1
|
Lu C, Donners MMPC, Karel J, de Boer H, van Zonneveld AJ, den Ruijter H, Jukema JW, Kraaijeveld A, Kuiper J, Pasterkamp G, Cavill R, Perales-Patón J, Ferrannini E, Goossens P, Biessen EAL. Sex-specific differences in cytokine signaling pathways in circulating monocytes of cardiovascular disease patients. Atherosclerosis 2023; 384:117123. [PMID: 37127497 DOI: 10.1016/j.atherosclerosis.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS This study aims to identify sex-specific transcriptional differences and signaling pathways in circulating monocytes contributing to cardiovascular disease. METHODS AND RESULTS We generated sex-biased gene expression signatures by comparing male versus female monocytes of coronary artery disease (CAD) patients (n = 450) from the Center for Translational Molecular Medicine-Circulating Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from female CAD patients carry stronger chemotaxis and migratory signature than those from males. We then inferred cytokine signaling activities based on CytoSig database of 51 cytokine and growth factor regulation profiles. Monocytes from females feature a higher activation level of EGF, IFN1, VEGF, GM-CSF, and CD40L pathways, whereas IL-4, INS, and HMGB1 signaling was seen to be more activated in males. These sex differences were not observed in healthy subjects, as shown for an independent monocyte cohort of healthy subjects (GSE56034, n = 485). More pronounced GM-CSF signaling in monocytes of female CAD patients was confirmed by the significant enrichment of GM-CSF-activated monocyte signature in females. As we show these effects were not due to increased plasma levels of the corresponding ligands, sex-intrinsic differences in monocyte signaling regulation are suggested. Consistently, regulatory network analysis revealed jun-B as a shared transcription factor activated in all female-specific pathways except IFN1 but suppressed in male-activated IL-4. CONCLUSIONS We observed overt CAD-specific sex differences in monocyte transcriptional profiles and cytokine- or growth factor-induced responses, which provide insights into underlying mechanisms of sex differences in CVD.
Collapse
Affiliation(s)
- Chang Lu
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands.
| | - Joël Karel
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, the Netherlands
| | - Hetty de Boer
- Department of Internal Medicine (Nephrology), Leiden UMC, Leiden, the Netherlands
| | | | - Hester den Ruijter
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Adriaan Kraaijeveld
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Rachel Cavill
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, the Netherlands
| | - Javier Perales-Patón
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Joint Research Centre for Computational Biomedicine (JRC COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ele Ferrannini
- Consiglio Nazionale Delle Ricerche (CNR) Institute of Clinical Physiology, Pisa, Italy
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands; Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
2
|
Vos S, Aaron R, Weng M, Daw J, Rodriguez-Rivera E, Subauste CS. CD40 Upregulation in the Retina of Patients With Diabetic Retinopathy: Association With TRAF2/TRAF6 Upregulation and Inflammatory Molecule Expression. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37294707 PMCID: PMC10259673 DOI: 10.1167/iovs.64.7.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/16/2023] [Indexed: 06/11/2023] Open
Abstract
Purpose CD40 is upregulated in the retinas of diabetic mice, drives pro-inflammatory molecule expression, and promotes diabetic retinopathy. The role of CD40 in diabetic retinopathy in humans is unknown. Upregulation of CD40 and its downstream signaling molecules TNF receptor associated factors (TRAFs) is a key feature of CD40-driven inflammatory disorders. We examined the expression of CD40, TRAF2, and TRAF6 as well as pro-inflammatory molecules in retinas from patients with diabetic retinopathy. Methods Posterior poles from patients with diabetic retinopathy and non-diabetic controls were stained with antibodies against von Willebrand factor (labels endothelial cells), cellular retinaldehyde-binding protein (CRALBP), or vimentin (both label Müller cells) plus antibodies against CD40, TRAF2, TRAF6, ICAM-1, CCL2, TNF-α, and/or phospho-Tyr783 phospholipase Cγ1 (PLCγ1). Sections were analyzed by confocal microscopy. Results CD40 expression was increased in endothelial and Müller cells from patients with diabetic retinopathy. CD40 was co-expressed with ICAM-1 in endothelial cells and with CCL2 in Müller cells. TNF-α was detected in retinal cells from these patients, but these cells lacked endothelial/Müller cell markers. CD40 in Müller cells from patients with diabetic retinopathy co-expressed activated phospholipase Cγ1, a molecule that induces TNF-α expression in myeloid cells in mice. CD40 upregulation in endothelial cells and Müller cells from patients with diabetic retinopathy was accompanied by TRAF2 and TRAF6 upregulation. Conclusions CD40, TRAF2, and TRAF6 are upregulated in patients with diabetic retinopathy. CD40 associates with expression of pro-inflammatory molecules. These findings suggest that CD40-TRAF signaling may promote pro-inflammatory responses in the retinas of patients with diabetic retinopathy.
Collapse
Affiliation(s)
- Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Rachel Aaron
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Matthew Weng
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jad Daw
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Emmanuel Rodriguez-Rivera
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
3
|
Sagar RC, Ajjan RA, Naseem KM. Non-Traditional Pathways for Platelet Pathophysiology in Diabetes: Implications for Future Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23094973. [PMID: 35563363 PMCID: PMC9104718 DOI: 10.3390/ijms23094973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular complications remain the leading cause of morbidity and mortality in individuals with diabetes, driven by interlinked metabolic, inflammatory, and thrombotic changes. Hyperglycaemia, insulin resistance/deficiency, dyslipidaemia, and associated oxidative stress have been linked to abnormal platelet function leading to hyperactivity, and thus increasing vascular thrombotic risk. However, emerging evidence suggests platelets also contribute to low-grade inflammation and additionally possess the ability to interact with circulating immune cells, further driving vascular thrombo-inflammatory pathways. This narrative review highlights the role of platelets in inflammatory and immune processes beyond typical thrombotic effects and the impact these mechanisms have on cardiovascular disease in diabetes. We discuss pathways for platelet-induced inflammation and how platelet reprogramming in diabetes contributes to the high cardiovascular risk that characterises this population. Fully understanding the mechanistic pathways for platelet-induced vascular pathology will allow for the development of more effective management strategies that deal with the causes rather than the consequences of platelet function abnormalities in diabetes.
Collapse
|
4
|
Yu JS, Daw J, Portillo JAC, Subauste CS. CD40 Expressed in Endothelial Cells Promotes Upregulation of ICAM-1 But Not Pro-Inflammatory Cytokines, NOS2 and P2X7 in the Diabetic Retina. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34546322 PMCID: PMC8458989 DOI: 10.1167/iovs.62.12.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose CD40 is an upstream inducer of inflammation in the diabetic retina. CD40 is upregulated in retinal endothelial cells in diabetes. The purpose of this study was to determine whether expression of CD40 in endothelial cells is sufficient to promote inflammatory responses in the retina of diabetic mice. Methods Transgenic mice with CD40 expression restricted to endothelial cells (Trg-CD40 EC), transgenic control mice (Trg-Ctr), B6, and CD40−/− mice were made diabetic using streptozotocin. Leukostasis was assessed using FITC-conjugated ConA. Pro-inflammatory molecule expression was examined by real-time PCR, immunohistochemistry, ELISA, or flow cytometry. Release of ATP was assessed by ATP bioluminescence. Results Diabetic B6 and Trg-CD40 EC mice exhibited increased retinal mRNA levels of ICAM-1, higher ICAM-1 expression in endothelial cells, and increased leukostasis. These responses were not detected in diabetic mice that lacked CD40 (CD40−/− and Trg-Ctr). Diabetic B6 but not Trg-CD40 EC mice upregulated TNF-α, IL-1β, and NOS2 mRNA levels. CD40 stimulation in retinal endothelial cells upregulated ICAM-1 but not TNF-α, IL-1β, or NOS2. CD40 ligation did not trigger ATP release by retinal endothelial cells or pro-inflammatory cytokine production in bystander myeloid cells. In contrast to diabetic B6 mice, diabetic Trg-CD40 EC mice did not upregulate P2X7 mRNA levels in the retina. Conclusions Endothelial cell CD40 promotes ICAM-1 upregulation and leukostasis. In contrast, endothelial cell CD40 does not lead to pro-inflammatory cytokine and NOS2 upregulation likely because it does not activate purinergic-mediated pro-inflammatory molecule expression by myeloid cells or induce expression of these pro-inflammatory molecules in endothelial cells.
Collapse
Affiliation(s)
- Jin-Sang Yu
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jad Daw
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jose-Andres C Portillo
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
5
|
deFilippi C, Toribio M, Wong LP, Sadreyev R, Grundberg I, Fitch KV, Zanni MV, Lo J, Sponseller CA, Sprecher E, Rashidi N, Thompson MA, Cagliero D, Aberg JA, Braun LR, Stanley TL, Lee H, Grinspoon SK. Differential Plasma Protein Regulation and Statin Effects in Human Immunodeficiency Virus (HIV)-Infected and Non-HIV-Infected Patients Utilizing a Proteomics Approach. J Infect Dis 2021; 222:929-939. [PMID: 32310273 DOI: 10.1093/infdis/jiaa196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND People with human immunodeficiency virus (PWH) demonstrate increased atherosclerotic cardiovascular disease (ASCVD). Statins are being studied to prevent ASCVD in human immunodeficiency virus (HIV), but little is known regarding the effects of statins on a broad range of inflammatory and cardiovascular proteins in this population. METHODS We used a highly specific discovery proteomic approach (Protein Extension Assay), to determine statin effects on over 350 plasma proteins in relevant ASCVD pathways among HIV and non-HIV groups. Responses to pitavastatin calcium were assessed in 89 PWH in the INTREPID trial and 46 non-HIV participants with features of central adiposity and insulin resistance. History of cardiovascular disease was exclusionary for both studies. RESULTS Among participants with HIV, PCOLCE (enzymatic cleavage of type I procollagen) significantly increased after pitavastatin therapy and PLA2G7 (systemic marker of arterial inflammation) decreased. Among participants without HIV, integrin subunit alpha M (integrin adhesive function) and defensin alpha-1 (neutrophil function) increased after pitavastatin therapy and PLA2G7 decreased. At baseline, comparing participants with and without HIV, differentially expressed proteins included proteins involved in platelet and endothelial function and immune activation. CONCLUSIONS Pitavastatin affected proteins important to platelet and endothelial function and immune activation, and effects differed to a degree within PWH and participants without HIV.
