang H, Xia M, Ling W. Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int J Biochem Cell Biol 2015; 67:158-66. [PMID: 26117455 DOI: 10.1016/j.biocel.2015.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Transmethylation reactions utilize S-adenosylmethionine (SAM) as a methyl donor and are central to the regulation of many biological processes: more than fifty SAM-dependent methyltransferases methylate a broad spectrum of cellular compounds including DNA, histones, phospholipids and other small molecules. Common to all SAM-dependent transmethylation reactions is the release of the potent inhibitor S-adenosylhomocysteine (SAH) as a by-product. SAH is reversibly hydrolyzed to adenosine and homocysteine by SAH hydrolase. Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. However, a major unanswered question is if homocysteine is causally involved in disease pathogenesis or simply a passive and indirect indicator of a more complex mechanism. A chronic elevation in homocysteine levels results in a parallel increase in intracellular or plasma SAH, which is a more sensitive biomarker of cardiovascular disease than homocysteine and suggests that SAH is a critical pathological factor in homocysteine-associated disorders. Previous reports indicate that supplementation with folate and B vitamins efficiently lowers homocysteine levels but not plasma SAH levels, which possibly explains the failure of homocysteine-lowering vitamins to reduce vascular events in several recent clinical intervention studies. Furthermore, more studies are focusing on the role and mechanisms of SAH in different chronic diseases related to hyperhomocysteinemia, such as cardiovascular disease, kidney disease, diabetes, and obesity. This review summarizes the current role of SAH in cardiovascular disease and its effect on several related risk factors. It also explores possible the mechanisms, such as epigenetics and oxidative stress, of SAH. This article is part of a Directed Issue entitled: Epigenetic dynamics in development and disease.
Collapse
Affiliation(s)
- Yunjun Xiao
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Xuefen Su
- The Jockey Club School of Public Health and Primary Care, School of Public Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinzhou Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chaoqiong Peng
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haixiong Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaomin Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Regulation of thrombosis and vascular function by protein methionine oxidation. Blood 2015; 125:3851-9. [PMID: 25900980 DOI: 10.1182/blood-2015-01-544676] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 02/07/2023] Open
Abstract
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.
Collapse
|
9
|
Xiao Y, Huang W, Zhang J, Peng C, Xia M, Ling W. Increased Plasma S-Adenosylhomocysteine–Accelerated Atherosclerosis Is Associated With Epigenetic Regulation of Endoplasmic Reticulum Stress in apoE
−/−
Mice. Arterioscler Thromb Vasc Biol 2015; 35:60-70. [DOI: 10.1161/atvbaha.114.303817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yunjun Xiao
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Wei Huang
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Jinzhou Zhang
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Chaoqiong Peng
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Min Xia
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Wenhua Ling
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| |
Collapse
|
10
|
Sulistyoningrum DC, Singh R, Devlin AM. Epigenetic regulation of glucocorticoid receptor expression in aorta from mice with hyperhomocysteinemia. Epigenetics 2014; 7:514-21. [DOI: 10.4161/epi.19836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SAGM, Smith DEC, Juffermans LJM, Musters RJP, Roos D, Jakobs C, Blom HJ, Smulders YM, Krijnen PAJ, Stehouwer CDA, Rauwerda JA, van Hinsbergh VWM, Niessen HWM. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 2014; 67:341-52. [PMID: 22038300 PMCID: PMC3825580 DOI: 10.1007/s12013-011-9297-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01–2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47phox expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨm). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨm. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47phox, and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47phox in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47phox was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.
Collapse
Affiliation(s)
- Jessica A Sipkens
- Department of Pathology, VU University Medical Centre, Room 0E46, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chan Y, Mcgill A, Kanwar R, Krissansen G, Haggarty N, Xin L, Poppitt S. Bovine Peptic Casein Hydrolysate Ameliorates Cardiovascular Risk Factors in a Model of ApoE-deficient Mice but not Overweight, Mildly Hypercholesterolaemic Men. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2014. [DOI: 10.12944/crnfsj.2.1.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Associations have been shown between consumption of bovine dairy and decreased prevalence of metabolic related disorders. Milk peptides may promote both angiotensin-I- converting enzyme (ACE) inhibition for blood pressure (BP) lowering and insulin action for better glycaemic control. Less is known of other metabolic parameters. The aim of this study was to investigate effects of dairy peptic casein hydrolysate (CH) on markers of cardiovascular disease (CVD) risk in (1) an apolipoproteinE (ApoE) - deficient mouse model of high-fat fed hypercholesterolaem- ia, and, (2) a clinical study of moderate overweight and hypercholesterolaemia. In Trial 1, ApoE-deficient mice were supplemented with high dose CH (~1g/kg body weight) in a randomised, 9-wk, parallel design intervention, and blood and tissue samples harvested. In Trial 2, 24 mildly hypercholesterolaemic men were supplemented with lower dose CH (~0.1g/kg body weight, 10g/day, 3-wks) and matched whey protein control (WP, 10g/day, 3-wks) in a randomised, 9-wk, cross-over design intervention. Diets were separated by a 3-wk washout. Fasting blood and urine samples were collected, and blood pressure (BP) measured weekly. Clinical trial registration number, ACTRN 12611001013954. In ApoE-deficient mice, administration of CH significantly inhibited circulating total cholesterol concentrations by 37% (TC, P<0.01) and decreased aorta atherosclerotic lesion score by 25% (P<0.01). In the clinical study there were no significant differential effects of CH supplementation on CV markers, including serum lipids (TC, LDL-C, HDL-C, triglyceride), glucose and BP. Whilst high dose bovine peptic CH attenuated CVD risk in a murine ApoE deficient model of aggressive hypercholesterolaemia, no evidence of amelioration of risk by supplementation with a lower dose of CH in an overweight population of mildly hypercholesterolaemic men was found.
