1
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
2
|
Schlegel M, Cyr Y, Newman AAC, Schreyer K, Barcia Durán JG, Sharma M, Bozal FK, Gourvest M, La Forest M, Afonso MS, van Solingen C, Fisher EA, Moore KJ. Targeting Unc5b in macrophages drives atherosclerosis regression and pro-resolving immune cell function. Proc Natl Acad Sci U S A 2024; 121:e2412690121. [PMID: 39436659 PMCID: PMC11536151 DOI: 10.1073/pnas.2412690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Atherosclerosis results from lipid-driven inflammation of the arterial wall that fails to resolve. Imbalances in macrophage accumulation and function, including diminished migratory capacity and defective efferocytosis, fuel maladaptive inflammation and plaque progression. The neuroimmune guidance cue netrin-1 has dichotomous roles in inflammation partly due to its multiple receptors; in atherosclerosis, netrin-1 promotes macrophage survival and retention via its receptor Unc5b. To minimize the pleiotropic effects of targeting netrin-1, we tested the therapeutic potential of deleting Unc5b in mice with advanced atherosclerosis. We generated Unc5bfl/flCx3cr1creERT2/WT mice, which allowed conditional deletion of Un5b (∆Unc5bMØ) in monocytes and macrophages by tamoxifen injection. After inducing advanced atherosclerosis by hepatic PCSK9 overexpression and western diet feeding for 20 wk, Unc5b was deleted and hypercholesterolemia was normalized to simulate clinical lipid management. Deletion of myeloid Unc5b led to a 40% decrease in atherosclerotic plaque burden and reduced plaque complexity compared to Unc5bfl/flCx3cr1WT/WT littermate controls (CtrlMØ). Consistently, plaque macrophage content was reduced by 50% in ∆Unc5bMØ mice due to reduced plaque Ly6Chi monocyte recruitment and macrophage retention. Compared to CtrlMØ mice, plaques in ∆Unc5bMØ mice had reduced necrotic area and fewer apoptotic cells, which correlated with improved efferocytotic capacity by Unc5b-deficient macrophages in vivo and in vitro. Beneficial changes in macrophage dynamics in the plaque upon Unc5b deletion were accompanied by an increase in atheroprotective T cell populations, including T-regulatory and Th2 cells. Our data identify Unc5b in advanced atherosclerosis as a therapeutic target to induce pro-resolving restructuring of the plaque immune cells and to promote atherosclerosis regression.
Collapse
Affiliation(s)
- Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - Yannick Cyr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Alexandra A. C. Newman
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Korbinian Schreyer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - José Gabriel Barcia Durán
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Monika Sharma
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Fazli K. Bozal
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Morgane Gourvest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Maxwell La Forest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Milessa S. Afonso
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Coen van Solingen
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Edward A. Fisher
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| | - Kathryn J. Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| |
Collapse
|
3
|
Pereira-Neves A, Dias L, Fragão-Marques M, Vidoedo J, Ribeiro H, Andrade JP, Rocha-Neves J. Monocyte Count as a Predictor of Major Adverse Limb Events in Aortoiliac Revascularization. J Clin Med 2024; 13:6412. [PMID: 39518551 PMCID: PMC11546730 DOI: 10.3390/jcm13216412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Atherosclerosis is a leading cause of death, especially in the developed world, and is marked by chronic arterial inflammation and lipid accumulation. As key players in its progression, monocytes contribute to plaque formation, inflammation, and tissue repair. Understanding monocyte involvement is crucial for developing better therapeutic approaches. The objective of this study is to assess the prognostic value of monocytes for limb-related outcomes following revascularization for complex aortoiliac lesions, thereby emphasizing the central role of monocytes in atherosclerosis. Methods: This prospective cohort study-enrolled patients who had undergone elective aortoiliac revascularization at two hospitals between January 2013 and December 2023. Patients with TASC II type D lesions were included, excluding those with aneurysmal disease. Demographic, clinical, and procedural data were gathered, and patients were monitored for limb-related outcomes. Preoperative complete blood counts were analyzed, and statistical analyses, including multivariable Cox regression, were conducted to identify predictors of major adverse limb events (MALE). Results: The study included 135 patients with a mean age of 62.4 ± 9.20 years and predominantly male (93%). Patients were followed for a median of 61 IQR [55.4-66.6] months. Smoking history (91%) was the most prevalent cardiovascular risk factor. Preoperative monocyte count >0.720 × 109/L was associated with worse 30-day limb-related outcomes (MALE: OR 7.138 95% CI: 1.509-33.764, p = 0.013) and long-term outcomes, including secondary patency (p = 0.03), major amputation (p = 0.04), and MALE (p = 0.039). Cox regression analysis confirmed an elevated monocyte count as an independent predictor of MALE (adjusted hazard ratio 2.149, 95% CI: 1.115-4.144, p = 0.022). Conclusions: This study demonstrated that patients with a higher absolute monocyte count may be more exposed to the risk of MALE in patients with aortoiliac TASC II type D lesions undergoing revascularization, with predictive accuracy in both the short and long term. Additionally, it was an independent predictor of major amputation. This new marker has the potential to serve as a cost-effective and easily available tool for risk stratification, helping identify patients at higher risk of MALE.
Collapse
Affiliation(s)
- António Pereira-Neves
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, 4050-513 Porto, Portugal; (J.P.A.); (J.R.-N.)
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, 4200-319 Porto, Portugal;
| | - Lara Dias
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, 4200-319 Porto, Portugal;
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4050-513 Porto, Portugal
| | - Mariana Fragão-Marques
- Cardiovascular R&D Unit, Faculty of Medicine, University of Porto, 4050-513 Porto, Portugal;
| | - José Vidoedo
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde entre o Tâmega e o Sousa, 4560-136 Penafiel, Portugal;
| | - Hugo Ribeiro
- Community Palliative Care Support Team Gaia, 4430-043 Vila Nova de Gaia, Portugal;
- Faculty of Medicine, University of Coimbra, 3004-535 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal
- MEDCIDS—Faculty of Medicine, University of Porto, 4050-513 Porto, Portugal
| | - José Paulo Andrade
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, 4050-513 Porto, Portugal; (J.P.A.); (J.R.-N.)
- Rise@Health, Rua Dr. Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - João Rocha-Neves
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, 4050-513 Porto, Portugal; (J.P.A.); (J.R.-N.)
- Rise@Health, Rua Dr. Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Annink ME, Kraaijenhof JM, Stroes ESG, Kroon J. Moving from lipids to leukocytes: inflammation and immune cells in atherosclerosis. Front Cell Dev Biol 2024; 12:1446758. [PMID: 39161593 PMCID: PMC11330886 DOI: 10.3389/fcell.2024.1446758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the most important cause of morbidity and mortality worldwide. While it is traditionally attributed to lipid accumulation in the vascular endothelium, recent research has shown that plaque inflammation is an important additional driver of atherogenesis. Though clinical outcome trials utilizing anti-inflammatory agents have proven promising in terms of reducing ASCVD risk, it is imperative to identify novel actionable targets that are more specific to atherosclerosis to mitigate adverse effects associated with systemic immune suppression. To that end, this review explores the contributions of various immune cells from the innate and adaptive immune system in promoting and mitigating atherosclerosis by integrating findings from experimental studies, high-throughput multi-omics technologies, and epidemiological research.
Collapse
Affiliation(s)
- Maxim E. Annink
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, Netherlands
| |
Collapse
|
5
|
Diez Benavente E, Hartman RJG, Sakkers TR, Wesseling M, Sloots Y, Slenders L, Boltjes A, Mol BM, de Borst GJ, de Kleijn DPV, Prange KHM, de Winther MPJ, Kuiper J, Civelek M, van der Laan SW, Horvath S, Onland-Moret NC, Mokry M, Pasterkamp G, den Ruijter HM. Atherosclerotic Plaque Epigenetic Age Acceleration Predicts a Poor Prognosis and Is Associated With Endothelial-to-Mesenchymal Transition in Humans. Arterioscler Thromb Vasc Biol 2024; 44:1419-1431. [PMID: 38634280 DOI: 10.1161/atvbaha.123.320692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFβ-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Tim R Sakkers
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marian Wesseling
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Yannicke Sloots
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lotte Slenders
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Arjan Boltjes
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Barend M Mol
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Koen H M Prange
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Menno P J de Winther
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Johan Kuiper
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Mete Civelek
- Center for Public Health Genomics (M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Sander W van der Laan
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine (S.H.), University of California, Los Angeles
- Department of Biostatistics, Fielding School of Public Health (S.H.), University of California, Los Angeles
- Altos Labs, Cambridge Institute of Science, United Kingdom (S.H.)
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care (N.C.O.-M.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
6
|
Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp Neurol 2024; 373:114655. [PMID: 38110142 DOI: 10.1016/j.expneurol.2023.114655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
One of the major causes of long-term disability and mortality is ischemic stroke that enjoys limited treatment approaches. On the one hand, oxidative stress, induced by excessive generation of reactive oxygen species (ROS), plays a critical role in post-stroke inflammatory response. Increased ROS generation is one of the basic factors in the progression of stroke-induced neuroinflammation. Moreover, intravenous (IV) thrombolysis using recombinant tissue plasminogen activator (rtPA) as the only medication approved for patients with acute ischemic stroke who suffer from some clinical restrictions it could not cover the complicated episodes that happen after stroke. Thus, identifying novel therapeutic targets is crucial for successful preparation of new medicines. Recent evidence indicates that the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) contributes significantly to regulating the antioxidant production in cytosol, which causes antiinflammatory effects on neurons. New findings have shown a relationship between activation of the Nrf2 and glial cells, nuclear factor kappa B (NF-κB) pathway, the nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, and expression of inflammatory markers, suggesting induction of Nrf2 activation can represent a promising therapeutic alternative as the modulators of Nrf2 dependent pathways for targeting inflammatory responses in neural tissue. Hence, this review addresses the relationship of Nrf2 signaling with inflammation and Nrf2 activators' potential as therapeutic agents. This review helps to improve required knowledge for focused therapy and the creation of modern and improved treatment choices for patients with ischemic stroke.
