1
|
Zhu XL, Li T, Cao Y, Yao QP, Liu X, Li Y, Guan YY, Deng JJ, Jiang R, Jiang J. tRNA-derived fragments tRF GlnCTG induced by arterial injury promote vascular smooth muscle cell proliferation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:603-613. [PMID: 33552681 PMCID: PMC7819823 DOI: 10.1016/j.omtn.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023]
Abstract
tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are originated from the specific cleavage of endogenous tRNAs or their precursors and regulate gene expression when the cells are in stressful circumstances. Here, we replicated the rat common carotid artery (CCA) intimal hyperplasia model and investigated the expression of tRFs/tiRNAs in the artery. The normal and the balloon-injured rat CCAs were subjected to small RNA sequencing, and then the differentially expressed tRFs/tiRNAs were identified and analyzed. The expression profiles of tRFs/tiRNAs in the healthy and injured CCAs were remarkably different. tRNAGlnCTG-derived fragments (tRFGlnCTG) were found to be overexpressed with a high abundance in the injured CCA. In in vitro experiments, the synthetic tRFGlnCTG mimetics elevated the proliferation and migration of rat vascular smooth muscle cells (VSMCs). Through bioinformatics analysis and an overexpression experiment, tRFGlnCTG was found to negatively regulate the expression of FAS cell surface death receptor (FAS). This study revealed that tRFGlnCTG is a crucial regulator in promoting VSMC proliferation. The investigation of the roles of tRFs/tiRNAs is of significance for understanding the mechanism, diagnosis, and treatment of intimal hyperplasia.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Yu Cao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang-Yang Guan
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ji-Jun Deng
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Corresponding author: Rui Jiang, Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan Province, China.
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Corresponding author: Jun Jiang, Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan Province, China.
| |
Collapse
|
2
|
Klimentova E, Suchkov I, Egorov A, Kalinin R. Apoptosis and Cell Proliferation Markers in Inflammatory-Fibroproliferative Diseases of the Vessel Wall (Review). Sovrem Tekhnologii Med 2020; 12:119-126. [PMID: 34795999 PMCID: PMC8596273 DOI: 10.17691/stm2020.12.4.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is the main feature of inflammatory-fibroproliferative disorders of the vessel wall. Studies in animal models have shown that smooth muscle cells (SMCs) cultured from endarterectomy specimens from the affected area proliferate more slowly and display higher apoptotic indices than SMCs derived from the normal vessel wall. Apoptotic cells were found in the destabilized atherosclerotic plaques, as well as in the samples with restenosis of the reconstruction area. Injury to the vessel wall causes two waves of apoptosis. The first wave is the rapid apoptosis in the media that occurs within a few hours after injury and leads to a marked reduction in the number of vascular wall cells. The second wave of apoptosis occurs much later (from several days to weeks) and is limited by the SMCs within the developing neointima. Up to 14% of the neointimal SMCs undergo apoptosis 20 days after balloon angioplasty. Ligation of the external carotid artery in a rabbit model led to a marked decrease in blood flow in the common carotid artery, which correlated with the increased apoptosis of endothelial cells and SMCs. Angioplasty-induced death of SMCs is regulated by a redox-sensitive signaling pathway, and topical administration of antioxidants can minimize vascular cell loss. On the whole, studies show that apoptosis is prevalent in vascular lesions, controlling the viability of both inflammatory and vascular cells, determining the cellular composition of the vessel wall. The main markers of apoptosis (Fas, Fas ligand, p53, Bcl-2, Bax) and cell proliferation (toll receptor) have been considered in the current review.
Collapse
Affiliation(s)
- E.A. Klimentova
- Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - I.A. Suchkov
- Professor, Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - A.A. Egorov
- Doctoral Student, Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - R.E. Kalinin
- Professor, Head of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| |
Collapse
|
3
|
Kural MH, Wang J, Gui L, Yuan Y, Li G, Leiby KL, Quijano E, Tellides G, Saltzman WM, Niklason LE. Fas ligand and nitric oxide combination to control smooth muscle growth while sparing endothelium. Biomaterials 2019; 212:28-38. [PMID: 31102854 DOI: 10.1016/j.biomaterials.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/21/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023]
Abstract
Metallic stents cause vascular wall damage with subsequent smooth muscle cell (SMC) proliferation, neointimal hyperplasia, and treatment failure. To combat in-stent restenosis, drug-eluting stents (DES) delivering mTOR inhibitors such as sirolimus or everolimus have become standard for coronary stenting. However, the relatively non-specific action of mTOR inhibitors prevents efficient endothelium recovery and mandates dual antiplatelet therapy to prevent thrombosis. Unfortunately, long-term dual antiplatelet therapy leads to increased risk of bleeding/stroke and, paradoxically, myocardial infarction. Here, we took advantage of the fact that nitric oxide (NO) increases Fas receptors on the SMC surface. Fas forms a death-inducing complex upon binding to Fas ligand (FasL), while endothelial cells (ECs) are relatively resistant to this pathway. Selected doses of FasL and NO donor synergistically increased SMC apoptosis and inhibited SMC growth more potently than did everolimus or sirolimus, while having no significant effect on EC viability and proliferation. This differential effect was corroborated in ex vivo pig coronaries, where the neointimal formation was inhibited by the drug combination, but endothelial viability was retained. We also deployed FasL-NO donor-releasing ethylene-vinyl acetate copolymer (EVAc)-coated stents into pig coronary arteries, and cultured them in perfusion bioreactors for one week. FasL and NO donor, released from the stent coating, killed SMCs close to the stent struts, even in the presence of flow rates mimicking those of native arteries. Thus, the FasL-NO donor-combination has a potential to prevent intimal hyperplasia and in-stent restenosis, without harming endothelial restoration, and hence may be a superior drug delivery strategy for DES.
Collapse
Affiliation(s)
- Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA.
| | - Juan Wang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Yifan Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Guangxin Li
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06519, USA
| | - Katherine L Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Elias Quijano
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - George Tellides
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06519, USA
| | - W Mark Saltzman
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Laura E Niklason
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Santulli G, Wronska A, Uryu K, Diacovo TG, Gao M, Marx SO, Kitajewski J, Chilton JM, Akat KM, Tuschl T, Marks AR, Totary-Jain H. A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Invest 2014; 124:4102-14. [PMID: 25133430 DOI: 10.1172/jci76069] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Drugs currently approved to coat stents used in percutaneous coronary interventions do not discriminate between proliferating vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). This lack of discrimination delays reendothelialization and vascular healing, increasing the risk of late thrombosis following angioplasty. We developed a microRNA-based (miRNA-based) approach to inhibit proliferative VSMCs, thus preventing restenosis, while selectively promoting reendothelialization and preserving EC function. We used an adenoviral (Ad) vector that encodes cyclin-dependent kinase inhibitor p27(Kip1) (p27) with target sequences for EC-specific miR-126-3p at the 3' end (Ad-p27-126TS). Exogenous p27 overexpression was evaluated in vitro and in a rat arterial balloon injury model following transduction with Ad-p27-126TS, Ad-p27 (without miR-126 target sequences), or Ad-GFP (control). In vitro, Ad-p27-126TS protected the ability of ECs to proliferate, migrate, and form networks. At 2 and 4 weeks after injury, Ad-p27-126TS-treated animals exhibited reduced restenosis, complete reendothelialization, reduced hypercoagulability, and restoration of the vasodilatory response to acetylcholine to levels comparable to those in uninjured vessels. By incorporating miR-126-3p target sequences to leverage endogenous EC-specific miR-126, we overexpressed exogenous p27 in VSMCs, while selectively inhibiting p27 overexpression in ECs. Our proof-of-principle study demonstrates the potential of using a miRNA-based strategy as a therapeutic approach to specifically inhibit vascular restenosis while preserving EC function.
