1
|
Zheng X, Zhao J, Jia X, Pan J, Xu S, Wang D, Li J, Ji Y, Zhu Z, Hasnain M, Sui Z, Wang R, Yuan Y. Fucoxanthin Ameliorates Vascular Remodeling via Attenuating Oxidative Stress in Hypoxic Pulmonary Hypertension Rats. J Nutr Biochem 2025:110002. [PMID: 40513841 DOI: 10.1016/j.jnutbio.2025.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 06/09/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Hypoxic pulmonary hypertension (HPH) is a fatal cardiopulmonary disease characterized by pulmonary vascular remodeling, primarily resulting from abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). Fucoxanthin, a natural carotenoid with potent antioxidant activity, was investigated for its therapeutic potential in HPH, given the critical role of oxidative stress in disease pathogenesis. In this study, Sprague-Dawley rats were exposed to intermittent chronic hypoxia for 4 weeks to mimic severe HPH. The results demonstrated that fucoxanthin significantly reduced the elevated right ventricular systolic pressure (RVSP), alleviated right ventricular hypertrophy, and mitigated pulmonary artery remodeling in the HPH rats. Additionally, fucoxanthin enhanced superoxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio while decreasing malondialdehyde (MDA) levels in both lung tissues and serum of HPH rats. In vitro, fucoxanthin inhibited cell proliferation and migration, decreased reactive oxygen species (ROS) production in hypoxia-induced PASMCs, and improved cell viability in hypoxia-induced endothelial cells (ECs). Importantly, fucoxanthin reduced hypoxia-inducible factor 1 alpha (HIF-1α) expression in both lung tissues and PASMCs under hypoxia. Notably, fucoxanthin exhibited effects similar to those of 2-methoxyestradiol (2ME2), an inhibitor of HIF-1α, on cell proliferation and ROS production in hypoxia-induced PASMCs. Moreover, fucoxanthin treatment did not significantly alter HIF-1α expression, cell proliferation, or ROS production after 2ME2 blocked HIF-1α. Collectively, fucoxanthin suppressed hypoxia-induced oxidative stress primarily by regulating the HIF-1α-ROS pathway, thereby alleviating pulmonary remodeling in HPH. Our findings represent a promising therapeutic strategy for HPH by improving pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xu Zheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jina Zhao
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoqin Jia
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuo Xu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dingyou Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Junxia Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhilong Zhu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Muhammad Hasnain
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zheng Sui
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Department of Vasculocardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Rui Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Williams MD, Morgan JS, Bullock MT, Poovey CE, Wisniewski ME, Francisco JT, Barajas-Nunez JA, Hijazi AM, Theobald D, Sriramula S, Mansfield KD, Holland NA, Tulis DA. pH-sensing GPR68 inhibits vascular smooth muscle cell proliferation through Rap1A. Am J Physiol Heart Circ Physiol 2024; 327:H1210-H1229. [PMID: 39269448 PMCID: PMC11560072 DOI: 10.1152/ajpheart.00413.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Phenotypic transformation of vascular smooth muscle (VSM) from a contractile state to a synthetic, proliferative state is a hallmark of cardiovascular disease (CVD). In CVD, diseased tissue often becomes acidic from altered cellular metabolism secondary to compromised blood flow, yet the contribution of local acid/base imbalance to the disease process has been historically overlooked. In this study, we examined the regulatory impact of the pH-sensing G protein-coupled receptor GPR68 on vascular smooth muscle (VSM) proliferation in vivo and in vitro in wild-type (WT) and GPR68 knockout (KO) male and female mice. Arterial injury reduced GPR68 expression in WT vessels and exaggerated medial wall remodeling in GPR68 KO vessels. In vitro, KO VSM cells showed increased cell-cycle progression and proliferation compared with WT VSM cells, and GPR68-inducing acidic exposure reduced proliferation in WT cells. mRNA and protein expression analyses revealed increased Rap1A in KO cells compared with WT cells, and RNA silencing of Rap1A reduced KO VSM cell proliferation. In sum, these findings support a growth-inhibitory capacity of pH-sensing GPR68 and suggest a mechanistic role for the small GTPase Rap1A in GPR68-mediated VSM growth control. These results shed light on GPR68 and its effector Rap1A as potential targets to combat pathological phenotypic switching and proliferation in VSM.NEW & NOTEWORTHY Extracellular acidosis remains an understudied feature of many pathologies. We examined a potential regulatory role for pH-sensing GPR68 in vascular smooth muscle (VSM) growth in the context of CVD. With in vivo and in vitro growth models with GPR68-deficient mice and GPR68 induction strategies, novel findings revealed capacity of GPR68 to attenuate growth through the small GTPase Rap1A. These observations highlight GPR68 and its effector Rap1A as possible therapeutic targets to combat pathological VSM growth.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hydrogen-Ion Concentration
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- rap1 GTP-Binding Proteins/metabolism
- rap1 GTP-Binding Proteins/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Madison D Williams
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Joshua S Morgan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Michael T Bullock
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Cere E Poovey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Michael E Wisniewski
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jake T Francisco
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jerry A Barajas-Nunez
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Amira M Hijazi
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Drew Theobald
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Kyle D Mansfield
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
3
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
4
|
Cheng K, Pan J, Liu Q, Ji Y, Liu L, Guo X, Wang Q, Li S, Sun J, Gong M, Zhang Y, Yuan Y. Exosomal lncRNA XIST promotes perineural invasion of pancreatic cancer cells via miR-211-5p/GDNF. Oncogene 2024; 43:1341-1352. [PMID: 38454138 DOI: 10.1038/s41388-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.
Collapse
Affiliation(s)
- Ke Cheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Qinlong Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Xiangqian Guo
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Qiang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jinyue Sun
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Ying Zhang
- Sixth Department of liver disease, Dalian Public Health Clinical Center, Dalian, 116044, China.
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
5
|
Williams MD, Bullock MT, Johnson SC, Holland NA, Vuncannon DM, Oswald JZ, Adderley SP, Tulis DA. Protease-Activated Receptor 2 Controls Vascular Smooth Muscle Cell Proliferation in Cyclic AMP-Dependent Protein Kinase/Mitogen-Activated Protein Kinase Kinase 1/2-Dependent Manner. J Vasc Res 2023; 60:213-226. [PMID: 37778342 PMCID: PMC10614497 DOI: 10.1159/000532032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases. METHODS Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 μm) with/without PKA (PKI; 10 μm), MEK1/2 (PD98059; 10 μm), and PI3K (LY294002; 1 μm) blockade. RESULTS PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2. DISCUSSION Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.
Collapse
Affiliation(s)
- Madison D Williams
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Michael T Bullock
- Edward Via College of Osteopathic Medicine, Carolinas Campus, Spartanburg, South Carolina, USA
| | - Sean C Johnson
- Department of Internal Medicine/Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nathan A Holland
- Department of Medical Education, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Danielle M Vuncannon
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joani Zary Oswald
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | | | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
6
|
Francisco JT, Holt AW, Bullock MT, Williams MD, Poovey CE, Holland NA, Brault JJ, Tulis DA. FoxO3 normalizes Smad3-induced arterial smooth muscle cell growth. Front Physiol 2023; 14:1136998. [PMID: 37693008 PMCID: PMC10483145 DOI: 10.3389/fphys.2023.1136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Transition of arterial smooth muscle (ASM) from a quiescent, contractile state to a growth-promoting state is a hallmark of cardiovascular disease (CVD), a leading cause of death and disability in the United States and worldwide. While many individual signals have been identified as important mechanisms in this phenotypic conversion, the combined impact of the transcription factors Smad3 and FoxO3 in ASM growth is not known. The purpose of this study was to determine that a coordinated, phosphorylation-specific relationship exists between Smad3 and FoxO3 in the control of ASM cell growth. Using a rat in vivo arterial injury model and rat primary ASM cell lysates and fractions, validated low and high serum in vitro models of respective quiescent and growth states, and adenoviral (Ad-) gene delivery for overexpression (OE) of individual and combined Smad3 and/or FoxO3, we hypothesized that FoxO3 can moderate Smad3-induced ASM cell growth. Key findings revealed unique cellular distribution of Smad3 and FoxO3 under growth conditions, with induction of both nuclear and cytosolic Smad3 yet primarily cytosolic FoxO3; Ad-Smad3 OE leading to cytosolic and nuclear expression of phosphorylated and total Smad3, with almost complete reversal of each with Ad-FoxO3 co-infection in quiescent and growth conditions; Ad-FoxO3 OE leading to enhanced cytosolic expression of phosphorylated and total FoxO3, both reduced with Ad-Smad3 co-infection in quiescent and growth conditions; Ad-FoxO3 inducing expression and activity of the ubiquitin ligase MuRF-1, which was reversed with concomitant Ad-Smad3 OE; and combined Smad3/FoxO3 OE reversing both the pro-growth impact of singular Smad3 and the cytostatic impact of singular FoxO3. A primary takeaway from these observations is the capacity of FoxO3 to reverse growth-promoting effects of Smad3 in ASM cells. Additional findings lend support for reciprocal antagonism of Smad3 on FoxO3-induced cytostasis, and these effects are dependent upon discrete phosphorylation states and cellular localization and involve MuRF-1 in the control of ASM cell growth. Lastly, results showing capacity of FoxO3 to normalize Smad3-induced ASM cell growth largely support our hypothesis, and overall findings provide evidence for utility of Smad3 and/or FoxO3 as potential therapeutic targets against abnormal ASM growth in the context of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David A. Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
7
|
SRC-3 Deficiency Exacerbates Neurological Deficits in a Mouse Model of Intracerebral Hemorrhage: Role of Oxidative Stress. Neurochem Res 2021; 46:2969-2978. [PMID: 34268655 DOI: 10.1007/s11064-021-03399-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Intracerebral hemorrhage (ICH) causes long term neurological abnormality or death. Oxidative stress is closely involved in ICH mediated brain damage. Steroid receptor cofactor 3 (SRC-3), a p160 family member, is widely expressed in the brain and regulates transactivation of Nrf2, a key component of antioxidant response. Our study aims to test if SRC-3 is implicated in ICH mediated brain injury. We first examined levels of SRC-3 and oxidative stress in the brain of mice following ICH and analyzed their correlation. Then ICH was induced in wild type (WT) and SRC-3 knock out mice and how SRC-3 deletion affected ICH induced brain damage, oxidative stress and behavioral outcome was assessed. We found that SRC-3 mRNA and protein expression levels were reduced gradually after ICH induction in WT mice along with an increase in oxidative stress levels. Correlation analysis revealed that SRC-3 mRNA levels negatively correlated with oxidative stress. Deletion of SRC-3 further increased ICH induced brain edema, neurological deficit score and oxidative stress and exacerbated ICH induced behavioral abnormality including motor dysfunction and cognitive impairment. Our findings suggest that SRC-3 is involved in ICH induced brain injury, probably through modulation of oxidative stress.