Collapse
Affiliation(s)
- Y Chan
- Human Nutrition Unit and School of Biological Sciences, University of Auckland, New Zealand; and Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - A Mcgill
- Human Nutrition Unit and School of Population Health, University of Auckland, New Zealand
| | - R Kanwar
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | - G Krissansen
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | - N Haggarty
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - L Xin
- Human Nutrition Unit and School of Biological Sciences, University of Auckland, New Zealand
| | - S Poppitt
- Human Nutrition Unit, School of Biological Sciences and Department of Medicine, University of Auckland, New Zealand
| |
Collapse
|
13
|
Hossain GS, Lynn EG, Maclean KN, Zhou J, Dickhout JG, Lhoták S, Trigatti B, Capone J, Rho J, Tang D, McCulloch CA, Al-Bondokji I, Malloy MJ, Pullinger CR, Kane JP, Li Y, Shiffman D, Austin RC. Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. J Am Heart Assoc 2013; 2:e000134. [PMID: 23686369 PMCID: PMC3698773 DOI: 10.1161/jaha.113.000134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Apoptosis caused by endoplasmic reticulum (ER) stress contributes to atherothrombosis, the underlying cause of cardiovascular disease (CVD). T-cell death-associated gene 51 (TDAG51), a member of the pleckstrin homology-like domain gene family, is induced by ER stress, causes apoptosis when overexpressed, and is present in lesion-resident macrophages and endothelial cells. METHODS AND RESULTS To study the role of TDAG51 in atherosclerosis, male mice deficient in TDAG51 and apolipoprotein E (TDAG51(-/-)/ApoE(-/-)) were generated and showed reduced atherosclerotic lesion growth (56 ± 5% reduction at 40 weeks, relative to ApoE(-/-) controls, P<0.005) and necrosis (41 ± 4% versus 63 ± 8% lesion area in TDAG51(-/-)/ApoE(-/-) and ApoE(-/-), respectively; P<0.05) without changes in plasma levels of lipids, glucose, and inflammatory cytokines. TDAG51 deficiency caused several phenotypic changes in macrophages and endothelial cells that increase cytoprotection against oxidative and ER stress, enhance PPARγ-dependent reverse cholesterol transport, and upregulate peroxiredoxin-1 (Prdx-1), an antioxidant enzyme with antiatherogenic properties (1.8 ± 0.1-fold increase in Prdx-1 protein expression, relative to control macrophages; P<0.005). Two independent case-control studies found that a genetic variant in the human TDAG51 gene region (rs2367446) is associated with CVD (OR, 1.15; 95% CI, 1.07 to 1.24; P=0.0003). CONCLUSIONS These findings provide evidence that TDAG51 affects specific cellular pathways known to reduce atherogenesis, suggesting that modulation of TDAG51 expression or its activity may have therapeutic benefit for the treatment of CVD.
Collapse
Affiliation(s)
- Gazi S Hossain
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pelham CJ, Keen HL, Lentz SR, Sigmund CD. Dominant negative PPARγ promotes atherosclerosis, vascular dysfunction, and hypertension through distinct effects in endothelium and vascular muscle. Am J Physiol Regul Integr Comp Physiol 2013; 304:R690-701. [PMID: 23447133 DOI: 10.1152/ajpregu.00607.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agonists of the nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) have potent insulin-sensitizing effects and inhibit atherosclerosis progression in patients with Type II diabetes. Conversely, missense mutations in the ligand-binding domain of PPARγ that render the transcription factor dominant negative (DN) cause early-onset hypertension and Type II diabetes. We tested the hypothesis that DN PPARγ-mediated interference of endogenous wild-type PPARγ in the endothelium and vascular smooth muscle exacerbates atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. Endothelium-specific expression of DN PPARγ on the ApoE(-/-) background unmasked significant impairment of endothelium-dependent relaxation in aortic rings, increased systolic blood pressure, altered expression of atherogenic markers (e.g., Cd36, Mcp1, Catalase), and enhanced diet-induced atherosclerotic lesion formation in aorta. Smooth muscle-specific expression of DN PPARγ, which induces aortic dysfunction and increased systolic blood pressure at baseline, also resulted in enhanced diet-induced atherosclerotic lesion formation in aorta on the ApoE(-/-) background that was associated with altered expression of a shared, yet distinct, set of atherogenic markers (e.g., Cd36, Mcp1, Osteopontin, Vcam1). In particular, induction of Osteopontin expression by smooth muscle-specific DN PPARγ correlated with increased plaque calcification. These data demonstrate that inhibition of PPARγ function specifically in the vascular endothelium or smooth muscle may contribute to cardiovascular disease.
