1
|
Dilger AC, Johnson BJ, Brent P, Ellis RL. Comparison of beta-ligands used in cattle production: structures, safety, and biological effects. J Anim Sci 2021; 99:6333506. [PMID: 34337648 PMCID: PMC8326055 DOI: 10.1093/jas/skab094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/22/2021] [Indexed: 11/14/2022] Open
Abstract
Technologies that increase the efficiency and sustainability of food animal production to provide meat for a growing population are necessary and must be used in a manner consistent with good veterinary practices, approved labeled use, and environmental stewardship. Compounds that bind to beta-adrenergic receptors (β-AR), termed beta-adrenergic receptor ligands (β-ligands), are one such technology and have been in use globally for many years. Though all β-ligands share some similarities in structure and function, the significance of their structural and pharmacological differences is sometimes overlooked. Structural variations in these molecules can affect absorption, distribution, metabolism, and excretion as well as cause substantial differences in biological and metabolic effects. Several β-ligands are available for use specifically in cattle production. Ractopamine and zilpaterol are beta-adrenergic agonists approved to increase weight gain, feed efficiency, and carcass leanness in cattle. They both bind to and activate β1- and β2-AR. Lubabegron is a newly developed selective beta-adrenergic modulator with unique structural and functional features. Lubabegron displays antagonistic behavior at the β1- and β2-AR but agonistic behavior at the β3-AR. Lubabegron is approved for use in cattle to reduce ammonia emissions per unit of live or carcass weight. Additionally, lubabegron can withstand prolonged use as the β3-AR lacks structural features needed for desensitization. Due to these unique features of lubabegron, this new β-ligand provides an additional option in cattle production. The individual properties of each β-ligand should be considered when making risk management decisions, as unique properties result in varying human food safety profiles that can determine appropriate safe β-ligand use.
Collapse
Affiliation(s)
- Anna C Dilger
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Corresponding author:
| | - Bradley J Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Paul Brent
- University of Laval, Quebec, QC, Canada
- Global Risk Assessment and Risk Management Solutions, Queensland, Australia
| | | |
Collapse
|
2
|
Solheim SA, Jessen S, Mørkeberg J, Thevis M, Dehnes Y, Eibye K, Hostrup M, Nordsborg NB. Single‐dose administration of clenbuterol is detectable in dried blood spots. Drug Test Anal 2020; 12:1366-1372. [DOI: 10.1002/dta.2872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
- Department of Sport Anti Doping Denmark Brøndby Denmark
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping Research German Sport University Cologne Cologne Germany
| | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Department of Pharmacology Oslo University Hospital Oslo Norway
| | - Kasper Eibye
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | |
Collapse
|
3
|
Jessen S, Solheim SA, Jacobson GA, Eibye K, Bangsbo J, Nordsborg NB, Hostrup M. Beta 2 -adrenergic agonist clenbuterol increases energy expenditure and fat oxidation, and induces mTOR phosphorylation in skeletal muscle of young healthy men. Drug Test Anal 2020; 12:610-618. [PMID: 31887249 DOI: 10.1002/dta.2755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/07/2022]
Abstract
Clenbuterol is a beta2 -adrenoceptor agonist marketed as an asthma reliever but is not approved for human use in most countries due to concerns of adverse cardiac effects. Given its demonstrated hypertrophic and lipolytic actions in rodents, clenbuterol is one of the most widely abused doping substances amongt athletes and recreational body-builders seeking leanness. Herein, we examined the effect of clenbuterol ingestion on metabolic rate as well as skeletal muscle mammalian target of rapamycin (mTOR) phosphorylation and protein kinase A (PKA)-signaling in six young men. Before and 140 min after ingestion of 80 μg clenbuterol, resting metabolic rate and contractile function of the quadriceps muscle were measured, and blood samples as well as vastus lateralis muscle biopsies were collected. Clenbuterol increased resting energy expenditure by 21% (P < 0.001), and fat oxidation by 39% (P = 0.006), whereas carbohydrate oxidation was unchanged. Phosphorylation of mTORSer2448 and PKA substrates increased by 121% (P = 0.004) and 35% (P = 0.006), respectively, with clenbuterol. Maximal voluntary contraction torque decreased by 4% (P = 0.026) and the half-relaxation time shortened by 9% (P = 0.046), while voluntary activation, time to peak twitch, and peak twitch torque did not change significantly with clenbuterol. Glycogen content of the vastus lateralis muscle did not change with clenbuterol. Clenbuterol increased circulating levels of glucose (+30%; P < 0.001), lactate (+90%; P = 0.004), insulin (+130%; P = 0.009), and fatty acids (+180%; P = 0.001). Collectively, these findings indicate that clenbuterol is an efficient thermogenic substance that possibly also exerts muscle hypertrophic actions in humans. For these reasons, the restrictions imposed against clenbuterol in competitive sports seem warranted.
Collapse
Affiliation(s)
- Søren Jessen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Sara A Solheim
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | | | - Kasper Eibye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Nikolai B Nordsborg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Chen M, Liu C, Wang M, Wang H, Zhang K, Zheng Y, Yu Z, Li X, Guo W, Li N, Meng Q. Clenbuterol Induces Cell Cycle Arrest in C2C12 Myoblasts by Delaying p27 Degradation through β-arrestin 2 Signaling. Int J Biol Sci 2017; 13:1341-1350. [PMID: 29104500 PMCID: PMC5666532 DOI: 10.7150/ijbs.17948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/16/2017] [Indexed: 02/04/2023] Open
Abstract
β2-Adrenoceptor (β2-AR) agonists promote muscle growth. The aim of this study was to elucidate some effects of the selective β2-adrenoceptor agonist clenbuterol (CLB) on myoblast proliferation. We found that CLB induces cell cycle arrest in C2C12 myoblasts. This effect is partly due to the enhanced stability of p27, rather than the increased gene transcription via cAMP response element-binding protein (CREB). Specifically, CLB treatment enhanced the accumulation of p27 in the nucleus while depleting it from the cytosol via a mechanism that requires β2-AR. Surprisingly, p27 accumulation was not reversed by the protein kinase A (PKA) inhibitor H-89, but interestingly, was alleviated by the knockdown of β-arrestin 2. Thus, our work provides a basis for β2-AR agonists inhibit myoblasts proliferation through signaling via β2-AR, β-arrestin 2, and p27.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China.,Guangxi Province Center for Disease Control and Prevention, Nanning 530028, China
| | - Chuncheng Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Meng Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Kuo Zhang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yu Zheng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Zhengquan Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangdong Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Guo
- Animal Science/Molecular Biology Bldg, University of Wyoming, Laramie WY82071, USA
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University
| |
Collapse
|
5
|
Ventricular Recovery and Pump Explantation in Patients Supported by Left Ventricular Assist Devices: A Systematic Review. ASAIO J 2016; 62:219-31. [DOI: 10.1097/mat.0000000000000328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
6
|
Pokorný M, Cervenka L, Netuka I, Pirk J, Koňařík M, Malý J. Ventricular assist devices in heart failure: how to support the heart but prevent atrophy? Physiol Res 2014; 63:147-56. [PMID: 24779607 DOI: 10.33549/physiolres.932617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ventricular assist devices (VAD) have recently established themselves as an irreplaceable therapeutic modality of terminal heart failure. Because of the worldwide shortage of donors, ventricular assist devices play a key role in modern heart failure therapy. Some clinical data have revealed the possibility of cardiac recovery during VAD application. On the other hand, both clinical and experimental studies indicate the risk of the cardiac atrophy development, especially after prolonged mechanical unloading. Little is known about the specific mechanisms governing the unloading-induced cardiac atrophy and about the exact ultrastructural changes in cardiomyocytes, and even less is known about the ways in which possible therapeutical interventions may affect heart atrophy. One aim of this review was to present important aspects of the development of VAD-related cardiac atrophy in humans and we also review the most significant observations linking clinical data and those derived from studies using experimental models. The focus of this article was to review current methods applied to alleviate cardiac atrophy which follows mechanical unloading of the heart. Out of many pharmacological agents studied, only the selective beta2 agonist clenbuterol has been proved to have a significantly beneficial effect on unloading-induced atrophy. Mechanical means of atrophy alleviation also seem to be effective and promising.