Collapse
Affiliation(s)
- Chris deFilippi
- Inova Heart and Vascular Institute, Falls Church, Virginia, USA
| | - Mabel Toribio
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Lai Ping Wong
- Massachusetts General Hospital, Department of Molecular Biology and Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan Sadreyev
- Massachusetts General Hospital, Department of Molecular Biology and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kathleen V Fitch
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Markella V Zanni
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Lo
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Diana Cagliero
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Judith A Aberg
- Mount Sinai Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laurie R Braun
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Takara L Stanley
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Hang Lee
- Massachusetts General Hospital, Biostatistics Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven K Grinspoon
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Ma H, Gu Q, Niu H, Li X, Wang R. Benefits and Risks Associated With Aspirin Use in Patients With Diabetes for the Primary Prevention of Cardiovascular Events and Mortality: A Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:741374. [PMID: 34539583 PMCID: PMC8440957 DOI: 10.3389/fendo.2021.741374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE A meta-analysis was conducted to assess the benefits and risks of aspirin for the primary prevention of cardiovascular disease and all-cause mortality events in adults with diabetes. METHODS An extensive and systematic search was conducted in MEDLINE (via PubMed), Cinahl (via Ebsco), Scopus, and Web of Sciences from 1988 to December 2020. A detailed literature search was conducted using aspirin, cardiovascular disease (CVD), diabetes, and efficacy to identify trials of patients with diabetes who received aspirin for primary prevention of CVD. Demographic details with the primary outcome of events and bleeding outcomes were analyzed. The Cochrane Collaboration's risk of bias tool was used to assess the methodological quality of the included studies. Random-effects meta-analysis was used to calculate the pooled odds ratio for outcomes of cardiovascular events, death, and adverse events. FINDINGS A total of 8 studies were included with 32,024 patients with diabetes; 16,001 allocated to aspirin, and 16,023 allocated to the control group. There was no difference between aspirin and control groups with respect to all-cause mortality, cardiovascular mortality, or bleeding events. However, MACE was significantly lower in the aspirin group. IMPLICATIONS Although aspirin has no significant risk on primary endpoints of cardiovascular events and bleeding outcomes in patients with diabetes compared to control, major adverse cardiovascular events (MACE) were significantly lower in the aspirin group. Further research on the use of aspirin alone or in combination with other antiplatelet drugs is required in patients with diabetes to supplement currently available research. SYSTEMATIC REVIEW REGISTRATION identifier [XU#/IRB/2020/1005].
Collapse
Affiliation(s)
- Hua Ma
- Deparment of Vasculocardiology, Xianyang Central Hospital, Xianyang, China
| | - Qing Gu
- Deparment of Vasculocardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huining Niu
- Department of Hematology, Xianyang Central Hospital, Xianyang, China
| | - Xiaohua Li
- Deparment of Vasculocardiology, Xianyang Central Hospital, Xianyang, China
| | - Rong Wang
- Department of General Surgery, The Second People’s Hospital, Kunshan, Suzhou, China
- *Correspondence: Rong Wang, ;
| |
Collapse
|
7
|
Insights into predicting diabetic nephropathy using urinary biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140475. [DOI: 10.1016/j.bbapap.2020.140475] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
|
8
|
Guo Q, Zhou S, Feng X, Yang J, Qiao J, Zhao Y, Shi D, Zhou Y. The sensibility of the new blood lipid indicator--atherogenic index of plasma (AIP) in menopausal women with coronary artery disease. Lipids Health Dis 2020; 19:27. [PMID: 32093690 PMCID: PMC7041294 DOI: 10.1186/s12944-020-01208-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Dyslipidemia is a key driver of coronary artery disease (CAD) development. This study aimed to determine whether the atherogenic index of plasma (AIP), a novel comprehensive lipid index, is an independent and reliable predictor of CAD risk in postmenopausal women. Methods A cohort of consecutive 4644 postmenopausal women (aged 50 or above) undergoing coronary angiography (CAG) in Anzhen Hospital (Beijing, China) from January–December 2014 was included in the analysis. Of them, 3039 women were CAD patients, and 1605 were non-CAD subjects. Results Relative to control subjects, TG levels in CAD patients were higher and HDL-C levels were lower. In CAD patients, non-traditional lipid profile values (TC/HDL-C, AI, and AIP) were significantly elevated relative to controls. AIP was positively correlated with TC (r = 0.157), TG (r = 0.835), LDL-C (r = 0.058), non-HDL-C (r = 0.337), TC/HDL-C (r = 0.683), LDL-C/HDL-C (r = 0.437), LCI (r = 0.662), and AI (r = 0.684), and negatively correlated with HDL-C (r = − 0.682) (all P < 0.001), but was independent of age (r = − 0.022; P = 0.130) and BMI (r = 0.020, P = 0.168). Aunivariate logistic regression analysis revealed AIP to be the measured lipid parameter most closely related to CAD, and its unadjusted odds ratio was 1.824 (95% CI: 1.467–2.267, P < 0.001). After adjusting for several CAD risk factors (age, BMI, smoking, drinking, EH, DM, hyperlipidemia, and family history of CVD, AIP was still found to represent a significant CAD risk factor (OR 1.553, 95% CI: 1.234–1.955, P < 0. 001). Conclusion AIP may be a powerful independent predictor of CAD risk in Chinese Han postmenopausal women, and may be superior to the traditional lipid indices.
Collapse
Affiliation(s)
- Qianyun Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Shu Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Xunxun Feng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Jiaqi Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Jiaming Qiao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Dongmei Shi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
9
|
Kojok K, Mohsen M, El Kadiry AEH, Mourad W, Merhi Y. Aspirin Reduces the Potentiating Effect of CD40L on Platelet Aggregation via Inhibition of Myosin Light Chain. J Am Heart Assoc 2020; 9:e013396. [PMID: 32009527 PMCID: PMC7033871 DOI: 10.1161/jaha.119.013396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Antiplatelet therapy with aspirin (acetylsalicylic acid [ASA]) is less efficient in some coronary patients, which increases their risk of developing thrombosis. Elevated blood levels of thromboinflammatory mediators, like soluble CD40L (sCD40L), may explain such variabilities. We hypothesized that in the presence of elevated levels of sCD40L, the efficacy of ASA may vary and aimed to determine the effects of ASA on CD40L signaling and aggregation of platelets. Methods and Results The effects of ASA on CD40L‐treated human platelets, in response to suboptimal concentrations of collagen or thrombin, were assessed at levels of aggregation, thromboxane A2 secretion, and phosphorylation of p38 mitogen‐activated protein kinase, nuclear factor kappa B, transforming growth factor‐β–activated kinase 1, and myosin light chain. sCD40L significantly elevated thromboxane A2 secretion in platelets in response to suboptimal doses of collagen and thrombin, which was reversed by ASA. ASA did not inhibit the phosphorylation of p38 mitogen‐activated protein kinase, nuclear factor kappa B, and transforming growth factor‐β–activated kinase 1, with sCD40L stimulation alone or with platelet agonists. sCD40L potentiated platelet aggregation, an effect completely reversed and partially reduced by ASA in response to a suboptimal dose of collagen and thrombin, respectively. The effects of ASA in sCD40L‐treated platelets with collagen were related to inhibition of platelet shape change and myosin light chain phosphorylation. Conclusions ASA does not affect platelet sCD40L signaling but prevents its effect on thromboxane A2 secretion and platelet aggregation in response to collagen, via a mechanism implying inhibition of myosin light chain. Targeting the sCD40L axis in platelets may have a therapeutic potential in patients with elevated levels of sCD40L and who are nonresponsive or less responsive to ASA.