Collapse
Affiliation(s)
- Christopher J Pelham
- Departments of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
15
|
From omics to drug metabolism and high content screen of natural product in zebrafish: a new model for discovery of neuroactive compound. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:605303. [PMID: 22919414 PMCID: PMC3420231 DOI: 10.1155/2012/605303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/16/2012] [Indexed: 11/17/2022]
Abstract
The zebrafish (Danio rerio) has recently become a common model in the fields of genetics, environmental science, toxicology, and especially drug screening. Zebrafish has emerged as a biomedically relevant model for in vivo high content drug screening and the simultaneous determination of multiple efficacy parameters, including behaviour, selectivity, and toxicity in the content of the whole organism. A zebrafish behavioural assay has been demonstrated as a novel, rapid, and high-throughput approach to the discovery of neuroactive, psychoactive, and memory-modulating compounds. Recent studies found a functional similarity of drug metabolism systems in zebrafish and mammals, providing a clue with why some compounds are active in zebrafish in vivo but not in vitro, as well as providing grounds for the rationales supporting the use of a zebrafish screen to identify prodrugs. Here, we discuss the advantages of the zebrafish model for evaluating drug metabolism and the mode of pharmacological action with the emerging omics approaches. Why this model is suitable for identifying lead compounds from natural products for therapy of disorders with multifactorial etiopathogenesis and imbalance of angiogenesis, such as Parkinson's disease, epilepsy, cardiotoxicity, cerebral hemorrhage, dyslipidemia, and hyperlipidemia, is addressed.
Collapse
|
16
|
Kim YR, Kim CS, Naqvi A, Kumar A, Kumar S, Hoffman TA, Irani K. Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction. Am J Physiol Heart Circ Physiol 2012; 303:H189-96. [PMID: 22661506 DOI: 10.1152/ajpheart.01218.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypercholesterolemia characterized by elevation of low-density lipoprotein (LDL) cholesterol is a major risk factor for atherosclerotic vascular disease. p66shc mediates hypercholesterolemia-induced endothelial dysfunction and atheromatous plaque formation. We asked if LDL upregulates endothelial p66shc via changes in the epigenome and examined the role of p66shc in LDL-stimulated endothelial cell dysfunction. Human LDL stimulates human p66shc promoter activity and p66shc expression in human endothelial cells. LDL leads to hypomethylation of two CpG dinucleotides and acetylation of histone 3 in the human p66shc promoter. These two CpG dinucleotides mediate LDL-stimulated p66shc promoter activity. Inhibition or knock down of DNA methyltransferases negates LDL-induced endothelial p66shc expression. p66shc mediates LDL-stimulated increase in expression of endothelial intercellular adhesion molecule-1 (ICAM1) and decrease in expression of thrombomodulin (TM). Mirroring these changes in ICAM1 and TM expression, p66shc mediates LDL-stimulated adhesion of monocytes to endothelial cells and plasma coagulation on endothelial cells. These findings indicate that LDL cholesterol upregulates human endothelial p66shc expression via hypomethylation of CpG dinucleotides in the p66shc promoter. Moreover, they show that LDL-stimulated p66shc expression mediates a dysfunctional endothelial cell surface, with proadhesive and procoagulant features.
Collapse
Affiliation(s)
- Young-Rae Kim
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
McNeil CJ, Beattie JH, Gordon MJ, Pirie LP, Duthie SJ. Nutritional B vitamin deficiency disrupts lipid metabolism causing accumulation of proatherogenic lipoproteins in the aorta adventitia of ApoE null mice. Mol Nutr Food Res 2012; 56:1122-30. [PMID: 22610982 DOI: 10.1002/mnfr.201100694] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 01/24/2023]
Abstract
SCOPE Cardiovascular disease is the major cause of death in the world. Low dietary folate, elevated homocysteine, and high circulating cholesterol are risk factors. METHODS AND RESULTS We investigated whether folate and/or B vitamin deficiency would change lipoprotein and fatty acid metabolism and lipid accumulation in the aorta adventitia of ApoE null mice. Mice (n = 10 per group) were fed a control (C; 4%) or high saturated fat (HF; 21%), and high cholesterol (0.15%) diet for 16 weeks. Folate (F-) or folate, B6 and B12 deficiency (F-B-) were imposed on these diets. Feeding a HF diet increased plasma and liver total cholesterol and HDL cholesterol (two- to threefold; p < 0.05). Total cholesterol increased (twofold; p < 0.05) in aorta adventitial lipid in response to HF. Feeding a diet depleted of folate and B vitamins (F-B-) significantly increased cholesterol accumulation in both liver and aorta adventitial lipid (approximately 50-70%; p < 0.05). Moreover, the proportions of fatty acids in hepatic and adventitial lipid was significantly changed by B vitamin depletion, measured as an increase in saturated fatty acids (approximately 15%) and a decrease (approximately 11%) in monounsaturated fatty acids (p < 0.05). CONCLUSION B vitamin deficiency perturbs lipid metabolism in ApoE null mice, causing accumulation of proatherogenic cholesterol and fatty acids in the aorta adventitia.