Collapse
Affiliation(s)
- M Pokorný
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Heart failure is associated with remodeling that consists of adverse cellular, structural, and functional changes in the myocardium. Until recently, this was thought to be unidirectional, progressive, and irreversible. However, irreversibility has been shown to be incorrect because complete or partial reversal can occur that can be marked after myocardial unloading with a left ventricular assist device (LVAD). Patients with chronic advanced heart failure can show near-normalization of nearly all structural abnormalities of the myocardium or reverse remodeling after LVAD support. However, reverse remodeling does not always equate with clinical recovery. The molecular changes occurring after LVAD support are reviewed, both those demonstrated with LVAD unloading alone in patients bridged to transplantation and those occurring in the myocardium of patients who have recovered enough myocardial function to have the device removed. Reverse remodeling may be attributable to a reversal of the pathological mechanisms that occur in remodeling or the generation of new pathways. A reduction in cell size occurs after LVAD unloading, which does not necessarily correlate with improved cardiac function. However, some of the changes in both the cardiac myocyte and the matrix after LVAD support are specific to myocardial recovery. In the myocyte, increases in the cytoskeletal proteins and improvements in the Ca²⁺ handling pathway seem to be specifically associated with myocardial recovery. Changes in the matrix are complex, but excessive scarring appears to limit the ability for recovery, and the degree of fibrosis in the myocardium at the time of implantation may predict the ability to recover.
Collapse
Affiliation(s)
- Emma J Birks
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
8
|
The myostatin null mutation and clenbuterol administration elicit additive effects in mice. Animal 2012; 4:466-71. [PMID: 22443951 DOI: 10.1017/s1751731109991297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In mice, the myostatin (Mstn) null mutation and treatment with clenbuterol both increase muscle growth and decrease fat mass. Our objective was to determine whether mechanistic overlap exists by administering clenbuterol to Mstn null mice. Male Mstn null and wild-type mice of similar genetic backgrounds received either 0 (control) or 20 p.p.m. clenbuterol in tap water free choice for 14 days. Several traits were measured to estimate muscle and fat growth. The Mstn null mutation resulted in increased body and empty carcass weight, increased muscle weights and decreased fat pad weights. Fat content was reduced and protein content was increased in the empty carcasses of Mstn null mice. Similarly, treatment with clenbuterol resulted in increased body and empty carcass weight, increased muscle weights and reduced fat pad weights. Fat content of empty carcasses and viscera was reduced and protein content of empty carcasses was increased with clenbuterol treatment. A significant interaction of genotype and clenbuterol treatment would indicate an altered responsiveness of Mstn null mice to clenbuterol. However, only the weight of gastrocnemius muscles exhibited a significant (P = 0.01) interaction of genotype and clenbuterol treatment, indicating that Mstn null mice were less responsive to clenbuterol compared with wild-type mice. Thus, for all other traits, the impact of Mstn null mutation and clenbuterol treatment was completely additive. These data suggest that disruption of Mstn function does not alter the response of mice to β-adrenergic agonists.
Collapse
|
9
|
Abstract
OPINION STATEMENT Advanced heart failure (HF) is a condition that is rarely thought of in terms of cure. Left ventricular assist devices (LVADs), like no therapy before them, provide complete decongestion of the left ventricle, with resulting favorable changes at all levels, from reversal of hypertrophy of cardiomyocytes to recovery of normal geometry and function of the ventricles. Although not a frequent phenomenon at most institutions, LV recovery is achieved in 20-25 % of LVAD recipients in some programs. Patients with good chances for recovery are usually young, with nonischemic cardiomyopathy and short duration of HF symptoms. After LVAD removal, patients with recovered function remain asymptomatic for years. To reach this level of sustainable restoration of cardiac function, several steps need to be taken: 1) myocardial recovery has to be recognized as a therapeutic goal, especially in patients with nonischemic cardiomyopathy; 2) HF medications have to be restarted and aggressively uptitrated after LVAD implantation; 3) regular monitoring for signs of myocardial recovery (eg, echocardiography or hemodynamics) should become a standard practice in LVAD centers; and 4) weaning protocols should be discussed and accepted at each LVAD program. While some protocols involve extensive several-day testing both at rest and with exercise, others are mostly guided by echocardiographic evaluation.
Collapse
|
10
|
Marchant-Forde JN, Lay DC, Marchant-Forde RM, McMunn KA, Richert BT. The effects of R-salbutamol on growth, carcass measures, and health of finishing pigs. J Anim Sci 2012; 90:4081-9. [PMID: 22859762 DOI: 10.2527/jas.2011-4423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A pure form of salbutamol has the potential to deliver positive production benefits to the swine industry. The aim of this experiment was to determine the effects of salbutamol on growth, carcass measures, and health of finishing pigs. The study used 192 pigs (89 ± 1 kg BW) housed in groups of 6 in 32 pens and assigned to 1 of 4 treatments: 1) control (CTL), 0 mg/kg salbutamol; 2) 2R, control diet with 2 mg/kg of the pure R-enantiomer of salbutamol; 3) 4R, control diet with 4 mg/kg of pure R-salbutamol; or 4) 8RS, control diet with 8 mg/kg of a 50:50 mixture of the R- and S-enantiomers. All diets were offered ad libitum for 4 wk. All pigs were weighed and pen feed intakes were recorded weekly. At slaughter, individual HCW and measurements of the 10th-rib loin muscle area (LMA), color, marbling, firmness, and back fat, last lumbar, and midline back fat depths were collected. Data were analyzed using Proc GLM of SAS, with pen as the experimental unit. Overall, 2R and 4R pigs had greater ADG than CTL pigs (P < 0.05) and, at slaughter, were heavier than CTL pigs (P < 0.01). Overall, 8RS pigs had decreased ADFI (P < 0.05), and CTL pigs had poorer G:F (P < 0.001) than the other 3 treatments. All salbutamol-fed pigs had 5 to 6 kg greater HCW (P < 0.001), 2% to 3% increased carcass yield (P < 0.001), 5.6 cm(2) larger LMA (P < 0.01), 3 to 4 mm less 10th-rib back fat (P < 0.01), and 2 mm less lumbar back fat (P < 0.05) than CTL pigs. However, control pigs had greater loin muscle color scores (P < 0.05) and marbling scores (P < 0.001) than all salbutamol-treated pigs. Taken together, these data indicate that as little as 2 mg/kg R-salbutamol has a positive effect on pig growth and carcass composition. However, the effects of salbutamol on meat quality require further research.