Collapse
|
5
|
Zeng L, Maruyama S, Nakamura K, Parker-Duffen JL, Adham IM, Zhong X, Lee HK, Querfurth H, Walsh K. The injury-induced myokine insulin-like 6 is protective in experimental autoimmune myositis. Skelet Muscle 2014; 4:16. [PMID: 25161767 PMCID: PMC4144317 DOI: 10.1186/2044-5040-4-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background The idiopathic inflammatory myopathies represent a group of autoimmune diseases that are characterized by lymphocyte infiltration of muscle and muscle weakness. Insulin-like 6 (Insl6) is a poorly characterized member of the insulin-like/relaxin family of secreted proteins, whose expression is upregulated upon acute muscle injury. Methods In this study, we employed Insl6 gain or loss of function mice to investigate the role of Insl6 in a T cell-mediated model of experimental autoimmune myositis (EAM). EAM models in rodents have involved immunization with human myosin-binding protein C with complete Freund’s adjuvant (CFA) emulsions and pertussis toxin. Results Insl6-deficiency in mice led to a worsened myositis phenotype including increased infiltration of CD4 and CD8 T cells and the elevated expression of inflammatory cytokines. Insl6-deficient mice show significant motor function impairment when tested with treadmill or Rotarod devices. Conversely, muscle-specific overexpression of Insl6 protected against the development of myositis as indicated by reduced lymphocyte infiltration in muscle, diminished inflammatory cytokine expression and improved motor function. The improvement in myositis by Insl6 could also be demonstrated by acute hydrodynamic delivery of a plasmid encoding murine Insl6. In cultured cells, Insl6 inhibits Jurkat cell proliferation and activation in response to phytohemagglutinin/phorbol 12-myristate 13-acetate stimulation. Insl6 transcript expression in muscle was reduced in a cohort of dermatomyositis and polymyositis patients. Conclusions These data suggest that Insl6 may have utility for the treatment of myositis, a condition for which few treatment options exist.
Collapse
Affiliation(s)
- Ling Zeng
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | - Sonomi Maruyama
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | - Kazuto Nakamura
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | - Jennifer L Parker-Duffen
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | - Ibrahim M Adham
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | - Xuemei Zhong
- Hematology Oncology Section, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | - Han-Kyu Lee
- Department of Neurology, Rhode Island Hospital, Brown University School of Medicine, 593 Eddy St, Providence, RI 02903, USA
| | - Henry Querfurth
- Department of Neurology, Rhode Island Hospital, Brown University School of Medicine, 593 Eddy St, Providence, RI 02903, USA
| | - Kenneth Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| |
Collapse
|
6
|
Li L, Gao P, Chen HZ, Zhang ZQ, Xu TT, Jia YY, Zhang HN, Du GH, Liu DP. Up-regulation of Fas Ligand Expression by Sirtuin 1 in both Flow-restricted Vessels and Serum-stimulated Vascular Smooth Muscle Cells. ACTA ACUST UNITED AC 2013; 28:65-71. [DOI: 10.1016/s1001-9294(13)60024-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Katsaros KM, Wiesbauer F, Speidl WS, Kastl SP, Huber K, Zorn G, Niessner A, Glogar D, Maurer G, Wojta J. High soluble Fas and soluble Fas Ligand serum levels before stent implantation are protective against restenosis. Thromb Haemost 2011; 105:883-91. [PMID: 21359408 DOI: 10.1160/th10-09-0566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/20/2011] [Indexed: 01/24/2023]
Abstract
Percutaneous coronary intervention (PCI) represents the most important treatment of coronary artery stenosis today. But instent restenosis (ISR) is a limitation for the outcome. Fas and Fas Ligand have been implicated in apoptosis and vessel wall inflammation. Their role in ISR is not known so far. In this prospective study we studied 137 patients with stable coronary artery disease who underwent elective PCI. Blood samples were taken directly before and 24 hours after PCI. Soluble (s)Fas and sFas Ligand serum levels were measured by ELISA. Restenosis was evaluated six to eight months later either by coronary angiography or by exercise testing. During the follow-up period, 18 patients (13%) developed ISR. At baseline, patients with ISR had significantly lower median sFas, as well as sFas Ligand levels compared to patients without ISR (sFAS: ISR 492 pg/ml, no ISR 967 pg/ml, p=0.014; sFAS Ligand: ISR: 26 pg/ml, no ISR: 42 pg/ml, p=0.001). After PCI median sFas levels significantly decreased in patients with ISR compared to patients without ISR [ISR: -152 pg/ml (IQR -36 to -227), no ISR: -38 pg/ml (IQR -173 to +150 pg/ml), p=0.03]. sFas Ligand levels after PCI significantly increased in ISR patients compared to patients without ISR [ISR: 14 pg/ml (IQR -3 to +26 pg/ml), no ISR -6 pg/ml (IQR -22 to +21 pg/ml), p=0.014]. In conclusion, sFas and sFas Ligand seem to be associated with the development of ISR. Determination of serum levels before and after PCI might help identifying patients at higher risk of ISR.
Collapse
Affiliation(s)
- K M Katsaros
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Barbato JE, Kibbe MR, Tzeng E. The Emerging Role of Gene Therapy in the Treatment of Cardiovascular Diseases. Crit Rev Clin Lab Sci 2010. [DOI: 10.1080/10408360390250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
|
10
|
Hic-5, an adaptor protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Biochem Biophys Res Commun 2008; 376:682-7. [PMID: 18812162 DOI: 10.1016/j.bbrc.2008.09.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 09/11/2008] [Indexed: 11/22/2022]
Abstract
Focal adhesion components are targets for biochemical and mechanical stimuli that evoke crucial injury. Hic-5 (hydrogen peroxide-inducible clone 5) is a multidomain adaptor protein which is implicated in the regulation of integrin signaling in focal adhesion. The aim of this research was to test the hypothesis that Hic-5, a focal adhesion LIM protein expressed in smooth muscle cells, is involved in dynamic processes by pathological stimuli in the vessel wall. Here, we describe the analysis of the function of Hic-5 using a mouse model of vascular injury that may mimic balloon angioplasty. At 4 days after vascular injury, marked down-regulation of the Hic-5 expression was observed in the smooth muscle layer, and local delivery of the Hic-5 using adenovirus vectors repressed injury-induced neointimal expansion. In addition, Hic-5 reduced cells migration into three-dimensional collagen gels, and the forced expression of Hic-5 in cells embedded in the collagen gel matrix repressed the expression of uPA that participates in smooth muscle cell migration. These results suggest that Hic-5 modulates cellular responses to pathological stimuli in the vessel wall.
Collapse
|
11
|
Tanaka K, Sata M. Therapeutic Application of Bone Marrow-derived Progenitor Cells for Vascular Diseases: Magicbullets Having the Good Without the Bad? INT J GERONTOL 2007. [DOI: 10.1016/s1873-9598(08)70019-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Mitra AK, Agrawal DK. Gene therapy of fibroproliferative vasculopathies: current ideas in molecular mechanisms and biomedical technology. Pharmacogenomics 2007; 7:1185-98. [PMID: 17184206 DOI: 10.2217/14622416.7.8.1185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intimal hyperplasia occurs primarily as a part of the pathogenesis of coronary artery disease or secondary to therapeutic intervention in relieving vascular occlusion. Intimal hyperplasia involving vascular smooth muscle cells is found in atherosclerosis, post-balloon angioplasty restenosis, in-stent restenosis and vein graft disease, predominantly involving the use of saphenous vein conduits in coronary artery bypass grafting procedures. One potentially exciting area is that of gene therapy. Gene and protein expression patterns at the site of vasculoproliferative lesions have been widely studied and several target areas have been identified on the basis of whether the gene has an antiproliferative, proapoptotic, matrix degrading or endothelial protective action. Blood vessels are easily accessible for the delivery of the gene product, and experimental studies using animal models have used catheter-delivered gene products at the site of vascular injury. Currently, the application of antisense technology and adenoviral vector-mediated delivery has shown significant promise, albeit in in vitro or animal model settings. In this review, we discuss the current knowledge in the application of gene therapy in fibroproliferative vasculopathies. We examine some of the cellular mechanisms and intermediaries which could be potential candidates for gene targeting. We also present some of the advances in biomedical technology that might provide useful vehicles for pinpoint delivery of the gene product. Could the future of restenosis treatment be in gene therapy or is it misplaced enthusiasm?
Collapse
Affiliation(s)
- Amit K Mitra
- Creighton University School of Medicine, Omaha, NE 68178, USA
| | | |
Collapse
|
13
|
Kishore R, Losordo DW. Gene therapy for restenosis: biological solution to a biological problem. J Mol Cell Cardiol 2007; 42:461-8. [PMID: 17222423 DOI: 10.1016/j.yjmcc.2006.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 11/16/2006] [Indexed: 11/28/2022]
Abstract
Coronary artery disease remains a significant health threat afflicting millions of individuals worldwide. Despite the development of a variety of technologies and catheter based interventions, post-procedure restenosis is still a significant concern. Gene therapy has emerged as a promising approach aimed at modification of cellular processes that give rise to restenosis. When juxtaposed alongside the failure of traditional pharmacotherapeutics to eliminate restenosis, gene therapy has engendered great expectations for cubing coronary restenosis. In this review we have discussed an overview of gene therapy approaches that hve been utilized to reduce restenosis in preclinical and clinical studies, current status of anti-restenosis gene therapy and perspectives on its future application. For brevity, we have limited our discussion on anti-restenosis gene therapy to the introduction of a nucleic acid to the cell, tissue, organ or organism in order to give rise to the expression of a protein, the function of which will confer therapeutic effect. For the purpose of this review, we have focused ou discussion on two relevant anti-restenosis strategies, anti-proliferative and pro-endothelialization.
