1
|
Schluga PHDC, Larangote D, de Melo AM, Lobermayer GK, Torrejón D, de Oliveira LS, Alvarenga VG, Vivas-Ruiz DE, Veiga SS, Sanchez EF, Gremski LH. A Novel P-III Metalloproteinase from Bothrops barnetti Venom Degrades Extracellular Matrix Proteins, Inhibits Platelet Aggregation, and Disrupts Endothelial Cell Adhesion via α5β1 Integrin Receptors to Arginine-Glycine-Aspartic Acid (RGD)-Containing Molecules. Toxins (Basel) 2024; 16:486. [PMID: 39591241 PMCID: PMC11597958 DOI: 10.3390/toxins16110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of the Peruvian snake Bothrops barnetti. Bar-III has a molecular mass of approximately 50 kDa and is a glycosylation-dependent functional metalloproteinase. Some biochemical properties of Bar-III, including the full amino acid sequence deduced from its cDNA, are reported. Its enzymatic activity is increased by Ca2+ ions and inhibited by an excess of Zn2+. Synthetic metalloproteinase inhibitors and EDTA also inhibit its proteolytic action. Bar-III degrades several plasma and ECM proteins, including fibrin(ogen), fibronectin, laminin, and nidogen. Platelets play a key role in hemostasis and thrombosis and in other biological process, such as inflammation and immunity, and platelet activation is driven by the platelet signaling receptors, glycoprotein (GP)Ib-IX-V, which binds vWF, and GPVI, which binds collagen. Moreover, Bar-III inhibits vWF- and convulxin-induced platelet aggregation in human washed platelets by cleaving the recombinant A1 domain of vWF and GPVI into a soluble ectodomain fraction of ~55 kDa (sGPVI). Bar-III does not reduce the viability of cultured endothelial cells; however, it interferes with the adhesion of these cells to fibronectin, vitronectin, and RGD peptides, as well as their migration profile. Bar-III binds specifically to the surface of these cells, and part of this interaction involves α5β1 integrin receptors. These results contribute to a better comprehension of the pathophysiology of snakebite accidents/incidents and could be used as a tool to explore novel and safer anti-venom therapeutics.
Collapse
Affiliation(s)
- Pedro Henrique de Caires Schluga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Debora Larangote
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Ana Maria de Melo
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Guilherme Kamienski Lobermayer
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Luciana Souza de Oliveira
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Valeria Gonçalves Alvarenga
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Dan Erick Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Silvio Sanches Veiga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Eladio Flores Sanchez
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Luiza Helena Gremski
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| |
Collapse
|
2
|
Di Nubila A, Dilella G, Simone R, Barbieri SS. Vascular Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2024; 25:12017. [PMID: 39596083 PMCID: PMC11594217 DOI: 10.3390/ijms252212017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The extracellular matrix (ECM) plays a central role in the structural integrity and functionality of the cardiovascular system. Moreover, the ECM is involved in atherosclerotic plaque formation and stability. In fact, ECM remodeling affects plaque stability, cellular migration, and inflammatory responses. Collagens, fibronectin, laminin, elastin, and proteoglycans are crucial proteins during atherosclerosis development. This dynamic remodeling is driven by proteolytic enzymes such as matrix metalloproteinases (MMPs), cathepsins, and serine proteases. Exploring and investigating ECM dynamics is an important step to designing innovative therapeutic strategies targeting ECM remodeling mechanisms, thus offering significant advantages in the management of cardiovascular diseases. This review illustrates the structure and role of vascular ECM, presenting a new perspective on ECM remodeling and its potential as a therapeutic target in atherosclerosis treatments.
Collapse
Affiliation(s)
| | | | | | - Silvia S. Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (A.D.N.); (G.D.); (R.S.)
| |
Collapse
|
3
|
Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, Peng S, Nie H. Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater 2024:S1742-7061(24)00614-7. [PMID: 39433198 DOI: 10.1016/j.actbio.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Liver fibrosis is a key process in the progression of chronic liver disease to cirrhosis. Currently, early diagnosis and precise staging of liver fibrosis remain great challenges. Extracellular matrix (ECM) molecules expressed specifically during liver fibrosis are ideal targets for bioimaging and detection of liver fibrosis. Here, we report that fluorescent probes based on a nucleic acid aptamer (ZY-1) targeting cellular fibronectin (cFN), a critical ECM molecule significantly accumulating during liver fibrosis, are promising bioimaging agents for the staging of liver fibrosis. In the work, the outstanding binding affinity of ZY-1 to cFN was validated through an in vitro model of human-derived hepatic stellate cells (HSCs). Subsequently, we constructed different ZY-1-based fluorescent probes and explored the real-time imaging performance of these fluorescent probes in CCl4-induced mouse models of different liver fibrosis stages. The ZY-1-based fluorescent probes, for the first time, effectively identified and distinguished early-stage liver fibrosis (stage 3 of Ishak 6) from advanced liver fibrosis (stage 5 of Ishak 6). The proof-of-concept study provides compelling evidences that ZY-1-based probes are a promising tool for the early diagnosis and staging of liver fibrosis and paves the way for further development of clinical-related diagnosis strategies for fibrotic diseases of the liver and other organs. STATEMENT OF SIGNIFICANCE: Currently, early diagnosis and accurate staging of liver fibrosis continue to present significant challenges. This study demonstrates that fluorescent probes based on the nucleic acid aptamer ZY-1, which targets cellular fibronectin (cFN)-a crucial extracellular matrix (ECM) molecule that significantly accumulates during liver fibrosis-are promising bioimaging agents for staging liver fibrosis. The ZY-1-based fluorescent probes effectively identified and differentiated early-stage liver fibrosis from advanced liver fibrosis. This proof-of-concept study not only provides compelling evidence that ZY-1-based probes show promise for the early diagnosis and staging of liver fibrosis but also paves the way for further investigations into the use of ZY-1 in detecting other diseases associated with cFN.
Collapse
Affiliation(s)
- Mengjun Ge
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Haitao Zou
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiahao Chen
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Qinyao Zhang
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Yang
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Jiumei Wu
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xing Xie
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Lei
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China.
| | - Shaoliang Peng
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
4
|
Dadafarin H, Konkov E, Vali H, Ali I, Omanovic S. Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility. Molecules 2024; 29:4927. [PMID: 39459295 PMCID: PMC11510294 DOI: 10.3390/molecules29204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
An extracellular matrix protein, fibronectin (Fn), was covalently immobilized on 316L stainless steel, L605 cobalt chromium (CoCr), and nickel titanium (NiTi) surfaces through an 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) pre-formed on these surfaces. Polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) confirmed the presence of Fn on the surfaces. The Fn monolayer attached to the SAM was found to be stable under fluid shear stress. Deconvolution of the Fn amide I band indicated that the secondary structure of Fn changes significantly upon immobilization to the SAM-functionalized metal substrate. Scanning electron microscopy and energy dispersive X-ray analysis revealed that the spacing between Fn molecules on a modified commercial stent surface is approximately 66 nm, which has been reported to be the most appropriate spacing for cell/surface interactions.
Collapse
Affiliation(s)
- Hesam Dadafarin
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada; (H.D.); (E.K.)
| | - Evgeny Konkov
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada; (H.D.); (E.K.)
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, QC H3A 0C7, Canada;
| | - Irshad Ali
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering & Technology, Jamrud Road, Peshawar 25000, Pakistan;
| | - Sasha Omanovic
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada; (H.D.); (E.K.)
| |
Collapse
|
5
|
Zhang S, Liao A, Wang Y, Liu Q, Ouyang L, Peng H, Yuan L, Zhao L, Yang X, Chen X, He Y, Li Z. Profiling expressing features of surface proteins on single-exosome in first-episode Schizophrenia patients: a preliminary study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:84. [PMID: 39349515 PMCID: PMC11443124 DOI: 10.1038/s41537-024-00510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
Proximity barcoding assay, a high-throughput method for single-exosome analysis, was employed to profile surface proteins on individual exosomes of SCZ patients. This analysis identified five differentially expressed proteins (DEPs) between SCZ patients and healthy controls (HC) and six DEPs between antipsychotic responders and non-responders. Furthermore, two exosome clusters were found to be associated with SCZ, and certain DEPs were correlated with cognitive functions.