Collapse
Affiliation(s)
- Kevin Kojok
- The Laboratory of Thrombosis and Hemostasis Research Centre Montreal Heart Institute Montreal Quebec Canada.,Faculty of Medicine Université de Montréal Montreal Quebec Canada
| | - Mira Mohsen
- The Laboratory of Thrombosis and Hemostasis Research Centre Montreal Heart Institute Montreal Quebec Canada.,Faculty of Medicine Université de Montréal Montreal Quebec Canada
| | - Abed El Hakim El Kadiry
- The Laboratory of Thrombosis and Hemostasis Research Centre Montreal Heart Institute Montreal Quebec Canada.,Faculty of Medicine Université de Montréal Montreal Quebec Canada
| | - Walid Mourad
- Faculty of Medicine Université de Montréal Montreal Quebec Canada.,Research Centre Centre Hospitalier de l'Université de Montréal Montréal Quebec Canada
| | - Yahye Merhi
- The Laboratory of Thrombosis and Hemostasis Research Centre Montreal Heart Institute Montreal Quebec Canada.,Faculty of Medicine Université de Montréal Montreal Quebec Canada
| |
Collapse
|
10
|
Antinozzi C, Sgrò P, Di Luigi L. Advantages of Phosphodiesterase Type 5 Inhibitors in the Management of Glucose Metabolism Disorders: A Clinical and Translational Issue. Int J Endocrinol 2020; 2020:7078108. [PMID: 32774364 PMCID: PMC7407035 DOI: 10.1155/2020/7078108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Among metabolic diseases, carbohydrate metabolism disorders are the most widespread. The most common glucose pathological conditions are acquired and may increase the risk of type 2 diabetes, obesity, heart diseases, stroke, and kidney insufficiency. Phosphodiesterase type 5 inhibitors (PDE5i) have long been used as an effective therapeutic option for the treatment of erectile dysfunction (ED). Different studies have demonstrated that PDE5i, by sensitizing insulin target tissues to insulin, play an important role in controlling the action of insulin and glucose metabolism, highlighting the protective action of these drugs against metabolic diseases. In this review, we report the latest knowledge about the role of PDE5i in the metabolic diseases of insulin resistance and type 2 diabetes, highlighting clinical aspects and potential treatment approaches. Although various encouraging data are available, further in vivo and in vitro studies are required to elucidate the mechanism of action and their clinical application in humans.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| |
Collapse
|
11
|
Kojok K, Akoum SE, Mohsen M, Mourad W, Merhi Y. CD40L Priming of Platelets via NF-κB Activation is CD40- and TAK1-Dependent. J Am Heart Assoc 2019; 7:e03677. [PMID: 30571597 PMCID: PMC6405550 DOI: 10.1161/jaha.118.009636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background CD40 ligand (CD40L) is a thromboinflammatory molecule that predicts cardiovascular events. CD40L is a strong activator of nuclear factor kappa B (NF‐κB) in platelets that primes and enhances platelet activation in response to thrombotic stimuli. In addition to its classical receptor CD40, CD40L binds αIIbβ3, α5β1, and αMβ2 in various cell types. However, the function of the different CD40L receptors on platelets remains unexplored. The present study aims to identify the receptors of CD40L, involved in platelet NF‐κB activation, their downstream signaling and their implication in platelet aggregation. Methods and Results We showed that platelets express CD40, αIIbβ3, and α5β1 and release CD40L in response to sCD40L stimulation. sCD40L alone dose‐dependently induced platelet NF‐κB activation; this effect was absent in CD40−/− mouse platelets and inhibited by the CD40 blockade, but was unaffected by the αIIbβ3 or α5β1 blockade in human platelets. sCD40L/CD40 axis activates transforming growth factor‐β‐activated kinase 1 upstream of NF‐κB. In functional studies, sCD40L alone did not affect platelet aggregation but potentiated the aggregation response in the presence of suboptimal doses of thrombin; this effect was abolished by CD40, transforming growth factor‐β‐activated kinase 1, and NF‐κB inhibitors. Conclusions CD40L primes platelets via signaling pathways involving CD40/transforming growth factor‐β‐activated kinase 1/NF‐κB, which predisposes platelets to enhanced activation and aggregation in response to thrombotic stimuli.
Collapse
Affiliation(s)
- Kevin Kojok
- 1 Laboratory of Thrombosis and Hemostasis Montreal Heart Institute, Research Centre Montreal QC Canada.,2 Faculty of Medicine Université de Montréal QC Canada
| | - Souhad El Akoum
- 1 Laboratory of Thrombosis and Hemostasis Montreal Heart Institute, Research Centre Montreal QC Canada.,2 Faculty of Medicine Université de Montréal QC Canada
| | - Mira Mohsen
- 1 Laboratory of Thrombosis and Hemostasis Montreal Heart Institute, Research Centre Montreal QC Canada.,2 Faculty of Medicine Université de Montréal QC Canada
| | - Walid Mourad
- 2 Faculty of Medicine Université de Montréal QC Canada.,3 Research Centre Centre Hospitalier de l'Université de Montréal QC Canada
| | - Yahye Merhi
- 1 Laboratory of Thrombosis and Hemostasis Montreal Heart Institute, Research Centre Montreal QC Canada.,2 Faculty of Medicine Université de Montréal QC Canada
| |
Collapse
|
12
|
Grosdidier C, Blanz KD, Deharo P, Bernot D, Poggi M, Bastelica D, Wolf D, Duerschmied D, Grino M, Cuisset T, Alessi M, Canault M. Platelet CD40 ligand and bleeding during P2Y12 inhibitor treatment in acute coronary syndrome. Res Pract Thromb Haemost 2019; 3:684-694. [PMID: 31624788 PMCID: PMC6781928 DOI: 10.1002/rth2.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Antiplatelet therapy through inhibition of the adenosine diphosphate (ADP)/P2Y12 pathway is commonly used in the treatment of acute coronary syndrome (ACS). Although efficient in preventing platelet activation and thrombus formation, it increases the risk of bleeding complications. In patients with ACS receiving platelet aggregation inhibitors, that is, P2Y12 blockers (n = 923), we investigated the relationship between plasma and platelet-associated CD40L levels and bleeding events (n = 71). Treatment with P2Y12 inhibitors in patients with ACS did not affect plasma-soluble CD40L levels, but decreased platelet CD40L surface expression (pCD40L) and platelet-released CD40L (rCD40L) levels in response to stimulation as compared to healthy controls. In vitro inhibition of the ADP pathway in healthy control platelets reduced both pCD40L and rCD40L levels. In a multivariable analysis, the reduced pCD40L level observed in ACS patients was significantly associated with the risk of bleeding occurrence (adjusted odds ratio = 0.15; 95% confidence interval = 0.034-0.67). P2Y12 inhibitor-treated (ticagrelor) mice exhibited a 2.5-fold increase in tail bleeding duration compared with controls. A significant reduction in bleeding duration was observed on CD40L+/+ but not CD40L-/- platelet infusion. In addition, CD40L blockade in P2Y12 inhibitor-treated blood samples from a healthy human reduced thrombus growth over immobilized collagen under arterial flow. In conclusion, measurement of pCD40L may offer a novel approach to assessing bleeding risk in patients with ACS who are being treated with P2Y12 inhibitors.
Collapse
Affiliation(s)
- Charlotte Grosdidier
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | - Kelly D. Blanz
- Spemann Graduate School of Biology and MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Pierre Deharo
- Department of CardiologyAPHM, CHU TimoneMarseilleFrance
| | - Denis Bernot
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | - Marjorie Poggi
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
| | | | - Dennis Wolf
- Department of Cardiology and Angiology IHeart Center Freiburg UniversityFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology IHeart Center Freiburg UniversityFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Michel Grino
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
| | | | - Marie‐Christine Alessi
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | | |
Collapse
|
13
|
Kojok K, El-Kadiry AEH, Merhi Y. Role of NF-κB in Platelet Function. Int J Mol Sci 2019; 20:E4185. [PMID: 31461836 PMCID: PMC6747346 DOI: 10.3390/ijms20174185] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Platelets are megakaryocyte-derived fragments lacking nuclei and prepped to maintain primary hemostasis by initiating blood clots on injured vascular endothelia. Pathologically, platelets undergo the same physiological processes of activation, secretion, and aggregation yet with such pronouncedness that they orchestrate and make headway the progression of atherothrombotic diseases not only through clot formation but also via forcing a pro-inflammatory state. Indeed, nuclear factor-κB (NF-κB) is largely implicated in atherosclerosis and its pathological complication in atherothrombotic diseases due to its transcriptional role in maintaining pro-survival and pro-inflammatory states in vascular and blood cells. On the other hand, we know little on the functions of platelet NF-κB, which seems to function in other non-genomic ways to modulate atherothrombosis. Therein, this review will resemble a rich portfolio for NF-κB in platelets, specifically showing its implications at the levels of platelet survival and function. We will also share the knowledge thus far on the effects of active ingredients on NF-κB in general, as an extrapolative method to highlight the potential therapeutic targeting of NF-κB in coronary diseases. Finally, we will unzip a new horizon on a possible extra-platelet role of platelet NF-κB, which will better expand our knowledge on the etiology and pathophysiology of atherothrombosis.
Collapse
Affiliation(s)
- Kevin Kojok
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Abed El-Hakim El-Kadiry
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Yahye Merhi
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada.
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada.
| |
Collapse
|
14
|
Karnell JL, Rieder SA, Ettinger R, Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: Humoral immunity and beyond. Adv Drug Deliv Rev 2019; 141:92-103. [PMID: 30552917 DOI: 10.1016/j.addr.2018.12.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
CD40 is a TNF receptor superfamily member expressed on both immune and non-immune cells. Interactions between B cell-expressed CD40 and its binding partner, CD40L, predominantly expressed on activated CD4+ T cells, play a critical role in promoting germinal center formation and the production of class-switched antibodies. Non-hematopoietic cells expressing CD40 can also engage CD40L and trigger a pro-inflammatory response. This article will highlight what is known about the biology of the CD40-CD40L axis in humans and describe the potential contribution of CD40 signaling on both hematopoietic and non-hematopoietic cells to autoimmune disease pathogenesis. Additionally, novel therapeutic approaches to target this pathway, currently being evaluated in clinical trials, are discussed.