Collapse
Affiliation(s)
- Christopher J McNeil
- Division of Lifelong Health, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Bieżanowska-Kopeć R, Leszczyńska T. The effect of methionine supplementation of the AIN-93G semi-synthetic diet on the levels of homocysteine and lipids in experimental rats. J Nutr Health Aging 2012; 16:395-400. [PMID: 22499465 DOI: 10.1007/s12603-012-0049-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The studies were carried out on 36 growing albino Wistar rats. PARTICIPANTS/MEASUREMENTS: The animals were randomly divided into six equinumerous groups (six rats per group), and were fed six different diets for 42 days. The control group (I) was fed with AIN-93G semi-synthetic diet, whereas groups II-VI were fed with AIN-93G semi-synthetic diet supplemented with: 2, 4, 8, 16 and 32 g of methionine/kg diet, respectively. There were assessed enzymatically, in rats' blood serum, the contents of homocysteine, total cholesterol, HDL fraction and triacyloglicerols. In addition, the LDL+VLDL cholesterol content was calculated. RESULTS The methionine content of the diet was found to be highly positively correlated with the homocysteine content (r = 0.981) and negatively correlated with the triacylglycerols content (r = -0.916) of the experimental animals' blood serum. CONCLUSION In the blood serum of rats fed the highest-methionine diet (32 g methionine/kg diet), the homocysteine content was significantly higher, as were the levels of total cholesterol and its HDL fraction, while the triacylglycerols content was lower as compared to the values obtained for rats fed other diet types.
Collapse
Affiliation(s)
- R Bieżanowska-Kopeć
- Department of Human Nutrition, Faculty of Food Technology, Agricultural University of Krakow, Krakow
| | | |
Collapse
|
19
|
Owens AP, Mackman N. Sources of tissue factor that contribute to thrombosis after rupture of an atherosclerotic plaque. Thromb Res 2012; 129 Suppl 2:S30-3. [PMID: 22444158 DOI: 10.1016/j.thromres.2012.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hyperlipidemia leads to the formation of oxidized LDL (oxLDL), vessel dysfunction, atherosclerotic disease, and ultimately to plaque rupture and thrombosis. OxLDL induces tissue factor (TF) expression in various cell types, including monocytes and macrophages. High levels of TF are present in atherosclerotic plaques and this represents that major source of TF that triggers thrombosis after plaque rupture. In addition, increased levels of "circulating TF" are observed in hyperlipidemic animals and patients. This is due to induced TF expression in monocytes and release of monocyte-derived, TF(+) microparticles, which represents a minor source of TF that likely contributes to thrombosis after plaques rupture. This review will summarize the connections between hyperlipidemia and TF expression within atherosclerotic plaques and circulating monocytes, as well as its inhibition by statins.
Collapse
Affiliation(s)
- A Phillip Owens
- Department of Medicine, Division of Hematology and Oncology, McAllister Heart Institute, University of North Carolina at Chapel Hill, 98 Manning Drive Campus Box 7035, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
20
|
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592. [PMID: 22154653 PMCID: PMC3348846 DOI: 10.1016/j.freeradbiomed.2011.11.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.
Collapse
Affiliation(s)
- Peter R Kvietys
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
21
|
Paradoxical absence of a prothrombotic phenotype in a mouse model of severe hyperhomocysteinemia. Blood 2011; 119:3176-83. [PMID: 22186991 DOI: 10.1182/blood-2011-09-380568] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hyperhomocysteinemia confers a high risk for thrombotic vascular events, but homocysteine-lowering therapies have been ineffective in reducing the incidence of secondary vascular outcomes, raising questions regarding the role of homocysteine as a mediator of cardiovascular disease. Therefore, to determine the contribution of elevated homocysteine to thrombosis susceptibility, we studied Cbs(-/-) mice conditionally expressing a zinc-inducible mutated human CBS (I278T) transgene. Tg-I278T Cbs(-/-) mice exhibited severe hyperhomocysteinemia and endothelial dysfunction in cerebral arterioles. Surprisingly, however, these mice did not display increased susceptibility to arterial or venous thrombosis as measured by photochemical injury in the carotid artery, chemical injury in the carotid artery or mesenteric arterioles, or ligation of the inferior vena cava. A survey of hemostatic and hemodynamic parameters revealed no detectible differences between control and Tg-I278T Cbs(-/-) mice. Our data demonstrate that severe elevation in homocysteine leads to the development of vascular endothelial dysfunction but is not sufficient to promote thrombosis. These findings may provide insights into the failure of homocysteine-lowering trials in secondary prevention from thrombotic vascular events.