Collapse
Affiliation(s)
- Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Negin Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Mekke JM, Sakkers TR, Verwer MC, van den Dungen NAM, Song Y, Miller CL, Finn AV, Pasterkamp G, Mokry M, den Ruijter HM, Vink A, de Kleijn DPV, de Borst GJ, Haitjema S, van der Laan SW. The accumulation of erythrocytes quantified and visualized by Glycophorin C in carotid atherosclerotic plaque reflects intraplaque hemorrhage and pre-procedural neurological symptoms. Sci Rep 2023; 13:17104. [PMID: 37816779 PMCID: PMC10564864 DOI: 10.1038/s41598-023-43369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
The accumulation of erythrocyte membranes within an atherosclerotic plaque may contribute to the deposition of free cholesterol and thereby the enlargement of the necrotic core. Erythrocyte membranes can be visualized and quantified in the plaque by immunostaining for the erythrocyte marker glycophorin C. Hence, we theorized that the accumulation of erythrocytes quantified by glycophorin C could function as a marker for plaque vulnerability, possibly reflecting intraplaque hemorrhage (IPH), and offering predictive value for pre-procedural neurological symptoms. We employed the CellProfiler-integrated slideToolKit workflow to visualize and quantify glycophorin C, defined as the total plaque area that is positive for glycophorin C, in single slides of culprit lesions obtained from the Athero-Express Biobank of 1819 consecutive asymptomatic and symptomatic patients who underwent carotid endarterectomy. Our assessment included the evaluation of various parameters such as lipid core, calcifications, collagen content, SMC content, and macrophage burden. These parameters were evaluated using a semi-quantitative scoring method, and the resulting data was dichotomized as predefined criteria into categories of no/minor or moderate/heavy staining. In addition, the presence or absence of IPH was also scored. The prevalence of IPH and pre-procedural neurological symptoms were 62.4% and 87.1%, respectively. The amount of glycophorin staining was significantly higher in samples from men compared to samples of women (median 7.15 (IQR:3.37, 13.41) versus median 4.06 (IQR:1.98, 8.32), p < 0.001). Glycophorin C was associated with IPH adjusted for clinical confounders (OR 1.90; 95% CI 1.63, 2.21; p = < 0.001). Glycophorin C was significantly associated with ipsilateral pre-procedural neurological symptoms (OR:1.27, 95%CI:1.06-1.41, p = 0.005). Sex-stratified analysis, showed that this was also the case for men (OR 1.37; 95%CI 1.12, 1.69; p = 0.003), but not for women (OR 1.15; 95%CI 0.77, 1.73; p = 0.27). Glycophorin C was associated with classical features of a vulnerable plaque, such as a larger lipid core, a higher macrophage burden, less calcifications, a lower collagen and SMC content. There were marked sex differences, in men, glycophorin C was associated with calcifications and collagen while these associations were not found in women. To conclude, the accumulation of erythrocytes in atherosclerotic plaque quantified and visualized by glycophorin C was independently associated with the presence of IPH, preprocedural symptoms in men, and with a more vulnerable plaque composition in both men and women. These results strengthen the notion that the accumulation of erythrocytes quantified by glycophorin C can be used as a marker for plaque vulnerability.
Collapse
Affiliation(s)
- Joost M Mekke
- Division of Surgical Specialties, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Tim R Sakkers
- Laboratory of Experimental Cardiology, Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Maarten C Verwer
- Division of Surgical Specialties, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Noortje A M van den Dungen
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Yipei Song
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Gerard Pasterkamp
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Dominique P V de Kleijn
- Division of Surgical Specialties, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Gert J de Borst
- Division of Surgical Specialties, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Saskia Haitjema
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
8
|
Wang P, Li M, Gao T, Fan J, Zhang D, Zhao Y, Zhao Y, Wang Y, Guo T, Gao X, Liu Y, Gao Y, Guan X, Sun X, Zhao J, Li H, Yang L. Vascular Electrical Stimulation with Wireless, Battery-Free, and Fully Implantable Features Reduces Atherosclerotic Plaque Formation Through Sirt1-Mediated Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300584. [PMID: 37267941 DOI: 10.1002/smll.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Electrical stimulation (ES) is a safe and effective procedure in clinical rehabilitation with few adverse effects. However, studies on ES for atherosclerosis (AS) are scarce because ES does not provide a long-term intervention for chronic disease processes. Battery-free implants and surgically mounted them in the abdominal aorta of high-fat-fed Apolipoprotein E (ApoE-/- ) mice are used, which are electrically stimulated for four weeks using a wireless ES device to observe changes in atherosclerotic plaques. Results showed that there is almost no growth of atherosclerotic plaque at the stimulated site in AopE-/- mice after ES. RNA-sequencing (RNA-seq) analysis of Thp-1 macrophages reveal that the transcriptional activity of autophagy-related genes increase substantially after ES. Additionally, ES reduces lipid accumulation in macrophages by restoring ABCA1- and ABCG1-mediated cholesterol efflux. Mechanistically, it is demonstrated that ES reduced lipid accumulation through Sirtuin 1 (Sirt1)/Autophagy related 5 (Atg5) pathway-mediated autophagy. Furthermore, ES reverse autophagic dysfunction in macrophages of AopE-/- mouse plaques by restoring Sirt1, blunting P62 accumulation, and inhibiting the secretion of interleukin (IL)-6, resulting in the alleviation of atherosclerotic lesion formation. Here, a novel approach is shown in which ES can be used as a promising therapeutic strategy for AS treatment through Sirt1/Atg5 pathway-mediated autophagy.
Collapse
Affiliation(s)
- Pengyu Wang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Manman Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Tielei Gao
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150081, P. R. China
| | - Jiaying Fan
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Dengfeng Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Ying Zhao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yajie Zhao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yuqin Wang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Tianwei Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Xi Gao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yujun Liu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yang Gao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
| | - Xue Guan
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
| | - Xinyong Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Jiyi Zhao
- Cardiovascular Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Hong Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Liming Yang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, P. R. China
| |
Collapse
|
9
|
Wang C, Wen S, Zhou L. Splenic Infarction with Myocardial Injury in a Diabetic Patient: A Case Report. Diabetes Metab Syndr Obes 2023; 16:2929-2937. [PMID: 37771467 PMCID: PMC10522457 DOI: 10.2147/dmso.s427586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Splenic infarction (SI) is an uncommon complication of type 2 diabetes (T2D). Diabetes predisposes individuals to blood vessel abnormalities, such as atherosclerosis or thrombosis, increasing the risk of vessel occlusion and subsequent tissue infarction. If the diabetic patient has other serious diseases, such as a severe pneumonia infection and acute cardiac infarction, SI incidence may go unrecognized, making it challenging for physicians to identify. This case report discussed an 80-year-old hospitalized diabetic woman with a history of chronic bronchitis and 20 years of T2D who suffered an SI. The patient was at elevated risk for thrombosis of atrial fibrillation, manifested as an embolism of the spleen characterized by a high concentration of white blood cells. This patient also demonstrated a rapid increase in cardiac biomarkers troponin I, suggesting acute myocardial infarction (AMI) and increased amylase, which could not preclude the concern about the existence of acute pancreatitis. Abdominal CT displayed the calcification of only the splenic and other arteries, and low-density shadows were observed at the center portion of the spleen. This case demonstrated the significant occurrence of thrombotic complications in various blood vessels of multiple organs in T2D patients. Thus, clinicians should be aware of the possibility of simultaneous acute vascular infarction of several organs in diabetic patients with prior vascular constriction.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
11
|
Zahr T, Liu L, Chan M, Zhou Q, Cai B, He Y, Aaron N, Accili D, Sun L, Qiang L. PPARγ (Peroxisome Proliferator-Activated Receptor γ) Deacetylation Suppresses Aging-Associated Atherosclerosis and Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2023; 43:30-44. [PMID: 36453279 PMCID: PMC9917767 DOI: 10.1161/atvbaha.122.318061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Atherosclerosis is a medical urgency manifesting at the onset of hypercholesterolemia and is associated with aging. Activation of PPARγ (peroxisome proliferator-activated receptor γ) counteracts metabolic dysfunction influenced by aging, and its deacetylation displays an atheroprotective property. Despite the marked increase of PPARγ acetylation during aging, it is unknown whether PPARγ acetylation is a pathogenic contributor to aging-associated atherosclerosis. METHODS Mice with constitutive deacetylation-mimetic PPARγ mutations on lysine residues K268 and K293 (2KR) in an LDL (low-density lipoprotein)-receptor knockout (Ldlr-/-) background (2KR:Ldlr-/-) were aged for 18 months on a standard laboratory diet to examine the cardiometabolic phenotype, which was confirmed in Western-type diet-fed 2KR:Ldlr+/- mice. Whole-liver RNA-sequencing and in vitro studies in bone marrow-derived macrophages were conducted to decipher the mechanism. RESULTS In contrast to severe atherosclerosis in WT:Ldlr-/- mice, aged 2KR:Ldlr-/- mice developed little to no plaque, which was underlain by a significantly improved plasma lipid profile, with particular reductions in circulating LDL. The protection from hypercholesterolemia was recapitulated in Western-type diet-fed 2KR:Ldlr+/- mice. Liver RNA-sequencing analysis revealed suppression of liver inflammation rather than changes in cholesterol metabolism. This anti-inflammatory effect of 2KR was attributed to polarized M2 activation of macrophages. Additionally, the upregulation of core circadian component Bmal1 (brain and muscle ARNT-like 1), perceived to be involved in anti-inflammatory immunity, was observed in the liver and bone marrow-derived macrophages. CONCLUSIONS PPARγ deacetylation in mice prevents the development of aging-associated atherosclerosis and hypercholesterolemia, in association with the anti-inflammatory phenotype of 2KR macrophages.