Collapse
|
15
|
|
16
|
Reiche ME, den Toom M, Willemsen L, van Os B, Gijbels MJJ, Gerdes N, Aarts SABM, Lutgens E. Deficiency of T cell CD40L has minor beneficial effects on obesity-induced metabolic dysfunction. BMJ Open Diabetes Res Care 2019; 7:e000829. [PMID: 31908798 PMCID: PMC6936585 DOI: 10.1136/bmjdrc-2019-000829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Obesity-associated metabolic dysfunction increases the risk of multiple diseases such as type 2 diabetes and cardiovascular disease. The importance of the co-stimulatory CD40-CD40L dyad in diet-induced obesity (DIO), with opposing phenotypes arising when either the receptor (aggravating) or the ligand (protective) is deleted, has been described previously. The functions of CD40 and CD40L are cell type dependent. As co-stimulation via T cell-mediated CD40L is essential for driving inflammation, we here investigate the role of T cell CD40L in DIO. RESEARCH DESIGN AND METHODS CD4CreCD40Lfl/fl mice on a C57BL/6 background were generated and subjected to DIO by administration of 15 weeks of high fat diet (HFD). RESULTS HFD-fed CD4CreCD40Lfl/fl mice had similar weight gain, adipocyte sizes, plasma cholesterol and triglyceride levels as their wild-type (WT) counterparts. Insulin and glucose tolerance were comparable, although CD4CreCD40Lfl/fl mice did have a decreased plasma insulin concentration, suggesting a minor improvement of insulin resistance. Furthermore, although the degree of hepatosteatosis was similar in both genotypes, the gene expression of fatty acid synthase 1 and ATP-citrate lyase had decreased, whereas expression of peroxisome proliferator-activated receptor-α had increased in livers of CD4CreCD40Lfl/fl mice, suggesting decreased hepatic lipid uptake in absence of T cell CD40L.Moreover, CD4CreCD40Lfl/fl mice displayed significantly lower numbers of effector memory CD4+ T cells and regulatory T cells in blood and lymphoid organs compared with WT. However, immune cell composition and inflammatory status of the adipose tissue was similar in CD4CreCD40Lfl/fl and WT mice. CONCLUSIONS T cell CD40L deficiency results in a minor improvement of insulin sensitivity and hepatic steatosis in DIO, despite the strong decrease in effector T cells and regulatory T cells in blood and lymphoid organs. Our data indicate that other CD40L-expressing cell types are more relevant in the pathogenesis of obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Myrthe E Reiche
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Lisa Willemsen
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Bram van Os
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Marion J J Gijbels
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
- Pathology, CARIM, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Suzanne A B M Aarts
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Esther Lutgens
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| |
Collapse
|
17
|
Gerdes N, Zirlik A. Co-stimulatory molecules in and beyond co-stimulation – tipping the balance in atherosclerosis? Thromb Haemost 2017; 106:804-13. [DOI: 10.1160/th11-09-0605] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022]
Abstract
SummaryA plethora of basic laboratory and clinical studies has uncovered the chronic inflammatory nature of atherosclerosis. The adaptive immune system with its front-runner, the T cell, drives the atherogenic process at all stages. T cell function is dependent on and controlled by a variety of either co-stimulatory or co-inhibitory signals. In addition, many of these proteins enfold T cell-independent pro-atherogenic functions on a variety of cell types. Accordingly they represent potential targets for immune- modulatory and/or anti-inflammatory therapy of atherosclerosis. This review focuses on the diverse role of co-stimulatory molecules of the B7 and tumour necrosis factor (TNF)-superfamily and their downstream signalling effectors in atherosclerosis. In particular, the contribution of CD28/CD80/CD86/CTLA4, ICOS/ICOSL, PD-1/PDL-1/2, TRAF, CD40/CD154, OX40/OX40L, CD137/CD137L, CD70/CD27, GITR/GITRL, and LIGHT to arterial disease is reviewed. Finally, the potential for a therapeutic exploitation of these molecules in the treatment of atherosclerosis is discussed.
Collapse
|
18
|
Subauste CS. CD40, a Novel Inducer of Purinergic Signaling: Implications to the Pathogenesis of Experimental Diabetic Retinopathy. Vision (Basel) 2017; 1:vision1030020. [PMID: 31740645 PMCID: PMC6835793 DOI: 10.3390/vision1030020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy is a leading complication of diabetes. Death of capillary cells with resulting capillary degeneration is a central feature of this disease. Chronic low-grade inflammation has been linked to the development of retinal capillary degeneration in diabetes. CD40 is an upstream inducer of a broad range of inflammatory responses in the diabetic retina and is required for death of retinal capillary cells. Recent studies uncovered CD40 as a novel inducer of purinergic signaling and identified the CD40-ATP-P2X7 pathway as having a key role in the induction of inflammation in the diabetic retina and programmed cell death of retinal endothelial cells.
Collapse
Affiliation(s)
- Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-2785
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Michel NA, Zirlik A, Wolf D. CD40L and Its Receptors in Atherothrombosis-An Update. Front Cardiovasc Med 2017; 4:40. [PMID: 28676852 PMCID: PMC5477003 DOI: 10.3389/fcvm.2017.00040] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
CD40L (CD154), a member of the tumor necrosis factor superfamily, is a co-stimulatory molecule that was first discovered on activated T cells. Beyond its fundamental role in adaptive immunity-ligation of CD40L to its receptor CD40 is a prerequisite for B cell activation and antibody production-evidence from more than two decades has expanded our understanding of CD40L as a powerful modulator of inflammatory pathways. Although inhibition of CD40L with neutralizing antibodies has induced life-threatening side effects in clinical trials, the discovery of cell-specific effects and novel receptors with distinct functional consequences has opened a new path for therapies that specifically target detrimental properties of CD40L. Here, we carefully evaluate the signaling network of CD40L by gene enrichment analysis and its cell-specific expression, and thoroughly discuss its role in cardiovascular pathologies with a specific emphasis on atherosclerotic and thrombotic disease.
Collapse
Affiliation(s)
- Nathaly Anto Michel
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Morin SO, Poggi M, Alessi MC, Landrier JF, Nunès JA. Modulation of T Cell Activation in Obesity. Antioxid Redox Signal 2017; 26:489-500. [PMID: 27225042 DOI: 10.1089/ars.2016.6746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Immune T cells are present in adipose tissues (AT), and the stoichiometry of the different T cell subsets is altered during diet-induced obesity (DIO). T cells contribute to the early steps of AT inflammation during DIO. Recent Advances: Many factors could potentially be responsible for this altered pro-inflammatory versus anti-inflammatory T cell balance. CRITICAL ISSUES T cells are potentially activated in AT, which vitamin D might contribute to, as will be discussed in this article. In addition, we will review the different possible contributors to T cell activation in AT, such as the CD28 and CD154 T cell costimulatory molecules in AT. FUTURE DIRECTIONS The potential antigen presentation capacities of adipocytes should be further investigated. Moreover, the properties of these AT resident (or migrating to AT) T cells must be further assessed. Antioxid. Redox Signal. 26, 489-500.
Collapse
Affiliation(s)
- Stéphanie O Morin
- 1 Inserm, U1068, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,2 Institut Paoli-Calmettes , Marseille, France .,3 CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,4 Aix-Marseille Université , UM105, Marseille, France
| | - Marjorie Poggi
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Marie-Christine Alessi
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Jean-François Landrier
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Jacques A Nunès
- 1 Inserm, U1068, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,2 Institut Paoli-Calmettes , Marseille, France .,3 CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,4 Aix-Marseille Université , UM105, Marseille, France
| |
Collapse
|
21
|
Kunutsor SK, Seidu S, Khunti K. Aspirin for primary prevention of cardiovascular and all-cause mortality events in diabetes: updated meta-analysis of randomized controlled trials. Diabet Med 2017; 34:316-327. [PMID: 27086572 DOI: 10.1111/dme.13133] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
Abstract
AIMS To evaluate the benefits and harms of aspirin for the primary prevention of cardiovascular disease and all-cause mortality events in people with diabetes by conducting a systematic review and meta-analysis. METHODS Randomized controlled trials of aspirin compared with placebo (or no treatment) in people with diabetes with no history of cardiovascular disease were identified from MEDLINE, EMBASE, Web of Science, the Cochrane Library and a manual search of bibliographies to November 2015. Study-specific relative risks with 95% CIs were aggregated using random effects models. RESULTS A total of 10 randomized trials were included in the review. There was a significant reduction in risk of major adverse cardiovascular events: relative risk of 0.90 (95% CI 0.81-0.99) in groups taking aspirin compared with placebo or no treatment. Limited subgroup analyses suggested that the effect of aspirin on major adverse cardiovascular events differed by baseline cardiovascular disease risk, medication compliance and sex (P for interaction for all > 0.05).There was no significant reduction in the risk of myocardial infarction, coronary heart disease, stroke, cardiovascular mortality or all-cause mortality. Aspirin significantly reduced the risk of myocardial infarction for a treatment duration of ≤ 5 years. There were differences in the effect of aspirin by dosage and treatment duration on overall stroke outcomes (P for interaction for all < 0.05). There was an increase in risk of major or gastrointestinal bleeding events, but estimates were imprecise and not significant. CONCLUSIONS The emerging data do not clearly support guidelines that encourage the use of aspirin for the primary prevention of cardiovascular disease in adults with diabetes who are at increased cardiovascular disease risk.
Collapse
Affiliation(s)
- S K Kunutsor
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Southmead, UK
| | - S Seidu
- Leicester Diabetes Centre, Leicester General Hospital, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, UK
| | - K Khunti
- Leicester Diabetes Centre, Leicester General Hospital, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, UK
| |
Collapse
|
22
|
The association between impaired glucose tolerance and soluble CD40 ligand: a 15-year prospective cohort study. Aging Clin Exp Res 2016; 28:1243-1249. [PMID: 26749117 DOI: 10.1007/s40520-015-0524-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The aim of the present study was to assess soluble CD40 Ligand (sCD40L) levels in relation to impaired glucose tolerance (IGT) at population level. METHODS This study is part of a prospective, population-based cohort study, carried out from 1990 to 2008 in northern Finland. Study members, born in 1935 and living in the City of Oulu, underwent oral glucose tolerance test (OGTT) and measurement of plasma sCD40L at three different time points during the 15-year follow-up. The total number of study members who underwent OGTT was 768 at the baseline, 557 at the first and 467 at the second follow-up. SCD40L levels in patients with IGT were compared with those in subjects with normal glucose tolerance or impaired fasting glucose (non-IGT). RESULTS Geometric mean level of sCD40L was significantly higher in the IGT group compared with the non-IGT group at the baseline (0.42 vs. 0.27 ng/mL) and at the first follow-up (1.50 vs. 0.36 ng/mL) (repeated measures mixed models ANOVA, p < 0.05). At the second follow-up (age 72-73 years), however, the difference was not statistically significant (9.44 vs. 7.24 ng/mL). During the entire follow-up, the levels of sCD40L increased significantly both in IGT and non-IGT groups. CONCLUSION We found that plasma sCD40L level increases with age as well as there are elevated levels of plasma sCD40L in subjects with IGT compared with non-IGT. This may indicate an increased cardiovascular risk in older age and in subjects with IGT.