Collapse
Affiliation(s)
- Raj Kishore
- Division of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | |
Collapse
|
14
|
Tian W, Kuhlmann MT, Pelisek J, Scobioala S, Quang TH, Hasib L, Klocke R, Jahn UR, Nikol S. Paclitaxel Delivered to Adventitia Attenuates Neointima Formation Without Compromising Re-Endothelialization After Angioplasty in a Porcine Restenosis Model. J Endovasc Ther 2006; 13:616-29. [PMID: 17042659 DOI: 10.1583/05-1802mr.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the effect of paclitaxel delivered into the adventitia of pig femoral arteries on neointima formation and hyperplasia as well as re-endothelialization. METHODS Paclitaxel or vehicle was delivered into the adventitia of pig femoral arteries using a needle injection catheter following balloon overstretch. Arteries were then serially examined by angiography, Evan's blue staining, morphometry, and immunohistochemistry for up to 12 weeks. RESULTS Local adventitial delivery of paclitaxel significantly attenuated neointima formation. The area of neointima (0.41+/-0.17 versus 2.75+/-0.81 mm(2), p<0.01), the ratio of intima to media (0.12+/-0.05 versus 0.86+/-0.35, p<0.05), and the degree of stenosis (12.80%+/-3.13% versus 47.06%+/-7.25%, p<0.01) were significantly lower in the paclitaxel-treated group compared to controls. Furthermore, cell proliferation was significantly diminished following adventitial delivery of paclitaxel from day 3 to 21 compared to controls. Complete re-endothelialization was observed 3 weeks after intervention in both groups of arteries treated with paclitaxel or vehicle alone. CONCLUSION Paclitaxel delivered into the adventitia of pig femoral arteries effectively attenuates neointima formation after angioplasty without compromising re-endothelialization. Adventitial drug delivery may therefore be an alternative to drug-eluting stents for the prevention of restenosis.
Collapse
MESH Headings
- Analysis of Variance
- Angioplasty, Balloon
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Proliferation/drug effects
- Connective Tissue/blood supply
- Connective Tissue/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/surgery
- Femoral Artery/drug effects
- Femoral Artery/injuries
- Femoral Artery/pathology
- Fluorescent Antibody Technique
- Graft Occlusion, Vascular/metabolism
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/therapy
- Hyperplasia/drug therapy
- Immunohistochemistry
- Injections, Intra-Arterial
- Ki-67 Antigen/drug effects
- Ki-67 Antigen/metabolism
- Myocytes, Smooth Muscle/drug effects
- Paclitaxel/administration & dosage
- Paclitaxel/pharmacology
- Platelet Endothelial Cell Adhesion Molecule-1/drug effects
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Research Design
- Reverse Transcriptase Polymerase Chain Reaction
- Swine
- Tunica Intima/drug effects
- Tunica Intima/pathology
- Tunica Media/drug effects
- Tunica Media/pathology
- von Willebrand Factor/drug effects
- von Willebrand Factor/metabolism
Collapse
Affiliation(s)
- Wen Tian
- Department of Cardiology and Angiology, University of Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen S, Wasserfall C, Kapturczak MH, Atkinson M, Agarwal A. Freeze-thaw increases adeno-associated virus transduction of cells. Am J Physiol Cell Physiol 2006; 291:C386-92. [PMID: 16510845 DOI: 10.1152/ajpcell.00582.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A combination of gene and cell-based therapies may provide significant advantages over existing treatments in terms of their effectiveness. However, long-term efficient gene delivery has been difficult to achieve in many cell types, including endothelial cells. We developed a freeze-thaw technique which significantly increases the transduction efficiency of recombinant adeno-associated virus vectors in human aortic endothelial cells (23-fold) and in human renal proximal tubular epithelial cells (128-fold) in comparison to current methods for transduction. Freeze-thaw resulted in a transient but significant increase in cell surface area by 1,174 ± 69.8 μM2per cell. Reduction of cryogenic medium volume and repeated freeze-thaw further increased transduction efficiency by 2.8- and 2.4-fold, respectively. Trypsinization, dimethylsulfoxide, and cold temperatures, which are also involved in cell preservation, had no significant impact on transduction efficiency. Increased transduction was also observed in mesenchymal stem cells (42-fold) by the freeze-thaw method. The potential mechanism of this novel technique likely involves an increase in the net permeable area of biological membranes caused by water crystallization. These findings provide a new approach for gene delivery in various cell types, particularly in those resistant to transduction by conventional methods.
Collapse
Affiliation(s)
- Sifeng Chen
- Department of Medicine, Nephrology Research and Training Center, Univ. of Alabama at Birmingham, 1530 3rd Ave. S., Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
16
|
Nishimura S, Nagai S, Sata M, Katoh M, Yamashita H, Saeki Y, Nagai R, Sugiura S. Expression of Green Fluorescent Protein Impairs the Force-Generating Ability of Isolated Rat Ventricular Cardiomyocytes. Mol Cell Biochem 2006; 286:59-65. [PMID: 16532258 DOI: 10.1007/s11010-005-9090-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 11/23/2005] [Indexed: 11/25/2022]
Abstract
Green fluorescent protein (GFP) is widely used as a biologically inert expression marker for studying the effects of transgene expression in heart tissue, but its influence on the contractile function of cardiomyocytes has not yet been fully evaluated. We measured the contractile function of isolated rat ventricular myocytes before and after infection with a recombinant adenovirus expressing GFP (Adv-GFP). Myocytes infected with a non-transgene-containing adenovirus (Adv-Null) or uninfected myocytes (UI) served as controls. Using a carbon-fiber-based force-length measurement system for single cardiomyocytes, we evaluated the contractile function over a wide range of loading conditions including the shortening fraction (%FS) and maximal shortening velocity (Vmax) under the unloaded condition, and isometric force. At 24 hours after infection, nearly 80% of the Adv-GFP-infected myocytes expressed GFP. We found that the %FS and Vmax did not differ among the three groups, however, the isometric force showed a mild, but significant, decrease only in Adv-GFP myocytes (Adv-GFP: 29.1 +/- 4.0 mN/mm2; Adv-Null: 42.8 +/- 6.2 mN/mm2; UI: 47.1 +/- 4.8 mN/mm2; p = 0.03). An evaluation of the contractile function of isolated cardiomyocytes under high load conditions revealed impaired isometric contractility by GFP expression. Adv-GFP expression may not be an ideal control for specific gene expression experiments in myocardial tissue.
Collapse
Affiliation(s)
- Satoshi Nishimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sata M, Fukuda D, Tanaka K, Kaneda Y, Yashiro H, Shirakawa I. The role of circulating precursors in vascular repair and lesion formation. J Cell Mol Med 2005; 9:557-68. [PMID: 16202205 PMCID: PMC6741295 DOI: 10.1111/j.1582-4934.2005.tb00488.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The accumulation of smooth muscle cells (SMCs) plays a principal role in atherogenesis, post-angioplasty restenosis and transplantation-associated vasculopathy. Therefore, much effort has been expended in targeting the migration and proliferation of medial smooth muscle cells to prevent occlusive vascular remodeling. Recent evidence suggests that bone marrow-derived circulating precursors can also give rise to endothelial cells and smooth muscle cells that contribute to vascular repair, remodeling, and lesion formation under physiological and pathological conditions. This article overviews recent findings on circulating vascular progenitor cells and describes potential therapeutic strategies that target these cells to treat occlusive vascular diseases.
Collapse
Affiliation(s)
- Masataka Sata
- Department of Cardiovascular Medicine, University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Mangi AA. Gene and Cell‐based Therapies for Cardiovascular Disease. MODERN BIOPHARMACEUTICALS 2005:305-324. [DOI: 10.1002/9783527620982.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Chen S, Kapturczak M, Loiler SA, Zolotukhin S, Glushakova OY, Madsen KM, Samulski RJ, Hauswirth WW, Campbell-Thompson M, Berns KI, Flotte TR, Atkinson MA, Tisher CC, Agarwal A. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum Gene Ther 2005; 16:235-47. [PMID: 15761263 PMCID: PMC1364465 DOI: 10.1089/hum.2005.16.235] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human alpha1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding beta-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Capsid/metabolism
- Cells, Cultured
- DNA, Recombinant/genetics
- Dependovirus/genetics
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/virology
- Genetic Vectors
- Green Fluorescent Proteins/metabolism
- Heparin/metabolism
- Humans
- Male
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/virology
- N-Acetylneuraminic Acid/metabolism
- Neuraminidase/pharmacology
- Rats
- Rats, Inbred Lew
- Transduction, Genetic
- alpha 1-Antitrypsin/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Sifeng Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bohana-Kashtan O, Civin CI. Fas Ligand as a Tool for Immunosuppression and Generation of Immune Tolerance. Stem Cells 2004; 22:908-24. [PMID: 15536183 DOI: 10.1634/stemcells.22-6-908] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of Fas ligand (FasL) in physiologically limiting immune responses and maintaining immune-privileged sites has led to a body of research aiming to confer protection to allogeneic grafts by expressing FasL on the allogeneic tissue or by administrating FasL-transduced donor dendritic cells. In addition, several studies have used FasL to abrogate autoimmune responses. This review presents the results of these studies and discusses the problems associated with FasL usage.