Collapse
|
8
|
Zou K, Chen W, Dai J, Mo P, Yu C, Xu J, Wu S, Zhuo R, Su G. Steroid Receptor Coactivator-3 Is Required for Inhibition of the Intestinal Muscularis Inflammatory Response of Postoperative Ileus in Mice. Inflammation 2021; 44:1145-1159. [PMID: 33398542 DOI: 10.1007/s10753-020-01409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Inflammation theory has suggested that the pathogenesis of postoperative ileus (POI) involves the steroid receptor coactivator-3 (SRC-3). Therefore, we investigated the role of SRC-3 in the muscles of the small intestine using a mouse POI model. Here, we reported that intestinal manipulation (IM) significantly reduced the extent of phenol red migration in the entire gastrointestinal tract, and the calculated geometric center (GC) value in wild-type (WT) mice at 24 h after surgery was higher than that in the knockout (KO) mice and in the sham-operated control group. The expression of SRC-3 was upregulated in the mouse intestinal muscularis at 24 h after surgical manipulation, and the mRNA and protein levels of inflammatory cytokines were upregulated compared with those in the control group. At 24 h after IM, the number of neutrophils in the experimental group was significantly higher than that in the control group; in the IM group, the number of neutrophils in the SRC-3-/- mice was markedly higher than that in the WT mice. At 24 h after IM, the myeloperoxidase (MPO) activity in the experimental group was significantly higher than that in the control group. In the IM group, the MPO activity of the SRC-3-/- mice was markedly higher than that of the WT mice. In summary, proinflammatory cytokines, the number of neutrophils, and the MPO activity were significantly increased in the muscularis of the jejunum and ileum of KO mice after IM compared with those of the WT mice, indicating that SRC-3 might play a protective role in POI.
Collapse
MESH Headings
- Animals
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Gastrointestinal Motility
- Ileus/etiology
- Ileus/immunology
- Ileus/metabolism
- Ileus/physiopathology
- Inflammation Mediators/metabolism
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestine, Small/physiopathology
- Jejunum/immunology
- Jejunum/metabolism
- Jejunum/physiopathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth/immunology
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Neutrophil Infiltration
- Nuclear Receptor Coactivator 3/genetics
- Nuclear Receptor Coactivator 3/metabolism
- Peroxidase/metabolism
- Postoperative Complications/etiology
- Postoperative Complications/immunology
- Postoperative Complications/metabolism
- Postoperative Complications/physiopathology
- Tissue Culture Techniques
- Mice
Collapse
Affiliation(s)
- Kang Zou
- Department of Gastrointestinal Surgery, Ward 3 Areas of Cancer Center, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
- Department of Gastrointestinal Surgery, Ward 3 Areas of Cancer Center, Cancer Hospital, Teaching Hospital of Fujian Medical University, Xiamen, 361003, Fujian, China
- Department of Critical Care Medicine, the First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, China
| | - Wenbo Chen
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jun Dai
- Department of Gastrointestinal Surgery, Ward 3 Areas of Cancer Center, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Pingli Mo
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Chundong Yu
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sangang Wu
- Department of Radiation Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, 361003, China
| | - Rengong Zhuo
- School of Medicine, Xiamen University, Xiang'an District, Xiamen, 361102, China.
| | - Guoqiang Su
- Department of Gastrointestinal Surgery, Ward 3 Areas of Cancer Center, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China.
- Department of Gastrointestinal Surgery, Ward 3 Areas of Cancer Center, Cancer Hospital, Teaching Hospital of Fujian Medical University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
9
|
Mullany LK, Lonard DM, O’Malley BW. Wound Healing-related Functions of the p160 Steroid Receptor Coactivator Family. Endocrinology 2021; 162:6042238. [PMID: 33340403 PMCID: PMC7814297 DOI: 10.1210/endocr/bqaa232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Multicellular organisms have evolved sophisticated mechanisms to recover and maintain original tissue functions following injury. Injury responses require a robust transcriptomic response associated with cellular reprogramming involving complex gene expression programs critical for effective tissue repair following injury. Steroid receptor coactivators (SRCs) are master transcriptional regulators of cell-cell signaling that is integral for embryogenesis, reproduction, normal physiological function, and tissue repair following injury. Effective therapeutic approaches for facilitating improved tissue regeneration and repair will likely involve temporal and combinatorial manipulation of cell-intrinsic and cell-extrinsic factors. Pleiotropic actions of SRCs that are critical for wound healing range from immune regulation and angiogenesis to maintenance of metabolic regulation in diverse organ systems. Recent evidence derived from studies of model organisms during different developmental stages indicates the importance of the interplay of immune cells and stromal cells to wound healing. With SRCs being the master regulators of cell-cell signaling integral to physiologic changes necessary for wound repair, it is becoming clear that therapeutic targeting of SRCs provides a unique opportunity for drug development in wound healing. This review will provide an overview of wound healing-related functions of SRCs with a special focus on cellular and molecular interactions important for limiting tissue damage after injury. Finally, we review recent findings showing stimulation of SRCs following cardiac injury with the SRC small molecule stimulator MCB-613 can promote cardiac protection and inhibit pathologic remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Lisa K Mullany
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Correspondence: Bert W. O’Malley, MD, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA.
| |
Collapse
|
10
|
Gong M, Wang X, Mu L, Wang Y, Pan J, Yuan X, Zhou H, Xing J, Wang R, Sun J, Liu Q, Zhang X, Wang L, Chen Y, Pei Y, Li S, Liu L, Zhao Y, Yuan Y. Steroid receptor coactivator-1 enhances the stemness of glioblastoma by activating long noncoding RNA XIST/miR-152/KLF4 pathway. Cancer Sci 2021; 112:604-618. [PMID: 33090636 PMCID: PMC7894023 DOI: 10.1111/cas.14685] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) recurrence is attributed to the presence of therapy-resistant glioblastoma stem cells. Steroid receptor coactivator-1 (SRC-1) acts as an oncogenic regulator in many human tumors. The relationship between SRC-1 and GBM has not yet been studied. Herein, we investigate the role of SRC-1 in GBM. In this study, we found that SRC-1 expression is positively correlated with grades of glioma and inversely correlated with glioma patient's prognosis. Steroid receptor coactivator-1 promotes the proliferation, migration, and tumor growth of GBM cells. Notably, SRC-1 knockdown suppresses the stemness of GBM cells. Mechanistically, long noncoding RNA X-inactive specific transcript (XIST) is regulated by SRC-1 at the posttranscriptional level and mediates the function of SRC-1 in promoting stemness-like properties of GBM. Steroid receptor coactivator-1 can promote the expression of Kruppel-like factor 4 (KLF4) through the XIST/microRNA (miR)-152 axis. Additionally, arenobufagin and bufalin, SRC small molecule inhibitors, can reduce the proliferation and stemness of GBM cells. This study reveals SRC-1 promotes the stemness of GBM by activating the long noncoding RNA XIST/miR-152/KLF4 pathway and provides novel markers for diagnosis and therapy of GBM.
Collapse
Affiliation(s)
- Miaomiao Gong
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xun Wang
- Department of NeurosurgeryThe Third People’s Hospital of DalianDalianChina
| | - Lin Mu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yueyue Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jinjin Pan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xiaocheng Yuan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Haoran Zhou
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jinshan Xing
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Rui Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jian Sun
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Qiwang Liu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xiya Zhang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Lin Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yiying Chen
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yandong Pei
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Shao Li
- College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Liang Liu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yongshun Zhao
- The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yuhui Yuan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| |
Collapse
|
11
|
Rohira AD, Lonard DM, O’Malley BW. Emerging roles of steroid receptor coactivators in stromal cell responses. J Endocrinol 2021; 248:R41-R50. [PMID: 33337343 PMCID: PMC7925431 DOI: 10.1530/joe-20-0511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue parenchyma is the functional unit of an organ and all of the remaining cells within that organ collectively make up the tissue stroma. The stroma includes fibroblasts, endothelial cells, immune cells, and nerves. Interactions between stromal and epithelial cells are essential for tissue development and healing after injury. These interactions are governed by growth factors, inflammatory cytokines and hormone signaling cascades. The steroid receptor coactivator (SRC) family of proteins includes three transcriptional coactivators that facilitate the assembly of multi-protein complexes to induce gene expression in response to activation of many cellular transcription factor signaling cascades. They are ubiquitously expressed and are especially critical for the developmental function of steroid hormone responsive tissues. The SRCs are overexpressed in multiple cancers including breast, ovarian, prostate and endometrial cancers. In this review, we focus on the role of the SRCs in regulating the functions of stromal cell components responsible for angiogenesis, inflammation and cell differentiation.
Collapse
Affiliation(s)
- Aarti D. Rohira
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
- Corresponding author: Bert W. O’Malley, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, Tel: 713-798-6205, Fax: 713-798-1275,
| |
Collapse
|
12
|
Salazar-Silva R, Dantas VLG, Alves LU, Batissoco AC, Oiticica J, Lawrence EA, Kawafi A, Yang Y, Nicastro FS, Novaes BC, Hammond C, Kague E, Mingroni-Netto RC. NCOA3 identified as a new candidate to explain autosomal dominant progressive hearing loss. Hum Mol Genet 2021; 29:3691-3705. [PMID: 33326993 PMCID: PMC7823111 DOI: 10.1093/hmg/ddaa240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/21/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Hearing loss is a frequent sensory impairment in humans and genetic factors account for an elevated fraction of the cases. We have investigated a large family of five generations, with 15 reported individuals presenting non-syndromic, sensorineural, bilateral and progressive hearing loss, segregating as an autosomal dominant condition. Linkage analysis, using SNP-array and selected microsatellites, identified a region of near 13 cM in chromosome 20 as the best candidate to harbour the causative mutation. After exome sequencing and filtering of variants, only one predicted deleterious variant in the NCOA3 gene (NM_181659, c.2810C > G; p.Ser937Cys) fit in with our linkage data. RT-PCR, immunostaining and in situ hybridization showed expression of ncoa3 in the inner ear of mice and zebrafish. We generated a stable homozygous zebrafish mutant line using the CRISPR/Cas9 system. ncoa3-/- did not display any major morphological abnormalities in the ear, however, anterior macular hair cells showed altered orientation. Surprisingly, chondrocytes forming the ear cartilage showed abnormal behaviour in ncoa3-/-, detaching from their location, invading the ear canal and blocking the cristae. Adult mutants displayed accumulation of denser material wrapping the otoliths of ncoa3-/- and increased bone mineral density. Altered zebrafish swimming behaviour corroborates a potential role of ncoa3 in hearing loss. In conclusion, we identified a potential candidate gene to explain hereditary hearing loss, and our functional analyses suggest subtle and abnormal skeletal behaviour as mechanisms involved in the pathogenesis of progressive sensory function impairment.