Collapse
Affiliation(s)
- Sijie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Aijun Liao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiqing Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinbo Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Sumritpradit P, Shantavasinkul PC, Ungpinitpong W, Noorit P, Gajaseni C. Effect of high-protein peptide-based formula compared with isocaloric isonitrogenous polymeric formula in critically ill surgical patient. World J Gastrointest Surg 2024; 16:1765-1774. [PMID: 38983323 PMCID: PMC11230013 DOI: 10.4240/wjgs.v16.i6.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Malnutrition is common in critically ill patients, and it is associated with an increased risk of complications. Early enteral nutrition with adequate caloric and protein intake is critical nevertheless it is difficult to achieve. Peptide-based formulas have been shown to be beneficial in patients with feeding intolerance. However, there are limited studies showing the efficacy and safety of high-protein peptide-based formula in critically ill surgical patients. AIM To determine the effects of a high-protein peptide formulation on gastrointestinal tolerance, nutritional status, biochemical changes, and adverse events in patients in the surgery intensive care unit (SICU) compared to an isocaloric isonitrogenous standard polymeric formulation. METHODS This study was a multi-center double-blind, randomized controlled trial. We enrolled adult patients in the surgical intensive care unit, age ≥ 15 years and expected to receive enteral feeding for at least 5-14 d post-operation. They were randomly assigned to receive either the high-protein peptide-based formula or the isocaloric isonitrogenous standard formula for 14 d. Gastric residual volume (GRV), nutritional status, body composition and biochemical parameters were assessed at baseline and on days 3, 5, 7, 9, 11, and 14. RESULTS A total of 19 patients were enrolled, 9 patients in the peptide-based formula group and 10 patients in the standard formula group. During the study period, there were no differences of the average GRV, body weight, body composition, nutritional status and biochemical parameters in the patients receiving peptide-based formula, compared to the standard regimen. However, participants in the standard formula lost their body weight, body mass index (BMI) and skeletal muscle mass significantly. While body weight, BMI and muscle mass were maintained in the peptide-based formula, from baseline to day 14. Moreover, the participants in the peptide-based formula tended to reach their caloric target faster than the standard formula. CONCLUSION The study emphasizes the importance of early nutritional support in the SICU and showed the efficacy and safety of a high-protein, peptide-based formula in meeting caloric and protein intake targets while maintaining body weight and muscle mass.
Collapse
Affiliation(s)
- Preeda Sumritpradit
- Division of Trauma Surgery and Surgical Critical Care, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Prapimporn Chattranukulchai Shantavasinkul
- Division of Nutrition and Biochemical Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | | | - Pinit Noorit
- Department of Surgery, Chonburi Hospital, Chonburi 20000, Thailand
| | - Chotip Gajaseni
- Department of Nursing, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Bonadio JD, Bashiri G, Halligan P, Kegel M, Ahmed F, Wang K. Delivery technologies for therapeutic targeting of fibronectin in autoimmunity and fibrosis applications. Adv Drug Deliv Rev 2024; 209:115303. [PMID: 38588958 PMCID: PMC11111362 DOI: 10.1016/j.addr.2024.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibronectin (FN) is a critical component of the extracellular matrix (ECM) contributing to various physiological processes, including tissue repair and immune response regulation. FN regulates various cellular functions such as adhesion, proliferation, migration, differentiation, and cytokine release. Alterations in FN expression, deposition, and molecular structure can profoundly impact its interaction with other ECM proteins, growth factors, cells, and associated signaling pathways, thus influencing the progress of diseases such as fibrosis and autoimmune disorders. Therefore, developing therapeutics that directly target FN or its interaction with cells and other ECM components can be an intriguing approach to address autoimmune and fibrosis pathogenesis.
Collapse
Affiliation(s)
- Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Fatima Ahmed
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Naha A, Driscoll TP. Fibronectin sensitizes activation of contractility, YAP, and NF-κB in nucleus pulposus cells. J Orthop Res 2024; 42:434-442. [PMID: 37525423 DOI: 10.1002/jor.25670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Intervertebral disc degeneration involves the breakdown of the discs of the spine due to genetics, aging, or faulty mechanical loading. As part of the progression of the disease, nucleus pulposus cells lose their phenotypic characteristics, inducing inflammation and extracellular matrix (ECM) alterations that result in a loss of disc mechanical homeostasis. Fibronectin is one ECM molecule that has been shown to be upregulated in disc degeneration and plays an important role in the progression of a wide variety of fibrotic diseases. Fragments of fibronectin have also long been associated with both osteoarthritis and disc degeneration. The goal of this work is to test the effects of fibronectin on disc cell phenotype, mechanosensing, and inflammatory signaling. We identify that fibronectin increases the activation of cellular contractility, the mechanosensitive transcription factor Yes-associated protein, and the inflammatory transcription factor nuclear factor-κB. This results in decreased production and expression of proteoglycans, which are required to maintain healthy disc function. Thus, fibronectin is a potential regulator of phenotypic changes in disc degeneration, and a potential target for treating disc degeneration at the cellular level. Understanding the role of fibronectin, and its potential as a therapeutic target, could provide new approaches for preventing or reversing disc degeneration.
Collapse
Affiliation(s)
- Ananya Naha
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA
| | - Tristan P Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA
| |
Collapse
|
9
|
Chen Y, Li Z, Kong F, Ju LA, Zhu C. Force-Regulated Spontaneous Conformational Changes of Integrins α 5β 1 and α Vβ 3. ACS NANO 2024; 18:299-313. [PMID: 38105535 PMCID: PMC10786158 DOI: 10.1021/acsnano.3c06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Integrins are cell surface nanosized receptors crucial for cell motility and mechanosensing of the extracellular environment, which are often targeted for the development of biomaterials and nanomedicines. As a key feature of integrins, their activity, structure and behavior are highly mechanosensitive, which are regulated by mechanical forces down to pico-Newton scale. Using single-molecule biomechanical approaches, we compared the force-modulated ectodomain bending/unbending conformational changes of two integrin species, α5β1 and αVβ3. It was found that the conformation of integrin α5β1 is determined by a threshold head-to-tail tension. By comparison, integrin αVβ3 exhibits bistability even without force and can spontaneously transition between the bent and extended conformations with an apparent transition time under a wide range of forces. Molecular dynamics simulations observed almost concurrent disruption of ∼2 hydrogen bonds during integrin α5β1 unbending, but consecutive disruption of ∼7 hydrogen bonds during integrin αVβ3 unbending. Accordingly, we constructed a canonical energy landscape for integrin α5β1 with a single energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to allow the conformational transition. In contrast, the energy landscape of integrin αVβ3 conformational changes was constructed with hexa-stable intermediate states and intermediate energy barriers that segregate the conformational change process into multiple small steps. Our study elucidates the different biomechanical inner workings of integrins α5β1 and αVβ3 at the submolecular level, helps understand their mechanosignaling processes and how their respective functions are facilitated by their distinctive mechanosensitivities, and provides useful design principles for the engineering of protein-based biomechanical nanomachines.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Biochemistry and Molecular Biology and Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Zhenhai Li
- Shanghai
Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute
of Applied Mathematics and Mechanics, School of Mechanics and Engineering
Science, Shanghai University, Shanghai 200072, China
| | - Fang Kong
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Biological Science, Nanyang Technological
University, Singapore 637551, Singapore
| | - Lining Arnold Ju
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Biomedical Engineering, The University
of Sydney, Darlington, New South Wales 2008, Australia
- Charles
Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Hu Z, Deng X, Zhou S, Zhou C, Shen M, Gao X, Huang Y. Pathogenic mechanisms and therapeutic implications of extracellular matrix remodelling in cerebral vasospasm. Fluids Barriers CNS 2023; 20:81. [PMID: 37925414 PMCID: PMC10625254 DOI: 10.1186/s12987-023-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Cerebral vasospasm significantly contributes to poor prognosis and mortality in patients with aneurysmal subarachnoid hemorrhage. Current research indicates that the pathological and physiological mechanisms of cerebral vasospasm may be attributed to the exposure of blood vessels to toxic substances, such as oxyhaemoglobin and inflammation factors. These factors disrupt cerebral vascular homeostasis. Vascular homeostasis is maintained by the extracellular matrix (ECM) and related cell surface receptors, such as integrins, characterised by collagen deposition, collagen crosslinking, and elastin degradation within the vascular ECM. It involves interactions between the ECM and smooth muscle cells as well as endothelial cells. Its biological activities are particularly crucial in the context of cerebral vasospasm. Therefore, regulating ECM homeostasis may represent a novel therapeutic target for cerebral vasospasm. This review explores the potential pathogenic mechanisms of cerebral vasospasm and the impacts of ECM protein metabolism on the vascular wall during ECM remodelling. Additionally, we underscore the significance of an ECM protein imbalance, which can lead to increased ECM stiffness and activation of the YAP pathway, resulting in vascular remodelling. Lastly, we discuss future research directions.