Collapse
Affiliation(s)
- Tarik Zahr
- Department of Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, New York, USA
| | - Longhua Liu
- Department of Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Michelle Chan
- Department of Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ying He
- Department of Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Nicole Aaron
- Department of Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, New York, USA
| | - Domenico Accili
- Department of Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Li Qiang
- Department of Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
12
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
13
|
Handke J, Kummer L, Weigand MA, Larmann J. Modulation of Peripheral CD4 +CD25 +Foxp3 + Regulatory T Cells Ameliorates Surgical Stress-Induced Atherosclerotic Plaque Progression in ApoE-Deficient Mice. Front Cardiovasc Med 2021; 8:682458. [PMID: 34485396 PMCID: PMC8416168 DOI: 10.3389/fcvm.2021.682458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Systemic inflammation associated with major surgery rapidly accelerates atherosclerotic plaque progression in mice. Regulatory T cells (Tregs) have emerged as important modulators of atherogenesis. In coronary artery disease patients, low frequency of Tregs constitutes an independent risk factor for cardiovascular complications after non-cardiac surgery. In this exploratory analysis, we investigate whether preoperative Treg levels affect surgery-induced atherosclerotic lesion destabilization in a murine model of perioperative stress. After 9 weeks of high-cholesterol diet, atherosclerotic apolipoprotein E-deficient mice with modulated Treg levels were subjected to a 30-minute surgical procedure consisting of general isoflurane anesthesia, laparotomy and moderate blood loss. Controls underwent general anesthesia only. Brachiocephalic arteries were harvested 3 days after the intervention for histomorphological analyses of atherosclerotic plaques. Tregs were depleted by a single dose of anti-CD25 monoclonal antibody (mAb) administered 6 days prior to the intervention. Expansion of Tregs was induced by daily injections of IL-2/anti-IL-2 complex (IL-2C) on three consecutive days starting 3 days before surgery. Isotype-matched antibodies and PBS served as controls. Antibody-mediated modulation was Treg-specific. IL-2C treatment resulted in an eight-fold elevation of peripheral CD4+CD25+Foxp3+ Tregs compared to mice administered with anti-CD25 mAb. In mice treated with PBS and anti-CD25 mAb, surgical stress response caused a significant increase of atherosclerotic plaque necrosis (PBS: p < 0.001; anti-CD25 mAb: p = 0.037). Preoperative Treg expansion abrogated perioperative necrotic core formation (p = 0.556) and significantly enhanced postoperative atherosclerotic plaque stability compared to PBS-treated mice (p = 0.036). Postoperative plaque volume (p = 0.960), stenosis (p = 0.693), lesional collagen (p = 0.258), as well as the relative macrophage (p = 0.625) and smooth muscle cell content (p = 0.178) remained largely unaffected by preoperative Treg levels. In atherosclerotic mice, therapeutic expansion of Tregs prior to major surgery mitigates rapid effects on perioperative stress-driven atherosclerotic plaque destabilization. Future studies will show, whether short-term interventions modulating perioperative inflammation qualify for prevention of cardiovascular events associated with major non-cardiac surgery.
Collapse
Affiliation(s)
- Jessica Handke
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Kummer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
15
|
Ouerd S, Idris-Khodja N, Trindade M, Ferreira NS, Berillo O, Coelho SC, Neves MF, Jandeleit-Dahm KA, Paradis P, Schiffrin EL. Endothelium-restricted endothelin-1 overexpression in type 1 diabetes worsens atherosclerosis and immune cell infiltration via NOX1. Cardiovasc Res 2021; 117:1144-1153. [PMID: 32533834 PMCID: PMC7983005 DOI: 10.1093/cvr/cvaa168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/15/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS NADPH oxidase (NOX) 1 but not NOX4-dependent oxidative stress plays a role in diabetic vascular disease, including atherosclerosis. Endothelin (ET)-1 has been implicated in diabetes-induced vascular complications. We showed that crossing mice overexpressing human ET-1 selectively in endothelium (eET-1) with apolipoprotein E knockout (Apoe-/-) mice enhanced high-fat diet-induced atherosclerosis in part by increasing oxidative stress. We tested the hypothesis that ET-1 overexpression in the endothelium would worsen atherosclerosis in type 1 diabetes through a mechanism involving NOX1 but not NOX4. METHODS AND RESULTS Six-week-old male Apoe-/- and eET-1/Apoe-/- mice with or without Nox1 (Nox1-/y) or Nox4 knockout (Nox4-/-) were injected intraperitoneally with either vehicle or streptozotocin (55 mg/kg/day) for 5 days to induce type 1 diabetes and were studied 14 weeks later. ET-1 overexpression increased 2.5-fold and five-fold the atherosclerotic lesion area in the aortic sinus and arch of diabetic Apoe-/- mice, respectively. Deletion of Nox1 reduced aortic arch plaque size by 60%; in contrast, Nox4 knockout increased lesion size by 1.5-fold. ET-1 overexpression decreased aortic sinus and arch plaque alpha smooth muscle cell content by ∼35% and ∼50%, respectively, which was blunted by Nox1 but not Nox4 knockout. Reactive oxygen species production was increased two-fold in aortic arch perivascular fat of diabetic eET-1/Apoe-/- and eET-1/Apoe-/-/Nox4-/- mice but not eET-1/Apoe-/-/Nox1y/- mice. ET-1 overexpression enhanced monocyte/macrophage and CD3+ T-cell infiltration ∼2.7-fold in the aortic arch perivascular fat of diabetic Apoe-/- mice. Both Nox1 and Nox4 knockout blunted CD3+ T-cell infiltration whereas only Nox1 knockout prevented the monocyte/macrophage infiltration in diabetic eET-1/Apoe-/- mice. CONCLUSION Endothelium ET-1 overexpression enhances the progression of atherosclerosis in type 1 diabetes, perivascular oxidative stress, and inflammation through NOX1.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Fibrosis
- Humans
- Macrophages/enzymology
- Macrophages/immunology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Monocytes/enzymology
- Monocytes/immunology
- NADPH Oxidase 1/genetics
- NADPH Oxidase 1/metabolism
- Oxidative Stress
- Plaque, Atherosclerotic
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Up-Regulation
- Mice
Collapse
Affiliation(s)
- Sofiane Ouerd
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Noureddine Idris-Khodja
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Michelle Trindade
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Suellen C Coelho
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Mario F Neves
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127 3755 Cote Ste-Catherine Road, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
16
|
Bi X, Du C, Wang X, Wang X, Han W, Wang Y, Qiao Y, Zhu Y, Ran L, Liu Y, Xiong J, Huang Y, Liu M, Liu C, Zeng C, Wang J, Yang K, Zhao J. Mitochondrial Damage-Induced Innate Immune Activation in Vascular Smooth Muscle Cells Promotes Chronic Kidney Disease-Associated Plaque Vulnerability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002738. [PMID: 33717842 PMCID: PMC7927614 DOI: 10.1002/advs.202002738] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Indexed: 05/02/2023]
Abstract
Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E-deficient (ApoE-/-) mouse with CKD (CKD/ApoE-/- mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD-associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE-/- mice are comprehensively investigated. Using multi-omics analysis and targeted and VSMC-specific gene knockout mice, VSMCs are identified as both type-I-interferon (IFN-I)-responsive and IFN-I-productive cells. Mechanistically, mitochondrial damage resulting from CKD-induced oxidative stress primes the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway to trigger IFN-I response in VSMCs. Enhanced IFN-I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN-I response remarkably attenuates CKD-associated plaque vulnerability. These findings reveal that IFN-I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD-associated plaque vulnerability. Mitigating IFN-I response may hold promise for the treatment of CKD-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Xianjin Bi
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Changhong Du
- State Key Laboratory of TraumaBurns and Combined InjuryInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xinmiao Wang
- State Key Laboratory of TraumaBurns and Combined InjuryInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xue‐Yue Wang
- Laboratory of Stem Cell & Developmental BiologyDepartment of Histology and EmbryologyCollege of Basic Medical SciencesArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Wenhao Han
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yue Wang
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yu Qiao
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yingguo Zhu
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Li Ran
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yong Liu
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jiachuan Xiong
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yinghui Huang
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Mingying Liu
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Chi Liu
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Chunyu Zeng
- Department of CardiologyDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Junping Wang
- State Key Laboratory of TraumaBurns and Combined InjuryInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Ke Yang
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jinghong Zhao
- Department of Nephrologythe Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingKidney Center of PLAXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| |
Collapse
|
17
|
Nie P, Yang F, Wan F, Jin S, Pu J. Analysis of MicroRNAs Associated With Carotid Atherosclerotic Plaque Rupture With Thrombosis. Front Genet 2021; 12:599350. [PMID: 33679879 PMCID: PMC7928327 DOI: 10.3389/fgene.2021.599350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is a progressive vascular wall inflammatory disease, and the rupture of atherosclerotic vulnerable plaques is the leading cause of morbidity and mortality worldwide. This study intended to explore the potential mechanisms behind plaque rupture and thrombosis in ApoE knockout mice. The spontaneous plaque rupture models were established, and left carotid artery tissues at different time points (1-, 2-, 4-, 6-, 8-, 12-, and 16-week post-surgery) were collected. By the extent of plaque rupture, plaque was defined as (1) control groups, (2) atherosclerotic plaque group, and (3) plaque rupture group. Macrophage (CD68), MMP-8, and MMP-13 activities were measured by immunofluorescence. Cytokines and inflammatory markers were measured by ELISA. The left carotid artery sample tissue was collected to evaluate the miRNAs expression level by miRNA-microarray. Bioinformatic analyses were conducted at three levels: (2) vs. (1), (3) vs. (2), and again in seven time series analysis. The plaque rupture with thrombus and intraplaque hemorrhage results peaked at 8 weeks and decreased thereafter. Similar trends were seen in the number of plaque macrophages and lipids, the expression of matrix metalloproteinase, and the atherosclerotic and plasma cytokine levels. MiRNA-microarray showed that miR-322-5p and miR-206-3p were specifically upregulated in the atherosclerotic plaque group compared with those in the control group. Meanwhile, miR-466h-5p was specifically upregulated in the plaque rupture group compared with the atherosclerotic plaque group. The highest incidence of plaque rupture and thrombosis occurred at 8 weeks post-surgery. miR-322-5p and miR-206-3p may be associated with the formation of atherosclerotic plaques. miR-466h-5p may promote atherosclerotic plaque rupture via apoptosis-related pathways.
Collapse
Affiliation(s)
- Peng Nie
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Yang
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wan
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxuan Jin
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
19
|
Polupanov AG, Zalova TB, Geleskhanova YN, Sarybaev AS, Romanova TA, Dzhumagulova AS. Association of tumor necrosis factor-alpha and interleukin-10 levels with ultrasound characteristics of atherosclerotic plaques in patients with essential hypertension. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To study the association of ultrasound characteristics of carotid atherosclerotic plaques (ASPs) with the concentration of tumor necrosis factor-alpha (TNFα) and interleukin-10 (IL-10) in patients with essential hypertension.Material and methods. The study included 117 patients (men, 75; women, 42) with essential hypertension aged 40 to 75 years (mean age, 55,8±7,5 years). All patients underwent anthropometric measurements (height, weight, body mass index, waist circumference), assessment of blood pressure and heart rate, blood tests (levels of glucose, creatinine with the calculation of glomerular filtration rate using CKD-EPI equation, lipid profile), duplex ultrasound of the carotid arteries. Also, the blood concentration of TNFα and IL-10 by the enzyme-linked immunosorbent assay using CYTOKIN-STIMUL-BEST (Novosibirsk,Russia) kit was determined.Results. According to the results of carotid duplex ultrasound, 3 groups of patients were identified. Group 1 included 48 patients with homogeneous hyperechoic ASPs; group 2 — 56 patients with dominant hyperechoic ASPs (>50% of areas); group 3 — 13 patients with anechoic, unstable, low-density ASPs. TNFα concentration in group 3 patients, amounting to 10,51±2.23 pg/ml, was significantly higher than in patients of group 1 (7,26±0,64 pg/ml (p<0,001)) and group 2 (8,93±0,98 pg/ml (p<0,001)). Similar results were obtained for IL-10. The logistic regression showed that the TNFα concentration is an independent factor associated with unstable ASsP (relative risk, 2,72; 95% confidence interval 1,44-5,15 (p<0,02)). It was also revealed that TNFα >10 pg/ml increased the risk of ASP instability by ~8 times.Conclusion. An increase in TNFα >10 pg/ml with a high specificity (95%) was associated with vulnerable unstable carotid ASPs.