Collapse
Affiliation(s)
- R Salazar-Silva
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Vitor Lima Goes Dantas
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Leandro Ucela Alves
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Ana Carla Batissoco
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
- Laboratório de Otorrinolaringologia/LIM32 –Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo , 01246-903, São Paulo, Brazil
| | - Jeanne Oiticica
- Laboratório de Otorrinolaringologia/LIM32 –Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo , 01246-903, São Paulo, Brazil
| | - Elizabeth A Lawrence
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Abdelwahab Kawafi
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Yushi Yang
- School of Physics, University of Bristol, Bristol, BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, BS8 1FD, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, United Kingdom
| | - Fernanda Stávale Nicastro
- Divisão de Educação e Reabilitação dos Distúrbios da Comunicação da Pontifícia Universidade Católica de São Paulo, 04022-040, São Paulo, Brazil
| | - Beatriz Caiuby Novaes
- Divisão de Educação e Reabilitação dos Distúrbios da Comunicação da Pontifícia Universidade Católica de São Paulo, 04022-040, São Paulo, Brazil
| | - Chrissy Hammond
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Erika Kague
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - R C Mingroni-Netto
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| |
Collapse
|
13
|
A steroid receptor coactivator stimulator (MCB-613) attenuates adverse remodeling after myocardial infarction. Proc Natl Acad Sci U S A 2020; 117:31353-31364. [PMID: 33229578 PMCID: PMC7733826 DOI: 10.1073/pnas.2011614117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We are at an exciting era of identification of the cell and molecular processes necessary for tissue remodeling and repair. Unlike current systemic therapeutics, our studies reveal pharmacologic stimulation of SRCs modulates macrophage and fibrotic reparative cell responses to promote more effective repair and lasting beneficial remodeling after myocardial infarction. Progressive remodeling of the heart, resulting in cardiomyocyte (CM) loss and increased inflammation, fibrosis, and a progressive decrease in cardiac function, are hallmarks of myocardial infarction (MI)-induced heart failure. We show that MCB-613, a potent small molecule stimulator of steroid receptor coactivators (SRCs) attenuates pathological remodeling post-MI. MCB-613 decreases infarct size, apoptosis, hypertrophy, and fibrosis while maintaining significant cardiac function. MCB-613, when given within hours post MI, induces lasting protection from adverse remodeling concomitant with: 1) inhibition of macrophage inflammatory signaling and interleukin 1 (IL-1) signaling, which attenuates the acute inflammatory response, 2) attenuation of fibroblast differentiation, and 3) promotion of Tsc22d3-expressing macrophages—all of which may limit inflammatory damage. SRC stimulation with MCB-613 (and derivatives) is a potential therapeutic approach for inhibiting cardiac dysfunction after MI.
Collapse
|
14
|
FAK and Pyk2 activity promote TNF-α and IL-1β-mediated pro-inflammatory gene expression and vascular inflammation. Sci Rep 2019; 9:7617. [PMID: 31110200 PMCID: PMC6527705 DOI: 10.1038/s41598-019-44098-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
Protein tyrosine kinase (PTK) activity has been implicated in pro-inflammatory gene expression following tumor necrosis factor-α (TNF-α) or interkeukin-1β (IL-1β) stimulation. However, the identity of responsible PTK(s) in cytokine signaling have not been elucidated. To evaluate which PTK is critical to promote the cytokine-induced inflammatory cell adhesion molecule (CAM) expression including VCAM-1, ICAM-1, and E-selectin in human aortic endothelial cells (HAoECs), we have tested pharmacological inhibitors of major PTKs: Src and the focal adhesion kinase (FAK) family kinases - FAK and proline-rich tyrosine kinase (Pyk2). We found that a dual inhibitor of FAK/Pyk2 (PF-271) most effectively reduced all three CAMs upon TNF-α or IL-1β stimulation compared to FAK or Src specific inhibitors (PF-228 or Dasatinib), which inhibited only VCAM-1 expression. In vitro inflammation assays showed PF-271 reduced monocyte attachment and transmigration on HAoECs. Furthermore, FAK/Pyk2 activity was not limited to CAM expression but was also required for expression of various pro-inflammatory molecules including MCP-1 and IP-10. Both TNF-α and IL-1β signaling requires FAK/Pyk2 activity to activate ERK and JNK MAPKs leading to inflammatory gene expression. Knockdown of either FAK or Pyk2 reduced TNF-α-stimulated ERK and JNK activation and CAM expression, suggesting that activation of ERK or JNK is specific through FAK and Pyk2. Finally, FAK/Pyk2 activity is required for VCAM-1 expression and macrophage recruitment to the vessel wall in a carotid ligation model in ApoE-/- mice. Our findings define critical roles of FAK/Pyk2 in mediating inflammatory cytokine signaling and implicate FAK/Pyk2 inhibitors as potential therapeutic agents to treat vascular inflammatory disease such as atherosclerosis.
Collapse
|
15
|
Quan XJ, Liang CL, Sun MZ, Zhang L, Li XL. Overexpression of steroid receptor coactivators alleviates hyperglycemia-induced endothelial cell injury in rats through activating the PI3K/Akt pathway. Acta Pharmacol Sin 2019; 40:648-657. [PMID: 30089865 PMCID: PMC6786429 DOI: 10.1038/s41401-018-0109-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/04/2018] [Indexed: 11/09/2022]
Abstract
Hyperglycemia is a major factor in vascular endothelial injury that finally leads to a cardiovascular event. Steroid receptor coactivators (SRCs) are a group of non-DNA binding proteins that induce structural changes in steroid receptors (nuclear receptors) critical for transcriptional activation. SRCs, namely, SRC-1, SRC-2, and SRC-3, are implicated in the regulation of vascular homeostasis. In this study we investigate the role of SRCs in hyperglycemia-induced endothelial injury. Aortic endothelial cells were prepared from normal and diabetic rats, respectively. Diabetic rats were prepared by injection of streptozotocin (50 mg/kg, i.p.). The expression levels of SRC-1 and SRC-3 were significantly decreased in endothelial cells from the diabetic rats. Similar phenomenon was also observed in aortic endothelial cells from the normal rats treated with a high glucose (25 mM) for 4 h or 8 h. The expression levels of SRC-2 were little affected by hyperglycemia. Overexpression of SRC-1 and SRC-3 in high glucose-treated endothelial cells significantly increased the cell viability, suspended cell senescence, and inhibited cell apoptosis compared with the control cells. We further showed that overexpression of SRC-1 and SRC-3 markedly suppressed endothelial injury through restoring nitric oxide production, upregulating the expression of antioxidant enzymes (SOD, GPX, and CAT), and activating the PI3K/Akt pathway. The beneficial effects of SRC-1 and SRC-3 overexpression were blocked by treatment with the PI3K inhibitor LY294002 (10 mM) or with the Akt inhibitor MK-2206 (100 nM). In conclusion, hyperglycemia decreased SRC-1 and SRC-3 expression levels in rat aortic endothelial cells. SRC-1 and SRC-3 overexpression might protect against endothelial injury via inhibition of oxidative stress and activation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiao-Juan Quan
- Department of Geriatrics & Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Chun-Lian Liang
- Department of Geriatrics & Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ming-Zhu Sun
- Department of Geriatrics & Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lin Zhang
- Department of Geriatrics & Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiu-Li Li
- Department of Geriatrics & Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
16
|
Liu M, Liu Q, Pei Y, Gong M, Cui X, Pan J, Zhang Y, Liu Y, Liu Y, Yuan X, Zhou H, Chen Y, Sun J, Wang L, Zhang X, Wang R, Li S, Cheng J, Ding Y, Ma T, Yuan Y. Aqp-1
Gene Knockout Attenuates Hypoxic Pulmonary Hypertension of Mice. Arterioscler Thromb Vasc Biol 2019; 39:48-62. [PMID: 30580569 DOI: 10.1161/atvbaha.118.311714] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective—
Hypoxic pulmonary hypertension (HPH) is characterized by proliferative vascular remodeling. Abnormal pulmonary artery smooth muscle cells proliferation and endothelial dysfunction are the primary cellular bases of vascular remodeling. AQP1 (aquaporin-1) is regulated by oxygen level and has been observed to play a role in the proliferation and migration of pulmonary artery smooth muscle cells. The role of AQP1 in HPH pathogenesis has not been directly determined to date. To determine the possible roles of AQP1 in the pathogenesis of HPH and explore its possible mechanisms.
Approach and Results—
Aqp1
knockout mice were used, and HPH model was established in this study. Primary pulmonary artery smooth muscle cells, primary mouse lung endothelial cells, and lung tissue sections from HPH model were used. Immunohistochemistry, immunofluorescence and Western blot, cell cycle, apoptosis, and migration analysis were performed in this study. AQP1 expression was upregulated by chronic hypoxia exposure, both in pulmonary artery endothelia and medial smooth muscle layer of mice.
Aqp1
deficiency attenuated the elevation of right ventricular systolic pressures and mitigated pulmonary vascular structure remodeling. AQP1 deletion reduced abnormal cell proliferation in pulmonary artery and accompanied with accumulation of HIF (hypoxia-inducible factor). In vitro,
Aqp1
deletion reduced hypoxia-induced proliferation, apoptosis resistance, and migration ability of primary cultured pulmonary artery smooth muscle cells and repressed HIF-1α protein stability. Furthermore,
Aqp1
deficiency protected lung endothelial cells from apoptosis in response to hypoxic injury.
Conclusions—
Our data showed that
Aqp1
deficiency could attenuate hypoxia-induced vascular remodeling in the development of HPH. AQP1 may be a potential target for pulmonary hypertension treatment.
Collapse
Affiliation(s)
- Mingcheng Liu
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Qiwang Liu
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yandong Pei
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Miaomiao Gong
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Xiaolin Cui
- College of Basic Medical Sciences, Dalian Medical University, China (X.C., S.L., T.M.)
| | - Jinjin Pan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yunlong Zhang
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Yang Liu
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Xiaocheng Yuan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Haoran Zhou
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yiying Chen
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Jian Sun
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Lin Wang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Xiya Zhang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Rui Wang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, China (X.C., S.L., T.M.)
| | - Jizhong Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX (J.C.)
