1
|
Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 2020; 61:126508. [PMID: 32305626 PMCID: PMC7152879 DOI: 10.1016/j.jtemb.2020.126508] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Collapse
Key Words
- 3-HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA
- AIDS, acquired immune deficiency syndrome
- ALB, albumin
- ALP, alkaline phosphatase
- AS, antioxidant status
- Akt, protein kinase B (PKB)
- AmD, Assoc American Dietetic Association
- Anti-B, anti-bacterial
- Anti-C, anti-cancer
- Anti-D, anti-diabetic
- Anti-F, anti-fungal
- Anti-O, anti-obesity
- Anti-P, anti-parasitic
- Anti-V, anti-viral
- Anti−HC, anti-hypercholesterolemic
- ApoA-I, apolipoprotein A
- ApoB, apolipoprotein B
- B, bone
- BCOV, bis(curcumino)oxavanadyl
- BEOV, bis(ethylmaltolato)oxovanadium
- BMOV, bis(maltolato)oxavanadium(IV)
- Bim, Blc-2 interacting mediator of cell death
- Biological role
- BrOP, bromoperoxidase
- C, cholesterol
- C/EBPα, CCAAT-enhancer-binding protein α
- CD4, CD4 receptor
- CH, cerebral hemisphere
- CHO-K1, Chinese hamster ovary cells
- CXCR-4, CXCR-4 chemokine co-receptor
- Cardio-P, cardioprotective
- Citrate-T, citrate transporter
- CoA, coenzyme A
- Cyt c, cytochrome c
- DM, diabetes mellitus
- ELI, extra low interstitial
- ERK, extracellular regulated kinase
- FHR, fructose hypertensive rats
- FKHR/FKHR1/AFX, class O members of the forkhead transcription factor family
- FLIP, FLICE-inhibitory protein
- FOXOs, forkhead box class O family member proteins
- FPP, farnesyl-pyrophosphate
- FasL, Fas ligand, FER: ferritin
- GI, gastrointestinal
- GLU, glucose
- GLUT-4, glucose transporter type 4
- GPP, geranyl-pyrophosphate
- GPT, glutamate-pyruvate transaminase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, disulfide glutathione
- HDL, high-density lipoproteins
- HDL-C, HDL cholesterol
- HIV, human immunodeficiency virus
- HMMF, high molecular mass fraction
- HOMA-IR, insulin resistance index
- Hb, hemoglobin
- HbF, hemoglobin fraction
- Hyper-LEP, hyperleptynemia
- IDDM, insulin-dependent diabetes mellitus
- IGF-IR, insulin-like growth factor receptor
- IL, interleukin
- INS, insulin
- INS-R, insulin resistance
- INS-S, insulin sensitivity
- IPP, isopentenyl-5-pyrophosphate
- IRS, insulin receptor tyrosine kinase substrate
- IgG, immunoglobulin G
- Industrial importance
- Interactions
- JAK2, Janus kinase 2
- K, kidney
- L, liver
- L-AA, L-ascorbic acid
- LDL, low-density lipoproteins
- LDL-C, LDL cholesterol
- LEP, leptin
- LEP-R, leptin resistance
- LEP-S, leptin sensitivity
- LEPS, the concentration of leptin in the serum
- LMMF, low molecular mass fraction
- LPL, lipoprotein lipase
- LPO, lipid peroxidation
- Lactate-T, lactate transporter
- M, mitochondrion
- MEK, ERK kinase activator
- MRC, mitochondrial respiratory chain
- NAC, N-acetylcysteine
- NEP, neutral endopeptidase
- NIDDM, noninsulin-dependent diabetes mellitus
- NO, nitric oxide
- NPY, neuropeptide Y
- NaVO3, sodium metavanadate
- Neuro-P, neuroprotective
- OXPHOS, oxidative phosphorylation
- Organic-AT, organic anion transporter
- Over-W, over-weight
- P, plasma
- PANC-1, pancreatic ductal adenocarcinoma cells
- PARP, poly (ADP-ribose) polymerase
- PLGA, (Poly)Lactide-co-Glycolide copolymer
- PO43−, phosphate ion
- PPARγ, peroxisome-activated receptor γ
- PTK, tyrosine protein kinase
- PTP, protein tyrosine phosphatase
- PTP-1B, protein tyrosine phosphatase 1B
- Pharmacological activity
- Pi3K, phosphoinositide 3-kinase (phosphatidylinositol 3-kinase)
- RBC, erythrocytes
- ROS, reactive oxygen species
- RT, reverse transcriptase
- SARS, severe acute respiratory syndrome
- SAcP, acid phosphatase secreted by Leshmania
- SC-Ti-6Al-4V, surface-coated Ti-6Al-4V
- SHR, spontaneously hypertensive rats
- SOD, superoxide dismutase
- STAT3, signal transducer/activator of transcription 3
- Sa, mean roughness
- Sq, root mean square roughness
- Sz, ten-point height
- TC, total cholesterol
- TG, triglycerides
- TS, transferrin saturation
- Tf, transferrin
- TfF, transferrin fraction
- TiO2, nHA:Ag-Ti-6Al-4V: titanium oxide-based coating containing hydroxyapatite nanoparticle and silver particles
- Top-IB, IB type topoisomerase
- Toxicological potential
- V, vanadium
- V-BrPO, vanadium bromoperoxidase
- V-DLC, diamond-like layer with vanadium
- V5+/V4+, pentavalent/tetravalent vanadium
- VO2+, vanadyl cation
- VO2+-FER, vanadyl-ferritin complex
- VO4-/VO3-, vanadate anion