Collapse
Affiliation(s)
- Osnat Bohana-Kashtan
- Department of Oncology, Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer at Johns Hopkins, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | |
Collapse
|
21
|
Aprahamian T, Rifkin I, Bonegio R, Hugel B, Freyssinet JM, Sato K, Castellot JJ, Walsh K. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. ACTA ACUST UNITED AC 2004; 199:1121-31. [PMID: 15096538 PMCID: PMC2211887 DOI: 10.1084/jem.20031557] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To clarify the link between autoimmune disease and hypercholesterolemia, we created the gld.apoE−/− mouse as a model of accelerated atherosclerosis. Atherosclerotic lesion area was significantly increased in gld.apoE−/− mice compared with apoE−/− mice. gld.apoE−/− mice also displayed increases in lymphadenopathy, splenomegaly, and autoantibodies compared with gld mice, and these effects were exacerbated by high cholesterol diet. gld.apoE−/− mice exhibited higher levels of apoptotic cells, yet a reduced frequency of engulfed apoptotic nuclei within macrophages. Infusion of lysophosphatidylcholine, a component of oxidized low density lipoprotein, markedly decreased apoptotic cell clearance in gld mice, indicating that hypercholesterolemia promotes autoimmune disease in this background. These data suggest that defects in apoptotic cell clearance promote synergy between atherosclerotic and autoimmune diseases.
Collapse
Affiliation(s)
- Tamar Aprahamian
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany St., W611, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sata M. Molecular strategies to treat vascular diseases: circulating vascular progenitor cell as a potential target for prophylactic treatment of atherosclerosis. Circ J 2004; 67:983-91. [PMID: 14639011 DOI: 10.1253/circj.67.983] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atherosclerosis is responsible for more than half of all deaths in Western countries. Numerous studies have reported that accumulation of smooth muscle cells (SMCs) plays a principal role in atherogenesis, post-angioplasty restenosis and transplantation-associated vasculopathy. Although much effort has been devoted to targeting the migration and proliferation of medial SMCs, effective therapy to prevent occlusive vascular remodeling has not been established. Recently, it was suggested that bone marrow-derived precursors can give rise to vascular cells that contribute to the repair, remodeling, and lesion formation of the arterial wall under certain circumstances. This review highlights the recent findings on circulating vascular precursors and describes the potential therapeutic strategies for vascular diseases, targeting mobilization, homing, differentiation and proliferation of circulating progenitor cells.
Collapse
Affiliation(s)
- Masataka Sata
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo and PRESTO, Japan Science and Technology Agency, Kawaguchi.
| |
Collapse
|
23
|
Mazighi M, Tchétché D, Hyafil F, Feldman LJ. [Gene therapy of restenosis and atherosclerosis: hopes and facts]. ACTA ACUST UNITED AC 2004; 52:212-7. [PMID: 15145134 DOI: 10.1016/j.patbio.2004.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stents are the main technique of coronary revascularization in France and western countries. However, a better understanding of the pathophysiology of in-stent restenosis and the well-recognized roles played by inflammation and cell proliferation led to the development of drug-eluting stents, which have nearly eliminated the risk of restenosis. In this context, the success of gene therapy will depend on our ability to simplify and optimize current protocols of arterial gene transfer. For the time being, arterial gene therapy remains a powerful tool for deciphering the complex pathophysiology of restenosis and will certainly have far-reaching implications in the fields of vascular biology and therapeutics.
Collapse
Affiliation(s)
- M Mazighi
- Département de cardiologie, U460 Inserm, CHU Bichat-APHP, 46, rue Henri-Huchard, 75877 Paris 18, France
| | | | | | | |
Collapse
|
24
|
Takahashi A, Palmer-Opolski M, Smith RC, Walsh K. Transgene delivery of plasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent. Gene Ther 2003; 10:1471-8. [PMID: 12900762 DOI: 10.1038/sj.gt.3302010] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metallic stents coated with a polyurethane emulsion containing plasmid DNA were implanted in rabbit iliac arteries to evaluate transgene delivery and expression in the vessel wall. The expression of the plasmid-encoded marker genes, beta-galactosidase, luciferase and green fluorescence protein (GFP), were evaluated at 7 days after implantation. In all cases, plasmid transfer was confined to the vessel wall at the site of stent implantation, plasmid DNA was not observed in vessel segments immediately proximal or distal to the stent and dissemination of plasmid DNA to lung, liver or spleen was not observed. Expression of transgenes occurred only in vessel segments in contact with the stent and analysis of the GFP expression pattern revealed a high frequency of marker protein-positive cells occurring at or near the luminal surface. The extent of transgene expression was dependent upon the quantity of DNA loaded onto the stent and no signal was detected in vessel segments that received polymer-coated stents lacking plasmid DNA. Of significance, colocalization studies identified transgene expression not only in vascular smooth muscle cells but also in macrophages. Hence, polymer-coated stents provide a new capability for transgene delivery to immune cells that are believed to contribute to the development of in-stent restenosis.
Collapse
Affiliation(s)
- A Takahashi
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Atherosclerosis remains the major cause of morbidity and mortality in Western countries. Atherothrombotic complications, including vascular occlusions and severe narrowing of nutrient blood vessels in the cerebral, coronary, or peripheral circulation, usually require invasive revascularization strategies. As molecular mediators contributing to these complications are being identified in more representative experimental injury models, and as gene transfer platforms and vectors acquire improved safety and efficacy profiles, there is ground for cautious optimism that gene-based interventions will likely reduce the clinical burden of these diseases. Increased generation of reactive oxygen species in diseased atherosclerotic vessels has been implicated in vasospasm, exaggerated neointima formation, and enhanced thrombosis. Ex vivo pressurized vascular gene transfer in venous bypass grafts using antisense oligonucleotides directed against cell-cycle control genes can modify the venous graft's phenotype and confer clinical benefit with improved long-term graft survival. Alternatively, percutaneous intra-arterial gene transfer is feasible, but at relatively low transgene expression levels. Although this may suffice in the case of secreted gene products with marked paracrine or bystander effects, including nitric oxide synthase and heme oxygenase-1, drug- and gene-eluting stents may provide the preferred future vehicle for well-controlled, quantifiable, and safe vascular gene transfer. Continued efforts to improve gene transfer technology in diseased human vessels and to increase our understanding of molecular targets are required before the full therapeutic potential of vascular gene therapy can be realized.
Collapse
Affiliation(s)
- Stefan P Janssens
- Cardiac Unit and Center for Transgene Technology and Gene Therapy, Campus Gasthuisberg, 49 Herestraat, B-3000 Leuven, Belgium.
| |
Collapse
|
26
|
Avril N, Bengel FM. Defining the success of cardiac gene therapy: how can nuclear imaging contribute? Eur J Nucl Med Mol Imaging 2003; 30:757-71. [PMID: 12541135 DOI: 10.1007/s00259-002-1100-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene therapy is a promising modality for the treatment of various cardiovascular diseases such as ischaemia, heart failure, restenosis after revascularisation, hypertension and hyperlipidaemia. An increasing number of approaches are moving from experimental and preclinical validation to clinical application, and several multi-centre trials are currently underway. Despite the rapid progress in cardiac gene therapy, many basic tools and principles remain under development. Questions with regard to the optimal method for gene delivery in a given situation remain open, as do questions concerning therapeutic efficacy and the time course and magnitude of gene expression in target and remote areas. Nuclear imaging provides valuable tools to address these open issues non-invasively. Functional effects of molecular therapy at the tissue level can be identified using tracers of blood flow, metabolism, innervation or cell death. The use of reporter genes and radiolabelled reporter probes allows for non-invasive assessment of location, magnitude and persistence of transgene expression in the heart and the whole body. Co-expression of a reporter gene will allow for indirect imaging of the expression of a therapeutic gene of choice, and linkage of measures of transgene expression to downstream functional effects will enhance the understanding of basic mechanisms of cardiac gene therapy. Hence, nuclear imaging offers great potential to facilitate and refine the determination of therapeutic effects in preclinical and clinical cardiovascular gene therapy.