Collapse
Affiliation(s)
- J N Marchant-Forde
- ARS-USDA, Livestock Behavior Research Unit, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
11
|
Long-term outcomes of patients bridged to recovery versus patients bridged to transplantation. J Thorac Cardiovasc Surg 2012; 144:190-6. [DOI: 10.1016/j.jtcvs.2012.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/17/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022]
|
12
|
Ziegler MG, Milic M, Sun P, Tang CM, Elayan H, Bao X, Cheung WW, O'Connor DT. Endogenous epinephrine protects against obesity induced insulin resistance. Auton Neurosci 2011; 162:32-4. [PMID: 21354376 PMCID: PMC3111898 DOI: 10.1016/j.autneu.2011.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
Abstract
Epinephrine (E) is a hormone released from the adrenal medulla in response to low blood sugar and other stresses. E and related β2-adrenergic agonists are used to treat asthma, but a side effect is high blood sugar. C57BL/6 mice prone to overfeeding induced type II diabetes had the PNMT gene knocked out to prevent E synthesis. These E deficient mice were very similar to control animals on a 14% fat diet. On a 40.6% fat diet they gained 20 to 33% more weight than control animals and increased their blood glucose response to a glucose tolerance test because they became resistant to insulin. Although the short term effect of β2-agonists such as E is to raise blood glucose, some long acting β2-agonists improve muscle glucose uptake. Endogenous E protects against overfeeding induced diabetes. Since adrenal E release can be impaired with aging and diabetes, endogenous E may help prevent adult onset diabetes.
Collapse
Affiliation(s)
- Michael G Ziegler
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0838, United States.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Clenbuterol Induces Cardiac Myocyte Hypertrophy via Paracrine Signalling and Fibroblast-derived IGF-1. J Cardiovasc Transl Res 2010; 3:688-95. [DOI: 10.1007/s12265-010-9199-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/27/2010] [Indexed: 01/08/2023]
|
14
|
Chronic treatment with clenbuterol modulates endothelial progenitor cells and circulating factors in a murine model of cardiomyopathy. J Cardiovasc Transl Res 2009; 2:182-90. [PMID: 20559986 DOI: 10.1007/s12265-009-9089-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to determine the effects of chronic treatment with the beta 2 adrenergic receptor agonist clenbuterol on endothelial progenitor cells (EPC) in a well-characterized model of heart failure, the muscle LIM protein knockout (MLP(-/-)) mouse. MLP(-/-) mice were treated daily with clenbuterol (2 mg/kg) or saline subcutaneously for 6 weeks. Clenbuterol led to a 30% increase in CD31(+) cells in the bone marrow of MLP(-/-) heart failure mice (p < 0.004). Clenbuterol did not improve ejection fraction. Clenbuterol treatment in MLP(-/-) mice was associated with significant changes in the following circulating factors: tissue inhibitor of metalloproteinase-type 1, leukemia inhibitory factor 1, C-reactive protein, apolipoprotein A1, fibroblast growth factor 2, serum glutamic oxaloacetic transaminase, macrophage-derived chemokine, and monocyte chemoattractant protein-3. Clenbuterol treatment in the MLP(-/-) model of heart failure did not rescue heart function, yet did increase CD31(+) cells in the bone marrow. This is the first evidence that a beta 2 agonist increases EPC proliferation in the bone marrow in a preclinical model of heart failure.
Collapse
|
15
|
Lara-Pezzi E, Terracciano CMN, Soppa GKR, Smolenski RT, Felkin LE, Yacoub MH, Barton PJR. A gene expression profile of the myocardial response to clenbuterol. J Cardiovasc Transl Res 2009; 2:191-7. [PMID: 20559987 DOI: 10.1007/s12265-009-9097-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/25/2009] [Indexed: 01/08/2023]
Abstract
Clenbuterol is currently being used as part of a clinical trial into a novel therapeutic approach for the treatment of end-stage heart failure. The purpose of this study was to determine the global pattern of myocardial gene expression in response to clenbuterol and to identify novel targets and pathways involved. Rats were treated with clenbuterol (n = 6) or saline (n = 6) for periods of 1, 3, 9, or 28 days. Rats treated for 28 days were also subject to continuous electrocardiogram analysis using implantable telemetry. RNA was extracted from rats at days 1 and 28 and used from microarray analysis, and further samples from rats at days 1, 3, 9, and 28 were used for analysis by real-time polymerase chain reaction. Clenbuterol treatment induced rapid development of cardiac hypertrophy with increased muscle mass at day 1 and elevated heart rate and QT interval throughout the 28-day period. Microarray analysis revealed a marked but largely transitory change in gene expression with 1,423 genes up-regulated and 964 genes down-regulated at day 1. Up-regulated genes revealed an unexpected association with angiogenesis and integrin-mediated cell adhesion and signaling. Moreover, direct treatment of endothelial cells cultured in vitro resulted in increased cell proliferation and tube formation. Our data show that clenbuterol treatment is associated with rapid cardiac hypertrophy and identify angiogenesis and integrin signaling as novel pathways of clenbuterol action. The data have implications both for our understanding of the physiologic hypertrophy induced by clenbuterol and for treatment of heart failure.
Collapse
Affiliation(s)
- Enrique Lara-Pezzi
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, Hill End Road, Harefield, Middlesex, UB9 6JH, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Siedlecka U, Arora M, Kolettis T, Soppa GKR, Lee J, Stagg MA, Harding SE, Yacoub MH, Terracciano CMN. Effects of clenbuterol on contractility and Ca2+ homeostasis of isolated rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H1917-26. [PMID: 18775853 DOI: 10.1152/ajpheart.00258.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clenbuterol, a compound classified as a beta2-adrenoceptor (AR) agonist, has been employed in combination with left ventricular assist devices (LVADs) to treat patients with severe heart failure. Previous studies have shown that chronic administration of clenbuterol affects cardiac excitation-contraction coupling. However, the acute effects of clenbuterol and the signaling pathway involved remain undefined. We investigated the acute effects of clenbuterol on isolated ventricular myocyte sarcomere shortening, Ca2+ transients, and L-type Ca2+ current and compared these effects to two other clinically used beta2-AR agonists: fenoterol and salbutamol. Clenbuterol (30 microM) produced a negative inotropic response, whereas fenoterol showed a positive inotropic response. Salbutamol had no significant effects. Clenbuterol reduced Ca2+ transient amplitude and L-type Ca2+ current. Selective beta1-AR blockade did not affect the action of clenbuterol on sarcomere shortening but significantly reduced contractility in the presence of fenoterol and salbutamol (P < 0.05). Incubation with 2 microg/ml pertussis toxin significantly reduced the negative inotropic effects of 30 microM clenbuterol. In addition, overexpression of inhibitory G protein (Gi) by adenoviral transfection induced a stronger clenbuterol-mediated negative inotropic effect, suggesting the involvement of the Gi protein. We conclude that clenbuterol does not increase and, at high concentrations, significantly depresses contractility of isolated ventricular myocytes, an effect not seen with fenoterol or salbutamol. In its negative inotropism, clenbuterol predominantly acts through Gi, and the consequent downstream signaling pathways activation may explain the beneficial effects observed during chronic administration of clenbuterol in patients treated with LVADs.