- VO43-, vanadate ion
- VS, vanadyl sulfate
- Vanadium
- WB, whole blood
- ZDF rats, Zucker diabetic fatty rats
- ZF rats, Zucker fatty rats
- breakD, breakdown
- eNOS, endothelial nitric oxide synthase
- mo, months
- n-HA, nano-hydroxyapatite
- pRb, retinoblastoma protein
- wk, weeks
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
| | - Łukasz Pietrzyk
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| | - Andrzej Skiba
- Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| |
Collapse
|
2
|
Similarities and interactions between the ageing process and high chronic intake of added sugars. Nutr Res Rev 2017; 30:191-207. [PMID: 28511733 DOI: 10.1017/s0954422417000051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractIn our societies, the proportions of elderly people and of obese individuals are increasing. Both factors are associated with high health-related costs. During obesity, many authors suggest that it is a high chronic intake of added sugars (HCIAS) that triggers the shift towards pathology. However, the majority of studies were performed in young subjects and only a few were interested in the interaction with the ageing process. Our purpose was to discuss the metabolic effects of HCIAS, compare with the effects of ageing, and evaluate how deleterious the combined action of HCIAS and ageing could be. This effect of HCIAS seems mediated by fructose, targeting the liver first, which may lead to all subsequent metabolic alterations. The first basic alterations induced by fructose are increased oxidative stress, protein glycation, inflammation, dyslipidaemia and insulin resistance. These alterations are also present during the ageing process, and are closely related to each other, one leading to the other. These basic alterations are also involved in more complex syndromes, which are also favoured by HCIAS, and present during ageing. These include non-alcoholic fatty liver disease, hypertension, neurodegenerative diseases, sarcopenia and osteoporosis. Cumulative effects of ageing and HCIAS have been seldom tested and may not always be strictly additive. Data also suggest that some of the metabolic alterations that are more prevalent during ageing could be related more with nutritional habits than to intrinsic ageing. In conclusion, it is clear that HCIAS interacts with the ageing process, accelerates the accumulation of metabolic alterations, and that it should be avoided.
Collapse
|
3
|
DiNicolantonio JJ, O'Keefe JH, Lucan SC. Added fructose: a principal driver of type 2 diabetes mellitus and its consequences. Mayo Clin Proc 2015; 90:372-81. [PMID: 25639270 DOI: 10.1016/j.mayocp.2014.12.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/08/2023]
Abstract
Data from animal experiments and human studies implicate added sugars (eg, sucrose and high-fructose corn syrup) in the development of diabetes mellitus and related metabolic derangements that raise cardiovascular (CV) risk. Added fructose in particular (eg, as a constituent of added sucrose or as the main component of high-fructose sweeteners) may pose the greatest problem for incident diabetes, diabetes-related metabolic abnormalities, and CV risk. Conversely, whole foods that contain fructose (eg, fruits and vegetables) pose no problem for health and are likely protective against diabetes and adverse CV outcomes. Several dietary guidelines appropriately recommend consuming whole foods over foods with added sugars, but some (eg, recommendations from the American Diabetes Association) do not recommend restricting fructose-containing added sugars to any specific level. Other guidelines (such as from the Institute of Medicine) allow up to 25% of calories as fructose-containing added sugars. Intake of added fructose at such high levels would undoubtedly worsen rates of diabetes and its complications. There is no need for added fructose or any added sugars in the diet; reducing intake to 5% of total calories (the level now suggested by the World Health Organization) has been shown to improve glucose tolerance in humans and decrease the prevalence of diabetes and the metabolic derangements that often precede and accompany it. Reducing the intake of added sugars could translate to reduced diabetes-related morbidity and premature mortality for populations.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology at Saint Luke's Mid America Heart Institute, Kansas City, MO.