Collapse
Affiliation(s)
| | | | | | | | - T. A. Romanova
- M. M. Mirrakhimov National Center of Cardiology and Therapy
| | | |
Collapse
|
20
|
Poredos P, Gregoric ID, Jezovnik MK. Inflammation of carotid plaques and risk of cerebrovascular events. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1281. [PMID: 33178813 PMCID: PMC7607075 DOI: 10.21037/atm-2020-cass-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carotid atherosclerotic plaques represent a risk for ischemic stroke. The data indicate that the risk for distal embolization from atherosclerotic lesions in internal carotid arteries is not related only to the degree of stenosis but also to the composition of plaques. The stability of atherosclerotic plaque depends on the thickness of the fibrous cap and plaque hemorrhage. Recent research indicated that the inflammatory activity of atherosclerotic lesions is pivotal in the progression of atherosclerotic plaques. It also promotes the development of unstable atherosclerotic lesions and is related to thromboembolic cerebrovascular complications. Inflammation destabilizes atherosclerotic plaques through the degradation of their fibrotic structure. Inflammation of atherosclerotic plaques was confirmed by histopathologic findings and levels of circulating inflammatory markers which were correlated to the intensity of the inflammation in atherosclerotic lesions. Recently, new techniques like fluorodeoxyglucose positron emission tomography (18-FDG PET) were developed for the identification of inflammation of atherosclerotic lesions in the vessel wall in vivo. Systemic inflammatory markers, particularly interleukins, tumor necrosis factor-alpha and metalloproteinases were shown to be related to the intensity of the inflammatory process in atherosclerotic lesions and the cerebrovascular events. Identification of inflamed atherosclerotic plaques may help to identify unstable atherosclerotic lesions and subjects at high risk for cerebrovascular incidents who need intensive preventive measures including anti-inflammatory medication.
Collapse
Affiliation(s)
- Pavel Poredos
- Department of Vascular Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Centre at Houston, Houston, TX, USA
| | - Igor D Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Centre at Houston, Houston, TX, USA
| | - Mateja K Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Centre at Houston, Houston, TX, USA
| |
Collapse
|
21
|
González-Ramos S, Fernández-García V, Recalde M, Rodríguez C, Martínez-González J, Andrés V, Martín-Sanz P, Boscá L. Deletion or Inhibition of NOD1 Favors Plaque Stability and Attenuates Atherothrombosis in Advanced Atherogenesis †. Cells 2020; 9:cells9092067. [PMID: 32927803 PMCID: PMC7564689 DOI: 10.3390/cells9092067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Atherothrombosis, the main cause of acute coronary syndromes (ACS), is characterized by the rupture of the atherosclerotic plaque followed by the formation of thrombi. Fatal plaque rupture sites show large necrotic cores combined with high levels of inflammation and thin layers of collagen. Plaque necrosis due to the death of macrophages and smooth muscle cells (SMCs) remains critical in the process. To determine the contribution of the innate immunity receptor NOD1 to the stability of atherosclerotic plaque, Apoe-/- and Apoe-/- Nod1-/- atherosclerosis prone mice were placed on a high-fat diet for 16 weeks to assess post-mortem advanced atherosclerosis in the aortic sinus. The proliferation and apoptosis activity were analyzed, as well as the foam cell formation capacity in these lesions and in primary cultures of macrophages and vascular SMCs obtained from both groups of mice. Our results reinforce the preeminent role for NOD1 in human atherosclerosis. Advanced plaque analysis in the Apoe-/- atherosclerosis model suggests that NOD1 deficiency may decrease the risk of atherothrombosis by decreasing leukocyte infiltration and reducing macrophage apoptosis. Furthermore, Nod1-/- SMCs exhibit higher proliferation rates and decreased apoptotic activity, contributing to thicker fibrous caps with reduced content of pro-thrombotic collagen. These findings demonstrate a direct link between NOD1 and plaque vulnerability through effects on both macrophages and SMCs, suggesting promising insights for early detection of biomarkers for treating patients before ACS occurs.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Gene Deletion
- Humans
- Macrophages
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle
- Nod1 Signaling Adaptor Protein/physiology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-(0)91-497-2747 (ext. 5345) (L.B.)
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
| | - Miriam Recalde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
| | - Cristina Rodríguez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, IIB Sant Pau, 08041 Barcelona, Spain
| | - José Martínez-González
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), IIB Sant Pau, 08041 Barcelona, Spain
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-(0)91-497-2747 (ext. 5345) (L.B.)
| |
Collapse
|
22
|
Pirri D, Fragiadaki M, Evans PC. Diabetic atherosclerosis: is there a role for the hypoxia-inducible factors? Biosci Rep 2020; 40:BSR20200026. [PMID: 32816039 PMCID: PMC7441368 DOI: 10.1042/bsr20200026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors, including diabetes. Diabetes is associated with either an insulin deficiency in its juvenile form or with insulin resistance and obesity in Type 2 diabetes mellitus, and the latter is clustered with other comorbidities to define the metabolic syndrome. Diabetes and metabolic syndrome are complex pathologies and are associated with cardiovascular risk via vascular inflammation and other mechanisms. Several transcription factors are activated upon diabetes-driven endothelial dysfunction and drive the progression of atherosclerosis. In particular, the hypoxia-inducible factor (HIF) transcription factor family is a master regulator of endothelial biology and is raising interest in the field of atherosclerosis. In this review, we will present an overview of studies contributing to the understanding of diabetes-driven atherosclerosis, integrating the role of HIF in this disease with the knowledge of its functions in metabolic syndrome and diabetic scenario.
Collapse
Affiliation(s)
- Daniela Pirri
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| | - Paul C. Evans
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| |
Collapse
|
23
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
24
|
Vaisar T, Hu JH, Airhart N, Fox K, Heinecke J, Nicosia RF, Kohler T, Potter ZE, Simon GM, Dix MM, Cravatt BF, Gharib SA, Dichek DA. Parallel Murine and Human Plaque Proteomics Reveals Pathways of Plaque Rupture. Circ Res 2020; 127:997-1022. [PMID: 32762496 PMCID: PMC7508285 DOI: 10.1161/circresaha.120.317295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Plaque rupture is the proximate cause of most myocardial infarctions and many strokes. However, the molecular mechanisms that precipitate plaque rupture are unknown. OBJECTIVE By applying proteomic and bioinformatic approaches in mouse models of protease-induced plaque rupture and in ruptured human plaques, we aimed to illuminate biochemical pathways through which proteolysis causes plaque rupture and identify substrates that are cleaved in ruptured plaques. METHODS AND RESULTS We performed shotgun proteomics analyses of aortas of transgenic mice with macrophage-specific overexpression of urokinase (SR-uPA+/0 mice) and of SR-uPA+/0 bone marrow transplant recipients, and we used bioinformatic tools to evaluate protein abundance and functional category enrichment in these aortas. In parallel, we performed shotgun proteomics and bioinformatics studies on extracts of ruptured and stable areas of freshly harvested human carotid plaques. We also applied a separate protein-analysis method (protein topography and migration analysis platform) to attempt to identify substrates and proteolytic fragments in mouse and human plaque extracts. Approximately 10% of extracted aortic proteins were reproducibly altered in SR-uPA+/0 aortas. Proteases, inflammatory signaling molecules, as well as proteins involved with cell adhesion, the cytoskeleton, and apoptosis, were increased. ECM (Extracellular matrix) proteins, including basement-membrane proteins, were decreased. Approximately 40% of proteins were altered in ruptured versus stable areas of human carotid plaques, including many of the same functional categories that were altered in SR-uPA+/0 aortas. Collagens were minimally altered in SR-uPA+/0 aortas and ruptured human plaques; however, several basement-membrane proteins were reduced in both SR-uPA+/0 aortas and ruptured human plaques. Protein topography and migration analysis platform did not detect robust increases in proteolytic fragments of ECM proteins in either setting. CONCLUSIONS Parallel studies of SR-uPA+/0 mouse aortas and human plaques identify mechanisms that connect proteolysis with plaque rupture, including inflammation, basement-membrane protein loss, and apoptosis. Basement-membrane protein loss is a prominent feature of ruptured human plaques, suggesting a major role for basement-membrane proteins in maintaining plaque stability.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jie H Hu
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Nathan Airhart
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Kate Fox
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jay Heinecke
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Roberto F Nicosia
- Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (R.F.N.), VA Puget Sound Health Care System, Seattle, WA
| | - Ted Kohler
- Departments of Surgery (T.K.), University of Washington, Seattle.,Departments of Surgery (T.K.), VA Puget Sound Health Care System, Seattle, WA
| | - Zachary E Potter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | | | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Sina A Gharib
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - David A Dichek
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle
| |
Collapse
|
25
|
Vinchi F, Porto G, Simmelbauer A, Altamura S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R, Hentze MW, Muckenthaler MU. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J 2020; 41:2681-2695. [PMID: 30903157 DOI: 10.1093/eurheartj/ehz112] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/10/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Whether and how iron affects the progression of atherosclerosis remains highly debated. Here, we investigate susceptibility to atherosclerosis in a mouse model (ApoE-/- FPNwt/C326S), which develops the disease in the context of elevated non-transferrin bound serum iron (NTBI). METHODS AND RESULTS Compared with normo-ferremic ApoE-/- mice, atherosclerosis is profoundly aggravated in iron-loaded ApoE-/- FPNwt/C326S mice, suggesting a pro-atherogenic role for iron. Iron heavily deposits in the arterial media layer, which correlates with plaque formation, vascular oxidative stress and dysfunction. Atherosclerosis is exacerbated by iron-triggered lipid profile alterations, vascular permeabilization, sustained endothelial activation, elevated pro-atherogenic inflammatory mediators, and reduced nitric oxide availability. NTBI causes iron overload, induces reactive oxygen species production and apoptosis in cultured vascular cells, and stimulates massive MCP-1-mediated monocyte recruitment, well-established mechanisms contributing to atherosclerosis. NTBI-mediated toxicity is prevented by transferrin- or chelator-mediated iron scavenging. Consistently, a low-iron diet and iron chelation therapy strongly improved the course of the disease in ApoE-/- FPNwt/C326S mice. Our results are corroborated by analyses of serum samples of haemochromatosis patients, which show an inverse correlation between the degree of iron depletion and hallmarks of endothelial dysfunction and inflammation. CONCLUSION Our data demonstrate that NTBI-triggered iron overload aggravates atherosclerosis and unravel a causal link between NTBI and the progression of atherosclerotic lesions. Our findings support clinical applications of iron restriction in iron-loaded individuals to counteract iron-aggravated vascular dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Francesca Vinchi