Collapse
Affiliation(s)
- Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315302, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China
| | - Menglu Shen
- Cixi Third People's Hospital, Cixi, 315324, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Liuting Street 59, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
11
|
Hamrangsekachaee M, Wen K, Yazdani N, Willits RK, Bencherif SA, Ebong EE. Endothelial glycocalyx sensitivity to chemical and mechanical sub-endothelial substrate properties. Front Bioeng Biotechnol 2023; 11:1250348. [PMID: 38026846 PMCID: PMC10643223 DOI: 10.3389/fbioe.2023.1250348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 μg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 μg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
| | - Narges Yazdani
- Bioengineering Department, Northeastern University, Boston, MA, United States
| | - Rebecca K. Willits
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
| | - Sidi A. Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Eno E. Ebong
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
- Neuroscience Department, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Peng L, Deng H, Li J, Lu G, Zhai YS. Plasma Fibronectin as a Novel Predictor of Coronary Heart Disease: A Retrospective Study. J Cardiovasc Dev Dis 2023; 10:415. [PMID: 37887862 PMCID: PMC10607878 DOI: 10.3390/jcdd10100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Although fibronectin has been associated with the pathogenesis of atherosclerosis, little is currently known about the relationship between plasma fibronectin and coronary heart disease (CHD). This retrospective study aimed to determine the predictive value of plasma fibronectin for CHD and its severity. A total of 1644 consecutive patients who underwent selective coronary angiography were recruited into the present study. The characteristics and results of the clinical examination of all patients were collected. Logistic regression analyses were performed to determine the predictive value of plasma fibronectin for the presence and severity of CHD. Compared with non-CHD patients, the CHD patients showed significantly higher plasma levels of troponin I and creatine kinase isoenzyme, along with lower plasma levels of fibronectin. However, no significant differences were detected in plasma fibronectin among patients with different grades of CHD. The logistic regression model showed that plasma fibronectin remained an independent predictor of CHD after adjustment with a 1.39-fold increased risk for every 1 SD decrease in plasma fibronectin. Nevertheless, plasma fibronectin could not predict the severity of CHD determined by the number of stenosed vessels and the modified Gensini score. This study demonstrated that lower plasma fibronectin might be an independent predictor of CHD, but it may be of no value in predicting the severity of CHD.
Collapse
Affiliation(s)
- Longyun Peng
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510800, China; (L.P.); (H.D.); (J.L.)
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510800, China
| | - Haiwei Deng
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510800, China; (L.P.); (H.D.); (J.L.)
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510800, China
| | - Jie Li
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510800, China; (L.P.); (H.D.); (J.L.)
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510800, China
| | - Guihua Lu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510800, China; (L.P.); (H.D.); (J.L.)
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510800, China
| | - Yuan-Sheng Zhai
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510800, China; (L.P.); (H.D.); (J.L.)
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510800, China
| |
Collapse
|
13
|
Lee HJ, Tomasini-Johansson BR, Gupta N, Kwon GS. Fibronectin-targeted FUD and PEGylated FUD peptides for fibrotic diseases. J Control Release 2023; 360:69-81. [PMID: 37315694 PMCID: PMC10527082 DOI: 10.1016/j.jconrel.2023.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Tissue fibrosis is characterized by excessive deposition of extracellular matrix (ECM) molecules. Fibronectin (FN) is a glycoprotein found in the blood and tissues, a key player in the assembly of ECM through interaction with cellular and extracellular components. Functional Upstream Domain (FUD), a peptide derived from an adhesin protein of bacteria, has a high binding affinity for the N-terminal 70-kDa domain of FN that plays a crucial role in FN polymerization. In this regard, FUD peptide has been characterized as a potent inhibitor of FN matrix assembly, reducing excessive ECM accumulation. Furthermore, PEGylated FUD was developed to prevent rapid elimination of FUD and enhance its systemic exposure in vivo. Herein, we summarize the development of FUD peptide as a potential anti-fibrotic agent and its application in experimental fibrotic diseases. In addition, we discuss how modification of the FUD peptide via PEGylation impacts pharmacokinetic profiles of the FUD peptide and can potentially contribute to anti-fibrosis therapy.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Bianca R Tomasini-Johansson
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, WI 53705, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Chen Y, Kong F, Li Z, Ju LA, Zhu C. Force-regulated spontaneous conformational changes of integrins α 5 β 1 and α V β 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523308. [PMID: 36712101 PMCID: PMC9881988 DOI: 10.1101/2023.01.09.523308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Force can modulate the properties and functions of macromolecules by inducing conformational changes, such as coiling/uncoiling, zipping/unzipping, and folding/unfolding. Here we compared force-modulated bending/unbending of two purified integrin ectodomains, α 5 β 1 and α V β 3 , using single-molecule approaches. Similar to previously characterized mechano-sensitive macromolecules, the conformation of α 5 β 1 is determined by a threshold head-to-tail tension, suggesting a canonical energy landscape with a deep energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to accelerate transition to the extended state. By comparison, α V β 3 exhibits bi-stability even without force and can spontaneously transition between the bent and extended conformations in a wide range of forces without energy supplies. Molecular dynamics simulations revealed consecutive formation and disruption of 7 hydrogen bonds during α V β 3 bending and unbending, respectively. Accordingly, we constructed an energy landscape with hexa-stable intermediate states to break down the energy barrier separating the bent and extended states into smaller ones, making it possible for the thermal agitation energy to overcome them sequentially and to be accumulated and converted into mechanical work required for α V β 3 to bend against force. Our study elucidates the different inner workings of α 5 β 1 and α V β 3 at the sub-molecular level, sheds lights on how their respectively functions are facilitated by their distinctive mechano-sensitivities, helps understand their signal initiation processes, and provides critical concepts and useful design principles for engineering of protein-based biomechanical nanomachines.
Collapse
|
15
|
Chen M, Hu R, Cavinato C, Zhuang ZW, Zhang J, Yun S, Fernandez Tussy P, Singh A, Murtada SI, Tanaka K, Liu M, Fernández-Hernando C, Humphrey JD, Schwartz MA. Fibronectin-Integrin α5 Signaling in Vascular Complications of Type 1 Diabetes. Diabetes 2022; 71:2020-2033. [PMID: 35771994 PMCID: PMC9450851 DOI: 10.2337/db21-0958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022]
Abstract
Vascular complications are a major cause of illness and death in patients with type 1 diabetes (T1D). Diabetic vascular basement membranes are enriched in fibronectin (FN), an extracellular matrix protein that amplifies inflammatory signaling in endothelial cells through its main receptor, integrin α5β1. Binding of the integrin α5 cytoplasmic domain to phosphodiesterase 4D5 (PDE4D5), which increases phosphodiesterase catalytic activity and inhibits antiinflammatory cAMP signaling, was found to mediate these effects. Here, we examined mice in which the integrin α5 cytoplasmic domain is replaced by that of α2 (integrin α5/2) or the integrin α5 binding site in PDE4D is mutated (PDE4Dmut). T1D was induced via injection of streptozotocin and hyperlipidemia induced via injection of PCSK9 virus and provision of a high-fat diet. We found that in T1D and hyperlipidemia, the integrin α5/2 mutation reduced atherosclerosis plaque size by ∼50%, with reduced inflammatory cell invasion and metalloproteinase expression. Integrin α5/2 T1D mice also had improved blood-flow recovery from hindlimb ischemia and improved biomechanical properties of the carotid artery. By contrast, the PDE4Dmut had no beneficial effects in T1D. FN signaling through integrin α5 is thus a major contributor to diabetic vascular disease but not through its interaction with PDE4D.
Collapse
Affiliation(s)
- Minghao Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Rui Hu
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Zhenwu W. Zhuang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Sanguk Yun
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Pablo Fernandez Tussy
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Departments of Comparative Medicine and Pathology, Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT
| | - Abhishek Singh
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Departments of Comparative Medicine and Pathology, Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Keiichiro Tanaka
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Min Liu
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Departments of Comparative Medicine and Pathology, Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT
| |
Collapse
|
16
|
Ullah N, Wu Y. Regulation of Conformational Changes in C-reactive Protein Alters its Bioactivity. Cell Biochem Biophys 2022; 80:595-608. [PMID: 35997934 DOI: 10.1007/s12013-022-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/09/2022] [Indexed: 01/08/2023]
Abstract
The acute phase C-reactive protein (CRP) is mainly synthesized and secreted by the liver in a cytokine-mediated response to infection or inflammation and circulates as a pentamer (pCRP) in plasma. Recent studies indicate that CRP is not only a marker but is directly involved in inflammation. CRP has a vital role in host defense and inflammation, metabolic function and scavenging through its ability for calcium depended binding to exogenous and endogenous molecules having phosphocholine followed by activation of the classical complement pathway. Accumulating evidence indicates that pCRP dissociates into monomeric CRP (mCRP) and most proinflammatory actions of CRP are only expressed following dissociation of its native pentameric assembly into mCRP. The dissociation of CRP into mCRP altogether promotes the ligand-binding capability. mCRP emerges to be the main conformation of CRP that participates in the regulation of local inflammation, however, little is identified concerning what triggers the significantly enhanced actions of mCRP and their binding to diverse ligands. The separation of mCRP from pCRP may be a direct relationship between CRP and inflammation. Here we review the current literature on CRP dissociation and its interaction with different ligands. The possibility to avoid the generation of the proinflammatory potential of mCRP has driven therapeutic approaches by targeting the dissociation mechanism of pCRP or inhibition of mCRP itself during inflammation.