| | - Yanchun Ding
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Tonghui Ma
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Yuhui Yuan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| |
Collapse
|
17
|
Pomatto LCD, Wong S, Tower J, Davies KJA. Sexual dimorphism in oxidant-induced adaptive homeostasis in multiple wild-type D. melanogaster strains. Arch Biochem Biophys 2017; 636:57-70. [PMID: 29100984 DOI: 10.1016/j.abb.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 11/24/2022]
Abstract
Sexual dimorphism includes the physical and reproductive differences between the sexes, including differences that are conserved across species, ranging from the common fruit fly, Drosophila melanogaster, to humans. Sex-dependent variations in adaptive homeostasis, and adaptive stress responses may offer insight into the underlying mechanisms for male and female survival differences and into differences in chronic disease incidence and severity in humans. Earlier work showed sex-specific differences in adaptive responses to oxidative stressors in hybrid laboratory strains of D. melanogaster. The present study explored whether this phenomenon is also observed in wild-type D. melanogaster strains Oregon-R (Or-R) and Canton-S (Ca-S), as well as the common mutant reference strain w[1118], in order to better understand whether such findings are descriptive of D. melanogaster in general. Flies of each strain were pretreated with non-damaging, adaptive concentrations of hydrogen peroxide (H2O2) or of different redox cycling agents (paraquat, DMNQ, or menadione). Adaptive homeostasis, and changes in the expression of the Proteasome and overall cellular proteasomal proteolytic capacity were assessed. Redox cycling agents exhibited a male-specific adaptive response, whereas H2O2 exposure provoked female-specific adaptation. These findings demonstrate that different oxidants can elicit sexually dimorphic adaptive homeostatic responses in multiple fly strains. These results (and those contained in a parallel study [1]) highlight the need to address sex as a biological variable in fundamental science, clinical research, and toxicology.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA
| | - John Tower
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
18
|
Yuan Y, Shan N, Tan B, Deng Q, Liu Y, Wang H, Luo X, He C, Luo X, Zhang H, Baker PN, Olson DM, Qi H. SRC-3 Plays a Critical Role in Human Umbilical Vein Endothelial Cells by Regulating the PI3K/Akt/mTOR Pathway in Preeclampsia. Reprod Sci 2017; 25:748-758. [DOI: 10.1177/1933719117725818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Nan Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Qinyin Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yangming Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hanbin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaofang Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Chengjin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Philip N. Baker
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - David M. Olson
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Blakemore J, Naftolin F. Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology (Bethesda) 2017; 31:258-69. [PMID: 27252161 DOI: 10.1152/physiol.00054.2015] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aromatase (estrogen synthetase; EC 1.14.14.1) catalyzes the demethylation of androgens' carbon 19, producing phenolic 18-carbon estrogens. Aromatase is most widely known for its roles in reproduction and reproductive system diseases, and as a target for inhibitor therapy in estrogen-sensitive diseases including cancer, endometriosis, and leiomyoma (141, 143). However, all tissues contain estrogen receptor-expressing cells, the majority of genes have a complete or partial estrogen response element that regulates their expression (61), and there are plentiful nonreceptor effects of estrogens (79); therefore, the effect of aromatase through the provision of estrogen is almost universal in terms of health and disease. This review will provide a brief but comprehensive overview of the enzyme, its role in steroidogenesis, the problems that arise with its functional mutations and mishaps, the roles in human physiology of aromatase and its product estrogens, its current clinical roles, and the effects of aromatase inhibitors. While much of the story is that of the consequences of the formation of its product estrogens, we also will address alternative enzymatic roles of aromatase as a demethylase or nonenzymatic actions of this versatile molecule. Although this short review is meant to be thorough, it is by no means exhaustive; rather, it is meant to reflect the cutting-edge, exciting properties and possibilities of this ancient enzyme and its products.
Collapse
|
20
|
Jin H, Liu M, Zhang X, Pan J, Han J, Wang Y, Lei H, Ding Y, Yuan Y. Grape seed procyanidin extract attenuates hypoxic pulmonary hypertension by inhibiting oxidative stress and pulmonary arterial smooth muscle cells proliferation. J Nutr Biochem 2016; 36:81-88. [DOI: 10.1016/j.jnutbio.2016.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/25/2016] [Accepted: 07/05/2016] [Indexed: 01/19/2023]
|
21
|
Jin H, Wang Y, Zhou L, Liu L, Zhang P, Deng W, Yuan Y. Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J Pineal Res 2014; 57:442-50. [PMID: 25251287 DOI: 10.1111/jpi.12184] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/21/2014] [Indexed: 01/11/2023]
Abstract
Hypoxia-induced inflammation and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) play important roles in the pathological process of hypoxic pulmonary hypertension (HPH). Melatonin possesses anti-inflammatory and antiproliferative properties. However, the effect of melatonin on HPH remains unclear. In this study, adult Sprague-Dawley rats were exposed to intermittent chronic hypoxia for 4 wk to mimic a severe HPH condition. Hemodynamic and pulmonary pathomorphology data showed that chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of the right ventricle/left ventricle plus septum (RV/LV+S) ratio, and median width of pulmonary arterioles. Melatonin attenuated the elevation of RVSP, RV/LV+S, and mitigated the pulmonary vascular structure remodeling. Melatonin also suppressed the hypoxia-induced high expression of proliferating cell nuclear antigen (PCNA), hypoxia-inducible factor-1α (HIF-1α), and nuclear factor-κB (NF-κB). In vitro, melatonin concentration-dependently inhibited the proliferation of PASMCs and the levels of phosphorylation of Akt and extracellular signal-regulated kinases1/2 (ERK1/2) caused by hypoxia. These results suggested that melatonin might potentially prevent HPH via anti-inflammatory and antiproliferative mechanisms.
Collapse
Affiliation(s)
- Haifeng Jin
- Institute of Cancer Stem Cell, The First Affiliated Hospital, Dalian Medical University Cancer Center, Dalian, China; Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Bell JR, Bernasochi GB, Varma U, Raaijmakers AJA, Delbridge LMD. Sex and sex hormones in cardiac stress--mechanistic insights. J Steroid Biochem Mol Biol 2013; 137:124-35. [PMID: 23770428 DOI: 10.1016/j.jsbmb.2013.05.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/14/2023]
Abstract
Important sex differences in the onset and characteristics of cardiovascular disease are evident, yet the mechanistic details remain unresolved. Men are more susceptible to cardiovascular disease earlier in life, though younger women who have a cardiovascular event are more likely to experience adverse outcomes. Emerging evidence is prompting a re-examination of the conventional view that estrogen is protective and testosterone a liability. The heart expresses both androgen and estrogen receptors and is functionally responsive to circulating sex steroids. New evidence of cardiac aromatase expression indicates local estrogen production may also exert autocrine/paracrine actions in the heart. Cardiomyocyte contractility studies suggest testosterone and estrogen have contrasting inotropic actions, and modulate Ca(2+) handling and transient characteristics. Experimentally, sex differences are also evident in cardiac stress responses. Female hearts are generally less susceptible to acute ischemic damage and associated arrhythmias, and generally are more resistant to stress-induced hypertrophy and heart failure, attributed to the cardioprotective actions of estrogen. However, more recent data show that testosterone can also improve acute post-ischemic outcomes and facilitate myocardial function and survival in chronic post-infarction. The myocardial actions of sex steroids are complex and context dependent. A greater mechanistic understanding of the specific actions of systemic/local sex steroids in different cardiovascular disease states has potential to lead to the development of cardiac therapies targeted specifically for men and women.
Collapse
Affiliation(s)
- James R Bell
- Department of Physiology, University of Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
23
|
Abstract
In cardiovascular research, translation of benchtop findings to the whole body environment is often critical in order to gain a more thorough and comprehensive clinical evaluation of the data with direct extrapolation to the human condition. In particular, developmental and/or pathophysiologic vascular growth studies often employ in vitro approaches such as cultured cells or tissue explant models in order to analyze specific cellular, molecular, genetic and/or biochemical signaling factors under pristine controlled conditions. However, validation of in vitro data in a whole body setting complete with neural, endocrine and other systemic contributions provides essential proof-of-concept from a clinical perspective. Several well-characterized experimental in vivo models exist that provide excellent proof-of-concept tools with which to examine vascular growth and remodeling in the whole body. This article will examine the rat carotid artery balloon injury model, the mouse carotid artery wire denudation injury model, and rat and mouse carotid artery ligation models with particular emphasis on minimally invasive surgical access to the site of intervention. Discussion will include key scientific and technical details as well as caveats, limitations, and considerations for practical use for each of these valuable experimental models.
Collapse
|
24
|
Walsh CA, Qin L, Tien JCY, Young LS, Xu J. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int J Biol Sci 2012; 8:470-85. [PMID: 22419892 PMCID: PMC3303173 DOI: 10.7150/ijbs.4125] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/20/2012] [Indexed: 11/05/2022] Open
Abstract
In 1995, the steroid receptor coactivator-1 (SRC-1) was identified as the first authentic steroid receptor coactivator. Since then, the SRC proteins have remained at the epicenter of coregulator biology, molecular endocrinology and endocrine-related cancer. Cumulative works on SRC-1 have shown that it is primarily a nuclear receptor coregulator and functions to construct highly specific enzymatic protein complexes which can execute efficient and successful transcriptional activation of designated target genes. The versatile nature of SRC-1 enables it to respond to steroid dependent and steroid independent stimulation, allowing it to bind across many families of transcription factors to orchestrate and regulate complex physiological reactions. This review highlights the multiple functions of SRC-1 in the development and maintenance of normal tissue functions as well as its major role in mediating hormone receptor responsiveness. Insights from genetically manipulated mouse models and clinical data suggest SRC-1 is significantly overexpressed in many cancers, in particular, cancers of the reproductive tissues. SRC-1 has been associated with cellular proliferation and tumor growth but its major tumorigenic contributions are promotion and execution of breast cancer metastasis and mediation of resistance to endocrine therapies. The ability of SRC-1 to coordinate multiple signaling pathways makes it an important player in tumor cells' escape of targeted therapy.
Collapse
Affiliation(s)
- Claire A Walsh
- Endocrine Oncology Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
25
|
Gabrovska P, Smith R, O'Leary G, Haupt L, Griffiths L. Investigation of the 1758G>C and 2880A>G variants within the NCOA3 gene in a breast cancer affected Australian population. Gene 2011; 482:68-72. [DOI: 10.1016/j.gene.2011.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/29/2011] [Accepted: 05/06/2011] [Indexed: 01/19/2023]
|
26
|
Sivritas D, Becher MU, Ebrahimian T, Arfa O, Rapp S, Bohner A, Mueller CF, Umemura T, Wassmann S, Nickenig G, Wassmann K. Antiproliferative effect of estrogen in vascular smooth muscle cells is mediated by Kruppel-like factor-4 and manganese superoxide dismutase. Basic Res Cardiol 2011; 106:563-75. [PMID: 21484412 DOI: 10.1007/s00395-011-0174-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/08/2011] [Accepted: 03/22/2011] [Indexed: 12/29/2022]
Abstract
The mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) and the zinc finger transcription factor Kruppel-like factor-4 (KLF4) are involved in the regulation of redox homeostasis, apoptosis and cell proliferation. We have shown that estrogen exerts antioxidative actions via induction of MnSOD in cultured rat aortic vascular smooth muscle cells (VSMC). The purpose of the present study was to investigate whether estrogen inhibits VSMC proliferation via alteration of KLF4 and MnSOD expression. In cultured rat aortic VSMC, estrogen binding to estrogen receptor-alpha led to rapid increase in KLF4 expression and reduction of cell proliferation by 50%. Protein separation revealed that KLF4 was shifted to the nucleus when VSMC were treated with estrogen. Estrogen-mediated induction of KLF4 and the antiproliferative effect involved activation of PI-3 kinase, Akt phosphorylation and induction of NO synthase activity. Experiments in freshly isolated denuded aortic segments revealed an increase in KLF4 abundance after estrogen treatment and demonstrated that eNOS is expressed in the media at low levels. Transfection experiments showed that estrogen-induced overexpression of MnSOD required KLF4 and that both KLF4 and MnSOD were indispensable for the observed antiproliferative effect of estrogen in VSMC. To confirm these data in vivo, we investigated neointima formation after carotid artery injury in wild-type (WT) and MnSOD+/- mice. Estrogen deficiency led to enhanced neointima formation and higher numbers of Ki67-positive proliferating cells in the neointima of ovariectomized WT and MnSOD+/- mice. Moreover, MnSOD+/- mice showed more extensive neointima formation and Ki67 immunostaining. Interestingly, estrogen replacement prevented neointima formation in WT mice but failed to completely inhibit neointima formation in MnSOD+/- mice. Cultured VSMC derived from MnSOD+/- mice showed enhanced proliferation as compared to WT VSMC, and estrogen treatment failed to inhibit proliferation in MnSOD+/- VSMC. In conclusion, these data demonstrate the importance of MnSOD and KLF4 for proliferation control in VSMC. Our results provide novel insights into how proliferation of VSMC is regulated by estrogen and may help to identify novel targets for the treatment of vascular diseases such as restenosis.