| | - James H O'Keefe
- Department of Preventive Cardiology at Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Sean C Lucan
- Department of Family and Social Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
4
|
DiNicolantonio JJ, Lucan SC. The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart 2014; 1:e000167. [PMID: 25717381 PMCID: PMC4336865 DOI: 10.1136/openhrt-2014-000167] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/28/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease is the leading cause of premature mortality in the developed world, and hypertension is its most important risk factor. Controlling hypertension is a major focus of public health initiatives, and dietary approaches have historically focused on sodium. While the potential benefits of sodium-reduction strategies are debatable, one fact about which there is little debate is that the predominant sources of sodium in the diet are industrially processed foods. Processed foods also happen to be generally high in added sugars, the consumption of which might be more strongly and directly associated with hypertension and cardiometabolic risk. Evidence from epidemiological studies and experimental trials in animals and humans suggests that added sugars, particularly fructose, may increase blood pressure and blood pressure variability, increase heart rate and myocardial oxygen demand, and contribute to inflammation, insulin resistance and broader metabolic dysfunction. Thus, while there is no argument that recommendations to reduce consumption of processed foods are highly appropriate and advisable, the arguments in this review are that the benefits of such recommendations might have less to do with sodium-minimally related to blood pressure and perhaps even inversely related to cardiovascular risk-and more to do with highly-refined carbohydrates. It is time for guideline committees to shift focus away from salt and focus greater attention to the likely more-consequential food additive: sugar. A reduction in the intake of added sugars, particularly fructose, and specifically in the quantities and context of industrially-manufactured consumables, would help not only curb hypertension rates, but might also help address broader problems related to cardiometabolic disease.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | - Sean C Lucan
- Department of Family and Social Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, USA
| |
Collapse
|
5
|
Fedorova EV, Buriakina AV, Vorob'eva NM, Baranova NI. [The vanadium compounds: chemistry, synthesis, insulinomimetic properties]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2014; 60:416-29. [PMID: 25249525 DOI: 10.18097/pbmc20146004416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers the biological role of vanadium, its participation in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains a detailed description of all major synthesized vanadium complexes having antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite the proven efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compound are a new promising class of drugs in modern pharmacotherapy of diabetes.
Collapse
|
6
|
Bakale RP, Naik GN, Mangannavar CV, Muchchandi IS, Shcherbakov I, Frampton C, Gudasi KB. Mixed ligand complex via zinc(II)-mediated in situ oxidative heterocyclization of hydrochloride salt of 2-chlorobenzaldehyde hydralazine hydrazone as potential of antihypertensive agent. Eur J Med Chem 2014; 73:38-45. [DOI: 10.1016/j.ejmech.2013.11.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/09/2013] [Accepted: 11/24/2013] [Indexed: 11/27/2022]
|
7
|
Fedorova EV, Buryakina AV, Vorobieva NM, Baranova NI. The vanadium compounds: Chemistry, synthesis, insulinomimetic properties. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2013. [DOI: 10.1134/s1990750813040021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhou K, Kumar U, Yuen VG, McNeill JH. The effects of phentolamine on fructose-fed rats. Can J Physiol Pharmacol 2012; 90:1075-85. [DOI: 10.1139/y2012-063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic syndrome (MS) is a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes. MS is associated with obesity, increased blood pressure, hyperlipidemia, and hyperglycemia. This study was designed to investigate the pharmacological profile of phentolamine, a nonselective α adrenergic receptor antagonist, in the prevention of increased blood pressure in fructose-fed rats. Phentolamine prevented the fructose-induced increase in systolic blood pressure without affecting insulin sensitivity and major metabolic parameters. The levels of plasma noradrenaline and angiotensin II, 2 proposed contributors to the development of fructose-induced elevated blood pressure, were examined. Neither noradrenaline nor angiotensin II levels were affected by phentolamine treatment. Since overproduction of nitric oxide has been shown to lead to an elevation in peroxynitrite, the role of oxidative stress, a proposed mechanism of fructose-induced elevated blood pressure and insulin resistance, was examined by measuring plasma levels of total nitrate/nitrite. Plasma nitrate/nitrite was significantly elevated in all fructose-fed animals, regardless of treatment with phentolamine. Another proposed contributor toward fructose-induced MS is an elevation in uric acid levels. In this experiment, plasma levels of uric acid were found to be increased by dietary fructose and were unaffected by phentolamine treatment.