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,New York Blood Center (NYBC), Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), 310 East 67th Street, 10065, New York, NY, USA.,Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Graca Porto
- Centro Hospitalar do Porto-Hospital Santo António, Largo do Prof. Abel Slazar, 4099-001 Porto, Portugal.,Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreas Simmelbauer
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Sara T Passos
- New York Blood Center (NYBC), Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), 310 East 67th Street, 10065, New York, NY, USA
| | - Maciej Garbowski
- Hematology Department, University College London Cancer Institute, London, aul O'Gorman Bld, 72 Huntley Street, WC1E 6DD, London, UK
| | - André M N Silva
- Departamento de Quimica e Bioquimica, REQUIMITE-LAQV, Faculdade de Ciencias, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Sebastian Spaich
- Department of Cardiology, Angiology and Pneumonology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Svenja E Seide
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Richard Sparla
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Matthias W Hentze
- Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
26
|
Cao X, Yin R, Albrecht H, Fan D, Tan W. Cholesterol: A new game player accelerating vasculopathy caused by SARS-CoV-2? Am J Physiol Endocrinol Metab 2020; 319:E197-E202. [PMID: 32501731 PMCID: PMC7347957 DOI: 10.1152/ajpendo.00255.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023]
Abstract
The pandemic of coronavirus disease (COVID-19) has become a global threat to public health. Functional impairments in multiple organs have been reported in COVID-19, including lungs, heart, kidney, liver, brain, and vascular system. Patients with metabolic-associated preconditions, such as hypertension, obesity, and diabetes, are susceptible to experiencing severe symptoms. The recent emerging evidence of coagulation disorders in COVID-19 suggests that vasculopathy appears to be an independent risk factor promoting disease severity and mortality of affected patients. We recently found that the decreased levels of low-density lipoprotein cholesterols (LDL-c) correlate with disease severity in COVID-19 patients, indicating pathological interactions between dyslipidemia and vasculopothy in patients with COVID-19. However, this clinical manifestation has been unintentionally underestimated by physicians and scientific communities. As metabolic-associated morbidities are generally accompanied with endothelial cell (EC) dysfunctions, these pre-existing conditions may make ECs more vulnerable to SARS-CoV-2 attack. In this mini-review, we summarize the metabolic and vascular manifestations of COVID-19 with an emphasis on the association between changes in LDL-c levels and the development of severe symptoms as well as the pathophysiologic mechanisms underlying the synergistic effect of LDL-c and SARS-CoV-2 on EC injuries and vasculopathy.
Collapse
Affiliation(s)
- Xiaoling Cao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Rong Yin
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Helmut Albrecht
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, South Carolina
- Department of Internal Medicine, Prisma Health Medical Group, Columbia, Columbia, South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
27
|
Kake S, Kawaguchi H, Nagasato T, Yamada T, Ito T, Maruyama I, Miura N, Tanimoto A. Association Between HMGB1 and Thrombogenesis in a Hyperlipaemia-induced Microminipig Model of Atherosclerosis. In Vivo 2020; 34:1871-1874. [PMID: 32606157 PMCID: PMC7439884 DOI: 10.21873/invivo.11982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM An appropriate animal model is essential to investigate the relationship between inflammation, atherosclerosis, and thrombogenesis, and the development of preventive measures and therapies for atherosclerosis. MATERIALS AND METHODS Atherosclerosis was induced in Microminipigs (MMPs) using a high-fat diet. We assessed high mobility group box 1 (HMGB1) expression levels and measured thrombus formation using a Total Thrombus Formation Analysis System (T-TAS). MMPs were divided into a normal diet (control) group and four high-fat diet groups, with differing amounts of cholesterol. After 8 weeks, blood was collected for analysis. RESULTS HMGB1 levels increased with increasing dietary cholesterol, and a negative correlation was found between HMGB1 levels and thrombus formation time. CONCLUSION T-TAS is useful in the assessment of thrombogenesis in MMPs and HMGB1 is associated with thrombus formation.
Collapse
Affiliation(s)
- Satoru Kake
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, Okayama, Japan
| | - Hiroaki Kawaguchi
- Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoka Nagasato
- Systems Biology in Thromboregulation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Research Institute, Fujimori Kogyo Co., Ltd., Kanagawa, Japan
| | - Tomonobu Yamada
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Takashi Ito
- Systems Biology in Thromboregulation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikuro Maruyama
- Systems Biology in Thromboregulation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
28
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
29
|
Ning K, Wang MJ, Lin G, Zhang YL, Li MY, Yang BF, Chen Y, Huang Y, Li ZM, Huang YJ, Zhu L, Liang K, Yu B, Zhu YZ, Zhu YC. eNOS-Nitric Oxide System Contributes to a Novel Antiatherogenic Effect of Leonurine via Inflammation Inhibition and Plaque Stabilization. J Pharmacol Exp Ther 2020; 373:463-475. [PMID: 32238453 DOI: 10.1124/jpet.119.264887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Leonurine (LEO) is a bioactive small molecular compound that has protective effects on the cardiovascular system and prevents the early progression of atherosclerosis; however, it is not clear whether LEO is effective for plaque stability. A novel mouse atherosclerosis model involving tandem stenosis (TS) of the right carotid artery combined with western diet (WD) feeding was used. Apolipoprotein E gene-deficient mice were fed with a WD and received LEO administration daily for 13 weeks. TS was introduced 6 weeks after the onset of experiments. We found that LEO enhanced plaque stability by increasing fibrous cap thickness and collagen content while decreasing the population of CD68-positive cells. Enhanced plaque stability by LEO was associated with the nitric oxide synthase (NOS)-nitric oxide (NO) system. LEO restored the balance between endothelial NOS(E)- and inducible NOS(iNOS)-derived NO production; suppressed the NF-κB signaling pathway; reduced the level of the inflammatory infiltration in plaque, including cytokine interleukin 6; and downregulated the expression of adhesion molecules. These findings support the distinct role of LEO in plaque stabilization. In vitro studies with oxidized low-density lipoprotein-challenged human umbilical vein endothelial cells revealed that LEO balanced NO production and inhibited NF-κB/P65 nuclear translocation, thus mitigating inflammation. In conclusion, the restored balance of the NOS-NO system and mitigated inflammation contribute to the plaque-stabilizing effect of LEO. SIGNIFICANCE STATEMENT: LEO restored the balance between endothelial NOS and inducible NOS in NO production and inhibited excessive inflammation in atherosclerotic "unstable" and rupture-prone plaques in apolipoprotein E gene-deficient mice. The protective effect of LEO for stabilizing atherosclerotic plaques was due to improved collagen content, increased fibrous cap thickness, and decreased accumulation of macrophages/foam cells. So far, LEO has passed the safety and feasibility test of phase I clinical trial.
Collapse
Affiliation(s)
- Ke Ning
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ge Lin
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Lin Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Bao-Feng Yang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yong Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Zhi-Ming Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Jun Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Lei Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Kun Liang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Bo Yu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| |
Collapse
|
30
|
Orekhov AN, Nikiforov NN, Ivanova EA, Sobenin IA. Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on Atherosclerosis. J Clin Med 2020; 9:jcm9040978. [PMID: 32244740 PMCID: PMC7230212 DOI: 10.3390/jcm9040978] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronification of inflammation is the process that lies at the basis of several human diseases that make up to 80% of morbidity and mortality worldwide. It can also explain a great deal of processes related to aging. Atherosclerosis is an example of the most important chronic inflammatory pathology in terms of public health impact. Atherogenesis is based on the inflammatory response of the innate immunity arising locally or focally. The main trigger for this response appears to be modified low-density lipoprotein (LDL), although other factors may also play a role. With the quick resolution of inflammation, atherosclerotic changes in the arterial wall do not occur. However, a violation of the innate immunity response can lead to chronification of local inflammation and, as a result, to atherosclerotic lesion formation. In this review, we discuss possible mechanisms of the impaired immune response with a special focus on mitochondrial dysfunction. Some mitochondrial dysfunctions may be due to mutations in mitochondrial DNA. Several mitochondrial DNA mutations leading to defective mitophagy have been identified. The regulatory role of mitophagy in the immune response has been shown in recent studies. We suggest that defective mitophagy promoted by mutations in mitochondrial DNA can cause innate immunity disorders leading to chronification of inflammation.
Collapse
Affiliation(s)
- Alexander N. Orekhov
- Laboratory for Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Nikita N. Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia;
| |
Collapse
|
31
|
The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21051835. [PMID: 32155866 PMCID: PMC7084712 DOI: 10.3390/ijms21051835] [Citation(s) in RCA: 574] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus comprises a group of carbohydrate metabolism disorders that share a common main feature of chronic hyperglycemia that results from defects of insulin secretion, insulin action, or both. Insulin is an important anabolic hormone, and its deficiency leads to various metabolic abnormalities in proteins, lipids, and carbohydrates. Atherosclerosis develops as a result of a multistep process ultimately leading to cardiovascular disease associated with high morbidity and mortality. Alteration of lipid metabolism is a risk factor and characteristic feature of atherosclerosis. Possible links between the two chronic disorders depending on altered metabolic pathways have been investigated in numerous studies. It was shown that both types of diabetes mellitus can actually induce atherosclerosis development or further accelerate its progression. Elevated glucose level, dyslipidemia, and other metabolic alterations that accompany the disease development are tightly involved in the pathogenesis of atherosclerosis at almost every step of the atherogenic process. Chronic inflammation is currently considered as one of the key factors in atherosclerosis development and is present starting from the earliest stages of the pathology initiation. It may also be regarded as one of the possible links between atherosclerosis and diabetes mellitus. However, the data available so far do not allow for developing effective anti-inflammatory therapeutic strategies that would stop atherosclerotic lesion progression or induce lesion reduction. In this review, we summarize the main aspects of diabetes mellitus that possibly affect the atherogenic process and its relationship with chronic inflammation. We also discuss the established pathophysiological features that link atherosclerosis and diabetes mellitus, such as oxidative stress, altered protein kinase signaling, and the role of certain miRNA and epigenetic modifications.