Collapse
Affiliation(s)
- Derya Sivritas
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen X, Liu Z, Xu J. The cooperative function of nuclear receptor coactivator 1 (NCOA1) and NCOA3 in placental development and embryo survival. Mol Endocrinol 2010; 24:1917-34. [PMID: 20685850 DOI: 10.1210/me.2010-0201] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear receptor coactivator 1 [NCOA1/steroid receptor coactivator (SRC)-1] and NCOA3 (SRC-3/AIB1/ACTR) constitute two thirds of the SRC (steroid receptor coactivator) family. Although in vitro experiments have suggested overlapping functions between NCOA1 and NCOA3, their in vivo functional relationship is poorly understood. In this study, NCOA1 and NCOA3 double knockout mice were generated to determine the compensatory roles of NCOA1 and NCOA3 in development. NCOA1(-/-) mice survived normally, whereas most NCOA3(-/-) embryos were viable at embryonic d 13.5 (E13.5). In contrast, the majority of double-knockout (DKO) embryos died by E13.5. NCOA1 and NCOA3 are expressed in the labyrinth, and labyrinths of NCOA1(+/-);NCOA3(-/-) and DKO placentas were small compared with wild-type and single-knockout labyrinths. DKO labyrinths exhibited low densities of maternal blood sinuses and fetal capillaries and displayed fetomaternal blood transfusion. At the interface between maternal and fetal circulations, layer I sinusoidal trophoblast giant cells showed a reduced density of microvilli. Layer III syncytiotrophoblasts appeared to accumulate large lipid droplets and have reduced density and deepened invaginations of the intrasyncytial bays. The endothelial layer in DKO labyrinth showed abnormal morphologies and had large lipid droplets. Furthermore, disruption of NCOA1 and NCOA3 increased labyrinth trophoblast proliferation and their progenitor gene expression but decreased their differentiation gene expression. NCOA1 and NCOA3 deficiencies also affected the expression of several genes for placental morphogenesis including TGFβ-, peroxisome proliferator-activated receptor-β-, and peroxisome proliferator-activated receptor-γ-regulated genes and for glucose transportation including GLUT1 and Cx26. These findings demonstrate that NCOA1 and NCOA3 cooperatively regulate placental morphogenesis and embryo survival.
Collapse
Affiliation(s)
- Xian Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
28
|
|
29
|
Schreihofer DA, Deutsch C, Lovekamp-Swan T, Sullivan JC, Dorrance AM. Effect of high soy diet on the cerebrovasculature and endothelial nitric oxide synthase in the ovariectomized rat. Vascul Pharmacol 2010; 52:236-42. [PMID: 20197113 PMCID: PMC2921790 DOI: 10.1016/j.vph.2010.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/21/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
High soy (HS) diets are neuroprotective and promote vascular dilatation in the periphery. We hypothesized that an HS diet would promote vascular dilatation in the cerebrovasculature by mimicking estradiol's actions on the endothelial nitric oxide synthase (eNOS) system including increasing eNOS expression and decreasing caveolin-1 expression to increase nitric oxide (NO) production. Ovariectomized rats were fed HS or a soy-free diet (SF)+/-low physiological estradiol (E2) for 4weeks. Neither E2 nor HS altered middle cerebral artery (MCA) structure or vascular responses to acetylcholine, serotonin, or phenylephrine. Estradiol enhanced bradykinin-induced relaxation in an eNOS-dependent manner. Although E2 and HS increased eNOS mRNA expression in the brain and cerebrovasculature, they had no effect on eNOS protein expression or phosphorylation in the MCA. However, E2 decreased caveolin-1 protein in the MCA. In MCAs neither E2 nor HS altered estrogen receptor (ER) alpha expression, but E2 did reduce ER beta levels. These data suggest that HS diets have no effect on vascular NO production, and that E2 may modulate basal NO production by reducing the expression of caveolin-1, an allosteric inhibitor of NOS activity. However, the effects of E2 and HS on the cerebrovasculature are small and may not underlie their protective actions in pathological states.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912-3000, USA.
| | | | | | | | | |
Collapse
|
30
|
Wang S, Yuan Y, Liao L, Kuang SQ, Tien JCY, O'Malley BW, Xu J. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci U S A 2009; 106:151-6. [PMID: 19109434 PMCID: PMC2629242 DOI: 10.1073/pnas.0808703105] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Indexed: 01/12/2023] Open
Abstract
Steroid receptor coactivator-1 (SRC-1) is a coactivator for nuclear hormone receptors such as estrogen and progesterone receptors and certain other transcription factors such as Ets-2 and PEA3. SRC-1 expression in breast cancer is associated with HER2 and c-Myc expression and with reduced disease-free survival. In this study, SRC-1(-/-) mice were backcrossed with FVB mice and then cross-bred with MMTV-polyoma middle T antigen (PyMT) mice to investigate the role of SRC-1 in breast cancer. Although mammary tumor initiation and growth were similar in SRC-1(-/-)/PyMT and wild-type (WT)/PyMT mice, genetic ablation of SRC-1 antagonized PyMT-induced restriction of mammary ductal differentiation and elongation. SRC-1(-/-)/PyMT mammary tumors were also more differentiated than WT/PyMT mammary tumors. The intravasation of mammary tumor cells and the frequency and extent of lung metastasis were drastically reduced in SRC-1(-/-)/PyMT mice compared with WT/PyMT mice. Metastatic analysis of transplanted WT/PyMT and SRC-1(-/-)/PyMT tumors in SRC-1(-/-) and WT recipient mice revealed that SRC-1 played an intrinsic role in tumor cell metastasis. Furthermore, SRC-1 was up-regulated during mammary tumor progression. Disruption of SRC-1 inhibited Ets-2-mediated HER2 expression and PyMT-stimulated Akt activation in the mammary tumors. Disruption of SRC-1 also suppressed colony-stimulating factor-1 (CSF-1) expression and reduced macrophage recruitment to the tumor site. These results suggest that SRC-1 specifically promotes metastasis without affecting primary tumor growth. SRC-1 may promote metastasis through mediating Ets-2-mediated HER2 expression and activating CSF-1 expression for macrophage recruitment. Therefore, functional interventions for coactivators like SRC-1 may provide unique approaches to control breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Shu Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Yuhui Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Shao-Qing Kuang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Jean Ching-Yi Tien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| |
Collapse
|
31
|
Liu Z, Liao L, Zhou S, Xu J. Generation and validation of a mouse line with a floxed SRC-3/AIB1 allele for conditional knockout. Int J Biol Sci 2008; 4:202-7. [PMID: 18690289 PMCID: PMC2491728 DOI: 10.7150/ijbs.4.202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 07/21/2008] [Indexed: 11/05/2022] Open
Abstract
The steroid receptor coactivator-3 (SRC-3), also known as AIB1, ACTR, p/CIP and NCOA3, is a transcriptional coactivator for nuclear receptors and certain other transcription factors. SRC-3 is widely expressed and plays important physiological functions and pathogenic roles in breast and prostate cancers. SRC-3 knockout (SRC-3(-/-)) mice display genetic background-dependent embryonic lethality and multiple local and systemic abnormalities. Since both the partial lethality and the systemic effects caused by global SRC-3 knockout interfere with downstream investigation of tissue-specific function of SRC-3, we have generated floxed SRC-3 (SRC-3(f/f)) mice with conditional alleles carrying loxP sites in introns 10 and 12 by a gene-targeting strategy. The two SRC-3(f/f) mouse lines (A and B) are indistinguishable from wild type mice. To test if deletion of the floxed exons 11 and 12 for SRC-3 nuclear receptor interaction domains and disruption of its downstream sequence for transcriptional activation domains would inactivate SRC-3 function, SRC-3(f/f) mice were crossbred with EIIa-Cre mice to generate SRC-3(d/d) mice with germ line deletion of the floxed SRC-3 gene. Both lines of SRC-3(d/d) mice exhibited growth retardation and low IGF-I levels, which was similar to that observed in SRC-3(-/-) mice. The line A SRC-3(d/d) mice showed normal viability, while line B SRC-3(d/d) mice showed partial lethality similar to SRC-3-/- mice, probably due to variable distributions of genetic background during breeding. These results demonstrate that the floxed SRC-3 mouse lines have been successfully established. These mice will be useful for investigating the cell type- and developmental stage-specific functions of SRC-3.
Collapse
Affiliation(s)
- Zhaoliang Liu
- 1. Department of Molecular, Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- 2. Institute of Biosciences, Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Lan Liao
- 1. Department of Molecular, Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Suoling Zhou
- 1. Department of Molecular, Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jianming Xu
- 1. Department of Molecular, Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Liao L, Chen X, Wang S, Parlow AF, Xu J. Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression. Mol Cell Biol 2008; 28:2460-9. [PMID: 18212051 PMCID: PMC2268437 DOI: 10.1128/mcb.01163-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/30/2007] [Accepted: 12/18/2007] [Indexed: 02/02/2023] Open
Abstract
Steroid receptor coactivator 3 (SRC-3/AIB1/ACTR/NCoA-3) is a transcriptional coactivator for nuclear receptors including vitamin D receptor (VDR). Growth hormone (GH) regulates insulin-like growth factor I (IGF-I) expression, and IGF-I forms complexes with acid-labile subunit (ALS) and IGF-binding protein 3 (IGFBP-3) to maintain its circulating concentration and endocrine function. This study demonstrated that the circulating IGF-I was significantly reduced in SRC-3(-/-) mice with the C57BL/6J background. However, SRC-3 deficiency affected neither GH nor ALS expression. The low IGF-I level in SRC-3(-/-) mice was not due to the failure of IGF-I mRNA and protein synthesis but was a consequence of rapid degradation. The rapid IGF-I degradation was associated with drastically reduced IGFBP-3 levels. Because IGF-I and IGFBP-3 stabilize each other, SRC-3(-/-) mice were crossbred with the liver-specific transthyretin (TTR)-IGF-I transgenic mice to assess the relationship between reduced IGF-I and IGFBP-3. In SRC-3(-/-)/TTR-IGF-I mice, the IGF-I level was significantly increased over that in SRC-3(-/-) mice, but the IGFBP-3 level failed to increase proportionally, indicating that the low IGFBP-3 level is a responsible factor that limits the IGF-I level in SRC-3(-/-) mice. Furthermore, IGFBP-3 mRNA was reduced in SRC-3(-/-) mice. The IGFBP-3 promoter activity induced by vitamin D, through VDR, was diminished in SRC-3(-/-) cells, suggesting an important role of SRC-3 in VDR-mediated transactivation of the IGFBP-3 gene. In agreement with the role of SRC-3 in VDR function, the expression of several VDR target genes was also reduced in SRC-3(-/-) mice. Therefore, SRC-3 maintains IGF-I in the circulation through enhancing VDR-regulated IGFBP-3 expression.