Collapse
Affiliation(s)
- Naeem Ullah
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, the Affiliated Children's Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
17
|
Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory Microenvironment of Skin Wounds. Front Immunol 2022; 13:789274. [PMID: 35300324 PMCID: PMC8920979 DOI: 10.3389/fimmu.2022.789274] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a dynamic and highly regulated process that can be separated into three overlapping and interdependent phases: inflammation, proliferation, and remodelling. This review focuses on the inflammation stage, as it is the key stage of wound healing and plays a vital role in the local immune response and determines the progression of wound healing. Inflammatory cells, the main effector cells of the inflammatory response, have been widely studied, but little attention has been paid to the immunomodulatory effects of wound healing in non-inflammatory cells and the extracellular matrix. In this review, we attempt to deepen our understanding of the wound-healing microenvironment in the inflammatory stage by focusing on the interactions between cells and the extracellular matrix, as well as their role in regulating the immune response during the inflammatory stage. We hope our findings will provide new ideas for promoting tissue regeneration through immune regulation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Han Luo
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangchao Xu
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
19
|
HSP90 as a regulator of extracellular matrix dynamics. Biochem Soc Trans 2021; 49:2611-2625. [PMID: 34913470 DOI: 10.1042/bst20210374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The extracellular matrix (ECM) is a dynamic and organised extracellular network assembled from proteins and carbohydrates exported from the cell. The ECM is critical for multicellular life, providing spatial and temporal cellular cues to maintain tissue homeostasis. Consequently, ECM production must be carefully balanced with turnover to ensure homeostasis; ECM dysfunction culminates in disease. Hsp90 is a molecular chaperone central to protein homeostasis, including in the ECM. Intracellular and extracellular Hsp90 isoforms collaborate to regulate the levels and status of proteins in the ECM via multiple mechanisms. In so doing, Hsp90 regulates ECM dynamics, and changes in Hsp90 levels or activity support the development of ECM-related diseases, like cancer and fibrosis. Consequently, Hsp90 levels may have prognostic value, while inhibition of Hsp90 may have therapeutic potential in conditions characterised by ECM dysfunction.
Collapse
|
20
|
Bone marrow microenvironment of MPN cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 34756245 DOI: 10.1016/bs.ircmb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this chapter, we will discuss the current knowledge concerning the alterations of the cellular components in the bone marrow niche in Myeloproliferative Neoplasms (MPNs), highlighting the central role of the megakaryocytes in MPN progression, and the extracellular matrix components characterizing the fibrotic bone marrow.
Collapse
|
21
|
Batalov I, Jallerat Q, Kim S, Bliley J, Feinberg AW. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci Rep 2021; 11:11502. [PMID: 34075068 PMCID: PMC8169656 DOI: 10.1038/s41598-021-87550-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Cardiac two-dimensional tissues were engineered using biomimetic micropatterns based on the fibronectin-rich extracellular matrix (ECM) of the embryonic heart. The goal of this developmentally-inspired, in vitro approach was to identify cell-cell and cell-ECM interactions in the microenvironment of the early 4-chambered vertebrate heart that drive cardiomyocyte organization and alignment. To test this, biomimetic micropatterns based on confocal imaging of fibronectin in embryonic chick myocardium were created and compared to control micropatterns designed with 2 or 20 µm wide fibronectin lines. Results show that embryonic chick cardiomyocytes have a unique density-dependent alignment on the biomimetic micropattern that is mediated in part by N-cadherin, suggesting that both cell-cell and cell-ECM interactions play an important role in the formation of aligned myocardium. Human induced pluripotent stem cell-derived cardiomyocytes also showed density-dependent alignment on the biomimetic micropattern but were overall less well organized. Interestingly, the addition of human adult cardiac fibroblasts and conditioning with T3 hormone were both shown to increase human cardiomyocyte alignment. In total, these results show that cardiomyocyte maturation state, cardiomyocyte-cardiomyocyte and cardiomyocyte-fibroblast interactions, and cardiomyocyte-ECM interactions can all play a role when engineering anisotropic cardiac tissues in vitro and provides insight as to how these factors may influence cardiogenesis in vivo.
Collapse
Affiliation(s)
- Ivan Batalov
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Sean Kim
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Jacqueline Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Adam W Feinberg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA. .,Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
22
|
Mariotti M, Rogowska-Wrzesinska A, Hägglund P, Davies MJ. Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions. J Biol Chem 2021; 296:100360. [PMID: 33539924 PMCID: PMC7950325 DOI: 10.1016/j.jbc.2021.100360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Fibronectin (FN) is an abundant glycoprotein found in plasma and the extracellular matrix (ECM). It is present at high concentrations at sites of tissue damage, where it is exposed to oxidants generated by activated leukocytes, including peroxynitrous acid (ONOOH) formed from nitric oxide (from inducible nitric oxide synthase) and superoxide radicals (from NADPH oxidases and other sources). ONOOH reacts rapidly with the abundant tyrosine and tryptophan residues in ECM proteins, resulting in the formation of 3-nitrotyrosine, di-tyrosine, and 6-nitrotryptophan. We have shown previously that human plasma FN is readily modified by ONOOH, but the extent and location of modifications, and the role of FN structure (compact versus extended) in determining these factors is poorly understood. Here, we provide a detailed LC-MS analysis of ONOOH-induced FN modifications, including the extent of their formation and the sites of intramolecular and intermolecular cross-links, including Tyr-Tyr, Trp-Trp, and Tyr-Trp linkages. The localization of these cross-links to specific domains provides novel data on the interactions between different modules in the compact conformation of plasma FN and allows us to propose a model of its unknown quaternary structure. Interestingly, the pattern of modifications is significantly different to that generated by another inflammatory oxidant, HOCl, in both extent and sites. The characterization and quantification of these modifications offers the possibility of the use of these materials as specific biomarkers of ECM modification and turnover in the many pathologies associated with inflammation-associated fibrosis.
Collapse
Affiliation(s)
- Michele Mariotti
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Frangogiannis NG, Kovacic JC. Extracellular Matrix in Ischemic Heart Disease, Part 4/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2219-2235. [PMID: 32354387 DOI: 10.1016/j.jacc.2020.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia and infarction, both in the acute and chronic phases, are associated with cardiomyocyte loss and dramatic changes in the cardiac extracellular matrix (ECM). It has long been appreciated that these changes in the cardiac ECM result in altered mechanical properties of ischemic or infarcted myocardial segments. However, a growing body of evidence now clearly demonstrates that these alterations of the ECM not only affect the structural properties of the ischemic and post-infarct heart, but they also play a crucial and sometimes direct role in mediating a range of biological pathways, including the orchestration of inflammatory and reparative processes, as well as the pathogenesis of adverse remodeling. This final part of a 4-part JACC Focus Seminar reviews the evidence on the role of the ECM in relation to the ischemic and infarcted heart, as well as its contribution to cardiac dysfunction and adverse clinical outcomes.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York.
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
24
|
Trujillo S, Gonzalez-Garcia C, Rico P, Reid A, Windmill J, Dalby MJ, Salmeron-Sanchez M. Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials 2020; 252:120104. [DOI: 10.1016/j.biomaterials.2020.120104] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022]
|
25
|
Alanen J, Appelblom H, Korpimaki T, Kouru H, Sairanen M, Gissler M, Ryynanen M, Nevalainen J. Glycosylated fibronectin as a first trimester marker for gestational diabetes. Arch Gynecol Obstet 2020; 302:853-860. [PMID: 32653948 PMCID: PMC7471182 DOI: 10.1007/s00404-020-05670-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Abstract
Purpose To evaluate the performance of first trimester maternal serum glycosylated (Sambucus nigra lectin-reactive) fibronectin in prediction of gestational diabetes mellitus (GDM).