Collapse
Affiliation(s)
- Norbert Avril
- Division of Nuclear Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
27
|
Yang J, Jones SP, Suhara T, Greer JJM, Ware PD, Nguyen NP, Perlman H, Nelson DP, Lefer DJ, Walsh K. Endothelial cell overexpression of fas ligand attenuates ischemia-reperfusion injury in the heart. J Biol Chem 2003; 278:15185-91. [PMID: 12576484 DOI: 10.1074/jbc.m211707200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fas ligand (FasL) is a member of tumor necrosis factor family that induces apoptosis in target cells that express Fas. The function of FasL during inflammation remains controversial. In this study, we examined the role of vascular endothelial FasL during acute myocardial ischemia-reperfusion that is closely associated with inflammation. Transgenic mouse lines were established that overexpress human FasL on endothelium under the control of the vascular endothelial cadherin promoter. Expression of FasL transgene was detected at both mRNA and protein levels, and functional transgene-encoded FasL protein was specifically expressed on the surface of vascular endothelial cells. Transgenic mice developed normally and had normal hearts. When subjected to 30 min of myocardial ischemia and 72 h of reperfusion, myocardial infarct size was reduced by 42% in the transgenic mice compared with nontransgenic littermates (p < 0.05). Moreover, hemodynamic data demonstrated that transgenic hearts performed better following ischemia and reperfusion compared with nontransgenic hearts. Myocardial neutrophil infiltration was reduced by 54% after 6 h of reperfusion in transgenic hearts (p < 0.01). Neutrophil depletion prior to ischemia-reperfusion injury led to smaller infarcts that were not different between transgenic and nontransgenic mice, suggesting that endothelial FasL may attenuate ischemia-reperfusion injury by abating the inflammatory response. These results indicate that vascular endothelial FasL may exert potent anti-inflammatory actions in the setting of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jiang Yang
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Szelid Z, Sinnaeve P, Vermeersch P, Gillijns H, Pellens M, Laurysens V, Van Pelt N, Flameng W, Sergeant P, Herijgers P, Pokreisz P, Van Zonneveld AJ, Verbeken E, Collen D, Janssens S. Preexisting antiadenoviral immunity and regional myocardial gene transfer: modulation by nitric oxide. Hum Gene Ther 2002; 13:2185-95. [PMID: 12542849 DOI: 10.1089/104303402320987879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The utility of adenoviral vectors, currently used in cardiovascular gene transfer protocols, is limited by the brevity of transgene expression and by antiadenoviral immune responses. The effect of preexisting antiadenoviral immunity on intracardiac gene transfer or its modulation by nitric oxide is unknown. Adenoviral vectors, expressing the firefly luciferase gene (AdLuc) or the human nitric oxide synthase 3 (NOS3) gene (AdNOS3), were infused into the great cardiac vein of naive pigs or immunized pigs. Pigs were immunized by intravenous injection of control virus AdRR5 and the resulting neutralizing antibody titers (median, 1:178; p < 0.0001 vs. baseline) were similar to preexisting titers in 54% of randomly selected coronary artery bypass graft patients. In naive animals distribution of transgene expression in the left ventricular free wall was focal. In immunized pigs myocardial luciferase expression 3 days after AdLuc gene transfer was more than 1000-fold lower than in naive pigs, whereas no change in NOS3 transcript levels was detected after AdNOS3 gene transfer. Severe, grade III-IV mononuclear cell infiltration and myocyte apoptosis were observed in four of five AdLuc-infected, immunized animals, compared with low-level inflammation and apoptosis in five of six AdNOS3-infected pigs. Coinfusion of AdLuc and AdNOS3 in immunized pigs resulted in spatially colocalized transgene expression, reduced T cell-mediated inflammation, and myocyte apoptosis and was associated with 200-fold greater median reporter transgene expression levels in the subendocardium (1.0 x 10(3) light units [LU]/mg protein, n = 8, vs. 4.5 x 10(1) LU/mg protein in AdLuc- and AdRR5-coinfected pigs, n = 7, p = 0.02). Preexisting antiadenoviral immunity abrogates myocardial gene expression in pigs and is associated with severe inflammation and myocyte apoptosis. Intracardiac NOS3 gene transfer may reduce these barriers to adenovirus-mediated myocardial gene transfer.
Collapse
Affiliation(s)
- Zsolt Szelid
- Center for Transgene Technology and Gene Therapy, University of Leuven and Flanders Interuniversity Institute of Biotechnology, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lamfers ML, Aalders MC, Grimbergen JM, de Vries MR, Kockx MM, van Hinsbergh VW, Quax PH. Adenoviral delivery of a constitutively active retinoblastoma mutant inhibits neointima formation in a human explant model for vein graft disease. Vascul Pharmacol 2002; 39:293-301. [PMID: 14567067 DOI: 10.1016/s1537-1891(03)00043-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intimal hyperplasia resulting from vascular injury remains a major obstacle in the long-term success of coronary artery bypass grafts. Inhibition of smooth muscle cell (SMC) proliferation using adenoviral gene transfer of cell cycle inhibitors resulted in reduced neointima formation in various animal models. However, little is known about the effect on human SMCs and neointima formation. Here we report the effects of infection with an adenoviral vector encoding a constitutively active form of the retinoblastoma gene (Ad. delta Rb) on proliferation of human saphenous vein SMCs (HSVSMCs) and neointima formation in organ cultures of human saphenous vein. Proliferation of SMCs was inhibited dose-dependently after infection with Ad. delta Rb. A near-total inhibition was found at an Ad. delta Rb concentration of 10(8) pfu/ml. Organ cultures of human saphenous vein segments were used to evaluate the effect of Ad. delta Rb infection on neointima formation and vein graft disease. Segments cultured for 4 weeks develop a neointima that is morphologically highly similar to early initimal lesions found in pathological vein grafts in vivo. Infection of saphenous vein segments with 2 x 10(9) pfu/ml Ad. delta Rb resulted in a 59% reduction of neointimal area when compared to uninfected counterparts, whereas infection with control adenovirus, Ad.LacZ, had no significant effect. The results of this study show that Ad. delta Rb gene transfer might be an efficient approach to prevent neointima formation in human saphenous vein grafts.
Collapse
MESH Headings
- Adenoviridae/genetics
- Cell Division/physiology
- Cells, Cultured
- Coronary Artery Bypass
- Graft Occlusion, Vascular/genetics
- Graft Occlusion, Vascular/pathology
- Heterozygote
- Humans
- Hyperplasia/pathology
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Mutation/genetics
- Organ Culture Techniques
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Retinal Neoplasms/genetics
- Retinoblastoma/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Saphenous Vein/cytology
- Saphenous Vein/growth & development
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Martine L Lamfers
- Gaubius Laboratory, TNO-PG, P.O. Box 2215, 2301 CE Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of angiogenesis in the cardiac muscle are discussed in reviews by several investigators (13,26,57,74,83). In another review, Meyerson et al. (43) discuss advances in gene therapy for vascular proliferative disorders and chronic peripheral and cardiac ischemia.
Collapse
Affiliation(s)
- M J McKay
- Department of Medicine, Sarver Heart Center, Cardiology Section 111C, University of Arizona, 3601 South 6th Avenue, Tucson, AZ 85723, USA
| | | |
Collapse
|
31
|
Suhara T, Kim HS, Kirshenbaum LA, Walsh K. Suppression of Akt signaling induces Fas ligand expression: involvement of caspase and Jun kinase activation in Akt-mediated Fas ligand regulation. Mol Cell Biol 2002; 22:680-91. [PMID: 11756562 PMCID: PMC139747 DOI: 10.1128/mcb.22.2.680-691.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fas and Fas ligand (FasL) expression has been detected in chronic vascular lesions, and Fas-mediated apoptosis of vascular smooth muscle cells (VSMC) may influence the integrity of the atherosclerotic plaque. Here we report that FasL is not expressed by normal VSMC, but its expression is upregulated by stresses that induce apoptosis, including serum deprivation, exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, and ablation of Akt signaling. Conversely, constitutive activation of Akt signaling diminished FasL expression in VSMC cultures exposed to low-mitogen media or wortmannin. Under conditions of suppressed PI 3-kinase/Akt signaling, VSMC apoptosis was partially inhibited by treatment with neutralizing antibody against FasL. Suppression of Akt signaling increased the activity of c-Jun N-terminal kinase, and transduction of dominant-negative c-Jun inhibited FasL induction under these conditions. Diminished Akt signaling promoted the cleavage of caspase 3, and both caspase 3 cleavage and FasL induction were inhibited by transduction of dominant-negative caspase 9 or the caspase 8 inhibitor CrmA. Similarly, induction of FasL by the Akt-regulated forkhead transcription factor FKHRL1 was dependent upon caspase and c-Jun activation. Taken together, these results indicate that the sequential activation of caspase 3 and c-Jun participates in the induction of FasL under conditions of suppressed Akt signaling or FKHRL1 activation and that FasL participates in a positive-feedback loop to promote cell death under conditions of cellular stress.