Collapse
Affiliation(s)
- Kangbin Zhou
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ujendra Kumar
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Violet G. Yuen
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - John H. McNeill
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Nagareddy PR, Rajput PS, Vasudevan H, McClure B, Kumar U, Macleod KM, McNeill JH. Inhibition of matrix metalloproteinase-2 improves endothelial function and prevents hypertension in insulin-resistant rats. Br J Pharmacol 2012; 165:705-15. [PMID: 21740410 DOI: 10.1111/j.1476-5381.2011.01583.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Insulin resistance is often found to be associated with high blood pressure. We propose that in insulin-resistant hypertension, endothelial dysfunction is the consequence of increased activity of vascular MMP-2. As MMP-2 proteolytically cleaves a number of extracellular matrix proteins, we hypothesized that MMP-2 impairs endothelial function by proteolytic degradation of endothelial NOS (eNOS) or its cofactor, heat shock protein 90 (HSP90). EXPERIMENTAL APPROACH We tested our hypothesis in bovine coronary artery endothelial cells and fructose-fed hypertensive rats (FHR), a model of acquired systolic hypertension and insulin resistance. KEY RESULTS Treatment of FHRs with the MMP inhibitor doxycycline, preserved endothelial function as well as prevented the development of hypertension, suggesting that MMPs impair endothelial function. Furthermore, incubating endothelial cells in vitro with a recombinant MMP-2 decreased NO production in a dose-dependent manner. Using substrate cleavage assays and immunofluorescence microscopy studies, we found that MMP-2 not only cleaves and degrades HSP90, an eNOS cofactor but also co-localizes with both eNOS and HSP90 in endothelial cells, suggesting that MMPs functionally interact with the eNOS system. Treatment of FHRs with doxycycline attenuated the decrease in eNOS and HSP90 expression but did not improve insulin sensitivity. CONCLUSIONS AND IMPLICATIONS Our data suggest that increased activity of MMP-2 in FHRs impairs endothelial function and promotes hypertension. Inhibition of MMP-2 could be a potential therapeutic strategy for the management of hypertension.
Collapse
Affiliation(s)
- P R Nagareddy
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Abdulla MH, Sattar MA, Johns EJ. The Relation between Fructose-Induced Metabolic Syndrome and Altered Renal Haemodynamic and Excretory Function in the Rat. Int J Nephrol 2011; 2011:934659. [PMID: 21785727 PMCID: PMC3139200 DOI: 10.4061/2011/934659] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/30/2011] [Accepted: 05/15/2011] [Indexed: 11/20/2022] Open
Abstract
This paper explores the possible relationships between dietary fructose and altered neurohumoral regulation of renal haemodynamic and excretory function in this model of metabolic syndrome. Fructose consumption induces hyperinsulinemia, hypertriglyceridaemia, insulin resistance, and hypertension. The pathogenesis of fructose-induced hypertension is dubious and involves numerous pathways acting both singly and together. In addition, hyperinsulinemia and hypertension contribute significantly to progressive renal disease in fructose-fed rats. Moreover, increased activity of the renin-angiotensin and sympathetic nervous systems leading to downregulation of receptors may be responsible for the blunted vascular sensitivity to angiotensin II and catecholamines, respectively. Various approaches have been suggested to prevent the development of fructose-induced hypertension and/or metabolic alteration. In this paper, we address the role played by the renin-angiotensin and sympathetic nervous systems in the haemodynamic alterations that occur due to prolonged consumption of fructose.