Collapse
Affiliation(s)
- Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
33
|
Zhuravleva J, Solary E, Chluba J, Bastie JN, Delva L. A role for the transcription intermediary factor 2 in zebrafish myelopoiesis. Exp Hematol 2008; 36:559-67. [PMID: 18295965 DOI: 10.1016/j.exphem.2007.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/28/2007] [Accepted: 12/31/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVE TIF2 is fused with MOZ in the inv(8)(p11q13) acute myeloid leukemia. TIF2, member of the p160 family, is a histone acetyl transferase (HAT). Deletion of p160 genes were performed in mice. Some observations suggest that p160 family members may perform overlapping functions in mice. Therefore, we decided to choose the zebrafish model to study TIF2. The aim of this study was to characterize the role of this HAT during embryonic development. MATERIAL AND METHODS We use antisense, morpholino-modified oligomers to transiently knockdown tif2 gene, thus determining whether TIF2 plays a role in zebrafish early development. RESULTS We show that tif2 is involved in embryogenesis and in primitive hematopoiesis. tif2-knockdown zebrafish embryos are smaller than controls, they demonstrate shorter tails, they display notochord deformation and they exhibit U-shaped tail somites. A synthetic RNA encoding human TIF2 rescues the tif2-knockdown phenotype. Analysis of fli1 expression by whole-mount in situ hybridization indicates normal angioblast specification, but altered localization of intersomitic vessels. The posterior intermediate cell mass, in which a part of primitive hematopoiesis occurs, is altered in tif2 morphants and whole-mount in situ hybridization analyses of l-plastin and mpx expression suggest a specific inhibition of granulocytic and macrophagic differentiation at late stages. CONCLUSION These data indicate an important role for TIF2 in zebrafish primitive myelopoiesis.
Collapse
|
34
|
Kawagoe J, Ohmichi M, Tsutsumi S, Ohta T, Takahashi K, Kurachi H. Mechanism of the divergent effects of estrogen on the cell proliferation of human umbilical endothelial versus aortic smooth muscle cells. Endocrinology 2007; 148:6092-9. [PMID: 17872375 DOI: 10.1210/en.2007-0188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diverse estrogen actions are controlled via estrogen receptors (ERs). Mechanisms of action of ERs are modulated by various factors such as ER subtypes, conformation of the ER-ligand complex, and recruitment of coregulator complexes to a target gene promoter. Estrogen exerts divergent actions on vascular cells; namely it increases endothelial cell and inhibits smooth muscle cell growth, resulting in a vasoprotective action. We particularly focused on these divergent effects and examined the mechanisms. The effects of raloxifene, which shows estrogen-like vasoprotective actions, were also examined. To examine the effects of 17beta-estradiol (E(2)) and raloxifene on human aortic smooth muscle cells (HASMCs) and human umbilical venous endothelial cells (HUVECs), we evaluated the effect of E(2) and raloxifene on transcriptional activity, recruitment of the coregulator complex to a target gene promoter, and acetylation of histone of both the IGF-I and COX-2 genes. Treatment with E(2) or raloxifene increased both IGF-I and cyclooxygenase (COX)-2 mRNA expression in HUVECs, whereas they attenuated the serum-induced increase of these genes in HASMCs. Treatment by E(2) and raloxifene induced recruitment of coactivator complex and histone acetylation at both the IGF-I and COX-2 gene promoter in HUVECs. In contrast, in HASMCs, E(2), and raloxifene attenuated the serum-induced recruitment of coactivator complexes and histone acetylation at both the IGF-I and COX-2 gene promoters. Estrogen and raloxifene exert divergent transcriptional regulation on both mRNA expression and the remodeling of IGF-I and COX-2 gene promoters in HUVECs vs. HASMCs.
Collapse
MESH Headings
- Acetylation/drug effects
- Aorta/cytology
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclooxygenase 2/genetics
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Estradiol/pharmacology
- Estrogens/pharmacology
- Histone Acetyltransferases/genetics
- Histones/metabolism
- Humans
- Insulin-Like Growth Factor I/genetics
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nuclear Receptor Coactivator 3
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Raloxifene Hydrochloride/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/genetics
- Transcription, Genetic/drug effects
- Transfection
- Umbilical Cord/cytology
Collapse
Affiliation(s)
- Jun Kawagoe
- Department of Obstetrics and Gynecology, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Wierman ME, Kohrt WM. Vascular and metabolic effects of sex steroids: new insights into clinical trials. Reprod Sci 2007; 14:300-14. [PMID: 17644802 DOI: 10.1177/1933719107303673] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The early discontinuation of the Women's Health Initiative trials of daily conjugated estrogens and medroxyprogesterone and of conjugated estrogens only was hailed as the "death to the use of hormone replacement regimens" in menopause. The analyses showed risks outweighing benefits of hormone therapy when given broadly to postmenopausal women. The expanding basic science and clinical research on the specific actions of sex steroids at the genomic and nongenomic level, however, shed new insight into these results. This review focuses on the vascular and metabolic effects of sex steroids to illustrate new advances. Understanding the mechanisms of sex steroid receptor action in a tissue-specific manner, ligand-specific dose responses, and the effects of steroid hormones in normal compared to diseased tissues may explain some of the outcomes in the clinical trials. Further research will clarify the potential benefits and risks of hormone therapy after menopause, both in individual patients and in selected populations.
Collapse
Affiliation(s)
- Margaret E Wierman
- University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
36
|
Abstract
Vascular remodelling is an important physiological mechanism that occurs as a result of changes in hemodynamics, and is a pathological process that plays a major role in the clinical manifestations of cardiovascular diseases. Using a mouse model, it was recently established that vascular remodelling is partially based on ligation of the carotid. In this model, low flow was associated with intima media thickening (IMT). IMT is a major manifestation of atherosclerosis of the carotid artery, and it is an important predictor of cardiovascular events. Carotid IMT has a strong genetic component. It was hypothesized that there would be genetically determined differences in outward remodelling and IMT induced by carotid flow alterations. Vascular remodelling among five inbred strains of mice were compared. Despite similar changes in flow in the left carotid among the strains, dramatic differences in remodelling of the partially ligated left carotid relative to control were observed. IMT correlated significantly with heart rate, outward remodelling and changes in plasminogen activator expression, cell proliferation and apoptosis. There were significant strain-dependent differences in the remodelling index (measured as the ratio of vessel area to IMT), which suggest fundamental alterations in sensing or transducing hemodynamic signals among strains. This model should be useful to identify and characterize the role of genes that mediate vascular remodelling.
Collapse
Affiliation(s)
- Bradford C Berk
- Center for Cardiolovascular Research and Department of Medicine, University of Rochester, Rochester, New York 14642, USA.
| | | |
Collapse
|
37
|
Amazit L, Pasini L, Szafran AT, Berno V, Wu RC, Mielke M, Jones ED, Mancini MG, Hinojos CA, O'Malley BW, Mancini MA. Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol Cell Biol 2007; 27:6913-32. [PMID: 17646391 PMCID: PMC2099228 DOI: 10.1128/mcb.01695-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The steroid receptor coactivator 3 gene (SRC-3) (AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family transcription coactivator and a known oncogene. Despite its importance, the functional regulation of SRC-3 remains poorly understood within a cellular context. Using a novel combination of live-cell, high-throughput, and fluorescent microscopy, we report SRC-3 to be a nucleocytoplasmic shuttling protein whose intracellular mobility, solubility, and cellular localization are regulated by phosphorylation and estrogen receptor alpha (ERalpha) interactions. We show that both chemical inhibition and small interfering RNA reduction of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by epidermal growth factor signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known participants in the phosphocode that regulates SRC-3 activity. Accordingly, the cytoplasmic localization of a nonphosphorylatable SRC-3 mutant further supported these results. In the presence of ERalpha, U0126 also dramatically reduces (i) ligand-dependent colocalization of SRC-3 and ERalpha, (ii) the formation of ER-SRC-3 complexes in cell lysates, and (iii) SRC-3 targeting to a visible, ERalpha-occupied and -regulated prolactin promoter array. Taken together, these results indicate that phosphorylation coordinates SRC-3 coactivator function by linking the probabilistic formation of transient nuclear receptor-coactivator complexes with its molecular dynamics and cellular compartmentalization. Technically and conceptually, these findings have a new and broad impact upon evaluating mechanisms of action of gene regulators at a cellular system level.
Collapse
Affiliation(s)
- Larbi Amazit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hosoda C, Hiroyama M, Sanbe A, Birumachi JI, Kitamura T, Cotecchia S, Simpson PC, Tsujimoto G, Tanoue A. Blockade of both α1A- and α1B-adrenergic receptor subtype signaling is required to inhibit neointimal formation in the mouse femoral artery. Am J Physiol Heart Circ Physiol 2007; 293:H514-9. [PMID: 17384126 DOI: 10.1152/ajpheart.00626.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Attenuation of early restenosis after percutaneous coronary intervention (PCI) is important for the successful treatment of coronary artery disease. Some clinical studies have shown that hypertension is a risk factor for early restenosis after PCI. These findings suggest that α1-adrenergic receptors (α1-ARs) may facilitate restenosis after PCI because of α1-AR's remarkable contribution to the onset of hypertension. In this study, we examined the neointimal formation after vascular injury in the femoral artery of α1A-knockout (α1A-KO), α1B-KO, α1D-KO, α1A-/α1B-AR double-KO (α1AB-KO), and wild-type mice to investigate the functional role of each α1-AR subtype in neointimal formation, which is known to promote restenosis. Neointimal formation 4 wk after wire injury was significantly ( P < 0.05) smaller in α1AB-KO mice than in any other group of mice, while blood pressures were not altered in any of the groups of mice after wire injury compared with those before it. These results suggest that lack of both α1A- and α1B-ARs could be necessary to inhibit neointimal formation in the mouse femoral artery.
Collapse
Affiliation(s)
- Chihiro Hosoda
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yuan Y, Xu J. Loss-of-function deletion of the steroid receptor coactivator-1 gene in mice reduces estrogen effect on the vascular injury response. Arterioscler Thromb Vasc Biol 2007; 27:1521-7. [PMID: 17446438 PMCID: PMC2435268 DOI: 10.1161/atvbaha.107.144477] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The steroid receptor coactivator-1 (SRC-1) is a transcriptional coactivator for nuclear receptors including estrogen receptor (ER). SRC-1 can interact with ER in an estrogen binding-dependent manner to potentiate the transcriptional activity of ER. Previous studies showed that SRC-1 was required for the full function of ER in cultured cells and in the reproductive system. In this study, we have tested the hypothesis that SRC-1 is required for the inhibition of neointima formation by estrogen in a vascular wall. METHODS AND RESULTS The expression of SRC-1 protein in the vascular wall was examined by immunoblotting and immunohistochemistry. Wild-type and SRC-1 null mice were ovariectomized, and then unilateral ligation of the carotid artery was performed to induce neointima growth in these mice. Mice were treated with placebo or estrogen. Neointima growth near the ligation site was examined and quantitatively analyzed. These experiments demonstrated that SRC-1 was expressed in the endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and neointima cells. The neointima growth induced by the ligation of common carotid artery was almost completely inhibited by estrogen in wild-type mice, but was only partially inhibited in SRC-1-null mice. Further analysis revealed that the blunted inhibition of neointima formation by estrogen was attributed to a less inhibition of neointimal cell proliferation. CONCLUSIONS SRC-1 is expressed in ECs, VSMCs, and neointima cells. SRC-1 expression in these cells facilitates estrogen/ER-mediated vasoprotection through the inhibition of neointima formation after a vascular injury.