Methods In this case–control study, first trimester maternal serum glycosylated fibronectin and fibronectin were measured in 19 women who consequently developed GDM and in 59 control women with normal pregnancy outcomes. Adiponectin was used as a reference protein to evaluate relation of glycoprotein to SNA-lectin-reactive assay format. Samples were taken during gestational weeks 9+6–11+6. Data concerning GDM was obtained from the National Institute for Health and Welfare, which records the pregnancy outcomes of all women in Finland. Results There was no difference in maternal serum glycosylated fibronectin concentrations between women with consequent GDM [447.5 μg/mL, interquartile range (IQR) 254.4–540.9 μg/mL] and control women (437.6 μg/mL, IQR 357.1–569.1 μg/mL). Maternal serum fibronectin levels were significantly lower in GDM group (224.2 μg/mL, IQR 156.8–270.6 μg/mL), compared to the control group (264.8 μg/mL, IQR 224.6–330.6 μg/mL, p < 0.01). There was no difference in assay formats for adiponectin. Conclusion There was no association between first trimester maternal serum glycosylated (SNA-reactive) fibronectin and GDM.
Collapse
Affiliation(s)
- Julia Alanen
- Department of Obstetrics and Gynecology, Medical Research Center, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PL 24, 90100 OYS, Oulu, Finland
| | | | | | | | | | - Mika Gissler
- National Institute for Health and Welfare, Helsinki, Finland
| | - Markku Ryynanen
- Department of Obstetrics and Gynecology, Medical Research Center, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PL 24, 90100 OYS, Oulu, Finland
| | - Jaana Nevalainen
- Department of Obstetrics and Gynecology, Medical Research Center, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PL 24, 90100 OYS, Oulu, Finland.
| |
Collapse
|
26
|
Fabian FM, Ismail AE, Wang O, Lei Y, Velander WH. Reversible associations between human plasma fibronectin and fibrinogen γγ’ heterodimer observed by high pressure size exclusion chromatography and dynamic light scattering. Anal Biochem 2020; 598:113701. [DOI: 10.1016/j.ab.2020.113701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
|
27
|
Ao Q, Wang S, He Q, Ten H, Oyama K, Ito A, He J, Javed R, Wang A, Matsuno A. Fibrin Glue/Fibronectin/Heparin-Based Delivery System of BMP2 Induces Osteogenesis in MC3T3-E1 Cells and Bone Formation in Rat Calvarial Critical-Sized Defects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13400-13410. [PMID: 32091872 DOI: 10.1021/acsami.0c01371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bone morphogenetic proteins (BMPs) have been used to promote bone formation in many clinical scenarios. However, the BMPs are inherently unstable in vivo and therefore need to be combined with carriers for controlled delivery. In this study, an innovative and efficient fibrin glue/fibronectin/heparin (FG/Fn/Hep)-based delivery system was developed for controlled release of BMP2. The incorporation of heparin can significantly slow the release of BMP2 without substantially affecting the structure and stiffness of the FG/Fn. The BMP2 release from the FG/Fn/Hep-BMP2 hydrogel is largely dominated by hydrogel degradation rather than simple diffusion. In vitro release experiments and MC3T3-E1 cell induction experiments showed that BMP2 can be released steadily and can induce MC3T3-E1 cells to differentiate into osteoblasts efficiently. This process is characterized by the significantly increased expression of calcium deposits, alkaline phosphatase, runt-related transcription factor-2, osteopontin, osteocalcin, and collagen I in comparison with the negative control. In vivo assessments revealed that the FG/Fn/Hep-BMP2 hydrogel significantly promotes bone regeneration in a rat calvarial critical-sized defect model. Our investigation indicates that FG/Fn/Hep-BMP2 hydrogel holds promise to be used as an alternative biomaterial for the repair of bone defects.
Collapse
Affiliation(s)
- Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shilin Wang
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Qing He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hirotomo Ten
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Kenichi Oyama
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Akihiro Ito
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Jing He
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| |
Collapse
|
28
|
HSP90 Interacts with the Fibronectin N-terminal Domains and Increases Matrix Formation. Cells 2020; 9:cells9020272. [PMID: 31979118 PMCID: PMC7072298 DOI: 10.3390/cells9020272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 (HSP90) is an evolutionarily conserved chaperone protein that controls the function and stability of a wide range of cellular client proteins. Fibronectin (FN) is an extracellular client protein of HSP90, and exogenous HSP90 or inhibitors of HSP90 alter the morphology of the extracellular matrix. Here, we further characterized the HSP90 and FN interaction. FN bound to the M domain of HSP90 and interacted with both the open and closed HSP90 conformations; and the interaction was reduced in the presence of sodium molybdate. HSP90 interacted with the N-terminal regions of FN, which are known to be important for matrix assembly. The highest affinity interaction was with the 30-kDa (heparin-binding) FN fragment, which also showed the greatest colocalization in cells and accommodated both HSP90 and heparin in the complex. The strength of interaction with HSP90 was influenced by the inherent stability of the FN fragments, together with the type of motif, where HSP90 preferentially bound the type-I FN repeat over the type-II repeat. Exogenous extracellular HSP90 led to increased incorporation of both full-length and 70-kDa fragments of FN into fibrils. Together, our data suggested that HSP90 may regulate FN matrix assembly through its interaction with N-terminal FN fragments.
Collapse
|
29
|
Ullah N, Ma FR, Han J, Liu XL, Fu Y, Liu YT, Liang YL, Ouyang H, Li HY. Monomeric C-reactive protein regulates fibronectin mediated monocyte adhesion. Mol Immunol 2019; 117:122-130. [PMID: 31765841 DOI: 10.1016/j.molimm.2019.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
The acute phase reactant C-reactive protein (CRP) binds with high affinity to fibronectin (FN), but this binding occurs only at pH 6.5 or lower, and the binding is inhibited by calcium ions at physiological pH. Since CRP in the circulating blood exists in a calcium-binding form, the interaction between CRP and FN in vivo has been uncertain. CRP can undergo a conformational rearrangement in the absence of calcium or in the local microenvironment (e.g., acidic pH) of inflamed tissue to dissociate into monomeric CRP (mCRP). Therefore, we tested whether these discrepancies can be explained by the different isoforms and locations of CRP. Surface plasmon resonance and ELISA assays showed that mCRP binds with high affinity to FN, and the binding of mCRP to FN was unaffected by calcium or pH. Peptide competition assay, deletion mutant binding assay and protein docking analyse verified that the binding site of mCRP to FN is residues a.a.35-47. Furthermore, mCRP can significantly enhance the adhesion of monocytes to FN as well as upregulate the adhesion molecules expression on endothelial cell. Colocalization of mCRP with FN was observed in mice with DSS-induced colitis, whereas there was very little signal orcolocalization of CRP. These results provide in vitro and in vivo evidence that mCRP formed by local dissociation from circulating CRP is the major isoform that interacts with FN and regulates FN-mediated monocyte adhesion, which is involved in the pro-inflammatory process.