Collapse
Affiliation(s)
- Mohammed H Abdulla
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | | | | |
Collapse
|
11
|
Peredo HA, Zabalza M, Mayer MA, Carranza A, Puyó AM. Sodium tungstate and vanadyl sulfate effects on blood pressure and vascular prostanoids production in fructose-overloaded rats. Clin Exp Hypertens 2011; 32:453-7. [PMID: 21029009 DOI: 10.3109/10641961003686443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study analyzes the effects of sodium tungstate and vanadyl sulphate in the fructose-overloaded rat, a model of metabolic syndrome. Fructose (9 weeks) increased blood pressure, triglycerydemia, glycemia, and reduced release of vasodilator prostaglandins (prostacyclin and prostaglandin E2 ) in the mesenteric vascular bed. Sodium tungstate prevented those alterations; meanwhile vanadyl sulfate only prevented the increase in glycemia. In conclusion, the present experiments showed that sodium tungstate is more effective than vanadyl sulfate for the treatment of experimental metabolic syndrome in rats.
Collapse
Affiliation(s)
- Horatio A Peredo
- Department of Human Anatomy, Faculty of Pharmacy and Biochemistry, INFIBIOC, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
12
|
Rajasekar P, Palanisamy N, Anuradha C. Increase in Nitric Oxide and Reductions in Blood Pressure, Protein Kinase C β II and Oxidative Stress by L-Carnitine: A Study in the Fructose-Fed Hypertensive Rat. Clin Exp Hypertens 2009; 29:517-30. [DOI: 10.1080/10641960701743998] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Tran LT, Yuen VG, McNeill JH. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 2009; 332:145-59. [PMID: 19536638 DOI: 10.1007/s11010-009-0184-4] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome is an important public health concern that predisposes individuals to the development of cardiovascular disease and/or Type 2 diabetes. The fructose-fed rat is an animal model of acquired systolic hypertension that displays numerous features of the metabolic syndrome. This animal model is used to study the relationship between insulin resistance/compensatory hyperinsulinemia and the development of hypertension. Several mechanisms have been proposed to mediate the link between insulin resistance and hypertension. In this review, we have addressed the role of sympathetic nervous system overactivation, increased production of vasoconstrictors, such as endothelin-1 and angiotensin II, and prostanoids in the development of hypertension in fructose-fed rats. The roles of nitric oxide, impaired endothelium-dependent relaxation and sex hormones in the pathogenesis of the fructose-fed induced hypertensive rats have also been highlighted. More recently, increased formation of reactive oxygen species and elevated levels of uric acid have been reported to contribute to fructose-induced hypertension.
Collapse
Affiliation(s)
- Linda T Tran
- Division of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
14
|
Bhuiyan MS, Fukunaga K. Cardioprotection by vanadium compounds targeting Akt-mediated signaling. J Pharmacol Sci 2009; 110:1-13. [PMID: 19423951 DOI: 10.1254/jphs.09r01cr] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Treatment with inorganic and organic compounds of vanadium has been shown to exert a wide range of cardioprotective effects in myocardial ischemia/reperfusion-induced injury, myocardial hypertrophy, hypertension, and vascular diseases. Furthermore, administration of vanadium compounds improves cardiac performance and smooth muscle cell contractility and modulates blood pressure in various models of hypertension. Like other vanadium compounds, we documented bis(1-oxy-2-pyridinethiolato) oxovanadium (IV) [VO(OPT)] as a potent cardioprotective agent to elicit cardiac functional recovery in myocardial infarction and pressure overload-induced hypertrophy. Vanadium compounds activate Akt signaling through inhibition of protein tyrosine phosphatases, thereby eliciting cardioprotection in myocardial ischemia/reperfusion-induced injury and myocardial hypertrophy. Vanadium compounds also promote cardiac functional recovery by stimulation of glucose transport in diabetic heart. We here discuss the current understanding of mechanisms underlying vanadium compound-induced cardioprotection and propose a novel therapeutic strategy targeting for Akt signaling to rescue cardiomyocytes from heart failure.