Collapse
Affiliation(s)
- U Siedlecka
- Heart Science Centre, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maybaum S, Kamalakannan G, Murthy S. Cardiac Recovery During Mechanical Assist Device Support. Semin Thorac Cardiovasc Surg 2008; 20:234-46. [DOI: 10.1053/j.semtcvs.2008.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2008] [Indexed: 11/11/2022]
|
18
|
Moore D, Anderson M, Larson DF. Effect of clenbuterol administration on the healthy murine heart. Perfusion 2008; 23:297-302. [DOI: 10.1177/0267659109104688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clenbuterol has recently been shown to reverse pathologic cardiac remodeling during left ventricular assist device (LVAD) support, leading to restored ventricular function and explantation of LVAD devices. However, others have not been able to support these observations. Our hypothesis is that the β2-adrenergic activity of clenbuterol induces cardiac extracellular matrix (ECM) remodeling, resulting in increased interstitial fibrillar collagen content and altered diastolic function that may account for these conflicting reports. The intent of this study is to characterize the effect of clenbuterol on healthy murine hearts with transthoracic echo and histology. C57BL/6 female mice were administered 2.4 µg/kg/day of clenbuterol in the drinking water for 7 days and analysis conducted on day 8–24 hours after the last dose of clenbuterol. Histological analysis demonstrated an increase in left ventricular ECM collagen content in a control group compared with the clenbuterol group (density 0.32 ± 0.16 compared to 2.01 ± 0.30 RD/mm2). The ventricular fibrosis was supported by altered diastolic function measured by transthoracic echo where there was a significant increase in isovolumic relaxation time, and left atrial dimension and a decrease in left ventricular free wall tissue Doppler ratios. Our study showed no significant differences in left ventricular ejection fraction, cardiac output, or heart rate between the clenbuterol and control groups. These data suggest that the β-2 adrenergic activity of clenbuterol increases ECM fibrillar collagen concentrations in normal hearts, resulting in altered diastolic function.
Collapse
Affiliation(s)
- D Moore
- Circulatory Sciences Graduate Perfusion Program, The University of Arizona, Tucson, AZ
| | - M Anderson
- Circulatory Sciences Graduate Perfusion Program, The University of Arizona, Tucson, AZ
| | - DF Larson
- Circulatory Sciences Graduate Perfusion Program, The University of Arizona, Tucson, AZ
| |
Collapse
|
19
|
Huang YC, Khait L, Birla RK. Modulating the Functional Performance of Bioengineered Heart Muscle Using Growth Factor Stimulation. Ann Biomed Eng 2008; 36:1372-82. [DOI: 10.1007/s10439-008-9517-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
|
20
|
Soppa GKR, Lee J, Stagg MA, Felkin LE, Barton PJR, Siedlecka U, Youssef S, Yacoub MH, Terracciano CMN. Role and possible mechanisms of clenbuterol in enhancing reverse remodelling during mechanical unloading in murine heart failure. Cardiovasc Res 2008; 77:695-706. [PMID: 18178572 PMCID: PMC5436743 DOI: 10.1093/cvr/cvm106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aims Combined left ventricular assist device (LVAD) and pharmacological therapy has been proposed to favour myocardial recovery in patients with end-stage heart failure (HF). Clenbuterol (Clen), a β2-adrenoceptor (β2-AR) agonist, has been used as a part of this strategy. In this study, we investigated the direct effects of clenbuterol on unloaded myocardium in HF. Methods and results Left coronary artery ligation or sham operation was performed in male Lewis rats. After 4–6 weeks, heterotopic abdominal transplantation of the failing hearts into normal recipients was performed to induce LV unloading (UN). Recipient rats were treated with saline (Sal) or clenbuterol (2 mg/kg/day) via osmotic minipumps (HF + UN + Sal or HF + UN + Clen) for 7 days. Non-transplanted HF animals were treated with Sal (Sham + Sal, HF + Sal) or clenbuterol (HF + Clen). LV myocytes were isolated and studied using optical, fluorescence, and electrophysiological techniques. Clenbuterol treatment improved in vivo LV function measured with echocardiography (LVEF (%): HF 35.9 ± 2 [16], HF + Clen 52.1 ± 1.4 [16]; P < 0.001; mean ± SEM [n]). In combination with unloading, clenbuterol increased sarcomere shortening (amplitude (µm): HF + UN + Clen 0.1 ± 0.01 [50], HF + UN + Sal 0.07 ± 0.01 [38]; P < 0.001) by normalizing the depressed myofilament sensitivity to Ca2+ (slope of the linear relationship between Ca2+ transient and sarcomere shortening hysteresis loop during relaxation (μm/ratio unit): HF + UN + Clen 2.13 ± 0.2 [52], HF + UN + Sal 1.42 ± 0.13 [38]; P < 0.05). Conclusion Clenbuterol treatment of failing rat hearts, alone or in combination with mechanical unloading, improves LV function at the whole-heart and cellular levels by affecting cell morphology, excitation–contraction coupling, and myofilament sensitivity to calcium. This study supports the use of this drug in the strategy to enhance recovery in HF patients treated with LVADs and also begins to elucidate some of the possible cellular mechanisms responsible for the improvement in LV function.
Collapse
Affiliation(s)
- Gopal K R Soppa
- Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN. Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol 2007; 43:231-42. [PMID: 17651751 DOI: 10.1016/j.yjmcc.2007.05.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 05/09/2007] [Accepted: 05/29/2007] [Indexed: 01/08/2023]
Abstract
A significant proportion of patients placed on long-term mechanical circulatory support for end-stage heart failure can be weaned from mechanical assistance after functional recovery of their native heart ("bridge to recovery"). The pathophysiological mechanisms implicated in reverse remodeling that cause a sustained functional myocardial recovery have recently become the subject of intensive research, expected to provide information with a view to accurately identify reliable prognostic indicators of recovery. In addition, this kind of information will enable changes in the strategy of myocardial recovery by modifying the duration and scale of the unloading regimen or by combining it with other treatments that promote reverse remodeling.
Collapse
Affiliation(s)
- Stavros G Drakos
- 3rd Cardiology Department, University of Athens School of Medicine, 24 Makedonias, 104 33, Athens, Greece
| | | | | | | |
Collapse
|
22
|
Burniston JG, Clark WA, Tan LB, Goldspink DF. Dose-dependent separation of the hypertrophic and myotoxic effects of the beta(2)-adrenergic receptor agonist clenbuterol in rat striated muscles. Muscle Nerve 2006; 33:655-63. [PMID: 16411205 PMCID: PMC1828609 DOI: 10.1002/mus.20504] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscle growth in response to large doses (milligrams per kilogram) of beta(2)-adrenergic receptor agonists has been reported consistently. However, such doses may also induce myocyte death in the heart and skeletal muscles and hence may not be safe doses for humans. We report the hypertrophic and myotoxic effects of different doses of clenbuterol. Rats were infused with clenbuterol (range, 1 microg to 1 mg.kg(-1)) for 14 days. Muscle protein content, myofiber cross-sectional area, and myocyte death were then investigated. Infusions of >or=10 microg.kg(-1).d(-1) of clenbuterol significantly (P<0.05) increased the protein content of the heart (12%-15%), soleus (12%), plantaris (18%-29%), and tibialis anterior (11%-22%) muscles, with concomitant myofiber hypertrophy. Larger doses (100 microg or 1 mg) induced significant (P<0.05) myocyte death in the soleus (peak 0.2+/-0.1% apoptosis), diaphragm (peak 0.15+/-0.1% apoptosis), and plantaris (peak 0.3+/-0.05% necrosis), and significantly increased the area fraction of collagen in the myocardium. These data show that the low dose of 10 microg.kg(-1).d(-1) can be used in rats to investigate the anabolic effects of clenbuterol in the absence of myocyte death.