Collapse
Affiliation(s)
- Naeem Ullah
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fu-Rong Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jin Han
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao-Ling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yu Fu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yu-Tong Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yu-Lin Liang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hanyue Ouyang
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hai-Yun Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
30
|
Hammerschmidt S, Rohde M, Preissner KT. Extracellular Matrix Interactions with Gram-Positive Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0041-2018. [PMID: 31004421 PMCID: PMC11590433 DOI: 10.1128/microbiolspec.gpp3-0041-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 01/10/2023] Open
Abstract
The main strategies used by pathogenic bacteria to infect eukaryotic tissue include their adherence to cells and the extracellular matrix (ECM), the subsequent colonization and invasion as well as the evasion of immune defences. A variety of structurally and functionally characterized adhesins and binding proteins of gram-positive bacteria facilitate these processes by specifically recognizing and interacting with various components of the host ECM, including different collagens, fibronectin and other macromolecules. The ECM affects the cellular physiology of our body and is critical for adhesion, migration, proliferation, and differentiation of many host cell types, but also provides the support for infiltrating pathogens, particularly under conditions of injury and trauma. Moreover, microbial binding to a variety of adhesive components in host tissue fluids leads to structural and/or functional alterations of host proteins and to the activation of cellular mechanisms that influence tissue and cell invasion of pathogens. Since the diverse interactions of gram-positive bacteria with the ECM represent important pathogenicity mechanisms, their characterization not only allows a better understanding of microbial invasion but also provides clues for the design of novel therapeutic strategies to manage infectious diseases.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Center for Infection Research, D-38124 Braunschweig, Germany
| | - Klaus T Preissner
- Institute for Biochemistry, Medical School, Justus-Liebig-University, D-35392 Giessen, Germany
| |
Collapse
|
31
|
Soluri MF, Boccafoschi F, Cotella D, Moro L, Forestieri G, Autiero I, Cavallo L, Oliva R, Griffin M, Wang Z, Santoro C, Sblattero D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells. FASEB J 2018; 33:2327-2342. [PMID: 30285580 DOI: 10.1096/fj.201800054rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between the enzyme transglutaminase 2 (TG2) and fibronectin (FN) is involved in the cell-matrix interactions that regulate cell signaling, adhesion, and migration and play central roles in pathologic conditions, particularly fibrosis and cancer. A precise definition of the exact interaction domains on both proteins could provide a tool to design novel molecules with potential therapeutic applications. Although specific residues involved in the interaction within TG2 have been analyzed, little is known regarding the TG2 binding site on FN. This site has been mapped to a large internal 45-kDa protein fragment coincident with the gelatin binding domain (GBD). With the goal of defining the minimal FN interacting domain for TG2, we produced several expression constructs encoding different portions or modules of the GBD and tested their binding and functional properties. The results demonstrate that the I8 module is necessary and sufficient for TG2-binding in vitro, but does not have functional effects on TG2-expressing cells. Modules I7 and I9 increase the strength of the binding and are required for cell adhesion. A 15-kDa fragment encompassing modules I7-9 behaves as the whole 45-kDa GBD and mediates signaling, adhesion, spreading, and migration of TG2+ cells. This study provides new insights into the mechanism for TG2 binding to FN.-Soluri, M. F., Boccafoschi, F., Cotella, D., Moro, L., Forestieri, G., Autiero, I., Cavallo, L., Oliva, R., Griffin, M., Wang, Z., Santoro, C., Sblattero, D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Diego Cotella
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Gabriela Forestieri
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Ida Autiero
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Naples, Italy.,Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Claudio Santoro
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | | |
Collapse
|
32
|
Nybo T, Cai H, Chuang CY, Gamon LF, Rogowska-Wrzesinska A, Davies MJ. Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function. Redox Biol 2018; 19:388-400. [PMID: 30237127 PMCID: PMC6142189 DOI: 10.1016/j.redox.2018.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Fibronectin (FN) occurs as both a soluble form, in plasma and at sites of tissue injury, and a cellular form in tissue extracellular matrices (ECM). FN is critical to wound repair, ECM structure and assembly, cell adhesion and proliferation. FN is reported to play a critical role in the development, progression and stability of cardiovascular atherosclerotic lesions, with high FN levels associated with a thick fibrotic cap, stable disease and a low risk of rupture. Evidence has been presented for FN modification by inflammatory oxidants, and particularly myeloperoxidase (MPO)-derived species including hypochlorous acid (HOCl). The targets and consequences of FN modification are poorly understood. Here we show, using a newly-developed MS protocol, that HOCl and an enzymatic MPO system, generate site-specific dose-dependent Tyr chlorination and dichlorination (up to 16 of 100 residues modified), and oxidation of Trp (7 of 39 residues), Met (3 of 26) and His (1 of 55) within selected FN domains, and particularly the heparin- and cell-binding regions. These alterations increase FN binding to heparin-containing columns. Studies using primary human coronary artery smooth muscle cells (HCASMC) show that exposure to HOCl-modified FN, results in decreased adherence, increased proliferation and altered expression of genes involved in ECM synthesis and remodelling. These findings indicate that the presence of modified fibronectin may play a major role in the formation, development and stabilisation of fibrous caps in atherosclerotic lesions and may play a key role in the switching of quiescent contractile smooth muscle cells to a migratory, synthetic and proliferative phenotype.
Collapse
Affiliation(s)
- Tina Nybo
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Abstract
After decades of directed research, no effective regenerative therapy is currently available to repair the injured human heart. The epicardium, a layer of mesothelial tissue that envelops the heart in all vertebrates, has emerged as a new player in cardiac repair and regeneration. The epicardium is essential for muscle regeneration in the zebrafish model of innate heart regeneration, and the epicardium also participates in fibrotic responses in mammalian hearts. This structure serves as a source of crucial cells, such as vascular smooth muscle cells, pericytes, and fibroblasts, during heart development and repair. The epicardium also secretes factors that are essential for proliferation and survival of cardiomyocytes. In this Review, we describe recent advances in our understanding of the biology of the epicardium and the effect of these findings on the candidacy of this structure as a therapeutic target for heart repair and regeneration.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Mravic M, Hu H, Lu Z, Bennett JS, Sanders CR, Orr AW, DeGrado WF. De novo designed transmembrane peptides activating the α5β1 integrin. Protein Eng Des Sel 2018; 31:181-190. [PMID: 29992271 PMCID: PMC6151875 DOI: 10.1093/protein/gzy014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
Computationally designed transmembrane α-helical peptides (CHAMP) have been used to compete for helix-helix interactions within the membrane, enabling the ability to probe the activation of the integrins αIIbβ3 and αvβ3. Here, this method is extended towards the design of CHAMP peptides that inhibit the association of the α5β1 transmembrane (TM) domains, targeting the Ala-X3-Gly motif within α5. Our previous design algorithm was performed alongside a new workflow implemented within the widely used Rosetta molecular modeling suite. Peptides from each computational approach activated integrin α5β1 but not αVβ3 in human endothelial cells. Two CHAMP peptides were shown to directly associate with an α5 TM domain peptide in detergent micelles to a similar degree as a β1 TM peptide does. By solution-state nuclear magnetic resonance, one of these CHAMP peptides was shown to bind primarily the integrin β1 TM domain, which itself has a Gly-X3-Gly motif. The second peptide associated modestly with both α5 and β1 constructs, with slight preference for α5. Although the design goal was not fully realized, this work characterizes novel CHAMP peptides activating α5β1 that can serve as useful reagents for probing integrin biology.
Collapse
Affiliation(s)
- Marco Mravic
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Hailin Hu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, Tennessee, USA
| | - Joel S Bennett
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, Tennessee, USA
| | - A Wayne Orr
- Departments of Pathology and Translational Pathobiology, Cell Biology and Anatomy, and Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Cooper JG, Jeong SJ, McGuire TL, Sharma S, Wang W, Bhattacharyya S, Varga J, Kessler JA. Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury. Neurobiol Dis 2018; 116:60-68. [PMID: 29705186 DOI: 10.1016/j.nbd.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 11/27/2022] Open
Abstract
Gliosis and fibrosis after spinal cord injury (SCI) lead to formation of a scar that is an impediment to axonal regeneration. Fibrotic scarring is characterized by the accumulation of fibronectin, collagen, and fibroblasts at the lesion site. The mechanisms regulating fibrotic scarring after SCI and its effects on axonal elongation and functional recovery are not well understood. In this study, we examined the effects of eliminating an isoform of fibronectin containing the Extra Domain A domain (FnEDA) on both fibrosis and on functional recovery after contusion SCI using male and female FnEDA-null mice. Eliminating FnEDA did not reduce the acute fibrotic response but markedly diminished chronic fibrotic scarring after SCI. Glial scarring was unchanged after SCI in FnEDA-null mice. We found that FnEDA was important for the long-term stability of the assembled fibronectin matrix during both the subacute and chronic phases of SCI. Motor functional recovery was significantly improved, and there were increased numbers of axons in the lesion site compared to wildtype mice, suggesting that the chronic fibrotic response is detrimental to recovery. Our data provide insight into the mechanisms of fibrosis after SCI and suggest that disruption of fibronectin matrix stability by targeting FnEDA represents a potential therapeutic strategy for promoting recovery after SCI.
Collapse
Affiliation(s)
- John G Cooper
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Su Ji Jeong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sripadh Sharma
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenxia Wang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
36
|
Abstract
Since its conceptualization in the 1980s, the provisional matrix has often been characterized as a simple fibrin-containing scaffold for wound healing that supports the nascent blood clot and is functionally distinct from the basement membrane. However subsequent advances have shown that this matrix is far from passive, with distinct compositional differences as the wound matures, and providing an active role for wound remodeling. Here we review the stages of this matrix, provide an update on the state of our understanding of provisional matrix, and present some of the outstanding issues related to the provisional matrix, its components, and their assembly and use in vivo.