Collapse
|
15
|
Riazi S, Tiwari S, Sharma N, Rash A, Ecelbarger CM. Abundance of the Na-K-2Cl cotransporter NKCC2 is increased by high-fat feeding in Fischer 344 X Brown Norway (F1) rats. Am J Physiol Renal Physiol 2009; 296:F762-70. [PMID: 19193725 DOI: 10.1152/ajprenal.90484.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is associated with hypertension by mechanisms likely involving the kidney. To determine how the major apical sodium transporter of the thick ascending limb, the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is regulated by high-fat feeding, we treated young male, Fischer 344 X Brown Norway (F344BN) rats for 8 wk with diets containing either normal (NF, 4%) or high (HF, 36%) fat, by weight, primarily as lard. HF-fed rats had impaired glucose tolerance, increased urine excretion of 8-isoprostane (a marker of oxidative stress), increased protein levels for NKCC2 (50-125%) and the renal outer medullary potassium channel (106%), as well as increased natriuretic response to furosemide (20-40%). To test the role of oxidative stress in this response, in study 2, rats were fed the NF or HF diet plus plain drinking water, or water containing N(G)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor (100 mg/l), or tempol, a superoxide dismutase mimetic (1 mmol/l). The combination of tempol with HF nullified the increase in medullary NKCC2, while l-NAME with HF led to the highest expression of medullary NKCC2 (to 498% of NF mean). However, neither of these drugs dramatically affected the elevated natriuretic response to furosemide with HF. Finally, l-NAME led to a marked increase in blood pressure (measured by radiotelemetry), which was significantly enhanced with HF. Mean arterial blood pressure at 7 wk was as follows (mmHg): NF, 100 +/- 2; NF plus l-NAME, 122 +/- 3; and HF plus l-NAME, 131 +/- 2. Overall, HF feeding increased the abundance of NKCC2. Inappropriately high sodium reabsorption in the thick ascending limb via NKCC2 may contribute to hypertension with insulin resistance.
Collapse
Affiliation(s)
- Shahla Riazi
- Associate Professor, Dept. of Medicine, Georgetown Univ., 4000 Reservoir Rd, NW, Washington, DC, 20007, USA
| | | | | | | | | |
Collapse
|
16
|
Bhuiyan MS, Shioda N, Shibuya M, Iwabuchi Y, Fukunaga K. Activation of Endothelial Nitric Oxide Synthase by a Vanadium Compound Ameliorates Pressure Overload-Induced Cardiac Injury in Ovariectomized Rats. Hypertension 2009; 53:57-63. [DOI: 10.1161/hypertensionaha.108.118356] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We here investigated the effect of bis(1-oxy-2-pyridinethiolato) oxovanadium (IV), [VO(OPT)], against myocardial hypertrophy and cardiac functional recovery in pressure overload–induced hypertrophy in ovariectomized female rats and defined mechanisms underlying its cardioprotective action. Wistar rats subjected to bilateral ovariectomy were further treated with abdominal aortic stenosis. VO(OPT) (containing 1.25 and 2.50 mg of vanadium per kg) was administered orally once a day for 14 days starting from 2 weeks after aortic banding. Treatment with VO(OPT) significantly inhibited pressure overload–induced increase both in the heart weight:body weight ratio and the lung weight:body weight ratio. VO(OPT) also attenuated hypertrophy-induced impaired left ventricular end-diastolic pressure, left ventricular developed pressure, and left ventricular contractility (±dp/dt
max
). VO(OPT) treatment significantly restored pressure overload–induced impaired endothelial NO synthase activity with concomitant increased phosphorylation of endothelial NO synthase (Ser1179). Moreover, VO(OPT) treatment significantly restored pressure overload–induced reduced Akt activity, as indicated by increased phosphorylation at Ser473 and at Thr308. Treatment with VO(OPT) also secondarily inhibited calpastatin and dystrophin breakdown and decreased myosin light chain phosphorylation. Finally, VO(OPT) treatment significantly attenuated mortality after repeated isoproterenol administration in pressure overloaded–ovariectomized rats. Taken together, VO(OPT) attenuates cardiac myocytes hypertrophy in vivo in pressure overload–induced hypertrophy in ovariectomized rats and prevents the process from hypertrophy to heart failure. These effects are mediated by inhibition of calpastatin and dystrophin breakdown in addition to increased Akt and endothelial NO synthase activities.