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Webster Street, Liverpool L3 2ET, UK.
| | | | | | | |
Collapse
|
23
|
Xydas S, Kherani AR, Chang JS, Klotz S, Hay I, Mutrie CJ, Moss GW, Gu A, Schulman AR, Gao D, Hu D, Wu EX, Wei C, Oz MC, Wang J. beta(2)-Adrenergic stimulation attenuates left ventricular remodeling, decreases apoptosis, and improves calcium homeostasis in a rodent model of ischemic cardiomyopathy. J Pharmacol Exp Ther 2006; 317:553-61. [PMID: 16421285 DOI: 10.1124/jpet.105.099432] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The benefit of the beta(2)-adrenergic agonist, clenbuterol, in left ventricular assist device patients with dilated cardiomyopathy has been reported, but its effect on ischemic heart failure (HF) is unknown. We investigated whether clenbuterol improves left ventricular remodeling, myocardial apoptosis and has synergy with a beta(1) antagonist, metoprolol, in a model of ischemic HF. Rats were randomized to: 1) HF only; 2) HF + clenbuterol; 3) HF + metoprolol; 4) HF + clenbuterol + metoprolol; and 5) rats with sham surgery. HF was induced by left anterior descending artery (LAD) artery ligation and confirmed by decreased left ventricular fractional shortening, decreased maximum left ventricular dP/dt (dP/dt(max)), and elevated left ventricular end-diastolic pressure (LVEDP) compared with sham rats (p < 0.01). After 9 weeks of oral therapy, echocardiographic, hemodynamic, and ex vivo end-diastolic pressure-volume relationship (EDPVR) measurements were obtained. Immunohistochemistry was performed for myocardial apoptosis and DNA damage markers. Levels of calcium-handling proteins were assessed by Western blot analysis. Clenbuterol-treated HF rats had increased weight gain and heart weights versus HF rats (p < 0.05). EDPVR curves revealed a leftward shift in clenbuterol rats versus metoprolol and HF rats (p < 0.05). The metoprolol-treated group had a lower LVEDP and higher dP/dt(max) versus the HF group (p < 0.05). Clenbuterol and metoprolol groups had decreased myocardial apoptosis and DNA damage markers and increased DNA repair markers versus HF rats (all p < 0.01). Protein levels of the ryanodine receptor and sarcoplasmic reticulum calcium-ATPase were improved in clenbuterol-, metoprolol-, and clenbuterol+metoprolol-treated groups versus HF rats. However, as a combination therapy, there were no synergistic effects of clenbuterol+metoprolol treatment. We conclude that clenbuterol ameliorates EDPVR, apoptosis, and calcium homeostasis but does not have synergy with metoprolol in our model of ischemic HF.
Collapse
Affiliation(s)
- Steve Xydas
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gaynor SL, Maniar HS, Bloch JB, Steendijk P, Moon MR. Right atrial and ventricular adaptation to chronic right ventricular pressure overload. Circulation 2006; 112:I212-8. [PMID: 16159819 DOI: 10.1161/circulationaha.104.517789] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased mortality in patients with chronic pulmonary hypertension has been associated with elevated right atrial (RA) pressure. However, little is known about the effects of chronic right ventricular (RV) pressure overload on RA and RV dynamics or the adaptive response of the right atrium to maintain RV filling. METHODS AND RESULTS In 7 dogs, RA and RV pressure and volume (conductance catheter) were recorded at baseline and after 3 months of progressive pulmonary artery banding. RA and RV elastance (contractility) and diastolic stiffness were calculated, and RA reservoir and conduit function were quantified as RA inflow with the tricuspid valve closed versus open, respectively. With chronic pulmonary artery banding, systolic RV pressure increased from 34+/-7 to 70+/-17 mm Hg (P<0.001), but cardiac output did not change (P>0.78). RV elastance and stiffness both increased (P<0.05), suggesting preserved systolic function but impaired diastolic function. In response, RA contractility improved (elastance increased from 0.28+/-0.12 to 0.44+/-0.13 mm Hg/mL; P<0.04), and the atrium became more distensible, as evidenced by increased reservoir function (49+/-14% versus 72+/-8%) and decreased conduit function (51+/-14% versus 28+/-8%; P<0.002). CONCLUSIONS With chronic RV pressure overload, RV systolic function was preserved, but diastolic function was impaired. To compensate, RA contractility increased, and the atrium became more distensible to maintain filling of the stiffened ventricle. This compensatory response of the right atrium likely plays an important role in preventing clinical failure in chronic pulmonary hypertension.
Collapse
Affiliation(s)
- Sydney L Gaynor
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, MO 63110-1013, USA
| | | | | | | | | |
Collapse
|
25
|
Yacoub MH. Professor Sir Magdi Habib Yacoub, FRS, FRCS, FRCP, DS: a conversation with the editor. Interview by William Clifford Roberts. Am J Cardiol 2004; 93:176-92. [PMID: 14715343 DOI: 10.1016/j.amjcard.2003.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Kumar S, Sharma S, Katoch SS. Early onset of the maximum protein anabolic effect induced by isoproterenol in chick skeletal and cardiac muscle. ACTA PHYSIOLOGICA HUNGARICA 2003; 90:57-67. [PMID: 12666875 DOI: 10.1556/aphysiol.90.2003.1.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolonged (120 days) oral administration of a beta adrenoceptor agonist, isoproterenol hydrochloride (dose = 1.5 mg/kg body weight) resulted in an increase in the live weight of growing chicks (Callus domesticus). Measurement of dry muscle mass and total proteins in muscle homogenates from M. pectoralis major. M. petoralis minor suggested a muscle hypertrophy largely responsible for this live weight increase. Further, an increase in organ weight and total tissue proteins supported cardiac hypertrophy in chicks as a result of isoproterenol administration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed alterations in actin myosin profiles implying a drug induced change in phenotypic expression of myofibrillar component of both skeletal and cardiac muscle. The results suggest that prolonged treatment of chicks produced changes that were not much different from those recorded immediately within a fortnight.
Collapse
Affiliation(s)
- S Kumar
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | | | | |
Collapse
|
27
|
Abstract
Treatment of heart failure using a left ventricular assist device (LVAD) is emerging as one of the most rapidly expanding areas. These devices are now used to treat patients with terminal heart failure not only as a bridge to transplantation but also for a bridge to recovery in certain carefully selected patients. More recently we have developed a strategy of combining LVAD support with pharmacologic therapies to produce maximal reverse remodeling followed by the induction of physiologic cardiac hypertrophy using clenbuterol, a selective beta2-adrenergic receptor agonist (the Harefield protocol). The purpose of this communication is to provide a brief review of remodeling, reverse remodeling, and the rationale for the use of clenbuterol to enhance the efficacy of the LVAD.