Collapse
|
22
|
ADAMTS13 reduces vascular inflammation and the development of early atherosclerosis in mice. Blood 2011; 119:2385-91. [PMID: 22123843 DOI: 10.1182/blood-2011-09-376202] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ADAMTS13, a metalloprotease, plays a pivotal role in preventing spontaneous microvascular thrombosis by cleaving hyperactive ultra large von Willebrand factor multimers into smaller, less active multimers. Reduced ADAMTS13 activity in plasma has been described in many diseases associated with systemic inflammation. It remains uncertain, however, whether ADAMTS13 contributes to disease pathogenesis or rather simply serves as an inflammation-associated marker. We hypothesized that, by decreasing vascular inflammation, ADAMTS13 reduces the development of early atherosclerotic plaques. Using intravital fluorescence microscopy, we observed excessive leukocyte adhesion and accelerated atherosclerotic plaque formation at the carotid sinus of Adamts13(-/-)/ApoE(-/-) mice compared with ApoE(-/-) mice fed a high-fat Western diet. At 4 months of age, there was a significant increase in atherosclerosis in the aorta and aortic sinus of Adamts13(-/-)/ApoE(-/-) mice compared with ApoE(-/-) mice. Interestingly, we detected a 2-fold increase in macrophage recruitment to the atherosclerotic plaque of the Adamts13(-/-)/ApoE(-/-) mice compared with ApoE(-/-) mice, suggesting that the atherosclerotic lesions in these mice were not only larger but also more inflammatory. These findings reveal a new functional role for the antithrombotic enzyme ADAMTS13 in reducing excessive vascular inflammation and plaque formation during early atherosclerosis.
Collapse
|
23
|
Pinkaew D, Hutadilok-Towatana N, Teng BB, Mahabusarakam W, Fujise K. Morelloflavone, a biflavonoid inhibitor of migration-related kinases, ameliorates atherosclerosis in mice. Am J Physiol Heart Circ Physiol 2011; 302:H451-8. [PMID: 22058152 DOI: 10.1152/ajpheart.00669.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
While macrophages take up modified LDL to form foam cells and multiply to develop fatty streaks, vascular smooth muscle cells (VSMC) migrate from the media to intima, secrete extracellular matrix, and increase the volume of atherosclerotic lesions. A medicinal plant Garcinia dulcis has been used in traditional Thai medicine for centuries to treat various chronic human diseases. Morelloflavone, a biflavonoid and an active ingredient of the plant, has been shown to inhibit VSMC migration through its inhibition of multiple migration-related kinases such as focal adhesion kinase, c-Src, ERK, and RhoA. However, the exact role of morelloflavone in atherosclerogenesis was unknown. We fed Ldlr(-/-)Apobec1(-/-) mice with either normal chow or chow containing 0.003% morelloflavone for 8 mo and assessed the extent of atherosclerosis by the en face and cross-sectional analyses. A cell composition analysis of atherosclerotic tissue was carried out using immunohistochemical staining. Oral morelloflavone therapy significantly reduced the atherosclerotic areas of the mouse aortas (a 26% reduction), without changing plasma lipid profiles or weights. Immunohistochemical analyses showed that morelloflavone reduced the number of VSMC in the atherosclerotic lesion while it did not change the density of macrophages in the lesion or the percentages of proliferating and apoptotic cells. Oral, low-dose, morelloflavone therapy retards atherosclerogenesis by limiting the migration of VSMC into the intima in the mouse model of human atherosclerosis. Upon further investigation, morelloflavone may be found to be a novel oral antiatherosclerotic agent and a viable addition to the conventional therapies such as statins in humans.
Collapse
Affiliation(s)
- Decha Pinkaew
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
24
|
Raife TJ, Dwyre DM, Stevens JW, Erger RA, Leo L, Wilson KM, Fernández JA, Wilder J, Kim HS, Griffin JH, Maeda N, Lentz SR. Human thrombomodulin knock-in mice reveal differential effects of human thrombomodulin on thrombosis and atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31:2509-17. [PMID: 21885846 PMCID: PMC3202707 DOI: 10.1161/atvbaha.111.236828] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. METHODS AND RESULTS Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (P<0.01) and lung (P<0.001). Activation of endogenous protein C following infusion of thrombin was decreased by 90% in knock-in mice compared with wild-type mice (P<0.05). Carotid artery thrombosis induced by photochemical injury occurred more rapidly in knock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; P<0.05). No differences in serum cytokine levels were detected between knock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. CONCLUSION Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.