Collapse
|
23
|
Sarray S, Almawi WY. Levels of CD40L and other inflammatory biomarkers in obese and non-obese women with polycystic ovary syndrome. Am J Reprod Immunol 2016; 76:285-91. [DOI: 10.1111/aji.12549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/21/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sameh Sarray
- Department of Medical Biochemistry; Arabian Gulf University; Manama Bahrain
| | - Wassim Y. Almawi
- Department of Medical Biochemistry; Arabian Gulf University; Manama Bahrain
| |
Collapse
|
24
|
Gerdes N, Seijkens T, Lievens D, Kuijpers MJE, Winkels H, Projahn D, Hartwig H, Beckers L, Megens RTA, Boon L, Noelle RJ, Soehnlein O, Heemskerk JWM, Weber C, Lutgens E. Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arterioscler Thromb Vasc Biol 2016; 36:482-90. [PMID: 26821950 DOI: 10.1161/atvbaha.115.307074] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Beyond their eminent role in hemostasis and thrombosis, platelets are recognized as mediators of inflammation. Platelet cluster of differentiation 40 (CD40) ligand (CD40L and CD154) plays a key role in mediating platelet-induced inflammation in atherosclerosis. CD40, the receptor for CD40L, is present on platelets; however, the role of CD40 on this cell type is until now undefined. APPROACH AND RESULTS We found that in both mice and humans, platelet CD40 mediates the formation of platelet-leukocyte aggregates and the release of chemokine (C-X-C motif) ligand 4. Leukocytes were also less prone to adhere to CD40-deficient thrombi. However, platelet CD40 was not involved in platelet aggregation. Activated platelets isolated from Cd40(-/-)Apoe(-/-) mice adhered less to the endothelium upon injection into Apoe(-/-) mice when compared with CD40-sufficient platelets. Furthermore, lack of CD40 on injected platelets led to reduced leukocyte recruitment to the carotid artery as assayed by intravital microscopy. This was accompanied by a decrease in endothelial vascular cell adhesion molecule-1, platelet endothelial cell adhesion molecule, VE-cadherin, and P-selectin expression. To investigate the effect of platelet CD40 in atherosclerosis, Apoe(-/-) mice received thrombin-activated Apoe(-/-) or Cd40(-/-)Apoe(-/-) platelets every 5 days for 12 weeks, starting at the age of 17 weeks, when atherosclerotic plaques had already formed. When compared with mice that received Apoe(-/-) platelets, those receiving Cd40(-/-)Apoe(-/-) platelets exhibited a >2-fold reduction in atherosclerosis. Plaques of mice receiving CD40-deficient platelets were less advanced, contained less macrophages, neutrophils, and collagen, and displayed smaller lipid cores. CONCLUSIONS Platelet CD40 plays a crucial role in inflammation by stimulating leukocyte activation and recruitment and activation of endothelial cells, thereby promoting atherosclerosis.
Collapse
Affiliation(s)
- Norbert Gerdes
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Tom Seijkens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Dirk Lievens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Marijke J E Kuijpers
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Holger Winkels
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Delia Projahn
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Helene Hartwig
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Linda Beckers
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Remco T A Megens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Louis Boon
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Randolph J Noelle
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Johan W M Heemskerk
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Esther Lutgens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.).
| |
Collapse
|
25
|
Gremmel T, Frelinger AL, Michelson AD. Soluble CD40 Ligand in Aspirin-Treated Patients Undergoing Cardiac Catheterization. PLoS One 2015; 10:e0134599. [PMID: 26237513 PMCID: PMC4523196 DOI: 10.1371/journal.pone.0134599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/12/2015] [Indexed: 01/08/2023] Open
Abstract
Plasma soluble CD40 ligand (sCD40L) is mainly generated by cleavage of CD40L from the surface of activated platelets, and therefore considered a platelet activation marker. Although the predictive value of sCD40L for ischemic events has been demonstrated in patients with acute coronary syndromes (ACS), studies on the association of sCD40L with cardiovascular outcomes in lower risk populations yielded heterogeneous results. We therefore sought to investigate factors influencing sCD40L levels, and the predictive value of sCD40L for long-term ischemic events in unselected, aspirin-treated patients undergoing cardiac catheterization. sCD40L was determined by a commercially available enzyme-linked immunosorbent assay in 682 consecutive patients undergoing cardiac catheterization. Two-year follow-up data were obtained from 562 patients. Dual antiplatelet therapy with aspirin and clopidogrel was associated with significantly lower levels of sCD40L and lower platelet surface expressions of P-selectin and activated GPIIb/IIIa compared to aspirin monotherapy (all p≤0.01). Hypertension was linked to lower plasma concentrations of sCD40L, whereas female sex, increasing high-sensitivity C-reactive protein, and hematocrit were associated with higher sCD40L concentrations (all p<0.05). sCD40L levels were similar in patients without and with the primary endpoint in the overall study population (p = 0.4). Likewise, sCD40L levels did not differ significantly between patients without and with the secondary endpoints (both p≥0.4). Similar results were obtained when only patients with angiographically-proven coronary artery disease (n = 459), stent implantation (n = 205) or ACS (n = 125) were analyzed. The adjustment for differences in patient characteristics by multivariate regression analyses did not change the results. ROC curve analyses did not reveal cut-off values for sCD40L for the prediction of the primary or secondary endpoints. In conclusion, plasma sCD40L levels are reduced by antiplatelet therapy with clopidogrel, but not associated with long-term ischemic outcomes in unselected consecutive aspirin-treated patients undergoing cardiac catheterization.
Collapse
Affiliation(s)
- Thomas Gremmel
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children´s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Andrew L. Frelinger
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children´s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan D. Michelson
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children´s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Adly AAM, Ismail EA, Tawfik LM, Ebeid FSE, Hassan AAS. Endothelial monocyte activating polypeptide II in children and adolescents with type 1 diabetes mellitus: Relation to micro-vascular complications. Cytokine 2015; 76:156-162. [PMID: 26142824 DOI: 10.1016/j.cyto.2015.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/12/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Endothelial monocyte-activating polypeptide II (EMAP II) is a multifunctional polypeptide with proinflammatory and antiangiogenic activity. Hyperglycemia and dyslipidemia appears to be significant factors contributing to increased EMAP-II levels. We determined serum EMAP II in children and adolescents with type 1 diabetes as a potential marker for micro-vascular complications and assessed its relation to inflammation and glycemic control. METHODS Eighty children and adolescents with type 1 diabetes were divided into 2 groups according to the presence of micro-vascular complications and compared with 40 healthy controls. High-sensitivity C-reactive protein (hs-CRP), hemoglobin A1c (HbA1c) and EMAP II levels were assessed. RESULTS Serum EMAP II levels were significantly increased in patients with micro-vascular complications (1539 ± 321.5 pg/mL) and those without complications (843.6 ± 212.6 pg/mL) compared with healthy controls (153.3 ± 28.3 pg/mL; p<0.001). EMAP II was increased in patients with microalbuminuria than normoalbuminuric group (p<0.001). Significant positive correlations were found between EMAP II levels and body mass index, fasting blood glucose, HbA1c, serum creatinine, triglycerides, total cholesterol, urinary albumin creatinine ratio (UACR) and hs-CRP (p<0.05). A cutoff value of EMAP II at 1075 pg/mL could differentiate diabetic patients with and without micro-vascular complications with a sensitivity of 93% and specificity of 82%. CONCLUSIONS We suggest that EMAP II is elevated in type 1 diabetic patients, particularly those with micro-vascular complications. EMAP II levels are related to inflammation, glycemic control, albuminuria level of patients and the risk of micro-vascular complications.
Collapse
Affiliation(s)
- Amira A M Adly
- Pediatric Department, Faculty of Medicine, Ain Shams University, Egypt.
| | - Eman A Ismail
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Lamis M Tawfik
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Fatma S E Ebeid
- Pediatric Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Asmaa A S Hassan
- Pediatric Department, Faculty of Medicine, Ain Shams University, Egypt
| |
Collapse
|
27
|
Lannan KL, Sahler J, Kim N, Spinelli SL, Maggirwar SB, Garraud O, Cognasse F, Blumberg N, Phipps RP. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 2015; 6:48. [PMID: 25762994 PMCID: PMC4327621 DOI: 10.3389/fimmu.2015.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023] Open
Abstract
Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cells and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as "cellular fragments" is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryocytes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and non-genomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB) family of proteins and peroxisome proliferator-activated receptor gamma (PPARγ). In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the non-genomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and hemostatic functions.