Collapse
|
32
|
Huang R, Cao Y, Li H, Hu Z, Zhang H, Zhang L, Su W, Xu Y, Liang L, Melgiri ND, Jiang L, Li X. miR-532-3p-CSF2RA Axis as a Key Regulator of Vulnerable Atherosclerotic Plaque Formation. Can J Cardiol 2019; 36:1782-1794. [PMID: 32473103 DOI: 10.1016/j.cjca.2019.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The most dangerous atherosclerotic plaques, referred to as "vulnerable," are most likely to trigger acute atherothrombotic events such as myocardial infarction (heart attack) and stroke. Our goal was to uncover the molecular drivers of vulnerable plaque formation. METHODS To elucidate the functional gene modules that drive vulnerable plaque formation, we performed a weighted gene coexpression network analysis integrated with a protein-protein interaction network analysis in human atherosclerotic carotid samples, which identified the candidate gene granulocyte-macrophage colony-stimulating factor 2 (GM-CSF) receptor alpha subunit (CSF2RA). Follow-up in vitro experiments were performed to elucidate the regulatory relationship between CSF2RA and the microRNA miR-532-3p as well as modifiers of macrophagic miR-532-3p-CSF2RA axis expression. Microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR) studies elucidated the effect of statins on carotid miR-532-3p-CSF2RA axis expression in patients with carotid atherosclerotic disease. Apoe-/-, Ldlr-/-, and Csf2ra mutant Apoe-/- mouse models of atherosclerosis were employed to assess the effects of agomiR-532-3p therapy in vivo. RESULTS The integrated weighted gene coexpression network analysis/protein-protein interaction network analysis revealed that the macrophagic GM-CSF receptor CSF2RA is significantly upregulated in macrophage-rich vulnerable plaques. Follow-up analysis identified the miR-532-3p-CSF2RA axis, as miR-532-3p downregulates CSF2RA via binding to CSF2RA's 3'UTR. Macrophagic miR-532-3p-CSF2RA dysregulation was enhanced via modified low-density lipoprotein or tumor necrosis factor α exposure in vitro. Moreover, this miR-532-3p-CSF2RA dysregulation was observed in human vulnerable plaques and Apoe-/- mouse plaques, effects rescued by statin therapy. In vivo, agomiR-532-3p therapy suppressed murine plaque formation and promoted plaque stabilization in a Csf2ra-dependent manner. CONCLUSION Macrophagic miR-532-3p-CSF2RA axis dysregulation is a key driver in vulnerable plaque formation.
Collapse
Affiliation(s)
- Rongzhong Huang
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Cao
- Department of Cardiothoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongrong Li
- Department of Cardiothoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zicheng Hu
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hong Zhang
- Department of Cardiology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Lujun Zhang
- Statistical Laboratory, Chuangxu Institute of Life Science, Chongqing, China; Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenhua Su
- Department of Cardiology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yu Xu
- Statistical Laboratory, Chuangxu Institute of Life Science, Chongqing, China
| | - Liwen Liang
- Department of Cardiology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Narayan D Melgiri
- Impactys Foundation for Biomedical Research, San Diego, California, USA
| | - Lihong Jiang
- Department of Cardiothoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xingsheng Li
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
33
|
Local intravascular delivery of low-density-lipoprotein cholesterol corresponds with increased intimal thickening in a healthy porcine coronary model. A prelude to development of a model of atherosclerosis. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2019; 15:81-90. [PMID: 31043989 PMCID: PMC6488843 DOI: 10.5114/aic.2019.83774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/27/2018] [Indexed: 11/25/2022] Open
Abstract
Introduction Preclinical, vascular response studies are limited due to lack of underlying disease. The available cholesterol-diet-based and genetic atherosclerotic models are not satisfactory due to long breeding, unpredictable lesion formation, low plaque volume and degree of stenosis. Aim To evaluate the vascular response to local, intramural delivery of human, highly atherogenic lipids into healthy domestic swine (DS) coronary arteries. Material and methods A total of 24 coronary artery segments of 10 DS were enrolled. Following balloon injury (plain old balloon angioplasty – POBA), segments were assigned to local delivery of 2 ml of human LDL from apheresis (400 mg/dl, n = 9), 0.9% NaCl (control, n = 7) or to POBA alone. The solutions were infused with a modified, triple micro-needle catheter into the vessel wall. After 28 days, optical coherence tomography (OCT), virtual histology IVUS (VH-IVUS) and near-infra-red spectroscopy (NIRS) were performed. Following euthanasia, vessel segments were harvested for pathological evaluation. Results At 28 days the % area stenosis in OCT was highest in the LDL group (23.6 ±13 vs. 10.8 ±7 vs. 8.1 ±7%; p = 0.02). The presence of necrotic core (LDL: 55.5%, control: 37.5% and POBA: 42.8%; p = 0.77) and dense calcium (LDL: 33.3%, control: 28.5%, POBA: 37.5%; p = 0.94) in VH-IVUS were comparable between groups. The lipid core burden index in NIRS was negative in all cases. In pathology, the injury was comparable between groups (LDL: 1.6 ±0.4, control: 1.7 ±0.8, POBA: 1.7; p = 0.8) and specimens showed no signs of necrotic or lipid core. The tissue consisted of smooth muscle cells (SMC)/proteoglycan-rich lesions and inflammatory cells. Conclusions Local delivery of saturated human LDL into the coronary artery wall was feasible and resulted in a higher degree of stenosis caused by intimal thickening. A discrepancy between histopathological findings and virtual histology intravascular ultrasound (VH-IVUS) was also noted.
Collapse
|
34
|
Fiorelli S, Porro B, Cosentino N, Di Minno A, Manega CM, Fabbiocchi F, Niccoli G, Fracassi F, Barbieri S, Marenzi G, Crea F, Cavalca V, Tremoli E, Eligini S. Activation of Nrf2/HO-1 Pathway and Human Atherosclerotic Plaque Vulnerability:an In Vitro and In Vivo Study. Cells 2019; 8:E356. [PMID: 30995787 PMCID: PMC6523494 DOI: 10.3390/cells8040356] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) induce nuclear factor erythroid 2-related factor 2 (Nrf2) activation as an adaptive defense mechanism, determining the synthesis of antioxidant molecules, including heme-oxygenase-1 (HO-1). HO-1 protects cells against oxidative injury, degrading free heme and inhibiting ROS production. HO-1 is highly expressed in macrophages during plaque growth. Macrophages are morpho-functionally heterogeneous, and the prevalence of a specific phenotype may influence the plaque fate. This heterogeneity has also been observed in monocyte-derived macrophages (MDMs), a model of macrophages infiltrating tissue. The study aims to assess oxidative stress status and Nrf2/HO-1 axis in MDM morphotypes obtained from healthy subjects and coronary artery disease (CAD) patients, in relation to coronary plaque features evaluated in vivo by optical coherence tomography (OCT). We found that MDMs of healthy subjects exhibited a lower oxidative stress status, lower Nrf2 and HO-1 levels as compared to CAD patients. High HO-1 levels in MDMs were associated with the presence of a higher macrophage content, a thinner fibrous cap, and a ruptured plaque with thrombus formation, detected by OCT analysis. These findings suggest the presence of a relationship between in vivo plaque characteristics and in vitro MDM profile, and may help to identify patients with rupture-prone coronary plaque.
Collapse
Affiliation(s)
| | - Benedetta Porro
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | | | | | | | | | - Giampaolo Niccoli
- Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Francesco Fracassi
- Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Simone Barbieri
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Giancarlo Marenzi
- Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Filippo Crea
- Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Viviana Cavalca
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Elena Tremoli
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Sonia Eligini
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| |
Collapse
|
35
|
Xiong Q, Wang Z, Yu Y, Wen Y, Suguro R, Mao Y, Zhu YZ. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res 2019; 144:90-98. [PMID: 30959158 DOI: 10.1016/j.phrs.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
Abstract
Hydrogen sulfide gas (H2S) has protective effects in the cardiovascular system that includes preventing the development of atherosclerosis when tested in several in vivo models. Plaque instability is a major risk factor for thromboembolism, myocardial infarction, and stroke, so we examined if H2S can promote plaque stability and the potential underlying mechanisms. Apolipoprotein E knockout mice fed an atherogenic diet were administered the exogenous H2S donor sodium hydrosulfide (NaHS) or pravastatin as a positive control daily for 14 weeks. NaHS significantly enhanced plaque stability by increasing fibrous cap thickness and collagen content compared to vehicle-treated controls. NaHS treatment also reduced blood lipid levels and plaque formation. Preservation of plaque stability by NaHS was associated with reductions in vascular smooth muscle cells (VSMCs) apoptosis and expression of the collagen-degrading enzyme matrix metallopeptidase-9 (MMP-9) in plaque. While pravastatin also increased fibrous cap thickness and reduced VSMC apoptosis, but did not enhance plaque collagen or reduce MMP-9 significantly, suggesting distinct mechanisms of plaque stabilization. in vitro, NaHS also decreased MMP-9 expression in macrophages stimulated with tumor necrosis factor-α by inhibiting ERK/JNK phosphorylation and activator protein 1 nuclear translocation. Moreover, H2S reduced caspase-3/9 activity, Bax/Bcl-2 ratio, and LOX-1 mRNA expression in VSMCs stimulated with oxidized low-density lipoprotein. These results suggest that H2S enhances plaque stability and protects against atherogenesis by increasing plaque collagen content and VSMC count. In conclusion, H2S exerts protective effects against atherogenesis at least partly by stabilizing atherosclerotic plaque.