Collapse
Affiliation(s)
- Thomas J. Raife
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Denis M. Dwyre
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jeff W. Stevens
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Lorie Leo
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Katina M. Wilson
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jose A. Fernández
- Department of Molecular & Experimental Medicine, Scripps Research Institute, La Jolla, CA
| | - Jennifer Wilder
- Department of Pathology, University of North Carolina, Chapel Hill, NC
| | - Hyung-Suk Kim
- Department of Pathology, University of North Carolina, Chapel Hill, NC
| | - John H. Griffin
- Department of Molecular & Experimental Medicine, Scripps Research Institute, La Jolla, CA
| | - Nobuyo Maeda
- Department of Pathology, University of North Carolina, Chapel Hill, NC
| | - Steven R. Lentz
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
- Veterans Affairs Medical Center, Iowa City, IA
| |
Collapse
|
25
|
Correction of endothelial dysfunction after selective homocysteine lowering gene therapy reduces arterial thrombogenicity but has no effect on atherogenesis. J Mol Med (Berl) 2011; 89:1051-8. [PMID: 21688073 DOI: 10.1007/s00109-011-0778-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 12/20/2022]
Abstract
Hyperhomocysteinemia is an independent risk factor for ischemic cardiovascular diseases, but its causal role in atherothrombosis remains controversial. Proatherogenic and/or prothrombotic effects may underlie the potential causal relation between hyperhomocysteinemia and cardiovascular events. Here, the effects of selective lowering of plasma homocysteine, plasma cholesterol, or both on endothelial function and on atherogenesis in male hyperlipidemic and hyperhomocysteinemic C57BL/6 low-density lipoprotein receptor (LDLr)(-/-)/cystathionine-β-synthase (CBS)(+/-)-deficient mice were investigated. Second, we evaluated whether selective homocysteine lowering has anti-thrombotic effects in a model of arterial thrombosis. A hyperhomocysteinemic and atherogenic diet was started at the age of 12 weeks. Three weeks later, gene transfer was performed with E1E3E4-deleted adenoviral vectors for hepatocyte-restricted overexpression of CBS (AdCBS) or of the LDLr (AdLDLr), or with the control vector Adnull. In a fourth group, AdCBS and AdLDLr were co-administered. Selective homocysteine lowering but not selective cholesterol lowering restored endothelial function at 6 weeks after gene transfer. Intimal area in the aortic root and in the brachiocephalic artery at 13 weeks was more than 100-fold (p < 0.001) smaller in AdLDLr and AdCBS/AdLDLr mice than in control mice and AdCBS mice. No differences in intimal area were observed between control mice and AdCBS mice. In a model of carotid artery thrombosis, the average time to first occlusion and to stable occlusion were 1.9-fold (p < 0.01) and 2.1-fold longer (p < 0.01), respectively, in AdCBS-treated mice than in control mice. Taken together, these data show that correction of endothelial dysfunction following selective homocysteine lowering has anti-thrombotic but no anti-atherogenic effects.
Collapse
|
26
|
Beard RS, Bearden SE. Vascular complications of cystathionine β-synthase deficiency: future directions for homocysteine-to-hydrogen sulfide research. Am J Physiol Heart Circ Physiol 2011; 300:H13-26. [PMID: 20971760 PMCID: PMC3023265 DOI: 10.1152/ajpheart.00598.2010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022]
Abstract
Homocysteine (Hcy), a cardiovascular and neurovascular disease risk factor, is converted to hydrogen sulfide (H(2)S) through the transsulfuration pathway. H(2)S has attracted considerable attention in recent years for many positive effects on vascular health and homeostasis. Cystathionine β-synthase (CBS) is the first, and rate-limiting, enzyme in the transsulfuration pathway. Mutations in the CBS gene decrease enzymatic activity, which increases the plasma Hcy concentration, a condition called hyperhomocysteinemia (HHcy). Animal models of CBS deficiency have provided invaluable insights into the pathological effects of transsulfuration impairment and of both mild and severe HHcy. However, studies have also highlighted the complexity of HHcy and the need to explore the specific details of Hcy metabolism in addition to Hcy levels per se. There has been a relative paucity of work addressing the dysfunctional H(2)S production in CBS deficiency that may contribute to, or even create, HHcy-associated pathologies. Experiments using CBS knockout mice, both homozygous (-/-) and heterozygous (+/-), have provided 15 years of new knowledge and are the focus of this review. These murine models present the opportunity to study a specific mechanism for HHcy that matches one of the etiologies in many human patients. Therefore, the goal of this review was to integrate and highlight the critical information gained thus far from models of CBS deficiency and draw attention to critical gaps in knowledge, with particular emphasis on the modulation of H(2)S metabolism. We include findings from human and animal studies to identify important opportunities for future investigation that should be aimed at generating new basic and clinical understanding of the role of CBS and transsulfuration in cardiovascular and neurovascular disease.
Collapse
Affiliation(s)
- Richard S Beard
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho ID 83209-8007, USA
| | | |
Collapse
|
27
|
Abstract
The endoplasmic reticulum (ER) is the principal cellular organelle in which correct folding and maturation of transmembrane, secretory, and ER-resident proteins occur. Research over the past decade has demonstrated that mutations in proteins or agents/conditions that disrupt protein folding adversely affect ER homeostasis, leading to ER stress. This in turn initiates the unfolded protein response (UPR), an integrated intracellular signalling pathway that responds to ER stress by increasing the expression of ER-resident molecular chaperones, attenuating global protein translation and degrading unfolded proteins. Failure to relieve prolonged or acute ER stress causes the cell to undergo apoptotic cell death. Recent groundbreaking studies have provided compelling evidence that ER stress and UPR activation contribute to the development and progression of human disease, including neurodegenerative disorders, diabetes, obesity, cancer, and cardiovascular disease. Furthermore, the ability of the UPR to modulate oxidative stress, inflammation, and apoptosis provides important cellular clues as to how this evolutionarily conserved cellular-stress pathway maintains and responds to both normal physiologic and pathologic processes. In this Forum issue, many aspects of the UPR are reviewed in the context of how ER stress and UPR activation influence human disease. This current information provides a solid foundation for future investigations aimed at targeting the UPR in an attempt to reduce the risk of human disease.