Collapse
Affiliation(s)
- Jimmy K F Hon
- Department of Cardiothoracic Surgery, National Heart and Lung Institute at Royal Brompton and Harefield Hospitals, London, United Kingdom.
| | | |
Collapse
|
28
|
Hon JK, Steendijk P, Petrou M, Wong K, Yacoub MH. Influence of clenbuterol treatment during six weeks of chronic right ventricular pressure overload as studied with pressure-volume analysis. J Thorac Cardiovasc Surg 2001; 122:767-74. [PMID: 11581611 DOI: 10.1067/mtc.2001.114354] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Chronic pressure overload cardiac hypertrophy produces ventricular dysfunction. There is evidence that clenbuterol, a beta(2)-adrenoceptor agonist, produces cardiac hypertrophy with preserved function in rodents. We sought to determine the cardiac hypertrophic effects of clenbuterol on the thin-walled ventricles of large animals undergoing chronic pressure overload by means of pulmonary artery banding. METHODS Right ventricular pressure-volume loops were obtained in open-chest sheep before and after 6-1/2 weeks of pulmonary artery banding by using micromanometer conductance catheters. Animals were randomly assigned to treatment with either saline solution (n = 7) or clenbuterol (n = 8). Treatment was started immediately after pulmonary artery banding. RESULTS Acute pulmonary artery banding increased the right ventricular systolic pressure equally in both groups (saline group, 23.9 +/- 3.3 to 48.1 +/- 9.7 mm Hg; clenbuterol group, 24.3 +/- 2.8 to 48.6 +/- 10.7 mm Hg [mean +/- standard deviation]). Six weeks of treatment produced no significant differences in the body weight, heart weight, heart/body weight ratio, right ventricular wall thickness, heart rate, and stroke volume between the groups. However, the slope of the end-systolic pressure-volume relation and the slope of the first derivative of the right ventricular developed pressure/end-diastolic volume relation were significantly increased when compared with baseline values in clenbuterol-treated animals but not in saline-treated animals. CONCLUSION Clenbuterol treatment during pulmonary artery banding improves systolic function of the chronically pressure-overloaded right ventricle. This has important implications for the use of pharmacologic agents in modulating cardiac adaptation.
Collapse
Affiliation(s)
- J K Hon
- Department of Cardiothoracic Surgery, National Heart and Lung Institute at Royal Brompton Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
29
|
Chan TY. Food-borne clenbuterol may have potential for cardiovascular effects with chronic exposure (commentary). JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 2001; 39:345-8. [PMID: 11527227 DOI: 10.1081/clt-100105153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- T Y Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories
| |
Collapse
|
30
|
Guldner NW, Klapproth P, Grossherr M, Brügge A, Sheikhzadeh A, Tölg R, Rumpel E, Noel R, Sievers HH. Biomechanical hearts: muscular blood pumps, performed in a 1-step operation, and trained under support of clenbuterol. Circulation 2001; 104:717-22. [PMID: 11489781 DOI: 10.1161/hc3301.092786] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND As shown previously in goats, clenbuterol increased the power of electrically conditioned skeletal muscle ventricles (SMVs) of clinically relevant size (150 mL), which were constructed around a mock system. They pumped against a pressure of 60 to 70 mm Hg immediately during surgery and up to several months after, finally at >1 L/min. SMVs without clenbuterol administration failed. Thus, we expected that clenbuterol-supported SMVs might become integrated into the circulation by a 1-step operation instead of the 2-step procedure required up to now. METHODS AND RESULTS In adult Boer goats (n=5), latissimus dorsi muscle was wrapped around a polyurethane chamber of 150 mL that was connected to the descending aorta. This muscular flow-through pumping chamber containing a stabilizing inner layer (called a biomechanical heart [BMH]) was formed and immediately made to work against a systemic load with the support of clenbuterol (5x150 microg/wk). During surgery, the mean stroke volume of BMHs was 53.8+/-22.4 mL. One month after surgery, in peripheral arterial pressure, the mean diastolic (P(MD)) and minimal diastolic (P(min)) pressures of BMH-supported heart cycles differed significantly from unsupported ones (P(MD)=+2.9+/-1.1 mm Hg [P<0.04], P(min)=-2.4+/-0.9 mm Hg [P<0.04]). After BMH-supported heart contractions, the subsequent maximal rate of pressure generation, dP/dt(max), increased by 20.5+/-8.1% (P<0.02). One BMH, catheterized 132 days after surgery, shifted a volume of 34.8 mL per beat and 1.4 L/min with a latissimus dorsi muscle of 330 g. Depending on duration of training, the percentage of myosin heavy chain type 1 ranged between 31% and 100%. CONCLUSIONS Under support of clenbuterol, BMHs of a clinically relevant size can be trained effectively in the systemic circulation after a 1-step operation and offer the prospect of a sufficient volume shift and probably unloading of the left ventricle.
Collapse
Affiliation(s)
- N W Guldner
- Clinic of Cardiac Surgery, Institutes of Anesthesiology, Clinic of Cardiology Medical University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Iwanaga Y, Kihara Y, Yoneda T, Aoyama T, Sasayama S. Modulation of in vivo cardiac hypertrophy with insulin-like growth factor-1 and angiotensin-converting enzyme inhibitor: relationship between change in myosin isoform and progression of left ventricular dysfunction. J Am Coll Cardiol 2000; 36:635-42. [PMID: 10933382 DOI: 10.1016/s0735-1097(00)00769-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Supplemental myocardial hypertrophy induced by insulin-like growth factor (IGF)-1 may prevent transition from hypertrophy to heart failure under chronic mechanical overload. BACKGROUND Several studies have suggested that IGF-1 treatment may be beneficial in chronic heart failure. In addition, recent studies indicated that the amount of alpha-myosin heavy chain (MHC) plays a significant hemodynamic role in large animals including humans. METHODS We treated Dahl salt-sensitive hypertensive rats on a long-term basis with IGF-1. The effects were compared with those produced by treatment using a sub-antihypertensive dose of temocapril, an angiotensin-converting enzyme (ACE) inhibitor. At 11 weeks, when these rats displayed compensated left ventricular hypertrophy (LVH), they were randomized to three groups: 1) IGF group (3 mg/kg/day); 2) temocapril group (1 mg/kg/day); and 3) vehicle (control) group. RESULTS After 15 weeks, the control rats showed left ventricular (LV) enlargement and severe LV dysfunction and rapidly died of pulmonary congestion (mean survival time: 16.8+/-0.5 weeks). The survival time was significantly shortened (15.6+/-0.3 weeks) in the IGF-1 group but significantly prolonged (19.5+/-0.6 weeks) in the temocapril group. The rats in the IGF-1 group showed accelerated LV dilation and dysfunction. Of the several parameters investigated, it was found that the relative amounts of MHC isoforms differed among the three groups. The alpha-MHC mRNA level was decreased by 52% (p<0.01) in the IGF group, while it increased by 58% (p<0.01) in the temocapril group compared with the control group. These changes were related to the progression of LV dysfunction. CONCLUSIONS Supplemental myocardial hypertrophy with long-term IGF-1 treatment may not be beneficial if concentric LVH already exists. Our data suggest that IGF-1 may not protect myocardial performance when its hypertrophic effect aggravates the reduction of alpha-MHC. By contrast, the ACE inhibitor may improve myocardial function and prognosis by preventing the down-regulation of this isoform.