Collapse
Affiliation(s)
- Qinghui Xiong
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhijun Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ying Yu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yadan Wen
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Rinkiko Suguro
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| |
Collapse
|
36
|
Stasinopoulou M, Kadoglou NPE, Christodoulou E, Paronis E, Kostomitsopoulos NG, Valsami G, Liapis CD, Kakisis J. Statins’ Withdrawal Induces Atherosclerotic Plaque Destabilization in Animal Model—A “Rebound” Stimulation of Inflammation. J Cardiovasc Pharmacol Ther 2019; 24:377-386. [DOI: 10.1177/1074248419838499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marianna Stasinopoulou
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos P. E. Kadoglou
- Centre for Statistics in Medicine—Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Eirini Christodoulou
- Department of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Paronis
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos G. Kostomitsopoulos
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos D. Liapis
- Department of Vascular Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - John Kakisis
- Department of Vascular Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res 2018; 7:F1000 Faculty Rev-1969. [PMID: 30613386 PMCID: PMC6305222 DOI: 10.12688/f1000research.15994.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the uterus of most women. Although the observation of clonality has been confirmed many times, interest in the idea that atherosclerosis might be a form of neoplasia waned because of the clinical success of treatments for hyperlipemia and because animal models have made great progress in understanding how lipid accumulates in the plaque and may lead to plaque rupture. Four advances have made it important to reconsider Benditt's observations. First, we now know that clonality is a property of normal tissue development. Second, this is even true in the vessel wall, where we now know that formation of clonal patches in that wall is part of the development of smooth muscle cells that make up the tunica media of arteries. Third, we know that the intima, the "soil" for development of the human atherosclerotic lesion, develops before the fatty lesions appear. Fourth, while the cells comprising this intima have been called "smooth muscle cells", we do not have a clear definition of cell type nor do we know if the initial accumulation is clonal. As a result, Benditt's hypothesis needs to be revisited in terms of changes in how we define smooth muscle cells and the quite distinct developmental origins of the cells that comprise the muscular coats of all arterial walls. Finally, since clonality of the lesions is real, the obvious questions are do these human tumors precede the development of atherosclerosis, how do the clones develop, what cell type gives rise to the clones, and in what ways do the clones provide the soil for development and natural history of atherosclerosis?
Collapse
Affiliation(s)
| | - Renu Virmani
- CV Path Institute, Gaithersberg, Maryland, 20878, USA
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital Research Institute, Seattle, WA, 98112, USA
| |
Collapse
|
38
|
Liu X, Ma J, Ma L, Liu F, Zhang C, Zhang Y, Ni M. Overexpression of tissue factor induced atherothrombosis in apolipoprotein E-/- mice via both enhanced plaque thrombogenicity and plaque instability. J Mol Cell Cardiol 2018; 127:1-10. [PMID: 30500376 DOI: 10.1016/j.yjmcc.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023]
Abstract
The mechanisms leading to atherothrombosis from "vulnerable plaque" are more complex than initially proposed. We aimed to clarify whether plaque thrombogenicity is critical in atherothrombosis in mice. In a murine model of plaque destabilization, we enhanced plaque thrombogenicity by systemically overexpressing murine tissue factor (TF) by adenovirus-mediated gene transfer. The potential effects and mechanisms of TF on plaque destabilization were examined in cultured human aortic smooth muscle cells (HASMCs), RAW264.7 cells and human umbilical vein endothelial cells (HUVECs). To elucidate the TF noncoagulant effects on plaque destabilization, TF-overexpressed mice were treated with the protease-activated receptor 2 (PAR-2) antagonist ENMD-1068. In TF-overexpressing apolipoprotein (E)-deficient (ApoE-/-) mice, 67% (8 of 12) of carotid plaques exhibited plaque disruption and atherothrombosis. Moreover, 58% (7 of 12) showed plaque hemorrhage, including 1 due to plaque disruption, 4 neovascularization and 2 both. In contrast, only 17% (2 of 12) of control mice showed atherothrombosis, both with plaque hemorrhage but no neovascularization. On PCR, TF overexpression increased the expression of inflammatory factors. In cultured cells, the TF-FVIIa complex enhanced the expression of inflammatory factors and a vicious cycle of inflammation. Also, TF-FVIIa complex induced intra-plaque angiogenesis via PAR-2. ENMD-1068 treatment significantly inhibited the expression of inflammatory factors and neovascularization, and the incidence of intra-plaque hemorrhage decreased in TF-overexpressing mice. In conclusions, TF overexpression enhanced plaque thrombogenicity, which played a pivotal role in atherothrombosis in ApoE-/- mice. In addition, TF promoted plaque instability by activating inflammatory and proangiogenic effects via TF-FVIIa/PAR-2 signaling.
Collapse
Affiliation(s)
- Xiaoling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lianyue Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fangfang Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
39
|
Marzolla V, Armani A, Mammi C, Feraco A, Caprio M. Induction of Atherosclerotic Plaques Through Activation of Mineralocorticoid Receptors in Apolipoprotein E-deficient Mice. J Vis Exp 2018. [PMID: 30320746 DOI: 10.3791/58303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is due to a chronic inflammatory response affecting vascular endothelium and is promoted by several factors such as hypertension, dyslipidemia, and diabetes. To date, there is evidence to support a role for circulating aldosterone as a risk factor for the development of cardiovascular disease. Transgenic mouse models have been generated to study cellular and molecular processes leading to atherosclerosis. In this manuscript, we describe a protocol that takes advantage of continuous infusion of aldosterone in ApoE-/- mice and generates atherosclerotic plaques in the aortic root after 4 weeks of treatment. We, therefore, illustrate a method for quantification and characterization of atherosclerotic lesions at the aortic root level. The added value of aldosterone infusion is represented by the generation of atherosclerotic lesions rich in lipid and inflammatory cells after 4 weeks of treatment. We describe in detail the staining procedures to quantify lipid and macrophage content within the plaque. Notably, in this protocol, we perform heart tissue-embedding in OCT in order to preserve the antigenicity of cardiac tissue and facilitate detectability of antigens of interest. Analysis of the plaque phenotype represents a valid approach to study the pathophysiology of atherosclerosis development and to identify novel pharmacological targets for the development of anti-atherogenic drugs.
Collapse
Affiliation(s)
- Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy;
| |
Collapse
|
40
|
Chen YC, Huang AL, Kyaw TS, Bobik A, Peter K. Atherosclerotic Plaque Rupture: Identifying the Straw That Breaks the Camel's Back. Arterioscler Thromb Vasc Biol 2018; 36:e63-72. [PMID: 27466619 DOI: 10.1161/atvbaha.116.307993] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Yung-Chih Chen
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Alex L Huang
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Tin S Kyaw
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Alex Bobik
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.).
| |
Collapse
|
41
|
Krishna SM, Moxon JV, Jose RJ, Li J, Sahebkar A, Jaafari MR, Hatamipour M, Liu D, Golledge J. Anionic nanoliposomes reduced atherosclerosis progression in Low Density Lipoprotein Receptor (LDLR) deficient mice fed a high fat diet. J Cell Physiol 2018; 233:6951-6964. [PMID: 29741759 DOI: 10.1002/jcp.26610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a systemic disease characterized by the deposition of cholesterol and inflammatory cells within the arterial wall. Removal of cholesterol from the vessel wall may have an impact on the size and composition of atherosclerotic lesions. Anionic phospholipids or liposome vesicles composed of a lipid bilayer such as nanoliposomes have been suggested as treatments for dyslipidemia. In this study, we investigated the effect of anionic nanoliposomes on atherosclerosis in a mouse model. Low-density lipoprotein receptor knockout mice (Ldlr-/- ) were fed with an atherosclerosis promoting high fat and cholesterol (HFC) diet for 12 weeks. Anionic nanoliposomes including hydrogenated soy phosphatidylcholine (HSPC) and distearoyl phosphatidylglycerol (DSPG) (molar ratio: 1:3) were injected intravenously into HFC-fed Ldlr-/- mice once a week for 4 weeks. Mice receiving nanoliposomes had significantly reduced atherosclerosis within the aortic arch as assessed by Sudan IV staining area (p = 0.007), and reduced intima/media ratio (p = 0.030) and greater collagen deposition within atherosclerosis plaques within the brachiocephalic artery (p = 0.007), compared to control mice. Administration of nanoliposomes enhanced markers of reverse cholesterol transport (RCT) and increased markers of plaque stability in HFC-fed Ldlr-/- mice. Reduced cholesterol accumulation was observed in the liver along with the up-regulation of the major genes involved in the efflux of cholesterol such as hepatic ATP-binding cassette transporters (ABC) including Abc-a1, Abc-g1, Abc-g5, and Abc-g8, Scavenger receptor class B, member 1 (Scarb1), and Liver X receptor alpha (Lxr)-α. Lecithin Cholesterol Acyltransferase activity within the plasma was also increased in mice receiving nanoliposomes. Anionic nanoliposome administration reduced atherosclerosis in HFC-fed Ldlr-/- mice by promoting RCT and upregulating the ABC-A1/ABC-G1 pathway.
Collapse
Affiliation(s)
- Smriti M Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Roby J Jose
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jiaze Li
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dawie Liu
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia
| |
Collapse
|
42
|
Daemen MJ, Gijsen FJH, Heiden KVD, Hoogendoorn A. Animal models for plaque rupture: a biomechanical assessment. Thromb Haemost 2018; 115:501-8. [DOI: 10.1160/th15-07-0614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/22/2015] [Indexed: 11/05/2022]
Abstract
SummaryRupture of atherosclerotic plaques is the main cause of acute cardiovascular events. Animal models of plaque rupture are rare but essential for testing new imaging modalities to enable diagnosis of the patient at risk. Moreover, they enable the design of new treatment strategies to prevent plaque rupture. Several animal models for the study of atherosclerosis are available. Plaque rupture in these models only occurs following severe surgical or pharmaceutical intervention. In the process of plaque rupture, composition, biology and mechanics each play a role, but the latter has been disregarded in many animal studies. The biomechanical environment for atherosclerotic plaques is comprised of two parts, the pressure-induced stress distribution, mainly - but not exclusively – influenced by plaque composition, and the strength distribution throughout the plaque, largely determined by the inflammatory state. This environment differs considerably between humans and most animals, resulting in suboptimal conditions for plaque rupture. In this review we describe the role of the biomechanical environment in plaque rupture and assess this environment in animal models that present with plaque rupture.