Collapse
Affiliation(s)
- Yuhui Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
40
|
Chung ACK, Zhou S, Liao L, Tien JCY, Greenberg NM, Xu J. Genetic ablation of the amplified-in-breast cancer 1 inhibits spontaneous prostate cancer progression in mice. Cancer Res 2007; 67:5965-75. [PMID: 17575167 PMCID: PMC2898573 DOI: 10.1158/0008-5472.can-06-3168] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the amplified-in-breast cancer 1 (AIB1; SRC-3, ACTR, or NCoA3) was defined as a coactivator for androgen receptor (AR) by in vitro studies, its role in AR-mediated prostate development and prostate cancer remained unexplored. We report here that AIB1 is expressed in the basal and stromal cells but not in the epithelial cells of the normal mouse prostates. AIB1 deficiency only slightly delayed prostate growth and had no effect on androgen-dependent prostate regeneration, suggesting an unessential role of AIB1 in AR function in the prostate. Surprisingly, when prostate tumorigenesis was induced by the SV40 transgene in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, AIB1 expression was observed in certain epithelial cells of the prostate intraepithelial neoplasia (PIN) and well-differentiated carcinoma and in almost all cells of the poorly differentiated carcinoma. After AIB1 was genetically inactivated in AIB1-/-/TRAMP mice, the progression of prostate tumorigenesis in most AIB1-/-/TRAMP mice was arrested at the well-differentiated carcinoma stage. Wild-type (WT)/TRAMP mice developed progressive, multifocal, and metastatic prostate tumors and died between 25 and 34 weeks. In contrast, AIB1-/-/TRAMP mice only exhibited PIN and early-stage well-differentiated carcinoma by 39 weeks. AIB1-/-/TRAMP prostates showed much lower cell proliferation than WT/TRAMP prostates. Most AIB1-/-/TRAMP mice could survive more than 35 weeks and died with other types of tumors or unknown reasons. Our results indicate that induction of AIB1 expression in partially transformed epithelial cells is essential for progression of prostate tumorigenesis into poorly differentiated carcinoma. Inhibition of AIB1 expression or function in the prostate epithelium may be a potential strategy to suppress prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Arthur C.-K. Chung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Suoling Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jean Ching-Yi Tien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
41
|
Li HJ, Haque Z, Lu Q, Li L, Karas R, Mendelsohn M. Steroid receptor coactivator 3 is a coactivator for myocardin, the regulator of smooth muscle transcription and differentiation. Proc Natl Acad Sci U S A 2007; 104:4065-70. [PMID: 17360478 PMCID: PMC1820709 DOI: 10.1073/pnas.0611639104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Indexed: 01/31/2023] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) constitutes a key event in atherosclerosis, neointimal hyperplasia, and the response to vascular injury. Estrogen receptor alpha (ERalpha) mediates the protective effects of estrogen in injured blood vessels and regulates ligand-dependent gene expression in vascular cells. However, the molecular mechanisms mediating ERalpha-dependent VSMC gene expression and VSMC proliferation after vascular injury are not well defined. Here, we report that the ER coactivator steroid receptor coactivator 3 (SRC3) is also a coactivator for the major VSMC transcription factor myocardin, which is required for VSMC differentiation to the nonproliferative, contractile state. The N terminus of SRC3, which contains a basic helix-loop-helix/Per-ARNT-Sim protein-protein interaction domain, binds the C-terminal activation domain of myocardin and enhances myocardin-mediated transcriptional activation of VSMC-specific, CArG-containing promoters, including the VSMC-specific genes SM22 and myosin heavy chain. Suppression of endogenous SRC3 expression by specific small interfering RNA attenuates myocardin transcriptional activation in cultured cells. The SRC3-myocardin interaction identifies a site of convergence for nuclear hormone receptor-mediated and VSMC-specific gene regulation and suggests a possible mechanism for the vascular protective effects of estrogen on vascular injury.
Collapse
Affiliation(s)
- Hui Joyce Li
- *Molecular Cardiology Research Institute, Department of Medicine, and Division of Cardiology, New England Medical Center Hospitals, Tufts University School of Medicine, Boston, MA 02111
| | - Zaffar Haque
- *Molecular Cardiology Research Institute, Department of Medicine, and Division of Cardiology, New England Medical Center Hospitals, Tufts University School of Medicine, Boston, MA 02111
| | - Qing Lu
- *Molecular Cardiology Research Institute, Department of Medicine, and Division of Cardiology, New England Medical Center Hospitals, Tufts University School of Medicine, Boston, MA 02111
| | - Li Li
- Department of Medicine, Wayne State University, 421 East Canfield Avenue, Detroit, MI 48201
| | - Richard Karas
- *Molecular Cardiology Research Institute, Department of Medicine, and Division of Cardiology, New England Medical Center Hospitals, Tufts University School of Medicine, Boston, MA 02111
| | - Michael Mendelsohn
- *Molecular Cardiology Research Institute, Department of Medicine, and Division of Cardiology, New England Medical Center Hospitals, Tufts University School of Medicine, Boston, MA 02111
- Centre for Clinical and Basic Research, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele, 00163 Rome, Italy; and
| |
Collapse
|
42
|
Mussi P, Yu C, O'Malley BW, Xu J. Stimulation of Steroid Receptor Coactivator-3 (SRC-3) Gene Overexpression by a Positive Regulatory Loop of E2F1 and SRC-3. Mol Endocrinol 2006; 20:3105-19. [PMID: 16916939 DOI: 10.1210/me.2005-0522] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Steroid receptor coactivator 3 (SRC-3, amplified in breast cancer 1, or ACTR) is a transcriptional coactivator for nuclear receptors and certain other transcription factors such as E2F1. SRC-3 is overexpressed in breast cancers, and its overexpression is sufficient to cause mammary carcinomas in vivo. However, the mechanisms controlling endogenous SRC-3 overexpression are unknown. In this study, we identified the first exon and analyzed the 5′ regulatory sequence of the SRC-3 gene. We found three evolutionarily conserved regions (ECRs) in the 5′ SRC-3 regulatory sequence, and ECR2 makes a major contribution to the SRC-3 promoter activity. The ECR2 region (bp −250/+350) contains several specificity protein 1 (Sp1) binding sites and two E2F1 binding sites. We show that E2F1 can significantly activate the ECR2 promoter activity in a dose-dependent manner. Furthermore, overexpression of E2F1 significantly increases the promoter activity of the endogenous SRC-3 gene and boosts SRC-3 expression in vivo. Conversely, knockdown of E2F1 reduces SRC-3 expression. We demonstrate that the mechanism of E2F1 activity on SRC-3 promoter is independent of the E2F binding sites but relies on the Sp1 element located at bp +150/+160. Sp1, E2F1, and SRC-3 are specifically recruited to this Sp1 site and the interaction between E2F1 and Sp1 is essential to modulate SRC-3 expression. Moreover, SRC-3 coactivates E2F1 activity and thereby additively stimulates a further increase in SRC-3 expression in vivo. These results suggest that in cells with hyperactive E2F1, such as the case encountered in breast cancer cells, there is a positive feedback regulatory loop consisting of E2F1 and SRC-3 to maintain high levels of SRC-3 and E2F1 activity, which may partially interpret the oncogenic role of SRC-3 overexpression.
Collapse
Affiliation(s)
- Paola Mussi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Mussi P, Liao L, Park SE, Ciana P, Maggi A, Katzenellenbogen BS, Xu J, O'Malley BW. Haploinsufficiency of the corepressor of estrogen receptor activity (REA) enhances estrogen receptor function in the mammary gland. Proc Natl Acad Sci U S A 2006; 103:16716-21. [PMID: 17065319 PMCID: PMC1636521 DOI: 10.1073/pnas.0607768103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen receptor (ER)-mediated gene expression plays an essential role in mammary gland morphogenesis, function, and carcinogenesis. The repressor of ER activity (REA) is an ER-interactive protein that counterbalances estrogen-induced ER transcriptional activity. Our previous study showed that genetic deletion of both REA alleles resulted in embryonic lethality. This study demonstrates that REA and ERalpha are coexpressed in mammary epithelial cells. REA heterozygous (REA(+/-)) mutant mice exhibit faster mammary ductal elongation in virgin animals, increased lobuloalveolar development during pregnancy, and delayed mammary gland involution after weaning. These morphological phenotypes of REA(+/-) mice are associated with significantly increased cell proliferation and ER transcriptional activities, as indicated by the estrogen response element (ERE)-luciferase reporter in the WT/ERE-Luc and REA(+/-)/ERE-Luc bigenic mice and by the higher expression levels of estrogen-responsive genes such as progesterone receptor and cyclin D1 in the mammary gland. Our analysis also revealed that REA is an important repressor of ER transcriptional activity in the mammary gland under natural, as well as ovariectomized and estrogen-replaced, hormonal conditions. Our results indicate that REA is a physiological modulator of ER function in the mammary gland and that its correct gene dosage is required for maintenance of normal ER activity and normal mammary gland development. Consequently, a reduction or loss of REA function may cause overactivation of ER and increase breast cancer risk in humans.
Collapse
Affiliation(s)
- Paola Mussi
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Lan Liao
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Seong-Eun Park
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | - Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Benita S. Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | - Jianming Xu
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Bert W. O'Malley
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
44
|
Turgeon JL, Carr MC, Maki PM, Mendelsohn ME, Wise PM. Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: Insights from basic science and clinical studies. Endocr Rev 2006; 27:575-605. [PMID: 16763155 DOI: 10.1210/er.2005-0020] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent publications describing the results of the Women's Health Initiative (WHI) and other studies reporting the impact of hormone therapy on aging women have spurred reexamination of the broad use of estrogens and progestins during the postmenopausal years. Here, we review the complex pharmacology of these hormones, the diverse and sometimes opposite effects that result from the use of different estrogenic and progestinic compounds, given via different delivery routes in different concentrations and treatment sequence, and to women of different ages and health status. We examine our new and growing appreciation of the role of estrogens in the immune system and the inflammatory response, and we pose the concept that estrogen's interface with this system may be at the core of some of the effects on multiple physiological systems, such as the adipose/metabolic system, the cardiovascular system, and the central nervous system. We compare and contrast clinical and basic science studies as we focus on the actions of estrogens in these systems because the untoward effects of hormone therapy reported in the WHI were not expected. The broad interpretation and publicity of the results of the WHI have resulted in a general condemnation of all hormone replacement in postmenopausal women. In fact, careful review of the extensive literature suggests that data resulting from the WHI and other recent studies should be interpreted within the narrow context of the study design. We argue that these results should encourage us to perform new studies that take advantage of a dialogue between basic scientists and clinician scientists to ensure appropriate design, incorporation of current knowledge, and proper interpretation of results. Only then will we have a better understanding of what hormonal compounds should be used in which populations of women and at what stages of menopausal/postmenopausal life.