Collapse
Affiliation(s)
- Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Julie Sahler
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Biological and Environmental Engineering, Cornell University , Ithaca, NY , USA
| | - Nina Kim
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Olivier Garraud
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| |
Collapse
|
28
|
Xu W, Chen J, Lin J, Liu D, Mo L, Pan W, Feng J, Wu W, Zheng D. Exogenous H2S protects H9c2 cardiac cells against high glucose-induced injury and inflammation by inhibiting the activation of the NF-κB and IL-1β pathways. Int J Mol Med 2014; 35:177-86. [PMID: 25412187 DOI: 10.3892/ijmm.2014.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/30/2014] [Indexed: 11/06/2022] Open
Abstract
Hyperglycemia has been reported to activate the nuclear factor-κB (NF-κB) pathway. We have previously demonstrated that exogenous hydrogen sulfide (H2S) protects cardiomyocytes against high glucose (HG)-induced injury by inhibiting the activity of p38 mitogen-activated protein kinase (MAPK), which can activate the NF-κB pathway and induce interleukin (IL)-1β production. In the present study, we aimed to investigate the hypothesis that exogenous H2S protects cardiomyocytes against HG-induced injury and inflammation through the inhibition of the NF-κB/IL-1β pathway. H9c2 cardiac cells were treated with 35 mM glucose (HG) for 24 h to establish a model of HG-induced damage. Our results demonstrated that treatment of the cells with 400 µM sodium hydrogen sulfide (NaHS, a donor of H2S) or 100 µM pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) for 30 min prior to exposure to HG markedly attenuated the HG-induced increase in the expression levels of the phosphorylated (p)-NF-κB p65 subunit. Notably, pre-treatment of the H9c2 cardiac cells with NaHS or PDTC significantly suppressed the HG-induced injury, including cytotoxicity, apoptosis, oxidative stress and mitochondrial insults, as evidenced by an increase in cell viability, as well as a decrease in the number of apoptotic cells, the expression of cleaved caspase-3, the generation of reactive oxygen species (ROS) and the dissipation of mitochondrial membrane potential (MMP). In addition, pre-treatment of the cells with NaHS or PDTC ameliorated the HG-induced inflammatory response, leading to a decrease in the levels of IL-1β, IL-6 and tumor necrosis factor-α (TNF-α). Importantly, co-treatment of the H9c2 cells with 20 ng/ml IL-1 receptor antagonist (IL-1Ra) and HG markedly reduced the HG-induced increase in p-NF-κB p65 expression, cytotoxicity, the number of apoptotic cells, as well as the production of TNF-α. In conclusion, the present study presents novel mechanistic evidence that exogenous H2S protects H9c2 cardiac cells against HG-induced inflammation and injury, including cytotoxicity, apoptosis, overproduction of ROS and the dissipation of MMP, by inhibiting the NF-κB/IL-1β pathway. We also provide new data indicating that the positive interaction between the NF-κB pathway and IL-1β is critical in HG-induced injury and inflammation in H9c2 cardiac cells.
Collapse
Affiliation(s)
- Wenming Xu
- Department of Internal Medicine, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jingfu Chen
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianchong Lin
- Department of Internal Medicine, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Donghong Liu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liqiu Mo
- Department of Anesthesiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wanying Pan
- Department of Anesthesiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianqiang Feng
- Department of Anesthesiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen Wu
- Department of Endocrinology, Guangdong Geriatrics Institute, Guangdong General Hospital, Nanfang Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Dongdan Zheng
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
29
|
Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther 2014; 147:12-21. [PMID: 25444755 DOI: 10.1016/j.pharmthera.2014.10.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
The phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra™), vardenafil (Levitra™), and tadalafil (Cialis™) have been developed for treatment of erectile dysfunction. Moreover, sildenafil and tadalafil are used for the management of pulmonary arterial hypertension in patients. Since our first report showing the cardioprotective effect of sildenafil in 2002, there has been tremendous growth of preclinical and clinical studies on the use of PDE5 inhibitors for cardiovascular diseases and cancer. Numerous animal studies have demonstrated that PDE5 inhibitors have powerful protective effect against myocardial ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and diabetic cardiomyopathy, cardiac hypertrophy, Duchenne muscular dystrophy and the improvement of stem cell efficacy for myocardial repair. Mechanistically, PDE5 inhibitors protect the heart against I/R injury through increased expression of nitric oxide synthases, activation of protein kinase G (PKG), PKG-dependent hydrogen sulfide generation, and phosphorylation of glycogen synthase kinase-3β - a master switch immediately proximal to mitochondrial permeability transition pore and the end effector of cardioprotection. In addition, PDE5 inhibitors enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs, including doxorubicin. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular and anti-cancer benefits. Despite mixed results of these clinical trials, there is a continuing strong interest by basic scientists and clinical investigators in exploring their new clinical uses. It is our hope that future new mechanistic investigations and carefully designed clinical trials would help in reaping additional benefits of PDE5 inhibitors for cardiovascular disease and cancer in patients.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - David Durrant
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Rakesh C Kukreja
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
30
|
Portillo JAC, Greene JA, Okenka G, Miao Y, Sheibani N, Kern TS, Subauste CS. CD40 promotes the development of early diabetic retinopathy in mice. Diabetologia 2014; 57:2222-31. [PMID: 25015056 PMCID: PMC4291184 DOI: 10.1007/s00125-014-3321-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Microangiopathy is a leading complication of diabetes that commonly affects the retina. Degenerate capillaries are a central feature of diabetic retinopathy. An inflammatory process has been linked to the development of diabetic retinopathy but its regulation is incompletely understood. Cluster of differentiation (CD) 40 is a member of the TNF receptor superfamily that promotes the development of certain inflammatory disorders. The role of CD40 in diabetic microangiopathy is unknown. METHODS B6 and Cd40−/− mice were administered streptozotocin to induce diabetes. Leucostasis was assessed using fluorescein isothiocyanate-conjugated concanavalin A. Retinal Icam1 and Cd40 mRNA levels were examined using real-time PCR. Protein nitration was assessed by immunohistochemistry. Histopathology was examined in the retinal vasculature. CD40 expression was assessed by flow cytometry and immunohistochemistry. Intercellular adhesion molecule 1 (ICAM-1) and nitric oxide synthase 2 (NOS2) were examined by immunoblot and/or flow cytometry. Nitric oxide production was examined by immunoblot and Griess reaction. RESULTS In mouse models of diabetes, Cd40−/− mice exhibited reduced retinal leucostasis and did not develop capillary degeneration in comparison with B6 mice. Diabetic Cd40−/− mice had diminished ICAM-1 upregulation and decreased protein nitration. Cd40 mRNA levels were increased in the retinas of diabetic B6 mice compared with non-diabetic controls. CD40 expression increased in retinal Müller cells, endothelial cells and microglia of diabetic animals. CD40 stimulation upregulated ICAM-1 in retinal endothelial cells and Müller cells. CD40 ligation upregulated NOS2 and nitric oxide production by Müller cells. CONCLUSIONS/INTERPRETATION CD40-deficient mice were protected fromthe development of diabetic retinopathy. These mice exhibited diminished inflammatory responses linked to diabetic retinopathy. CD40 stimulation of retinal cells triggered these pro-inflammatory responses.
Collapse
|
31
|
Fuentes E, Palomo I. Mechanism of antiplatelet action of hypolipidemic, antidiabetic and antihypertensive drugs by PPAR activation. Vascul Pharmacol 2014; 62:162-6. [PMID: 24874279 DOI: 10.1016/j.vph.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 01/08/2023]
|
32
|
Fuentes E, Palomo I. Regulatory mechanisms of cAMP levels as a multiple target for antiplatelet activity and less bleeding risk. Thromb Res 2014; 134:221-6. [PMID: 24830902 DOI: 10.1016/j.thromres.2014.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/19/2022]
Abstract
Platelet activation is a critical component of atherothrombosis. The multiple pathways of platelet activation limit the effect of specific receptor/pathway inhibitors, resulting in limited clinical efficacy. Recent research has confirmed that combination therapy results in enhanced antithrombotic efficacy without increasing bleeding risk. In this way, the best-known inhibitor and turn off signaling in platelet activation is cAMP. In this article we discuss the mechanisms of regulation of intraplatelet cAMP levels, a) platelet-dependent pathway: Gi/Gs protein-coupled receptors, phosphodiesterase inhibition and activation of PPARs and b) platelet-independent pathway: inhibition of adenosine uptake by erythrocytes. With respect to the association between intraplatelet cAMP levels and bleeding risk it is possible to establish that compounds/drugs with pleitropic effect for increased intraplatelet cAMP level could have an antithrombotic activity with less risk of bleeding.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Chile.
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Chile.
| |
Collapse
|
33
|
Pfützner A, Schneider CA, Forst T. Pioglitazone: an antidiabetic drug with cardiovascular therapeutic effects. Expert Rev Cardiovasc Ther 2014; 4:445-59. [PMID: 16918264 DOI: 10.1586/14779072.4.4.445] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The antidiabetic compound pioglitazone, an activator of the intracellular peroxisome proliferator-activated receptor-gamma, and decreases metabolic and vascular insulin resistance. The drug is well tolerated, and its metabolic effects include improvements in blood glucose and lipid control. Vascular effects consist of improvements in endothelial function and hypertension, and a reduction in surrogate markers of artherosclerosis. In a large, placebo-controlled, outcome study in secondary prevention, PROactive study, the use of pioglitazone in addition to an existing optimized macrovascular risk management resulted in a significant reduction of macrovascular endpoints within a short observation period that was comparable to the effect of statins and angiotensin converting enzyme inhibitors in other trials. These results underline the value of pioglitazone for managing the increased cardiovascular risk of patients with a metabolic syndrome or Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Andreas Pfützner
- IKFE - Institute for Clinical Research and Development, Parcusstr. 8 D-55116 Mainz, Germany.
| | | | | |
Collapse
|
34
|
Davidson DC, Jackson JW, Maggirwar SB. Targeting platelet-derived soluble CD40 ligand: a new treatment strategy for HIV-associated neuroinflammation? J Neuroinflammation 2013; 10:144. [PMID: 24289660 PMCID: PMC3906985 DOI: 10.1186/1742-2094-10-144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/16/2013] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV) continues to be one of the most prevalent global health afflictions to date. The advent and introduction of combined antiretroviral therapy (cART) has made a significant impact on the course of infection. However, as patients are living longer, many HIV-associated illnesses are becoming prevalent among the infected population, especially those associated with chronic inflammation. Consistently, HIV-associated neuroinflammation is believed to be a major catalyst in the development of HIV-associated neurocognitive disorders (HAND), which are estimated to persist in approximately 50% of infected individuals regardless of cART. This dramatically underscores the need to develop effective adjunctive therapies capable of controlling this aspect of the disease, which are currently lacking. We previously demonstrated that the inflammatory mediator soluble CD40 ligand (sCD40L) is elevated in both the plasma and cerebrospinal fluid of cognitively impaired infected individuals compared to their non-impaired infected counterparts. Our group, and others have recently demonstrated that there is an increasing role for this inflammatory mediator in the pathogenesis of HIV-associated neuroinflammation, thereby identifying this molecule as a potential therapeutic target for the management of HAND. Platelets are the major source of circulating sCD40L, and these small cells are increasingly implicated in a multitude of inflammatory disorders, including those common during HIV infection. Thus, antiplatelet therapies that minimize the release of platelet-derived inflammatory mediators such as sCD40L are an innovative, non-traditional approach for the treatment of HIV-associated neuroinflammation, with the potential to benefit other HIV-associated illnesses.