Collapse
|
37
|
Nguyen H, Huynh K, Stoldt VR. Shear-dependent fibrillogenesis of fibronectin: Impact of platelet integrins and actin cytoskeleton. Biochem Biophys Res Commun 2018; 497:797-803. [PMID: 29470988 DOI: 10.1016/j.bbrc.2018.02.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/18/2018] [Indexed: 11/26/2022]
Abstract
Soluble plasma fibronectin (Fn) with its inactive compact structure requires unfolding to assemble into active fibrils, which play a role in hemostasis and thrombosis. Fn fibril assembly involves Fn binding to cell receptors, biomechanical coupling of Fn to the cytoskeleton by integrins, exposure of self-assembly sites via contractile cell forces, and elongation of fibrils by Fn polymerization. In this report, we investigated the effect of platelet integrins and actin cytoskeleton on conformational changes of Fn induced by shear. Plasma Fn, in the presence or absence of washed platelets, was exposed to dynamic shear simulating venous or arterial flow conditions. Platelet integrins (αIIbβ3, αvβ3, and α5β1) were blocked by inhibitory antibodies to determine their contribution to shear-induced Fn fibrillogenesis. To examine the role of platelet cytoskeleton in Fn fibrillogenesis induced by shear, platelets were preincubated with cytoskeleton drugs, i. e jasplakinolide to stabilize actin or cytochalasin D to inhibit actin polymerization. Microscopic analyses demonstrated that flow and resulting shear stress over a broad range of physiological and pathological rates (50-5000 s-1) could induce conformational changes of plasma Fn. In addition, the formation of Fn fibrils is modulated by platelet integrins. In this respect, β3 integrins play a dominant role in terms of Fn fibrillogenesis induced by shear. Disruption of the actin polymerization markedly diminished Fn unfolding and assembly. These observations lead to the conclusion that Fn-integrin β3-cytoskeleton interaction is crucial for the assembly of plasma Fn matrix under flow conditions.
Collapse
Affiliation(s)
- Huong Nguyen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - Khon Huynh
- Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Volker R Stoldt
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
38
|
Wu X, Muthuchamy M, Reddy DS. Atomic force microscopy investigations of fibronectin and α5β1-integrin signaling in neuroplasticity and seizure susceptibility in experimental epilepsy. Epilepsy Res 2017; 138:71-80. [DOI: 10.1016/j.eplepsyres.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/15/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
|
39
|
El-Ayoubi F, Amiral J, Pascaud J, Charrin S, Tassel B, Gurewich V, Uzan G. A fibrin antibody binding to fibronectin induces potent inhibition of angiogenesis. Thromb Haemost 2017; 113:143-53. [DOI: 10.1160/th14-01-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 08/25/2014] [Indexed: 11/05/2022]
Abstract
SummaryAntiserum from rabbits immunised with pure human fibrinogen was affinity purified on immobilised fibrin fragment E (FFE). This FFE antibody (Ab) induced significant growth inhibition of a human cancer xenograft in mice and suppression of tumour angiogenesis, leaving no formed vessels and only CD31-staining endothelial fragments in place. Tubule formation of HUVEC on MatrigelTM was also significantly inhibited by FFE Ab. Since MatrigelTM is fibrin-free, this effect implicated a different FFE Ab binding site than FFE. Flow cytometry of HUVEC showed that FFE Ab bound to HUVEC, but with a broad range of 55–98 %. Immunofluorescent staining of HUVEC explained this range, since FFE Ab was seen not to bind to human umbilical vein endothelial cells (HUVEC) directly but instead to a matrix protein variably adherent to HUVEC. This protein was identified as fibronectin (FN) by appearance, staining with FN Ab, and by a FN knockdown study. Neither HUVEC nor matrix reacted with fibrin D-dimer (DD) Ab. Immunofluorescent stains of HUVEC matrix with FFE and FN Ab’s showed that these Ab’s bound to the same epitopes on FN, as also seen on Western blots of purified FN. These findings indicate the presence of an antigenic determinant in fibrinogen/FFE that is homologous with an epitope(s) in FN recognised by FFE Ab, and critical for angiogenesis in this xenograft. The FN epitope(s) remains to be identified, but the present findings can be used for the selection of the appropriate clones from mice immunised with fibrinogen which can facilitate this identification, and which may also be of clinical use.
Collapse
|
40
|
Yang SL, Zhu LY, Han R, Sun LL, Dou JT. Effect of Negative Pressure Wound Therapy on Cellular Fibronectin and Transforming Growth Factor-β1 Expression in Diabetic Foot Wounds. Foot Ankle Int 2017; 38:893-900. [PMID: 28459181 DOI: 10.1177/1071100717704940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic diabetic foot wounds are a leading cause of amputation, morbidity, and hospitalization for patients with diabetes. Negative-pressure wound therapy (NPWT) can putatively facilitate wound healing, but the underlying mechanisms remain unclear. Cellular fibronectin (cFN) and transforming growth factor-β1 (TGF-β1) play an important role in wound healing. This prospective randomized controlled trial evaluated the effects of NPWT on the production of cFN and the expression of TGF-β1 in diabetic foot wounds of patients. METHODS From January 2012 to January 2015, 40 patients with diabetic foot wounds were randomly and equally apportioned to receive either NPWT or advanced moist wound therapy (control) for 7 days. Granulation tissue was harvested before and after treatment. Immunohistochemistry and Western blot were performed to evaluate protein levels of cFN and TGF-β1, and real-time polymerase chain reaction (PCR) to measure corresponding mRNA expressions. RESULTS NPWT facilitated the expression of cFN and TGF-β1 in diabetic foot wounds. Immunohistochemical analysis revealed higher levels of cFN and TGF-β1 in the NPWT group than in the control group. Western blot and real-time PCR analysis further showed that protein and mRNA levels of cFN or TGF-β1 were higher in the NPWT group than that in the control group ( P < .01, both). CONCLUSION Our results showed that NPWT facilitated the production of cFN and the expression of TGF-β1 in granulation tissue in diabetic foot ulcers. LEVEL OF EVIDENCE Level I, randomized controlled study.
Collapse
Affiliation(s)
- Shao Ling Yang
- 1 Department of Endocrinology, Chinese PLA General Hospital (301 Hospital), Beijing, China.,2 Department of Endocrinology, Bethune International Peace Hospital of PLA, Shijiazhuang, China
| | - Lv Yun Zhu
- 2 Department of Endocrinology, Bethune International Peace Hospital of PLA, Shijiazhuang, China
| | - Rui Han
- 3 Department of Neurology, First Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Lei Sun
- 4 Department of Endocrinology, Armed Police Hospital of Shandong, Shandong, China
| | - Jing Tao Dou
- 1 Department of Endocrinology, Chinese PLA General Hospital (301 Hospital), Beijing, China
| |
Collapse
|
41
|
Gulati K, Meher MK, Poluri KM. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 2017. [DOI: 10.2217/rme-2017-0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
42
|
Osycka‐Salut CE, Castellano L, Fornes D, Beltrame JS, Alonso CA, Jawerbaum A, Franchi A, Díaz ES, Perez Martinez S. Fibronectin From Oviductal Cells Fluctuates During the Estrous Cycle and Contributes to Sperm–Oviduct Interaction in Cattle. J Cell Biochem 2017; 118:4095-4108. [DOI: 10.1002/jcb.26067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Claudia E. Osycka‐Salut
- Laboratorio de Biotecnologías Reproductivas y Mejoramiento Genético Animal (IIB‐INTECH Dr. Rodolfo UgaldeCONICET/UNSAM)Buenos AiresArgentina
- Laboratorio de Biología de la Reproducción en Mamíferos(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Luciana Castellano
- Laboratorio de Biología de la Reproducción en Mamíferos(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Daiana Fornes
- Laboratorio de Reproducción y Metabolismo(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Jimena S. Beltrame
- Laboratorio de Fisiología y Farmacología de la Reproducción(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Carlos A.I. Alonso
- Laboratorio de Biología de la Reproducción en Mamíferos(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Alicia Jawerbaum
- Laboratorio de Reproducción y Metabolismo(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Ana Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| | - Emilce S. Díaz
- Laboratorio de Biología de la ReproducciónFacultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile
| | - Silvina Perez Martinez
- Laboratorio de Biología de la Reproducción en Mamíferos(CEFYBO‐CONICET/UBA)Buenos AiresArgentina
| |
Collapse
|
43
|
Sarmadi M, Shamloo A, Mohseni M. Utilization of Molecular Dynamics Simulation Coupled with Experimental Assays to Optimize Biocompatibility of an Electrospun PCL/PVA Scaffold. PLoS One 2017; 12:e0169451. [PMID: 28118371 PMCID: PMC5261812 DOI: 10.1371/journal.pone.0169451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
The main focus of this study is to address the possibility of using molecular dynamics (MD) simulation, as a computational framework, coupled with experimental assays, to optimize composite structures of a particular electrospun scaffold. To this aim, first, MD simulations were performed to obtain an initial theoretical insight into the capability of heterogeneous surfaces for protein adsorption. The surfaces were composed of six different blends of PVA (polyvinyl alcohol) and PCL (polycaprolactone) with completely unlike hydrophobicity. Next, MTT assay was performed on the electrospun scaffolds made from the same percentages of polymers as in MD models to gain an understanding of the correlation between protein adsorption on the composite surfaces and their capability for cell proliferation. To perform simulations, two ECM (extracellular matrix) protein fragments, namely, collagen type I and fibronectin, two essential proteins for initial cell attachment and eventual cell proliferation, were considered. To evaluate the strength of protein adsorption, adhesion energy and final conformations of proteins were studied. For MTT analysis, different blends of PCL/PVA electrospun scaffolds were prepared, on which endothelial cells were cultured for one week. Theoretical results indicated that the samples with more than 50% of PCL significantly represented stronger protein adsorption. In agreement with simulation results, experimental analysis also demonstrated that the more hydrophobic the surface became, the better initial cell attachment and cell proliferation could be achieved, which was particularly better observed in samples with more than 70% of PCL.