Collapse
Affiliation(s)
- Judith L Turgeon
- Department of Internal Medicine, Division of Endocrinology, Clinical Nutrition, and Vascular Medicine, University of California Davis, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
45
|
Bolego C, Vegeto E, Pinna C, Maggi A, Cignarella A. Selective Agonists of Estrogen Receptor Isoforms. Arterioscler Thromb Vasc Biol 2006; 26:2192-9. [PMID: 16917104 DOI: 10.1161/01.atv.0000242186.93243.25] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cloning of estrogen receptors (ERs) and generation of ER-deficient mice have increased our understanding of the molecular mechanisms underlying the cardiovascular effects of estrogen. It is conceivable that clinical trials of estrogens so far failed to improve cardiovascular health because of the poor ER isoform selectivity and tissue specificity of endogenous hormones as well as incorrect treatment timing and regimens. Tissue-selective ER modulators (SERMs) may be safer agents than endogenous estrogens for cardiovascular disease. Yet, designing isoform-selective ER ligands (I-SERMs) with agonist or antagonist activity is required to pursue improved pharmacological control of ERs, especially taking into account emerging evidence for the beneficial role of vascular ER alpha activation. Ideally, the quest for unique ER ligands targeted to the vascular wall should lead to compounds that merge the pharmacological profiles of SERM and I-SERM agents. This review highlights the current bases for and approaches to selective ER modulation in the cardiovascular system.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, I-20133 Milan, Italy
| | | | | | | | | |
Collapse
|
46
|
Kim JK, Levin ER. Estrogen signaling in the cardiovascular system. NUCLEAR RECEPTOR SIGNALING 2006; 4:e013. [PMID: 16862219 PMCID: PMC1513067 DOI: 10.1621/nrs.04013] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/15/2006] [Indexed: 01/08/2023]
Abstract
Estrogen exerts complex biological effects through the two isoforms of estrogen receptors (ERs): ERα and ERβ. Whether through alteration of gene expression or rapid, plasma membrane-localized signaling to non-transcriptional actions, estrogen-activated ERs have significant implications in cardiovascular physiology. 17-β-estradiol (E2) generally has a protective property on the vasculature. Estrogen treatment is anti-atherogenic, protecting injured endothelial surfaces and lowering LDL oxidation in animal models. Increased NO production stimulated by E2 results in vasodilation of the coronary vascular bed, and involves rapid activation of phosphotidylinositol-3 kinase (PI3K)/Akt signaling to eNOS in carotid and femoral arteries. Both isoforms of ERs impact various vascular functions, modulating ion channel integrity, mitigating the response to arterial injury, inducing vasodilation, and preventing development of hypertension in animal models. In addition to reducing afterload by vasodilation, ERs have a direct antihypertrophic effect on the myocardium. E2-activated ERs (E2/ER) antagonize the hypertrophic pathway induced by vasoactive peptides such as angiotensin II by activating PI3K, subsequent MICIP gene expression, leading to the inhibition of calcineurin activity and the induction of hypertrophic genes. In models of ischemia-reperfusion, E2/ER is antiapoptotic for cardiomyocytes, exerting the protective actions via PI3K and p38 MAP kinases and suppressing the generation of reactive oxygen species. In sum, E2-activated ERs consistently and positively modulate multiple aspects of the cardiovascular system.
Collapse
|
47
|
Coste A, Antal MC, Chan S, Kastner P, Mark M, O'malley BW, Auwerx J. Absence of the steroid receptor coactivator-3 induces B-cell lymphoma. EMBO J 2006; 25:2453-64. [PMID: 16675958 PMCID: PMC1478181 DOI: 10.1038/sj.emboj.7601106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 03/29/2006] [Indexed: 12/31/2022] Open
Abstract
Steroid receptor coactivator 3 (SRC-3/ACTR/AIB-1/pCIP/RAC3/TRAM-1) is a member of the p160 family of nuclear receptor coactivators that plays an important role in mammary gland growth, development, and tumorigenesis. We show that deletion of SRC-3 gene decreases platelet and increases lymphocytes numbers, leading to the development of malignant B-cell lymphomas upon aging. The expansion of the lymphoid lineage in SRC-3(-/-) mice is cell autonomous, correlates with an induction of proliferative and antiapoptotic genes secondary to constitutive NF-kappaB activation, and can be reversed by restoration of SRC-3 expression. NF-kappaB activation is explained by the degradation of IkappaB, consequent to increases in free IkappaB kinase, which is no longer inhibited by SRC-3. These results demonstrate that SRC-3 regulates lymphopoiesis and in combination with previous studies indicate that SRC-3 has vastly diverging effects on cell proliferation depending on the cellular context, ranging from proliferative and tumorigenic (breast) to antiproliferative (lymphoid cells) effects.
Collapse
Affiliation(s)
- Agnès Coste
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
| | | | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
- Institut Clinique de la Souris, Génopole Strasbourg, Illkirch, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
- Institut Clinique de la Souris, Génopole Strasbourg, Illkirch, France
| | - Bert W O'malley
- Department of Molecular and Cellular Biology, Baylor College of Medecine, Houston, TX, USA
| | - Johan Auwerx
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
- Institut Clinique de la Souris, Génopole Strasbourg, Illkirch, France
| |
Collapse
|
48
|
Yi P, Wu RC, Sandquist J, Wong J, Tsai SY, Tsai MJ, Means AR, O'Malley BW. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol Cell Biol 2005; 25:9687-99. [PMID: 16227615 PMCID: PMC1265806 DOI: 10.1128/mcb.25.21.9687-9699.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/04/2005] [Accepted: 08/04/2005] [Indexed: 12/27/2022] Open
Abstract
Steroid receptor coactivator 3 (SRC-3/AIB1) interacts with steroid receptors in a ligand-dependent manner to activate receptor-mediated transcription. A number of intracellular signaling pathways initiated by growth factors and hormones induce phosphorylation of SRC-3, regulating its function and contributing to its oncogenic potential. However, the range of mechanisms by which phosphorylation affects coactivator function remains largely undefined. We demonstrate here that peptidyl-prolyl isomerase 1 (Pin1), which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, interacts selectively with phosphorylated SRC-3. In addition, Pin1 and SRC-3 activate nuclear-receptor-regulated transcription synergistically. Depletion of Pin1 by small interfering RNA (siRNA) reduces hormone-dependent transcription from both transfected reporters and an endogenous steroid receptor target gene. We present evidence that Pin1 modulates interactions between SRC-3 and CBP/p300. The interaction is enhanced in vitro and in vivo by Pin1 and diminished when cellular Pin1 is reduced by siRNA or in stable Pin1-depleted cell lines. Depletion of Pin1 in MCF-7 human breast cancer cells reduces the endogenous estrogen-dependent recruitment of p300 to the promoters of estrogen receptor-dependent genes. Pin1 overexpression enhanced SRC-3 cellular turnover, and depletion of Pin1 stabilized SRC-3. Our results suggest that Pin1 functions as a transcriptional coactivator of nuclear receptors by modulating SRC-3 coactivator protein-protein complex formation and ultimately by also promoting the turnover of the activated SRC-3 oncoprotein.
Collapse
Affiliation(s)
- Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Igarashi-Migitaka J, Takeshita A, Koibuchi N, Yamada S, Ohtani-Kaneko R, Hirata K. Differential expression of p160 steroid receptor coactivators in the rat testis and epididymis. Eur J Endocrinol 2005; 153:595-604. [PMID: 16189181 DOI: 10.1530/eje.1.01990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Androgens are critical for the development and maintenance of male sexual characteristics. Their action is mediated through the androgen receptor (AR). Ligand-bound AR interacts with coactivator proteins that mediate transcriptional activation. Such coactivators include three members of the 160 kDa proteins (p160s): SRC-1, TIF2/GRIP1, and p/CIP/RAC3/ACTR/AIB1/TRAM-1. The aim of this study was to investigate the expression of the three p160 coactivators and their association with AR in testis and epididymis. METHODS We determined the localization of these three p160 coactivators in immature and mature rat testis, and epididymis by immunohistochemistry using the specific monoclonal antibodies. We also performed double immunofluorescence staining to examine whether p160s are colocalized with AR in these tissues. RESULTS In seminiferous tubules of mature rat testis, SRC-1 and TRAM-1 immunoreactivity was found predominantly in spermatogonia and spermatocytes. In contrast, TIF2 was expressed predominantly in Sertoli cells. AR was coexpressed with TIF2 in this cell type. In immature rat testis, however, all three coactivators were expressed in both germ cells and Sertoli cells. In the epididymis, SRC-1 and TIF2 immunoreactivities were localized in nuclei of epithelial cells. However, TRAM-1 immunostaining was observed in the luminal portion of the cytoplasm with greater intensity than in the nucleus, especially in the caput epididymidis. CONCLUSIONS The cell-type-specific expression of p160 coactivators suggests specific roles in male reproductive organs. Further, the strong cytoplasmic localization of TRAM-1 protein in epithelial cells of epididymis suggests that TRAM-1 may have additional role(s) in transcriptional regulation.
Collapse
Affiliation(s)
- Junko Igarashi-Migitaka
- Department of Anatomy and Cell Biology, St Marianna University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Paul BD, Buchholz DR, Fu L, Shi YB. Tissue- and Gene-specific Recruitment of Steroid Receptor Coactivator-3 by Thyroid Hormone Receptor during Development. J Biol Chem 2005; 280:27165-72. [PMID: 15901728 DOI: 10.1074/jbc.m503999200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous coactivators that bind nuclear hormone receptors have been isolated and characterized in vitro. Relatively few studies have addressed the developmental roles of these cofactors in vivo. By using the total dependence of amphibian metamorphosis on thyroid hormone (T3) as a model, we have investigated the role of steroid receptor coactivator 3 (SRC3) in gene activation by thyroid hormone receptor (TR) in vivo. First, expression analysis showed that SRC3 was expressed in all tadpole organs analyzed. In addition, during natural as well as T3-induced metamorphosis, SRC3 was up-regulated in both the tail and intestine, two organs that undergo extensive transformations during metamorphosis and the focus of the current study. We then performed chromatin immunoprecipitation assays to investigate whether SRC3 is recruited to endogenous T3 target genes in vivo in developing tadpoles. Surprisingly, we found that SRC3 was recruited in a gene- and tissue-dependent manner to target genes by TR, both upon T3 treatment of premetamorphic tadpoles and during natural metamorphosis. In particular, in the tail, SRC3 was not recruited in a T3-dependent manner to the target TRbetaA promoter, suggesting either no recruitment or constitutive association. Finally, by using transgenic tadpoles expressing a dominant negative SRC3 (F-dnSRC3), we demonstrated that F-dnSRC3 was recruited in a T3-dependent manner in both the intestine and tail, blocking the recruitment of endogenous coactivators and histone acetylation. These results suggest that SRC3 is utilized in a gene- and tissue-specific manner by TR during development.
Collapse
Affiliation(s)
- Bindu D Paul
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|