Collapse
Affiliation(s)
- Toshimitsu Suhara
- Division of Cardiovascular Research, St. Elizabeth's Medical Center of Boston, Massachusetts 02135, USA
| | | | | | | |
Collapse
|
32
|
Francis SC, Raizada MK, Mangi AA, Melo LG, Dzau VJ, Vale PR, Isner JM, Losordo DW, Chao J, Katovich MJ, Berecek KH. Genetic targeting for cardiovascular therapeutics: are we near the summit or just beginning the climb? Physiol Genomics 2001; 7:79-94. [PMID: 11773594 DOI: 10.1152/physiolgenomics.00073.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article is based on an Experimental Biology symposium held in April 2001 and presents the current status of gene therapy for cardiovascular diseases in experimental studies and clinical trials. Evidence for the use of gene therapy to limit neointimal hyperplasia and confer myocardial protection was presented, and it was found that augmenting local nitric oxide (NO) production using gene transfer (GT) of NO synthase or interruption of cell cycle progression through a genetic transfer of cell cycle regulatory genes limited vascular smooth muscle hyperplasia in animal models and infra-inguinal bypass patients. The results of application of vascular endothelial growth factor (VEGF) GT strategies for therapeutic angiogenesis in critical limb and myocardial ischemia in pilot clinical trials was reviewed. In addition, experimental evidence was presented that genetic manipulation of peptide systems (i.e., the renin-angiotensin II system and the kallikrein-kinin system) was effective in the treatment of systemic cardiovascular diseases such as hypertension, heart failure, and renal failure. Although, as of yet, there are no well controlled human trials proving the clinical benefits of gene therapy for cardiovascular diseases, the data presented here in animal models and in human subjects show that genetic targeting is a promising and encouraging modality, not only for the treatment and long-term control of cardiovascular diseases, but for their prevention as well.
Collapse
Affiliation(s)
- S C Francis
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida Brain Institute, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Luo Z, Garron T, Palasis M, Lu H, Belanger AJ, Scaria A, Vincent KA, Date T, Akita GY, Cheng SH, Barry J, Gregory RJ, Jiang C. Enhancement of Fas ligand-induced inhibition of neointimal formation in rabbit femoral and iliac arteries by coexpression of p35. Hum Gene Ther 2001; 12:2191-202. [PMID: 11779403 DOI: 10.1089/10430340152710531] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adenovirus-mediated gene transfer of Fas ligand (FasL) inhibits neointimal formation in balloon-injured rat carotid arteries. Vascular smooth muscle (VSM) cells coexpressing murine FasL and p35, a baculovirus gene that inhibits caspase activity, are not susceptible to FasL-mediated apoptosis in vitro but are capable of inducing apoptosis of VSM cells that do not express p35. We reasoned that coexpression of p35 in FasL-transduced VSM cells in vivo would promote their survival, enhance FasL-induced apoptosis of adjacent VSM cells, and thereby facilitate a greater inhibition of neointimal formation. In balloon-injured rabbit femoral arteries, either Ad2/FasL/p35 or Ad2/FasL was infused into the injured site and withdrawn 20 min later. Both vectors induced a dose-dependent reduction (p < 0.05) of the neointima-to-media ratio when assessed 14 days later. However, Ad2/FasL/p35 exhibited a significantly greater inhibition of neointimal formation than Ad2/FasL. In a more clinically relevant model of restenosis, rabbit iliac arteries were injured with an angioplasty catheter under fluoroscopic guidance. Adenoviral vectors were delivered locally to the injured site over a period of 2 min, using a porous infusion balloon catheter. Twenty-eight days after gene transfer angiographic and histologic assessments indicated a significant (p < 0.05) inhibition of iliac artery lumen stenosis and neointimal formation by Ad2/FasL/p35 (5 x 10(11) particles per artery). The extent of inhibition was comparable to that achieved with Ad2/TK, an adenoviral vector encoding thymidine kinase (5 x 10(11) particles per artery) and coadministration of ganciclovir for 7 days. These data suggest that coexpression of p35 in FasL-transduced VSM cells is more potent at inhibiting neointimal formation and as such represents an improved gene therapy approach for restenosis.
Collapse
Affiliation(s)
- Z Luo
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Buschmann IR, Hoefer IE, van Royen N, Katzer E, Braun-Dulleaus R, Heil M, Kostin S, Bode C, Schaper W. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 2001; 159:343-56. [PMID: 11730814 DOI: 10.1016/s0021-9150(01)00637-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the role of the colony stimulating factor for monocytes (GM-CSF) to test the hypothesis whether prolongation of the monocyte's life cycle will support arteriogenesis (rapid growth of preexisting collateral arteries). This appeared logical in view of our discovery that circulating monocytes play an important part in the positive remodeling of small preexisting arterioles into arteries to compensate for arterial occlusions (arteriogenesis) and especially following our findings that MCP-1 markedly increases the speed of arteriogenesis. The continuous infusion of GM-CSF for 7 days into the proximal stump of the acutely occluded femoral artery of rabbits by osmotic minipump produced indeed a marked arteriogenic response as demonstrated by an increase (2-fold) in number and size of collateral arteries on postmortem angiograms and by the increase of maximal blood flow during vasodilation measured in vivo by blood pump perfusion of the hindquarter (5-fold). When GM-CSF and MCP-1 were simultaneously infused the effects on arteriogenesis were additive on angiograms as well as on conductance. GM-CSF was also able to widen the time window of MCP-1 activity: MCP-1 treatment alone was ineffective when given after the third week following occlusion. When administered together with GM-CSF about 80% of normal maximal conductance of the artery that was replaced by collaterals were achieved, a result that was not reached before by any other experimental treatment. Experiments with cells isolated from treated animals showed that monocyte apoptosis was markedly reduced. In addition we hypothesize that GM-CSF may aid in releasing pluripotent monocyte (stem-) cells from the bone marrow into the circulation. In contrast to MCP-1, GM-CSF showed no activity on monocyte transmigration through- and also no influence on monocyte adhesion to cultured endothelial cells. In conclusion we have discovered a new function of the hemopoietic stem cell factor GM-CSF, which is also a powerful arteriogenic peptide that acts via prolongation of the life cycle of monocytes/macrophages.
Collapse
Affiliation(s)
- I R Buschmann
- Research Group for Experimental and Clinical Arteriogenesis at the Department of Cardiology and Angiology, Albert Ludwigs University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg im Breisgau, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This review will provide an overview of delivery strategies that are being evaluated for vascular gene therapy. We will limit our discussion to those studies that have been demonstrated, utilizing in vivo model systems, to limit post-interventional restenosis. We also discuss the efficacy of the vectors and methods currently being used to transfer genetic material to the vessel wall. The efficiency of these techniques is a critical issue for the successful application of gene therapy.
Collapse
Affiliation(s)
- R C Smith
- Division of Cardiovascular Research, St Elizabeth's Medical Center, Boston, MA 02135, USA
| | | |
Collapse
|
36
|
Sata M, Luo Z, Walsh K. Fas ligand overexpression on allograft endothelium inhibits inflammatory cell infiltration and transplant-associated intimal hyperplasia. THE JOURNAL OF IMMUNOLOGY 2001; 166:6964-71. [PMID: 11359858 DOI: 10.4049/jimmunol.166.11.6964] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite recent advances in immunosuppressive therapy, accelerated coronary atherosclerosis remains a major problem in the long-term survival of transplant recipients. Chronic graft vasculopathy is believed to result from recipient inflammatory responses, and it is characterized by early mononuclear cell infiltration of the transplanted vessel. Here we show that endothelial cells can be genetically modified to overexpress functional, cell-surface Fas ligand (FasL) by adenovirus-mediated gene transfer without undergoing self-destruction. In a rodent model of transplant graft vasculopathy, endothelial overexpression of FasL attenuated T cell and macrophage infiltration at 1 wk posttransplantation. These vessels also displayed reduced neointima formation at one and 2 mo posttransplantation. These results indicate that inhibition of the early inflammatory response to allografted vessels by endothelial cell-specific overexpression of FasL may have utility in the treatment of transplant arteriosclerosis.