Collapse
Affiliation(s)
| | | | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA.
| |
Collapse
|
35
|
Dushay JR, Tecilazich F, Kafanas A, Magargee ML, Auster ME, Gnardellis C, Dinh T, Veves A. Aliskiren improves vascular smooth muscle function in the skin microcirculation of type 2 diabetic patients with normal renal function. J Renin Angiotensin Aldosterone Syst 2013; 16:344-52. [PMID: 23670354 DOI: 10.1177/1470320313489060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The objective of this paper is to study the effect of aliskiren on metabolic parameters and micro- and macrovascular reactivity in individuals diagnosed with or at high risk for developing type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS We studied 47 T2DM and 41 at-risk individuals in a randomized, double-blinded, placebo-controlled trial. All subjects were treated with 150 mg aliskiren or placebo daily for 12 weeks. Twenty-six (55%) of T2DM and four (8%) at-risk subjects were also treated with angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers. RESULTS Aliskiren treatment was associated with improvement in systolic and diastolic blood pressure and endothelium-independent vasodilation at the skin microcirculation in those with T2DM but not in those at risk. There were no incidences of hypotension and no significant changes in serum potassium or creatinine levels with aliskiren treatment in either study group. CONCLUSIONS Aliskiren improves blood pressure and vascular smooth muscle function in the skin microcirculation of T2DM patients.
Collapse
Affiliation(s)
- Jody R Dushay
- Division of Endocrinology, Beth Israel Deaconess Medical Center, USA
| | | | - Antonios Kafanas
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| | - Mary L Magargee
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| | - Michael E Auster
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| | | | - Thanh Dinh
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| |
Collapse
|
36
|
Sheikh-Ali M, Raheja P, Borja-Hart N. Medical management and strategies to prevent coronary artery disease in patients with type 2 diabetes mellitus. Postgrad Med 2013; 125:17-33. [PMID: 23391668 DOI: 10.3810/pgm.2013.01.2621] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM) is associated with increased immediate and long-term mortality compared with patients without T2DM. The amplified incidence of CAD stems partly from the aggregation of multiple risk factors, such as obesity, dyslipidemia, and hypertension, which occur in this population. In addition, there appear to be increased forces at play at the molecular and vascular levels in these individuals, which is evidenced by the increased thrombosis and inflammation that is seen in those with diabetic atherosclerosis. Hence, there is a growing need to emphasize early and vigilant risk factor management in patients with T2DM to help reduce their burden of cardiovascular-related mortality. In this article, we review the primary and secondary prevention measures as well as the management of CAD in patients with T2DM.
Collapse
Affiliation(s)
- Mae Sheikh-Ali
- Division of Endocrinology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, USA.
| | | | | |
Collapse
|
37
|
Seijkens T, Kusters P, Engel D, Lutgens E. CD40-CD40L: linking pancreatic, adipose tissue and vascular inflammation in type 2 diabetes and its complications. Diab Vasc Dis Res 2013; 10:115-22. [PMID: 22965071 DOI: 10.1177/1479164112455817] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous epidemiological studies have consistently demonstrated the strong association between type 2 diabetes mellitus (T2DM) and an increased risk to develop cardiovascular disease. The pathogenesis of T2DM and its complications are characterized by pancreatic, adipose tissue and vascular inflammation. CD40 and CD40L, members of the tumour necrosis factor (receptor) TNF(R) family, are well known for their role in immunity and inflammation. Here we give an overview on the role of CD40-CD40L interactions in the pathogenesis of T2DM with a special focus on pancreatic, adipose tissue and vascular inflammation. In addition, we explore the role of soluble CD40L (sCD40L) as a potential biomarker for the development of cardiovascular disease in T2DM subjects. Finally, the therapeutic potential of CD40-CD40L inhibition in T2DM is highlighted.
Collapse
Affiliation(s)
- Tom Seijkens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Moresco RN, Sangoi MB, De Carvalho JAM, Tatsch E, Bochi GV. Diabetic nephropathy: traditional to proteomic markers. Clin Chim Acta 2013; 421:17-30. [PMID: 23485645 DOI: 10.1016/j.cca.2013.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 01/11/2023]
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes and it is defined as a rise in the urinary albumin excretion (UAE) rate and abnormal renal function. Currently, changes in albuminuria are considered a hallmark of onset or progression of DN. However, some patients with diabetes have advanced renal pathological changes and progressive kidney function decline even if urinary albumin levels are in the normal range, indicating that albuminuria is not the perfect marker for the early detection of DN. The present article provides an overview of the literature reporting some relevant biomarkers that have been found to be associated with DN and that potentially may be used to predict the onset and/or monitor the progression of nephropathy. In particular, biomarkers of renal damage, inflammation, and oxidative stress may be useful tools for detection at an early stage or prediction of DN. Proteomic-based biomarker discovery represents a novel strategy to improve diagnosis, prognosis and treatment of DN; however, proteomics-based approaches are not yet available in most of the clinical chemistry laboratories. The use of a panel with a combination of biomarkers instead of urinary albumin alone seems to be an interesting approach for early detection of DN, including markers of glomerular damage (e.g., albumin), tubular damage (e.g., NAG and KIM-1), inflammation (e.g., TNF-α) and oxidative stress (e.g., 8-OHdG) because these mechanisms contribute to the development and outcomes of this disease.
Collapse
Affiliation(s)
- Rafael N Moresco
- Laboratório de Pesquisa em Bioquímica Clínica, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | |
Collapse
|
39
|
Genovese S, De Berardis G, Nicolucci A, Mannucci E, Evangelista V, Totani L, Pellegrini F, Ceriello A. Effect of pioglitazone versus metformin on cardiovascular risk markers in type 2 diabetes. Adv Ther 2013; 30:190-202. [PMID: 23359066 DOI: 10.1007/s12325-013-0003-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Besides its critical role in metabolic homeostasis, peroxisome proliferator-activated receptor (PPAR)-γ modulates several cellular responses involved in atherothrombosis. This multicenter, double-blind, randomized study investigated the effects of two oral hypoglycemic agents on markers of inflammation, platelet activation, thrombogenesis, and oxidative stress in patients with type 2 diabetes. METHODS AND RESULTS The primary objective of this study was to evaluate the effect on C-reactive protein (CRP) after a 16-week treatment period with either pioglitazone or metformin. Additionally, markers of vascular inflammatory response, platelet activation, thrombogenesis, oxidative stress, glucose, and lipid metabolism, as well as liver function, were measured. In total, 50 patients completed the study. Pioglitazone-treated patients were found to have statistically significantly larger decreases in mean CRP levels (-0.4 mg/dL) compared to those treated with metformin (-0.2 mg/dL) (P=0.04), as well as greater reductions in levels of mean fasting plasma glucose (-27 vs. -9 mg/dL; P=0.01), serum insulin (-2 vs. -1.9 mU/L; P=0.014), homeostatic model assessment (HOMA) (-1.2 vs. -0.9; P=0.015), and E-selectin (-12.4 vs. +3.4 μg/mL; P=0.01). Mean glycated hemoglobin (HbA1c) levels decreased in both treatment groups from baseline to week 16 (-0.4% in the pioglitazone group, -0.2% in the metformin group; P=0.36). Pioglitazone treatment was also found to be associated with a statistically significant increase in total cholesterol levels (+10 mg/dL in the pioglitazone arm, -3 mg/dL in the metformin arm; P=0.05) and a decrease in liver enzyme levels. CONCLUSIONS The favorable changes in markers of systemic and vascular inflammatory response with pioglitazone suggest that it may positively influence the atherothrombotic process in type 2 diabetes.
Collapse
Affiliation(s)
- Stefano Genovese
- Cardiovascular and Metabolic Department, IRCCS MultiMedica Sesto San Giovanni, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Diabetes Mellitus. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
41
|
Perego F, Davì G. Beyond hyperglycemia in diabetes: role of statin treatment on thrombogenesis triggered by inflammation: Editorial to: "Impact of statins on the coagulation status of type 2 diabetes patients evaluated by a novel thrombin-generations assay" by P. Ferroni et al. Cardiovasc Drugs Ther 2012; 26:281-4. [PMID: 22585309 DOI: 10.1007/s10557-012-6398-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Blank SE, Johnson EC, Weeks DK, Wysham CH. Circulating dendritic cell number and intracellular TNF-α production in women with type 2 diabetes. Acta Diabetol 2012; 49 Suppl 1:S25-32. [PMID: 20449757 DOI: 10.1007/s00592-010-0190-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/29/2010] [Indexed: 02/07/2023]
Abstract
Human dendritic cell (DC) subsets perform specialized functions for surveillance against bacterial and viral infections essential for the management of type 2 diabetes (T2D). Production of tumor necrosis factor-alpha (TNF-α) by DCs acts in autocrine fashion to regulate DC maturation and promotes the inflammatory response. This study was designed to compare circulating DC number and intracellular TNF-α production between post-menopausal women with T2D and healthy women. Blood samples were obtained (n = 21/group) and examined for plasma glucose and TNF-α concentrations, and dendritic cell subset immunophenotype (plasmacytoid, pDC, CD85k(ILT-3)(+)CD123(+)CD16(-)CD14(-) and myeloid, mDC, CD85k(ILT-3)(+)CD33(+)CD123(dim to neg)CD16(-)CD14(dim to neg)). Intracellular production of TNF-α was determined in unstimulated and stimulated DCs. Women with T2D had significantly (P < 0.05) greater plasma glucose and TNF-α concentrations when compared to healthy women. Women with T2D having poor glycemic control (T2D Poor Control, HbA1c ≥ 7%) had fewer circulating pDCs than women with T2D having good glycemic control (T2D Good Control, HbA1c < 7%) and healthy women. A significant interaction (P = 0.011) was observed between the effects of plasma glucose and group for intracellular expression of TNF-α in stimulated pDCs. Intracellular production of TNF-α in pDCs was significantly greater in healthy vs. T2D Poor Control (P < 0.0001) and T2D Good Control (P < 0.0001) but did not differ between T2D subgroups. The mDC number and intracellular production of TNF-α did not differ between groups. These findings indicate that TNF-α production by pDCs was reduced in women with T2D and circulating number of pDCs was associated with glycemic control.