Collapse
Affiliation(s)
- Morteza Sarmadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- * E-mail:
| | - Mina Mohseni
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
44
|
Guo S, Li P, Fu B, Chuo W, Gao K, Zhang W, Wang J, Chen J, Wang W. Systems-biology dissection of mechanisms and chemical basis of herbal formula in treating chronic myocardial ischemia. Pharmacol Res 2016; 114:196-208. [PMID: 27818233 DOI: 10.1016/j.phrs.2016.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/13/2016] [Accepted: 10/28/2016] [Indexed: 01/11/2023]
Abstract
Herbal medicine is a mixture of multiple compounds, and is intended to exhibit therapeutic effects by attacking multiple disease-causing modules simultaneously. However, it is still a challenge for scientists to untangle the complex biological mechanisms and underlying material basis of herbal medicine. Here, this study was designed to build a systems-biology platform for exploring the molecular mechanisms and corresponding active compounds, with a typical example applied to an herbal formula Qishenkel (QSKL) in the treatment of chronic myocardial ischemia. We have applied an approach integrating transcriptome sequencing, bioactivity profiling inference, computational ligand-receptor evaluation and experimental validation to study the effects on pig myocardial ischemia treated with QSKL. Numerous biological modules were revealed and indicated the coordinated regulation of molecular networks from various aspects of cardiac function. In addition, gene expression profiles were utilized to identify a number of key therapeutic targets of herbal formula, such as angiotensin-converting enzyme and calcium channels. Then, these therapeutic targets were used to fish the potential active ingredients based on a combination of target structure-based and chemical ligand-based methods. Some active compounds, including luteolin, cryptotanshinone, licochalcone A, glycyrrhetinic acid, salsolinol, isoacid chlorogenic C, salvianolic acid A and salvianolic acid B, have been validated by direct biochemical methods. This strategy integrating different types of technologies is expected to provide not only a detailed understanding about the combined therapeutic effects of herbal mixture but also a new opportunity for discovering novel natural molecules with pharmacological activities.
Collapse
Affiliation(s)
- Shuzhen Guo
- Beijing University of Chinese Medicine, Chao Yang District, Beijing, 100029, PR China
| | - Peng Li
- ShanXi Agricultural University, Taigu, ShanXi Province, 030801, PR China
| | - Bangze Fu
- Beijing University of Chinese Medicine, Chao Yang District, Beijing, 100029, PR China
| | - Wenjing Chuo
- Beijing University of Chinese Medicine, Chao Yang District, Beijing, 100029, PR China
| | - Kuo Gao
- Beijing University of Chinese Medicine, Chao Yang District, Beijing, 100029, PR China
| | - Wuxia Zhang
- ShanXi Agricultural University, Taigu, ShanXi Province, 030801, PR China
| | - Junyao Wang
- Beijing University of Chinese Medicine, Chao Yang District, Beijing, 100029, PR China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Chao Yang District, Beijing, 100029, PR China.
| | - Wei Wang
- Beijing University of Chinese Medicine, Chao Yang District, Beijing, 100029, PR China.
| |
Collapse
|
45
|
Hocking DC, Brennan JR, Raeman CH. A Small Chimeric Fibronectin Fragment Accelerates Dermal Wound Repair in Diabetic Mice. Adv Wound Care (New Rochelle) 2016; 5:495-506. [PMID: 27867754 PMCID: PMC5105350 DOI: 10.1089/wound.2015.0666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022] Open
Abstract
Objective: During wound repair, soluble fibronectin is converted into biologically active, insoluble fibrils via a cell-mediated process. This fibrillar, extracellular matrix (ECM) form of fibronectin stimulates cell processes critical to tissue repair. Nonhealing wounds show reduced levels of ECM fibronectin fibrils. The objective of this study was to produce a small, recombinant wound supplement with the biological activity of insoluble fibronectin fibrils. Approach: A chimeric fibronectin fragment was produced by inserting the integrin-binding Arg-Gly-Asp (RGD) loop from the tenth type III repeat of fibronectin (FNIII10) into the analogous site within the heparin-binding, bioactive fragment of the first type III repeat (FNIII1H). FNIII1HRGD was tested for its ability to support cell functions necessary for wound healing, and then evaluated for its capacity to accelerate healing of full-thickness dermal wounds in diabetic mice. Results:In vitro, FNIII1HRGD supported cell adhesion, proliferation, and ECM fibronectin deposition. Application of FNIII1HRGD to dermal wounds of diabetic mice significantly enhanced wound closure compared with controls (73.9% ±4.1% vs. 58.1% ±4.7% closure on day 9, respectively), and significantly increased granulation tissue thickness (2.88 ± 0.75-fold increase over controls on day 14). Innovation: Recombinant proteins designed to functionally mimic the ECM form of fibronectin provide a novel therapeutic approach to circumvent diminished fibronectin fibril formation by delivering ECM fibronectin signals in a soluble form to chronic wounds. Conclusion: A small, chimeric fibronectin protein was developed. FNIII1HRGD demonstrated enhanced bioactivity in vitro and stimulated wound repair in a murine model of chronic wounds.
Collapse
Affiliation(s)
- Denise C. Hocking
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - James R. Brennan
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Carol H. Raeman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| |
Collapse
|
46
|
Shamloo A, Sarmadi M. Investigation of the adhesive characteristics of polymer–protein systems through molecular dynamics simulation and their relation to cell adhesion and proliferation. Integr Biol (Camb) 2016; 8:1276-1295. [DOI: 10.1039/c6ib00159a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Morteza Sarmadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
47
|
Witz CA, Montoya-Rodriguez IA, Cho S, Centonze VE, Bonewald LF, Schenken RS. Composition of the Extracellular Matrix of the Peritoneum. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Craig A. Witz
- Departments of Obstetrics and Gynecology, Cellular and Structural Biology and Internal Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mail Code 7836, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | | | | | | | | | - Robert S. Schenken
- Departments of Obstetrics and Gynecology, Cellular and Structural Biology and Internal Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
48
|
Čunderlíková B. Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Crit Rev Oncol Hematol 2016; 105:127-44. [DOI: 10.1016/j.critrevonc.2016.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023] Open
|
49
|
Okano K, Hsu HY, Li YK, Masuhara H. In situ patterning and controlling living cells by utilizing femtosecond laser. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Yurdagul A, Orr AW. Blood Brothers: Hemodynamics and Cell-Matrix Interactions in Endothelial Function. Antioxid Redox Signal 2016; 25:415-34. [PMID: 26715135 PMCID: PMC5011636 DOI: 10.1089/ars.2015.6525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/25/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Alterations in endothelial function contribute to a variety of vascular diseases. In pathological conditions, the endothelium shows a reduced ability to regulate vasodilation (endothelial dysfunction) and a conversion toward a proinflammatory and leaky phenotype (endothelial activation). At the interface between the vessel wall and blood, the endothelium exists in a complex microenvironment and must translate changes in these environmental signals to alterations in vessel function. Mechanical stimulation and endothelial cell interactions with the vascular matrix, as well as a host of soluble factors, coordinately contribute to this dynamic regulation. RECENT ADVANCES Blood hemodynamics play an established role in the regulation of endothelial function. However, a growing body of work suggests that subendothelial matrix composition similarly and coordinately regulates endothelial cell phenotype such that blood flow affects matrix remodeling, which affects the endothelial response to flow. CRITICAL ISSUES Hemodynamics and soluble factors likely affect endothelial matrix remodeling through multiple mechanisms, including transforming growth factor β signaling and alterations in cell-matrix receptors, such as the integrins. Likewise, differential integrin signaling following matrix remodeling appears to regulate several key flow-induced responses, including nitric oxide production, regulation of oxidant stress, and activation of proinflammatory signaling and gene expression. Microvascular remodeling responses, such as angiogenesis and arteriogenesis, may also show coordinated regulation by flow and matrix. FUTURE DIRECTIONS Identifying the mechanisms regulating the dynamic interplay between hemodynamics and matrix remodeling and their contribution to the pathogenesis of cardiovascular disease remains an important research area with therapeutic implications across a variety of conditions. Antioxid. Redox Signal. 25, 415-434.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
| | - A. Wayne Orr
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
| |
Collapse
|