Collapse
MESH Headings
- Animals
- Aorta
- Arteriosclerosis/immunology
- Arteriosclerosis/pathology
- Arteriosclerosis/prevention & control
- Carotid Artery, Common/immunology
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Carotid Artery, Common/transplantation
- Cell Movement/immunology
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/transplantation
- Fas Ligand Protein
- Gene Transfer Techniques
- Humans
- Hyperplasia
- Inflammation/immunology
- Inflammation/pathology
- Inflammation/prevention & control
- Jurkat Cells
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Ligands
- Male
- Membrane Glycoproteins/administration & dosage
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Rats
- Rats, Inbred ACI
- Rats, Inbred WF
- Transplantation, Homologous
- Tunica Intima/immunology
- Tunica Intima/pathology
- fas Receptor/genetics
Collapse
Affiliation(s)
- M Sata
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | |
Collapse
|
37
|
Abstract
Autologous saphenous vein is the conduit of choice for the bypass of arterial occlusive disease, be it in the peripheral arterial tree or in the coronary system. This technique is limited by primary graft failure rates approaching 20% in the first year for peripheral arterial disease and 50% at 10 years for coronary artery bypass grafting. The PREVENT trial describes a novel, safe and effective means of ex vivo transfection of harvested vein grafts with an E2F decoy oligonucleotide, with 70-74% decreases in the level of proliferating cell nuclear antigen (PCNA) and c-myc mRNA expressed by the smooth muscle cells in the vein. This translated into a statistically significant reduction in primary graft failure when used to bypass peripheral arterial occlusions in a high-risk human patient population.
Collapse
|
38
|
Krick S, Platoshyn O, Sweeney M, Kim H, Yuan JX. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 2001; 280:C970-9. [PMID: 11245614 DOI: 10.1152/ajpcell.2001.280.4.c970] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular K+ plays an important role in controlling the cytoplasmic ion homeostasis for maintaining cell volume and inhibiting apoptotic enzymes in the cytosol and nucleus. Cytoplasmic K+ concentration is mainly regulated by K+ uptake via Na+-K+-ATPase and K+ efflux through K+ channels in the plasma membrane. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a protonophore that dissipates the H+ gradient across the inner membrane of mitochondria, induces apoptosis in many cell types. In rat and human pulmonary artery smooth muscle cells (PASMC), FCCP opened the large-conductance, voltage- and Ca2+-sensitive KK+ (maxi-K) channels, increased K+ currents through maxi-K channels [I(K(Ca))], and induced apoptosis. Tetraethylammonia (1 mM) and iberiotoxin (100 nM) decreased I(K(Ca)) by blocking the sarcolemmal maxi-K channels and inhibited the FCCP-induced apoptosis in PASMC cultured in media containing serum and growth factors. Furthermore, inhibition of K+ efflux by raising extracellular K+ concentration from 5 to 40 mM also attenuated PASMC apoptosis induced by FCCP and the K+ ionophore valinomycin. These results suggest that FCCP-mediated apoptosis in PASMC is partially due to an increase of maxi-K channel activity. The resultant K+ loss through opened maxi-K channels may serve as a trigger for cell shrinkage and caspase activation, which are major characteristics of apoptosis in pulmonary vascular smooth muscle cells.
Collapse
Affiliation(s)
- S Krick
- Division of Pulmonary and Critical Care Medicine, UCSD Medical Center, 200 W. Arbor Dr., San Diego, CA 92103-8382, USA
| | | | | | | | | |
Collapse
|
39
|
Kavurma MM, Santiago FS, Bonfoco E, Khachigian LM. Sp1 phosphorylation regulates apoptosis via extracellular FasL-Fas engagement. J Biol Chem 2001; 276:4964-71. [PMID: 11053446 DOI: 10.1074/jbc.m009251200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis of smooth muscle cells (SMC) in atherosclerotic vessels can destabilize the atheromatus plaque and result in rupture, thrombosis, and sudden death. In efforts to understand the molecular processes regulating apoptosis in this cell type, we have defined a novel mechanism involving the ubiquitously expressed transcription factor Sp1. Subtypes of SMC expressing abundant levels of Sp1 produce the death agonist, Fas ligand (FasL) and undergo greater spontaneous apoptosis. Sp1 activates the FasL promoter via a distinct nucleotide recognition element whose integrity is crucial for inducible expression. Inducible FasL promoter activation is also inhibited by a dominant-negative form of Sp1. Increased SMC apoptosis is preceded by Sp1 phosphorylation, increased FasL transcription, and the autocrine/paracrine engagement of FasL with its cell-surface receptor, Fas. Inducible FasL transcription and apoptosis are blocked by dominant-negative protein kinase C-zeta, whose wild-type counterpart phosphorylates Sp1. Thus, Sp1 phosphorylation is a proapoptotic transcriptional event in vascular SMC and, given the wide distribution of this housekeeping transcription factor, may be a common regulatory theme in apoptotic signal transduction.
Collapse
Affiliation(s)
- M M Kavurma
- Centre for Thrombosis and Vascular Research, The University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | |
Collapse
|
40
|
Abstract
Apoptosis is detectable in cardiovascular disease in various forms. Although the methods to detect apoptosis need improvement, and its magnitude is not known clearly, there is sufficient evidence to postulate that it might be important in progression of disease. Clinicians now have some specific compounds that can be used to modulate apoptosis. The preliminary data suggest that we can modulate apoptosis in animal models and that this is associated with obvious benefits in terms of tissue salvage and possibly improved function. There are no human data as yet. Many questions must be addresses before undertaking human studies. Despite these shortcomings, there is a tremendous potential for apoptotic modulation in preventing or ameliorating cardiovascular disease in the near future.
Collapse
Affiliation(s)
- Y Chandrashekhar
- Department of Medicine, University of Minnesota Medical School, Veterans Affairs Medical Center, Minneapolis, 55417, USA.
| | | |
Collapse
|
41
|
Abstract
Atherosclerosis is one of the main causes of mortality and morbidity in westernised countries. Treatment of symptomatic atherosclerosis by angioplasty involves major vascular responses such as neointima formation and constrictive vascular remodelling leading to restenosis. Stent placement prevents vasoconstriction but is associated with in-stent neointima formation. Therefore, stent placement requires adjunctive therapy. In this review we discuss the potential of local gene therapy for restenosis. More particularly, we focus on strategies to inhibit smooth muscle cell (SMC) proliferation and migration, prevent thrombosis, decrease oxidative stress in the arterial wall and enhance re-endothelialisation associated with adaptive remodelling. The potential of different vector systems and devices for local gene transfer in the arterial wall is discussed.
Collapse
Affiliation(s)
- R Quarck
- Department of Experimental Surgery and Anaesthesiology, University of Leuven, Campus Gasthuisberg O&N, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
42
|
Klugherz BD, Jones PL, Cui X, Chen W, Meneveau NF, DeFelice S, Connolly J, Wilensky RL, Levy RJ. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat Biotechnol 2000; 18:1181-4. [PMID: 11062438 DOI: 10.1038/81176] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expandable intra-arterial stents are widely used for treating coronary disease. We hypothesized that local gene delivery could be achieved with the controlled release of DNA from a polymer coating on an expandable stent. Our paper reports the first successful transfection in vivo using a DNA controlled-release stent. Green fluorescent protein (GFP) plasmid DNA within emulsion-coated stents was efficiently expressed in cell cultures (7.9% +/- 0.7% vs. 0.6% +/- 0.2% control, p < 0.001) of rat aortic smooth muscle cells. In a series of pig stent-angioplasty studies, GFP expression was observed in all coronary arteries (normal, nondiseased) in the DNA-treated group, but not in control arteries. GFP plasmid DNA in the arterial wall was confirmed by PCR, and GFP presence in the pig coronaries was confirmed by immunohistochemistry. Thus, DNA-eluting stents are capable of arterial transfection, and could be useful as delivery systems for candidate vectors for gene therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- B D Klugherz
- Division of Cardiovascular Diseases, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gruberg L, Waksman R, Satler LF, Pichard AD, Kent KM. Novel approaches for the prevention of restenosis. Expert Opin Investig Drugs 2000; 9:2555-78. [PMID: 11060820 DOI: 10.1517/13543784.9.11.2555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Restenosis, the re-narrowing of the lumen of the coronary artery, in the months following a successful percutaneous balloon angioplasty or stenting, remains the main limitation to percutaneous coronary revascularisation. Serial intravascular ultrasound studies have shown that restenosis after conventional balloon angioplasty represents a complex interplay between elastic recoil, smooth muscle proliferation and vascular remodelling, while restenosis after stent deployment is due almost entirely to smooth muscle hyperplasia and matrix proliferation. Despite intensive investigation in animal models and in clinical trials, most pharmacological agents have been found to be ineffective in preventing restenosis after percutaneous balloon angioplasty or stenting. Although studies frequently report success in the suppression of neointimal proliferation in animal models of balloon vascular injury, few of them have been successful in clinical trials. Lately, the advent of endovascular radiation, new antiproliferative agents, recombinant DNA, growth factor regulators and novel local drug delivery systems have shown promising results. In the past five years, intracoronary radiation with gamma- and beta-emitting sources has been evaluated intensively with very encouraging results. This is the first potent non-pharmacological approach that has been successful in a large number of patients in controlling excessive tissue proliferation. It is very likely that a combination of stents and pharmacological and/or non-pharmacological inhibition of neointimal hyperplasia will likely result in further reductions in the incidence if restenosis. The continued attractiveness of percutaneous coronary revascularisation, as an alternative to medical treatment or bypass surgery for patients with coronary artery disease, will depend upon our ability to control the restenotic process. Due to the vast literature on the subject, this review will focus mainly on clinical trials that show the most promise and will highlight those that warrant further investigation.