Collapse
Affiliation(s)
- Sally E Blank
- Program in Nutrition and Exercise Physiology, Washington State University, PO Box 1495, Spokane, WA 99210-1495, USA.
| | | | | | | |
Collapse
|
43
|
Ferroni P, Vazzana N, Riondino S, Cuccurullo C, Guadagni F, Davì G. Platelet function in health and disease: from molecular mechanisms, redox considerations to novel therapeutic opportunities. Antioxid Redox Signal 2012; 17:1447-85. [PMID: 22458931 DOI: 10.1089/ars.2011.4324] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increased oxidative stress appears to be of fundamental importance in the pathogenesis and development of several disease processes. Indeed, it is well known that reactive oxygen species (ROS) exert critical regulatory functions within the vascular wall, and it is, therefore, plausible that platelets represent a relevant target for their action. Platelet activation cascade (including receptor-mediated tethering to the endothelium, rolling, firm adhesion, aggregation, and thrombus formation) is tightly regulated. In addition to already well-defined platelet regulatory factors, ROS may participate in the regulation of platelet activation. It is already established that enhanced ROS release from the vascular wall can indirectly affect platelet activity by scavenging nitric oxide (NO), thereby decreasing the antiplatelet properties of endothelium. On the other hand, recent data suggest that platelets themselves generate ROS, which may evoke pro-thrombotic responses, triggering many biological processes participating in atherosclerosis initiation, progression, and complication. That oxidative stress may alter platelet function is conceivable when considering that antioxidants play a role in the prevention of cardiovascular disease, although the precise mechanism accounting for changes attributable to antioxidants in atherosclerosis remains unknown. It is possible that the effects of antioxidants may be a consequence of their enhancing or promoting the antiplatelet effects of NO derived from both endothelial cells and platelets. This review focuses on current knowledge regarding ROS-dependent regulation of platelet function in health and disease, and summarizes in vitro and in vivo evidence for their physiological and potential therapeutic relevance.
Collapse
Affiliation(s)
- Patrizia Ferroni
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Ferroni P, Della-Morte D, Pileggi A, Valente MG, Martini F, La Farina F, Palmirotta R, Meneghini LF, Rundek T, Ricordi C, Guadagni F. Impact of statins on the coagulation status of type 2 diabetes patients evaluated by a novel thrombin-generation assay. Cardiovasc Drugs Ther 2012; 26:301-309. [PMID: 22527619 DOI: 10.1007/s10557-012-6388-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Dyslipidemia is common in type 2 diabetes (T2D) and contributes to cardiovascular disease (CVD) by exacerbating atherosclerosis and hypercoagulability. Statins can stabilize atherosclerotic plaque and reduce prothrombotic status. In the present study we aimed to evaluate the coagulation activity and the effect of statins on procoagulant state of T2D patients using a novel activated protein C (APC)-dependent thrombin-generation assay. METHODS Procoagulant status (by HemosIL ThromboPath (ThP) assay) and in vivo platelet activation (by plasma soluble (s)CD40L levels) were analyzed in a retrospective, cross-sectional study of 198 patients with long-standing T2D and 198 controls. RESULTS Procoagulant status of T2D patients was enhanced when compared to control subjects (p < 0.0001). Similarly, sCD40L levels were increased in T2D (p < 0.0001). When testing ThP as the dependent variable in a multivariate regression model, sCD40L (p < 0.0001) and statin treatment (p = 0.019) were independent predictors of the procoagulant state of T2D patients. Subgroup analysis showed a significant improvement of coagulability in T2D patients on statins (p = 0.012). CONCLUSIONS The use of a standardized, easy-to-run, and commercially available APC-dependent thrombin-generation assay detected the presence of a procoagulant status in a large series of patients with long-standing T2D and demonstrated a significant impact of statins in the coagulation status of patients with T2D.
Collapse
Affiliation(s)
- P Ferroni
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS San Raffaele Pisana, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Esposito P, Rampino T, Gregorini M, Gabanti E, Bianzina S, Dal Canton A. Mechanisms underlying sCD40 production in hemodialysis patients. Cell Immunol 2012; 278:10-15. [PMID: 23121970 DOI: 10.1016/j.cellimm.2012.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/08/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
CD40 and its ligand (CD40L) regulate several cellular functions, including T and B-cell activation. The soluble form of CD40 (sCD40) antagonizes CD40/CD40L interaction. Patients undergoing hemodialysis (HD) present elevated sCD40 serum levels, which underlying molecular mechanisms are unknown. We studied sCD40 serum and urinary levels, CD40 membrane and gene expression and membrane shedding in HD, uremic not-HD patients (UR) and healthy subjects (N). We found that in HD sCD40 serum levels were higher than UR and N, being significantly elevated in anuric patients, and that sCD40 correlated to renal function in UR subjects, who presented also a reduced sCD40 urinary excretion rate. HD and UR presented reduced CD40 membrane and gene expression. The concentration of TNF-α converting enzyme (TACE), responsible for CD40 cleavage was not different between HD and N. Therefore the reduced renal clearance is the main cause of elevated sCD40 levels in HD. This finding could have relevant clinical implications.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Wolf D, Jehle F, Ortiz Rodriguez A, Dufner B, Hoppe N, Colberg C, Lozhkin A, Bassler N, Rupprecht B, Wiedemann A, Hilgendorf I, Stachon P, Willecke F, Febbraio M, Binder CJ, Bode C, Zirlik A, Peter K. CD40L deficiency attenuates diet-induced adipose tissue inflammation by impairing immune cell accumulation and production of pathogenic IgG-antibodies. PLoS One 2012; 7:e33026. [PMID: 22412980 PMCID: PMC3297623 DOI: 10.1371/journal.pone.0033026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 02/09/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L--an established marker and mediator of cardiovascular disease--induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS WT or CD40L(-/-) mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L(-/-) mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L(-/-) mice. However, CD40L(-/-) mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L(-/-) mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels. CONCLUSION We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Dennis Wolf
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Felix Jehle
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | - Bianca Dufner
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Natalie Hoppe
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Christian Colberg
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Andrey Lozhkin
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Nicole Bassler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Benjamin Rupprecht
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Ansgar Wiedemann
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Florian Willecke
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Mark Febbraio
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bode
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Atherogenesis Research Group, Department of Cardiology, University of Freiburg, Freiburg, Germany
| | - Karlheinz Peter
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
47
|
Magri CJ, Gatt N, Xuereb RG, Fava S. Peroxisome proliferator-activated receptor-γ and the endothelium: implications in cardiovascular disease. Expert Rev Cardiovasc Ther 2012; 9:1279-94. [PMID: 21985541 DOI: 10.1586/erc.11.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisome proliferator-activated receptors-γ (PPARγs) are ligand-activated transcription factors that play a crucial regulatory role in the transcription of a large number of genes involved in lipid metabolism and inflammation. In addition to physiological ligands, synthetic ligands (the thiazoledinediones) have been developed. In spite of the much publicized adverse cardiovascular effects of one such thiazoledinedione (rosiglitazone), PPARγ activation may have beneficial cardiovascular effects. In this article we review the effects of PPARγ activation on the endothelium with special emphasis on the possible implications in cardiovascular disease. We discuss its possible role in inflammation, vasomotor function, thrombosis, angiogenesis, vascular aging and vascular rhythm. We also briefly review the clinical implications of these lines of research.
Collapse
Affiliation(s)
- Caroline Jane Magri
- Department of Cardiac Services, Mater Dei Hospital, Tal-Qroqq, Msida MSD 2090, Malta
| | | | | | | |
Collapse
|
48
|
Soluble CD40 ligand, soluble P-selectin and von Willebrand factor levels in subjects with prediabetes: The impact of metabolic syndrome. Clin Biochem 2012; 45:92-5. [DOI: 10.1016/j.clinbiochem.2011.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/22/2011] [Accepted: 10/25/2011] [Indexed: 01/24/2023]
|
49
|
The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects. PPAR Res 2011; 2008:328172. [PMID: 18288284 PMCID: PMC2233896 DOI: 10.1155/2008/328172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 11/06/2007] [Indexed: 01/08/2023] Open
Abstract
Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining
hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of
evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors
(PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently
identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons.
First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to
cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including
CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance
of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing
therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options.
Collapse
|
50
|
FitzGerald R, Pirmohamed M. Aspirin resistance: Effect of clinical, biochemical and genetic factors. Pharmacol Ther 2011; 130:213-25. [DOI: 10.1016/j.pharmthera.2011.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 01/08/2023]
|