Collapse
Affiliation(s)
- Md. Shenuarin Bhuiyan
- From the Departments of Pharmacology (M.S.B., N.S., K.F.) and Synthetic Chemistry (M.S., Y.I.), Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; and Tohoku University 21st Century Center of Excellence Program “CRESCENDO” (K.F.), Sendai, Japan
| | - Norifumi Shioda
- From the Departments of Pharmacology (M.S.B., N.S., K.F.) and Synthetic Chemistry (M.S., Y.I.), Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; and Tohoku University 21st Century Center of Excellence Program “CRESCENDO” (K.F.), Sendai, Japan
| | - Masatoshi Shibuya
- From the Departments of Pharmacology (M.S.B., N.S., K.F.) and Synthetic Chemistry (M.S., Y.I.), Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; and Tohoku University 21st Century Center of Excellence Program “CRESCENDO” (K.F.), Sendai, Japan
| | - Yoshiharu Iwabuchi
- From the Departments of Pharmacology (M.S.B., N.S., K.F.) and Synthetic Chemistry (M.S., Y.I.), Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; and Tohoku University 21st Century Center of Excellence Program “CRESCENDO” (K.F.), Sendai, Japan
| | - Kohji Fukunaga
- From the Departments of Pharmacology (M.S.B., N.S., K.F.) and Synthetic Chemistry (M.S., Y.I.), Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; and Tohoku University 21st Century Center of Excellence Program “CRESCENDO” (K.F.), Sendai, Japan
| |
Collapse
|
17
|
Bhuiyan MS, Shioda N, Fukunaga K. Targeting protein kinase B/Akt signaling with vanadium compounds for cardioprotection. Expert Opin Ther Targets 2008; 12:1217-27. [PMID: 18781821 DOI: 10.1517/14728222.12.10.1217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Akt is an important signaling molecule that modulates many cellular processes such as cell growth, survival and metabolism. Akt activation has been proposed as a potential strategy for increasing cardiomyocyte survival following ischemia. OBJECTIVES Vanadium compounds activate Akt signaling through inhibition of protein tyrosine phosphatases, thereby eliciting cardioprotection in myocardial ischemia/reperfusion-induced injury along with cardiac functional recovery. Like other vanadium compounds, we documented bis(1-oxy-2-pyridinethiolato) oxovanadium (IV) as a potent cytoprotective agent on myocardial infarction and elicited cardiac functional recovery through activation of Akt signaling pathway. RESULTS/CONCLUSION The ability of vanadium compounds to activate Akt signaling pathways are responsible for their ability to modulate cardiovascular functions and is probably beneficial as a cardioprotective drug in subjects undergoing reperfusion therapy following myocardial infarction.
Collapse
Affiliation(s)
- Md Shenuarin Bhuiyan
- Graduate School of Pharmaceutical Sciences, Department of Pharmacology, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
18
|
Bhuiyan MS, Takada Y, Shioda N, Moriguchi S, Kasahara J, Fukunaga K. Cardioprotective effect of vanadyl sulfate on ischemia/reperfusion-induced injury in rat heart in vivo is mediated by activation of protein kinase B and induction of FLICE-inhibitory protein. Cardiovasc Ther 2008; 26:10-23. [PMID: 18466417 DOI: 10.1111/j.1527-3466.2008.00039.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we explored the mechanism of cardioprotective action of a tyrosine phosphatase inhibitor vanadyl sulfate on myocardial infarction and cardiac functional recovery in rats subjected to myocardial ischemia/reperfusion (MI/R) in vivo. Male Sprague-Dawley rats underwent 30 min heart ischemia by left coronary artery occlusion followed by 24-h reperfusion. Rats were randomized to receive either vehicle or vanadyl sulfate (1 and 5 mg/kg) intraperitoneally 0 min and 30 min after the start of reperfusion. Posttreatment with vanadyl sulfate significantly reduced the infarct size and significantly decreased the elevated left ventricular end diastolic pressure, improved left ventricular developed pressure, and left ventricular contractility (+/- dP/dt) after 72-h reperfusion in a dose-dependent manner. Moreover, treatment with vanadyl sulfate also significantly inhibited the apoptosis-related Caspase-3 and Caspase-9 processing, thereby elicited the antiapoptotic effect. The cardioprotective effect of vanadyl sulfate was closely associated with restoration of reduced protein kinase B (Akt) activity following MI/R injury. The recovered Akt activity correlated with increased phosphorylation of forkhead transcription factors, FKHR and FKHRL-1, thereby inhibiting apoptotic signaling. Furthermore, treatment with vanadyl sulfate significantly increased FLICE-inhibitory protein (FLIP) expression, and decreased expression of Fas ligand and Bim in cardiomyocytes. Taken together, rescue of cardiomyocytes by posttreatment with vanadyl sulfate from MI/R injury was mediated by increased FLIP expression and decreased Fas ligand and Bim expression via activation of Akt. These results demonstrate that treatment with vanadyl sulfate exerts significant cardioprotective effects along with cardiac functional recovery.