Collapse
Affiliation(s)
- Richard C. Austin
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Zhou J, Austin RC. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms. Biofactors 2009; 35:120-9. [PMID: 19449439 DOI: 10.1002/biof.17] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hyperhomocysteinemia (HHcy) is considered an independent risk factor for cardiovascular disease, including ischemic heart disease, stroke, and peripheral vascular disease. Mutations in the enzymes and/or nutritional deficiencies in B vitamins required for homocysteine metabolism can induce HHcy. Studies using genetic- or diet-induced animal models of HHcy have demonstrated a causal relationship between HHcy and accelerated atherosclerosis. Oxidative stress and activation of proinflammatory factors have been proposed to explain the atherogenic effects of HHcy. Recently, HHcy-induced endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been found to play a role in HHcy-induced atherogenesis. This review will focus on the cellular mechanisms of HHcy in atherosclerosis from both in vivo and in vitro studies. The contributions of ER stress and the UPR in atherogenesis will be emphasized. Results from recent clinical trials assessing the cardiovascular risk of lowering total plasma homocysteine levels and new findings examining the atherogenic role of HHcy in wild-type C57BL/6J mice will also be discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
29
|
Dayal S, Lentz SR. Murine models of hyperhomocysteinemia and their vascular phenotypes. Arterioscler Thromb Vasc Biol 2008; 28:1596-605. [PMID: 18556571 DOI: 10.1161/atvbaha.108.166421] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperhomocysteinemia is an established risk factor for arterial as well as venous thromboembolism. Individuals with severe hyperhomocysteinemia caused by inherited genetic defects in homocysteine metabolism have an extremely high incidence of vascular thrombosis unless they are treated aggressively with homocysteine-lowering therapy. The clinical value of homocysteine-lowering therapy in individuals with moderate hyperhomocysteinemia, which is very common in populations at risk for vascular disease, is more controversial. Considerable progress in our understanding of the molecular mechanisms underlying the association between hyperhomocysteinemia and vascular thrombotic events has been provided by the development of a variety of murine models. Because levels of homocysteine are regulated by both the methionine and folate cycles, hyperhomocysteinemia can be induced in mice through both genetic and dietary manipulations. Mice deficient in the cystathionine beta-synthase (CBS) gene have been exploited widely in many studies investigating the vascular pathophysiology of hyperhomocysteinemia. In this article, we review the established murine models, including the CBS-deficient mouse as well as several newer murine models available for the study of hyperhomocysteinemia. We also summarize the major vascular phenotypes observed in these murine models.
Collapse
Affiliation(s)
- Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, USA
| | | |
Collapse
|
30
|
Hypercoagulability Due to Homocystinuria in a Case of Head and Neck Reconstruction Resolved with Combined Systemic Therapy. Plast Reconstr Surg 2008; 121:1508-1509. [DOI: 10.1097/01.prs.0000305361.01499.f6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Zhou J, Werstuck GH, Lhoták S, Shi YY, Tedesco V, Trigatti B, Dickhout J, Majors AK, DiBello PM, Jacobsen DW, Austin RC. Hyperhomocysteinemia induced by methionine supplementation does not independently cause atherosclerosis in C57BL/6J mice. FASEB J 2008; 22:2569-78. [PMID: 18364397 DOI: 10.1096/fj.07-105353] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A causal relationship between diet-induced hyperhomocysteinemia (HHcy) and accelerated atherosclerosis has been established in apolipoprotein E-deficient (apoE(-/-)) mice. However, it is not known whether the proatherogenic effect of HHcy in apoE(-/-) mice is independent of hyperlipidemia and/or deficiency of apoE. In this study, a comprehensive dietary approach using C57BL/6J mice was used to investigate whether HHcy is an independent risk factor for accelerated atherosclerosis or dependent on additional dietary factors that increase plasma lipids and/or inflammation. C57BL/6J mice at 4 wk of age were divided into 6 dietary groups: chow diet (C), chow diet + methionine (C+M), western-type diet (W), western-type diet + methionine (W+M), atherogenic diet (A), or atherogenic diet + methionine (A+M). After 2, 10, 20, or 40 wk on the diets, mice were sacrificed, and the levels of total plasma homocysteine, cysteine, and glutathione, as well as total plasma cholesterol and triglycerides were analyzed. Aortic root sections were examined for atherosclerotic lesions. HHcy was induced in all groups supplemented with methionine, compared to diet-matched control groups. Plasma total cholesterol was significantly increased in mice fed the W or A diet. However, the W diet increased LDL/IDL and HDL levels, while the A diet significantly elevated plasma VLDL and LDL/IDL levels without increasing HDL. No differences in plasma total cholesterol levels or lipid profiles were observed between methionine-supplemented groups and the diet-matched control groups. Early atherosclerotic lesions containing macrophage foam cells were only observed in mice fed the A or A + M diet. Furthermore, lesion size was significantly larger in the A + M group compared to the A group at 10 and 20 wk; however, mature lesions were never observed even after 40 wk on these diets. The presence of lymphocytes, increased hyaluronan staining, and the expression of endoplasmic reticulum (ER) stress markers were also increased in atherosclerotic lesions from the A + M group. Taken together, these results suggest that HHcy does not independently cause atherosclerosis in C57BL/6J mice even in the presence of increased total plasma lipids induced by the W diet. However, HHcy can accelerate atherosclerotic lesion development under dietary conditions that increase plasma VLDL levels and/or inflammation.