Collapse
Affiliation(s)
- Y Iwanaga
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
32
|
Guldner NW, Klapproth P, Grossherr M, Stephan M, Rumpel E, Noel R, Sievers HH. Clenbuterol-supported dynamic training of skeletal muscle ventricles against systemic load: a key for powerful circulatory assist? Circulation 2000; 101:2213-9. [PMID: 10801764 DOI: 10.1161/01.cir.101.18.2213] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The profound loss of power that occurs in skeletal muscle after electrical conditioning has been the major limiting factor in its clinical application. This study investigates a 3-fold approach for chronic conditioning of skeletal muscle ventricles (SMVs) combining electrical transformation, dynamic training against systemic load, and pharmacological support with clenbuterol. METHODS AND RESULTS In 10 adult male goats, SMVs were constructed from latissimus dorsi muscle wrapped around an intrathoracic training device with windkessel characteristics. SMVs were stimulated electrically and trained dynamically by shifting volume against systemic load. Group 1 goats were controls (n=5), and group 2 goats (n=5) were supported with clenbuterol (150 microg 3 times a week). SMV dynamics were recorded weekly over 5 to 8 months: peak pressure (P(max)), stroke volume (SV), volume displacement per minute (VD), stroke work per day (SW/d), and maximum rates of pressure generation, +dP/dt(max), and decay, -dP/dt(max). In group 1, after 149.5+/-2.7 days (n=4), data were P(max)=70.8+/-4.7 mm Hg, SV=3.2+/-1.2 mL, VD=62.3+/-21.1 mL/min, SW/d=0.8+/-0.4 kJ, +dP/dt(max)=64+/-13 mm Hg/s, and -dP/dt(max)=156+/-32 mm Hg/s. These parameters were significantly improved (P<0.007) in the clenbuterol-treated group 2 after 151+/-2.7 days: P(max)=176.2+/-43.8 mm Hg, SV=23.3+/-6.1 mL, VD=568.2+/-186.1 mL/min, SW/d=9.1+/-2.2 kJ, +dP/dt(max)=1134+/-267 mm Hg/s, and -dP/dt(max)=1028+/-92 mm Hg/s. In 2 SMVs of group 2, VD increased to 1090 and 1235 mL/min after 202 and 246 days of training, respectively. At termination, myosin heavy chains were totally transformed into myosin heavy chain-1 in all SMVs. CONCLUSIONS This clenbuterol-supported dynamic training provides powerful SMVs that may have important clinical implications for the treatment of end-stage heart failure by muscular blood pumps.
Collapse
Affiliation(s)
- N W Guldner
- Clinic of Cardiac Surgery, Medical University of Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Cepero M, Pérez-Pertejo Y, Cubría JC, Reguera R, Balaña-Fouce R, Ordóñez C, Ordóñez Escudero D. Muscle and serum changes with salbutamol administration in aerobically exercised rats. Comp Biochem Physiol C Toxicol Pharmacol 2000; 126:45-51. [PMID: 11048664 DOI: 10.1016/s0742-8413(00)00094-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of experimental animals subjected to 90 days physical training programme plus repeated doses of salbutamol, a beta-adrenergic agonist, administered under two different regimes: therapeutic (16 microg/kg body weight, twice a day) and doping (3 mg/kg body weight, twice a day), caused a marked increase in size of skeletal (soleus, gastrocnemius and plantaris) leg muscles. Adrenergic involvement of salbutamol-linked hypertrophy was demonstrated by co-administration of the non-specific beta-adrenergic antagonist D,L-propranolol (10 mg/kg body weight twice a day). The salbutamol-induced muscle hypertrophy was associated with an early increase in creatine phosphokinase (CK) and its myocardial isozyme (CKmb), without significant changes in lactate dehydrogenase (LDH), alanine aminotransferase (AAT) and aspartate aminotransferase (DAT). The induction of muscle-injury biomarkers was completely abolished by co-administration of propranolol, thus suggesting the adrenergic involvement of these alterations.
Collapse
Affiliation(s)
- M Cepero
- Departamento de Farmacología y Toxicología, Universidad de León, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Parr T, Sensky PL, Arnold MK, Bardsley RG, Buttery PJ. Effects of epinephrine infusion on expression of calpastatin in porcine cardiac and skeletal muscle. Arch Biochem Biophys 2000; 374:299-305. [PMID: 10666311 DOI: 10.1006/abbi.1999.1601] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
beta-Adrenergic agonists induce muscle hypertrophy in mammalian species and alter the extractable activity of calpain proteinase and its specific endogenous inhibitor calpastatin. The effects on skeletal and cardiac muscle calpastatin of continuously infusing a group of pigs for 7 days with the physiological agonist epinephrine (0.15 microg/kg/min) were examined and compared with a placebo group. Basal levels of extractable calpastatin activity were higher in cardiac than skeletal muscle and epinephrine infusion increased the extractable activity in both muscle types (P < 0.05). An anti-recombinant porcine calpastatin antiserum detected a 135-kDa band and a 145/135-kDa doublet on Western blots of skeletal and cardiac extracts, respectively. Epinephrine infusion increased the 135-kDa band in skeletal muscle (P < 0.05), while the ratio of 145/135 kDa in cardiac muscle was decreased (P < 0.05). From Northern blots, the patterns of calpastatin mRNA species were similar in the two muscle types, two major transcripts at 5.8 and 3. 2 kb in cardiac muscle, with equivalent bands in skeletal muscle of 5.4 and 2.8 kb. A faint 7.9-kb band was also detected in skeletal muscle. Epinephrine infusion had no effect on skeletal calpastatin mRNA but tended to increase the 5.8-kb mRNA in cardiac muscle (P = 0. 053). These data indicate a differential response of the two muscle types to mildly elevated plasma epinephrine concentration and the response to elevated epinephrine may be at the translational or posttranslational level. Therefore, this type of stimulus appears to be less effective at perturbing calpastatin gene transcription than certain orally administered synthetic beta-adrenergic agonists.
Collapse
Affiliation(s)
- T Parr
- Division of Nutritional Biochemistry, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Petrou M, Clarke S, Morrison K, Bowles C, Dunn M, Yacoub M. Clenbuterol increases stroke power and contractile speed of skeletal muscle for cardiac assist. Circulation 1999; 99:713-20. [PMID: 9950671 DOI: 10.1161/01.cir.99.5.713] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Skeletal muscle assist (SMA) may be limited by loss of power, slowing of contraction and relaxation, and atrophy of the transformed latissimus dorsi muscle (LD). Clenbuterol (clen), a beta2-adrenergic receptor agonist, was used to improve the performance of trained skeletal muscle in sheep. METHODS AND RESULTS The following 4 groups were used: A (n=6), untrained controls; B (n=6), left LD progressively transformed toward a slow-twitch and fatigue-resistant phenotype by electrical stimulation over 12 weeks (2.5 to 5 V, 240- microsec pulse duration, 35 Hz, 3 to 6 pulses per burst, and up to 40 bursts per minute); C (n=6), clen-treated (0.5 mg/kg SC) for 12 weeks; and D (n=6), clen+trained. In a terminal experiment, the mobilized LD was wrapped around a rubber aorta of a mock circulation and stimulated to contract 40 times per minute. Group A had an initial mean pressure augmentation (DeltaP) of 24.6 mm Hg and stroke power of 2.28 W/kg, but both fell to <20% of their original values by 15 minutes because of fatigue (P<0.005). Group B was fatigue-resistant, with a DeltaP and stroke power at 60 minutes of 13 mm Hg (70% of initial) and 0.34 W/kg (39% of initial), respectively. The performance of group C was similar to that of controls. In group D, however, the muscles were stronger at all time points than in B, with a DeltaP of 23 mm Hg and stroke power of 2.66 W/kg at 60 minutes (P<0.01). The speeds of contraction (+dP/dt:DeltaP) and relaxation (-dP/dt:DeltaP) were significantly greater in group D than B. Protein analyses showed group D to have only a trend toward greater abundance of the fast isoforms of myosin heavy chain and sarcoplasmic reticulum Ca2+-ATPase (P>0.1). CONCLUSIOINS: ++Clen improves the performance of trained skeletal muscle in a model of aortomyoplasty by unknown mechanisms. These findings may have important implications in SMA.