Collapse
Affiliation(s)
- L Gruberg
- Cardiac Catheterization Laboratory, Washington Hospital Center, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
44
|
Mano T, Luo Z, Suhara T, Smith RC, Esser S, Walsh K. Expression of wild-type and noncleavable Fas ligand by tetracycline-regulated adenoviral vectors to limit intimal hyperplasia in vascular lesions. Hum Gene Ther 2000; 11:1625-35. [PMID: 10954897 DOI: 10.1089/10430340050111287] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) and the infiltration of T cells and macrophages into vessel wall are considered to be important for intimal lesion formation after balloon angioplasty. Previous studies have shown that Fas ligand (FasL) gene transfer to balloon-injured vessels inhibits lesion formation by killing both proliferating VSMCs and infiltrating inflammatory cells. Here, we describe the construction and utility of a binary, tetracycline-regulated adenovirus system that provides controlled transgene expression in vitro and in vivo. In this system, optimal transgene expression required cotransfection with an adenovirus encoding the tetracycline-dependent trans-activator (rtTA) and induction with doxycycline hydrochloride (DOX), an analog of tetracycline. Using this system, adenovirus constructs were designed that allow regulated expression of wild-type FasL and a noncleavable mutant of FasL (FasL-NC). Transduction of FasL and FasL-NC induced similar extents of apoptosis in proliferating VSMCs in vitro in a manner that was dependent on the doses of the rtTA adenovirus and the presence of DOX in the medium. Furthermore, inhibition of intimal hyperplasia in injured carotid arteries by FasL or FasL-NC transduction was also dependent on cotransfection with the rtTA adenovirus and administration of DOX by subcutaneous injection. In contrast to wild-type FasL, transduction of FasL-NC did not result in the production of soluble (cleaved) FasL in the medium of infected cells in vitro, or in the serum of rats after local gene transfer to carotid arteries. In conclusion, this binary tetracycline-inducible adenovirus system may allow for safer delivery of cytotoxic genes for therapeutic purposes.
Collapse
MESH Headings
- Adenoviridae/genetics
- Alanine Transaminase/blood
- Angioplasty, Balloon, Coronary/adverse effects
- Animals
- Apoptosis
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Stenosis/etiology
- Carotid Stenosis/pathology
- Carotid Stenosis/therapy
- Cells, Cultured
- Doxycycline/pharmacology
- Escherichia coli/genetics
- Fas Ligand Protein
- Flow Cytometry
- Gene Transfer Techniques
- Genes, Reporter
- Genetic Vectors/adverse effects
- Herpes Simplex Virus Protein Vmw65/genetics
- Herpes Simplex Virus Protein Vmw65/metabolism
- Humans
- Hyperplasia
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred DBA
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Tunica Intima/metabolism
- Tunica Intima/pathology
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- T Mano
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sata M, Walsh K. Fas ligand-deficient mice display enhanced leukocyte infiltration and intima hyperplasia in flow-restricted vessels. J Mol Cell Cardiol 2000; 32:1395-400. [PMID: 10900166 DOI: 10.1006/jmcc.2000.1176] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fas ligand (FasL) is a death factor that induces apoptosis in Fas-bearing cells. To explore the role of FasL in vascular lesion formation, we analysed leukocyte infiltration and lesion formation in a flow-restriction model of vascular injury that results in neointima formation in the presence of intact endothelium. The left common carotid arteries of wild-type and FasL-deficient (gld) mice were ligated just proximal to the carotid bifurcation. Three days after the ligation, T lymphocyte and macrophage infiltration into the common carotid artery was notably enhanced in the gld mice relative to the wild-type C57BL/6J mice. Four weeks after the ligation, the common carotid arteries developed neointima-like lesions consisting primarily of alpha -smooth muscle actin-positive cells beneath an endothelial cell monolayer. Neointima formation was greater in the gld mice than in wild-type mice. These data provide mouse genetic evidence suggesting that Fas-mediated cell death can function to restrict inflammation and intimal hyperplasia during vascular remodelling.
Collapse
Affiliation(s)
- M Sata
- Division of Cardiovascular Research, Tufts University School of Medicine, Boston, MA 02135, USA
| | | |
Collapse
|
46
|
Varenne O, Sinnaeve P, Gillijns H, Iung B, Laurysens V, Meurrens K, Bout B, Valerio D, Collen D, Janssens SP, Gerard RD. Percutaneous gene therapy using recombinant adenoviruses encoding human herpes simplex virus thymidine kinase, human PAI-1, and human NOS3 in balloon-injured porcine coronary arteries. Hum Gene Ther 2000; 11:1329-39. [PMID: 10890742 DOI: 10.1089/10430340050032429] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Local intracoronary delivery of recombinant adenoviruses expressing anti-migratory or anti-proliferative proteins including human constitutive endothelial nitric oxide synthase (NOS3), plasminogen activator inhibitor 1 (PAI-1), or herpesvirus thymidine kinase (TK) (combined with ganciclovir) was used to prevent neointimal formation in porcine coronary arteries. After balloon injury of the left anterior descending (LAD) coronary artery, animals received an intramural injection of adenovirus (1.5 X 10(9) PFU) carrying either the NOS3 cDNA (AdCMVNOS3, n = 12), the PAI-1 cDNA (AdCMVPAI-1, n = 12), the TK cDNA (AdMLPItk, n = 12), or no cDNA (AdpL+, n = 12). After 28 days, morphometric analysis was performed on coronary sections from all segments demonstrating injury. The internal elastic lamina (IEL) fracture length normalized to the IEL perimeter (initial injury) and the neointimal area normalized to the vessel area (response to injury) were used to generate linear regression lines and calculate an index of stenosis for the respective treatment groups. The response to injury was significantly smaller in AdCMVNOS3- and AdMLPItk-infected animals than in AdpL+-infected animals (slopes = 0.86 +/- 0.05 and 0.69 +/- 0.07 versus 1.11 +/- 0.06, p < 0.005 and p < 0.0001, respectively) but not in AdCMVPAI-1-infected animals (slope = 1.26 +/- 0.04, p = 0.04). No viral shedding was observed and there was no acute systemic toxicity after gene transfer. An increase in neutralizing antibody titers against Ad vectors was observed without any detectable response to the transgene products (NOS3, PAI-1). Local gene transfer of NOS3 and TK may hold promise as a safe and effective adjunctive treatment to reduce neointimal formation after percutaneous coronary intervention in humans.
Collapse
Affiliation(s)
- O Varenne
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
This review provides an overview of candidate genes that are currently being evaluated for genetic strategies in vascular gene therapy. We discuss treatment strategies that have proven efficacious in limiting postinterventional restenosis through evaluation with in vivo model systems. The candidate strategies utilize genes that are either cytotoxic, regulate vascular smooth muscle cell differentiation or proliferation. In addition, we review oligonuclotide and ribozyme strategies that function by suppressing the expression of cell cycle regulators.
Collapse
Affiliation(s)
- R C Smith
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, 736 Cambridge Street, Boston, MA 02135, USA
| | | |
Collapse
|
48
|
Abstract
Significant progress has been made in cardiovascular gene therapy. Further investigations are required to understand the basic science of vectors, mechanisms of gene delivery, vector-associated immunogenicity, and pathophysiology of vascular and myocardial diseases. In addition, catheter and stent devices will be required to deliver vectors to the vasculature and myocardium (Fig. 3). Despite these scientific challenges, molecular therapies for cardiovascular diseases are being implemented into clinical practice.
Collapse
Affiliation(s)
- H J Duckers
- Department of Experimental Cardiology, Erasmus University of Rotterdam, Netherlands
| | | |
Collapse
|