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Edirimanne VE, Woo CW, Siow YL, Pierce GN, Xie JY, O K. Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats. Can J Physiol Pharmacol 2007; 85:1236-47. [DOI: 10.1139/y07-112] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevation of blood homocysteine (Hcy) levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. We previously reported that oxidative stress contributed to Hcy-induced inflammatory response in vascular cells. In this study, we investigated whether NADPH oxidase was involved in Hcy-induced superoxide anion accumulation in the aorta, which leads to endothelial dysfunction during hyperhomocysteinemia. Hyperhomocysteinemia was induced in rats fed a high-methionine diet. NADPH oxidase activity and the levels of superoxide and peroxynitrite were markedly increased in aortas isolated from hyperhomocysteinemic rats. Expression of the NADPH oxidase subunit p22phox increased significantly in these aortas. Administration of an NADPH oxidase inhibitor (apocynin) not only attenuated aortic superoxide and peroxynitrite to control levels but also restored endothelium-dependent relaxation in the aortas of hyperhomocysteinemic rats. Transfection of human endothelial cells or vascular smooth muscle cells with p22phox siRNA to inhibit NADPH oxidase activation effectively abolished Hcy-induced superoxide anion production, thus indicating the direct involvement of NADPH oxidase in elevated superoxide generation in vascular cells. Taken together, these results suggest that Hcy-stimulated superoxide anion production in the vascular wall is mediated through the activation of NADPH oxidase, which leads to endothelial dysfunction during hyperhomocysteinemia.
Collapse
Affiliation(s)
- Vathsala E.R. Edirimanne
- Department of Animal Science, Department of Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Connie W.H. Woo
- Department of Animal Science, Department of Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Yaw L. Siow
- Department of Animal Science, Department of Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Grant N. Pierce
- Department of Animal Science, Department of Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Jiu Y. Xie
- Department of Animal Science, Department of Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Karmin O
- Department of Animal Science, Department of Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
33
|
Abstract
Hyperhomocysteinemia is a risk factor for cardiovascular disease, stroke, and thrombosis. Several animal models of hyperhomocysteinemia have been developed by using both dietary and genetic approaches. These animal models have provided considerable insight into the mechanisms underlying the adverse vascular effects of hyperhomocysteinemia. Accumulating evidence suggests a significant role of altered cellular redox reactions in the vascular phenotype of hyperhomocysteinemia. Redox effects of hyperhomocysteinemia are particularly important in mediating the adverse effects of hyperhomocysteinemia on the endothelium, leading to loss of endothelium-derived nitric oxide and vasomotor dysfunction. Redox reactions also may be key factors in the development of vascular hypertrophy, thrombosis, and atherosclerosis in hyperhomocysteinemic animals. In this review, we summarize the metabolic relations between homocysteine and the cellular redox state, the vascular phenotypes that have been observed in hyperhomocysteinemic animals, the evidence for altered redox reactions in vascular tissue, and the specific redox reactions that may mediate the vascular effects of hyperhomocysteinemia.
Collapse
Affiliation(s)
- Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
34
|
Abstract
On the basis of the results of several recent clinical trials, many researchers have concluded that vitamin therapy designed to lower total homocysteine concentrations is not effective in reducing the risk of cardiovascular events. However, whereas almost all myocardial infarctions are due to plaque rupture, stroke has many more pathophysiological mechanisms, and thrombosis-which is increased by raised total homocysteine concentrations-has an important role in many of these processes. Thus, stroke and myocardial infarction could respond differently to vitamin therapy. A detailed assessment of the results of the recent HOPE-2 trial and a reanalysis of the VISP trial restricted to patients capable of responding to vitamin therapy suggest that higher doses of vitamin B12 and perhaps new approaches to lowering total homocysteine besides routine vitamin therapy with folate, vitamin B6, and vitamin B12 could reduce the risk of stroke. Thus, therapy to lower homocysteine could still help to prevent stroke, if not other vascular outcomes.
Collapse
Affiliation(s)
- J David Spence
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, London, ON, Canada.
| |
Collapse
|
35
|
Zoccali C, Mallamaci F, Tripepi G. CARDIOVASCULAR AND SURVIVAL PARADOXES IN DIALYSIS PATIENTS: It Is Important to Lower Homocysteine in Dialysis Patients. Semin Dial 2007; 20:530-3. [DOI: 10.1111/j.1525-139x.2007.00345.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|