Collapse
Affiliation(s)
- M Petrou
- Imperial College, National Heart and Lung Institute, London, UK
| | | | | | | | | | | |
Collapse
|
36
|
Wong K, Boheler KR, Petrou M, Yacoub MH. Pharmacological modulation of pressure-overload cardiac hypertrophy: changes in ventricular function, extracellular matrix, and gene expression. Circulation 1997; 96:2239-46. [PMID: 9337196 DOI: 10.1161/01.cir.96.7.2239] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Appropriate cardiac hypertrophy (CH) is necessary in several clinical settings, such as pulmonary artery banding in the two-stage arterial switch operation for transposition of the great arteries. Pressure-overload CH, however, produces ventricular dysfunction due to structural and molecular changes. The beta2-adrenergic receptor agonist clenbuterol has been shown to induce CH without such adverse effects to the rat heart. This study was performed to determine its effects on left ventricular (LV) function, structure, and gene expression in pressure-overload CH. METHODS AND RESULTS Sprague-Dawley rats were assigned to one of four groups: 1, sham-operated (n=15); 2, banding of ascending aorta (n=22); 3, banding+clenbuterol (n=18); and 4, banding+thyroxine (n= 17). At the end of 3 weeks, groups 2, 3, and 4 showed an increase in LV mass index of 49.7+/-5.1%, 66.1+/-3.8%, and 47.6+/-4.6%, respectively, relative to group 1. A subgroup with severe CH (>50%) in group 2 was found to have significantly impaired developed pressure and diastolic relaxation and an increase in passive stiffness, with significantly reduced LV expression of sarcoplasmic reticulum Ca2+-ATPase2a (SERCA2a) mRNA and increased LV collagen concentration. In comparison, similarly hypertrophied animals in groups 3 and 4 demonstrated improved developed pressure, normal relaxation and diastolic stiffness with normal collagen concentration, and a greater abundance of SERCA2a mRNA. CONCLUSIONS Clenbuterol administration in conjunction with pressure overload produces a specific type of CH with preserved LV function. In addition, an increase in LV mass was associated with less fibrosis and greater expression of SERCA2a mRNA than banding alone.
Collapse
Affiliation(s)
- K Wong
- Division of Cardiothoracic Surgery, National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
37
|
Zhang KM, Hu P, Wang SW, Feher JJ, Wright LD, Wechsler AS, Spratt JA, Briggs FN. Salbutamol changes the molecular and mechanical properties of canine skeletal muscle. J Physiol 1996; 496 ( Pt 1):211-20. [PMID: 8910209 PMCID: PMC1160837 DOI: 10.1113/jphysiol.1996.sp021678] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Salbutamol, a beta 2-agonist, increased the weight of the canine latissimus dorsi muscle. It also increased fusion frequency, and decreased time-to-peak tension, half-relaxation time, and total contraction time. These changes in twitch times and fusion frequency were associated with changes in the levels of proteins expressed in slow- and fast-twitch fibres. Salbutamol decreased the levels of the slow-twitch cardiac isoform of sarco-/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban proteins, and increased the level of the fast-twitch isoform of sarco-/endoplasmic reticulum Ca(2+)-ATPase (SERCA1a). 2. Changes in the levels of SERCA proteins, particularly SERCA1a, could account for most of the increases in calcium uptake rate observed in homogenates of muscles from the salbutamol-treated animals and could partially account for the changes in half-relaxation rates and other twitch times. 3. Changes in the levels of SERCA1a, SERCA2a and phospholamban protein did not always follow changes in the levels of their corresponding mRNAs. Divergence depended upon the SERCA isoform and muscle. The muscles studied were latissimus dorsi and vastus intermedius. 4. Salbutamol did not change the level of myosin heavy chain (HC)-I isoforms in either muscle, suggesting that it did not increase the proportion of slow-twitch fibres in these muscles. It did increase the level of HC-IIx and decrease the level of HC-IIa isoforms in the latissimus dorsi. Salbutamol did not produce these effects in the vastus intermedius. It is of particular interest that salbutamol changed the relative levels of SERCA proteins in the latissimus dorsi muscle without producing significant change in the level of HC-I isoform.
Collapse
Affiliation(s)
- K M Zhang
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0551, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaddoura S, Firth JD, Boheler KR, Sugden PH, Poole-Wilson PA. Endothelin-1 is involved in norepinephrine-induced ventricular hypertrophy in vivo. Acute effects of bosentan, an orally active, mixed endothelin ETA and ETB receptor antagonist. Circulation 1996; 93:2068-79. [PMID: 8640984 DOI: 10.1161/01.cir.93.11.2068] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Endothelin-1 (ET-1) has potent effects on cell growth and induces hypertrophy of cultured ventricular myocytes. Catecholamines increase expression of ET-1 mRNA by cultured myocytes. We investigated the role of endogenous ET-1 in catecholamine-induced hypertrophy in vivo by studying the effects of continuous norepinephrine infusion on physical and molecular markers of ventricular hypertrophy, ventricular and noncardiac expression of ET-1 mRNA, and the acute effects of bosentan, an orally active ETA and ETB receptor antagonist. METHODS AND RESULTS Seventy male Sprague-Dawley rats (175 to 200 g) were divided into four groups: (1) sham-operated rats, (2) norepinephrine-infused rats (600 micrograms.kg-1.h-1 by subcutaneous osmotic pump, up to 7 days), (3) sham-operated rats given bosentan, and (4) norepinephrine-infused rats given bosentan. Bosentan (100 mg/kg once daily) was administered by gavage for 6 days starting 1 day before operation. Norepinephrine caused increases in absolute ventricular weight and ratios of ventricular weight to body weight and ventricular RNA to protein. Ventricular expression of mRNAs for atrial natriuretic factor, skeletal alpha-actin, and beta-myosin heavy chain, which in adult rat ventricle are indicators of hypertrophy, also increased. Ventricular expression of ET-1 mRNA was elevated in the norepinephrine group at 1, 2, and 3 days. By 5 days, this had fallen to control levels. In lung, kidney, and skeletal muscle, norepinephrine did not significantly increase expression of ET-1 mRNA. Bosentan attenuated norepinephrine-induced increases in ventricular weight, ratio of RNA to protein, and expression of skeletal alpha-actin mRNA and beta-myosin heavy chain mRNA at 5 days, but it did not attenuate increased ventricular expression of atrial natriuretic factor mRNA. CONCLUSIONS These data suggest that endogenous ET-1 plays a direct role in mediating norepinephrine-induced ventricular hypertrophy in vivo.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Administration, Oral
- Animals
- Animals, Newborn
- Atrial Natriuretic Factor/biosynthesis
- Atrial Natriuretic Factor/genetics
- Biomarkers
- Body Weight/drug effects
- Bosentan
- Cells, Cultured
- Drug Evaluation, Preclinical
- Endothelin Receptor Antagonists
- Endothelins/biosynthesis
- Endothelins/genetics
- Endothelins/physiology
- Gene Expression Regulation/drug effects
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Muscle Proteins/analysis
- Myocardium/cytology
- Myocardium/pathology
- Myosin Heavy Chains/biosynthesis
- Myosin Heavy Chains/genetics
- Norepinephrine/pharmacology
- Norepinephrine/toxicity
- Organ Size/drug effects
- Polymerase Chain Reaction
- RNA, Antisense
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Endothelin/physiology
- Sulfonamides/administration & dosage
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- S Kaddoura
- National Heart and Lung Institute, Imperial College, London, England.
| | | | | | | | | |
Collapse
|