Collapse
|
43
|
Beneit N, Martín-Ventura JL, Rubio-Longás C, Escribano Ó, García-Gómez G, Fernández S, Sesti G, Hribal ML, Egido J, Gómez-Hernández A, Benito M. Potential role of insulin receptor isoforms and IGF receptors in plaque instability of human and experimental atherosclerosis. Cardiovasc Diabetol 2018; 17:31. [PMID: 29463262 PMCID: PMC5819698 DOI: 10.1186/s12933-018-0675-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. We previously demonstrated that overexpression of insulin receptor isoform A (IRA) and insulin-like growth factor-I receptor (IGF-IR) confers a proliferative and migratory advantage to vascular smooth muscle cells (VSMCs) promoting plaque growth in early stages of atherosclerosis. However, the role of insulin receptor (IR) isoforms, IGF-IR or insulin-like growth factor-II receptor (IGF-IIR) in VSMCs apoptosis during advanced atherosclerosis remains unclear. METHODS We evaluated IR isoforms expression in human carotid atherosclerotic plaques by consecutive immunoprecipitations of insulin receptor isoform B (IRB) and IRA. Western blot analysis was performed to measure IGF-IR, IGF-IIR, and α-smooth muscle actin (α-SMA) expression in human plaques. The expression of those proteins, as well as the presence of apoptotic cells, was analyzed by immunohistochemistry in experimental atherosclerosis using BATIRKO; ApoE-/- mice, a model showing more aggravated vascular damage than ApoE-/- mice. Finally, apoptosis of VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR-/- VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs), was assessed by Western blot against cleaved caspase 3. RESULTS We observed a significant decrease of IRA/IRB ratio in human complicated plaques as compared to non-complicated regions. Moreover, complicated plaques showed a reduced IGF-IR expression, an increased IGF-IIR expression, and lower levels of α-SMA indicating a loss of VSMCs. In experimental atherosclerosis, we found a significant decrease of IRA with an increased IRB expression in aorta from 24-week-old BATIRKO; ApoE-/- mice. Furthermore, atherosclerotic plaques from BATIRKO; ApoE-/- mice had less VSMCs content and higher number of apoptotic cells. In vitro experiments showed that IGF-IR inhibition by picropodophyllin induced apoptosis in VSMCs. Apoptosis induced by thapsigargin was lower in IR-/- VSMCs expressing higher IGF-IR levels as compared to IRLoxP+/+ VSMCs. Finally, IRB VSMCs are more prone to thapsigargin-induced apoptosis than IRA or IRLoxP+/+ VSMCs. CONCLUSIONS In advanced human atherosclerosis, a reduction of IRA/IRB ratio, decreased IGF-IR expression, or increased IGF-IIR may contribute to VSMCs apoptosis, promoting plaque instability and increasing the risk of plaque rupture and its clinical consequences.
Collapse
Affiliation(s)
- Nuria Beneit
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luis Martín-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Carlota Rubio-Longás
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Gema García-Gómez
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Silvia Fernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jesús Egido
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Vascular Research Lab, IIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Almudena Gómez-Hernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain. .,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain. .,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
44
|
Novotny J, Chandraratne S, Weinberger T, Philippi V, Stark K, Ehrlich A, Pircher J, Konrad I, Oberdieck P, Titova A, Hoti Q, Schubert I, Legate KR, Urtz N, Lorenz M, Pelisek J, Massberg S, von Brühl ML, Schulz C. Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation. PLoS One 2018; 13:e0190728. [PMID: 29293656 PMCID: PMC5749862 DOI: 10.1371/journal.pone.0190728] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/19/2017] [Indexed: 02/08/2023] Open
Abstract
Aims Medical treatment of arterial thrombosis is mainly directed against platelets and coagulation factors, and can lead to bleeding complications. Novel antithrombotic therapies targeting immune cells and neutrophil extracellular traps (NETs) are currently being investigated in animals. We addressed whether immune cell composition of arterial thrombi induced in mouse models of thrombosis resemble those of human patients with acute myocardial infarction (AMI). Methods and results In a prospective cohort study of patients suffering from AMI, 81 human arterial thrombi were harvested during percutaneous coronary intervention and subjected to detailed histological analysis. In mice, arterial thrombi were induced using two distinct experimental models, ferric chloride (FeCl3) and wire injury of the carotid artery. We found that murine arterial thrombi induced by FeCl3 were highly concordant with human coronary thrombi regarding their immune cell composition, with neutrophils being the most abundant cell type, as well as the presence of NETs and coagulation factors. Pharmacological treatment of mice with the protein arginine deiminase (PAD)-inhibitor Cl-amidine abrogated NET formation, reduced arterial thrombosis and limited injury in a model of myocardial infarction. Conclusions Neutrophils are a hallmark of arterial thrombi in patients suffering from acute myocardial infarction and in mouse models of arterial thrombosis. Inhibition of PAD could represent an interesting strategy for the treatment of arterial thrombosis to reduce neutrophil-associated tissue damage and improve functional outcome.
Collapse
Affiliation(s)
- Julia Novotny
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Sue Chandraratne
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Vanessa Philippi
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ildiko Konrad
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Paul Oberdieck
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anna Titova
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Qendresa Hoti
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Irene Schubert
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Kyle R. Legate
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Applied Physics, Center for NanoSciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nicole Urtz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universität, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Marie-Luise von Brühl
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- * E-mail:
| |
Collapse
|
45
|
Hechler B, Gachet C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb Haemost 2017; 105 Suppl 1:S3-12. [DOI: 10.1160/ths10-11-0730] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/29/2011] [Indexed: 11/05/2022]
Abstract
SummaryArterial thrombosis occurs at sites of erosion or rupture of atherosclerotic vascular lesions. To better study the pathophysiology of this complex phenomenon, there is a need for animal models of localised thrombosis at sites of atherosclerotic lesions with closer resemblance to the human pathology as compared to commonly used thrombosis models in healthy vessels. In the present study, we describe and compare a new model of thrombosis induced by atherosclerotic plaque rupture in the carotid artery from ApoE-/- mice using a suture needle to a milder model of ultrasound-induced plaque injury. Needle injury induces atherosclerotic plaque rupture with exposure of plaque material and formation of a thrombus that is larger, nearly occlusive and more stable as compared to that formed by application of ultrasounds. These two models have common features such as the concomitant involvement of platelet activation, thrombin generation and fibrin formation, which translates into sensitivity toward both antiplatelet drugs and anticoagulants. On the other hand, they display differences with respect to the role of the platelet collagen receptor GPVI, the plaque rupture model being less sensitive to its inhibition as compared to the ultrasound-induced injury, which may be related to the amount of thrombin generated. These models represent an improvement as compared to models in healthy vessels and may help identify specific plaque triggers of thrombosis. They should therefore be useful to evaluate new antithrombotic targets.
Collapse
|
46
|
Animal models of atherosclerosis. Eur J Pharmacol 2017; 816:3-13. [DOI: 10.1016/j.ejphar.2017.05.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
|
47
|
Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, Tokgözoglu L, Ylä-Herttuala S. Stabilisation of atherosclerotic plaques. Thromb Haemost 2017; 106:1-19. [DOI: 10.1160/th10-12-0784] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/29/2011] [Indexed: 01/04/2023]
Abstract
SummaryPlaque rupture and subsequent thrombotic occlusion of the coronary artery account for as many as three quarters of myocardial infarctions. The concept of plaque stabilisation emerged about 20 years ago to explain the discrepancy between the reduction of cardiovascular events in patients receiving lipid lowering therapy and the small decrease seen in angiographic evaluation of atherosclerosis. Since then, the concept of a vulnerable plaque has received a lot of attention in basic and clinical research leading to a better understanding of the pathophysiology of the vulnerable plaque and acute coronary syndromes. From pathological and clinical observations, plaques that have recently ruptured have thin fibrous caps, large lipid cores, exhibit outward remodelling and invasion by vasa vasorum. Ruptured plaques are also focally inflamed and this may be a common denominator of the other pathological features. Plaques with similar characteristics, but which have not yet ruptured, are believed to be vulnerable to rupture. Experimental studies strongly support the validity of anti-inflammatory approaches to promote plaque stability. Unfortunately, reliable non-invasive methods for imaging and detection of such plaques are not yet readily available. There is a strong biological basis and supportive clinical evidence that low-density lipoprotein lowering with statins is useful for the stabilisation of vulnerable plaques. There is also some clinical evidence for the usefulness of antiplatelet agents, beta blockers and renin-angiotensin-aldosterone system inhibitors for plaque stabilisation. Determining the causes of plaque rupture and designing diagnostics and interventions to prevent them are urgent priorities for current basic and clinical research in cardiovascular area.
Collapse
|
48
|
Lietman CD, Segedy AK, Li B, Fazio S, Atkinson JB, Linton MF, Young PP. Loss of SPRR3 in ApoE-/- mice leads to atheroma vulnerability through Akt dependent and independent effects in VSMCs. PLoS One 2017; 12:e0184620. [PMID: 28886156 PMCID: PMC5590986 DOI: 10.1371/journal.pone.0184620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 01/18/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) represent important modulators of plaque stability in advanced lesions. We previously reported that loss of small proline-rich repeat protein 3 (Sprr3), leads to VSMC apoptosis in a PI3K/Akt-dependent manner and accelerates lesion progression. Here, we investigated the role of Sprr3 in modulating plaque stability in hyperlipidemic ApoE-/- mice. We show that loss of Sprr3 increased necrotic core size and reduced cap collagen content of atheromas in brachiocephalic arteries with evidence of plaque rupture and development of intraluminal thrombi. Moreover, Sprr3-/-ApoE-/- mice developed advanced coronary artery lesions accompanied by intraplaque hemorrhage and left ventricle microinfarcts. SPRR3 is known to reduce VSMC survival in lesions by promoting their apoptosis. In addition, we demonstrated that Sprr3-/- VSMCs displayed reduced expression of procollagen in a PI3K/Akt dependent manner. SPRR3 loss also increased MMP gelatinase activity in lesions, and increased MMP2 expression, migration and contraction of VSMCs independently of PI3K/Akt. Consequently, Sprr3 represents the first described VSMC modulator of each of the critical features of cap stability, including VSMC numbers, collagen type I synthesis, and protease activity through Akt dependent and independent pathways.
Collapse
Affiliation(s)
- Caressa D. Lietman
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
| | - Amanda K. Segedy
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
| | - Bin Li
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
| | - Sergio Fazio
- Center of Preventive Cardiology; Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR, United States of America
| | - James B. Atkinson
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
- Veterans Affairs Medical Center, Nashville, TN, United States of America
| | - MacRae F. Linton
- Department of Pharmacology, Vanderbilt University Medical Center; Nashville, TN, United States of America
- Department of Medicine; Vanderbilt University Medical Center; Nashville, TN, United States of America
| | - Pampee P. Young
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
- Veterans Affairs Medical Center, Nashville, TN, United States of America
- Department of Medicine; Vanderbilt University Medical Center; Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
49
|
Daugherty A, Tall AR, Daemen MJ, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res 2017; 121:e53-e79. [DOI: 10.1161/res.0000000000000169] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
50
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|