Collapse
Affiliation(s)
- Md Shenuarin Bhuiyan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Swislocki A, Lardinois CK, Starich GH. Acarbose Attenuates Basal and Postprandial Insulin Concentrations but Fails to Lower Blood Pressure in the Spontaneously Hypertensive Rat. Metab Syndr Relat Disord 2007; 5:297-304. [DOI: 10.1089/met.2007.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Arthur Swislocki
- Medical Service, Veterans Affairs Northern California Health Care System, Martinez, CA
- Department of Internal Medicine, University of California, Davis School of Medicine, Davis, CA
| | - Claude K. Lardinois
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV
- Medical Service, VA Sierra Nevada Health Care System, Reno, NV
| | | |
Collapse
|
20
|
Tiwari S, Riazi S, Ecelbarger CA. Insulin's impact on renal sodium transport and blood pressure in health, obesity, and diabetes. Am J Physiol Renal Physiol 2007; 293:F974-84. [PMID: 17686957 DOI: 10.1152/ajprenal.00149.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Insulin has been shown to have antinatriuretic actions in humans and animal models. Moreover, endogenous hyperinsulinemia and insulin infusion have been correlated to increased blood pressure in some models. In this review, we present the current state of understanding with regard to the regulation of the major renal sodium transporters by insulin in the kidney. Several groups, using primarily cell culture, have demonstrated that insulin can directly increase activity of the epithelial sodium channel, the sodium-phosphate cotransporter, the sodium-hydrogen exchanger type III, and Na-K-ATPase. We and others have demonstrated alterations in the expression at the protein level of many of these same proteins with insulin infusion or in hyperinsulinemic models. We also discuss how this regulation is perturbed in type I and type II diabetes mellitus. Finally, we discuss a potential role for regulation of insulin receptor signaling in the kidney in contributing to sodium balance and blood pressure.
Collapse
Affiliation(s)
- Swasti Tiwari
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, District of Columbia 20007, USA
| | | | | |
Collapse
|
21
|
Bouffard L, Papirakis ME, Maheux P. Enalapril increases the local extravasation of macromolecules and nitric oxide synthase in pancreas of the fructose-fed insulin-resistant rat model. Pancreas 2006; 33:418-24. [PMID: 17079949 DOI: 10.1097/01.mpa.0000236729.01123.7d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Angiotensin-converting enzyme (ACE) inhibitors have been associated with an increased risk of acute pancreatitis. The pathogenesis of this condition remains unclear, but an activation of the kinin system and a resultant localized angioedema have been implicated in the initial step leading to acute pancreatic damage. The goal of the present study was to explore the impact of ACE inhibition on pancreatic microcirculation and capillary permeability in normal and insulin-resistant rats. METHODS Chow- or fructose-fed Sprague-Dawley rats were treated with enalapril (dosage, 10 mg.kg.d) or vehicle for 4 weeks before measuring in vivo the extravasation of Evans blue (EB) dye in pancreas. Unanesthetized animals (n = 10-17 per group) were injected with EB 20 mg.kg in the caudal vein 10 minutes before killing, and EB dye was extracted from each pancreas by using formamide. RESULTS Relative to controls, enalapril-treated animals showed a 5-fold increase in pancreatic extravasation of EB in the fructose-fed rat model (P < 0.001); smaller changes (2-fold) were observed in the chow-fed animals treated with enalapril (P < 0.001). The increase in pancreatic vasopermeability observed with enalapril in the fructose-fed animals was accompanied by a significant increase in total pancreatic nitric oxide synthase (NOS) activity compared to controls (Delta = +128%; P < 0.001). This increase in NOS activity seemed to be solely attributable to an upregulation of the endothelial NOS isoform because only the eNOS immunoreactive mass (as opposed to nNOS) seemed to be increased in the pancreas of these animals. Treatment with enalapril was not associated with any increase in serum amylase concentrations in either animal subgroup. CONCLUSIONS Enalapril increases capillary permeability (extravasation of macromolecules) in the pancreas of the fructose-fed rat model. This suggests that ACE inhibition upregulates the eNOS isoform locally, increases vasopermeability of the pancreas, and can therefore result in local edema in the fructose-fed insulin-resistant rat model.
Collapse
Affiliation(s)
- Lucie Bouffard
- Department of Medicine, Division of Endocrinology & Metabolism, Université de Sherbrooke, Quebec, Canada
| | | | | |
Collapse
|
22
|
Song J, Hu X, Riazi S, Tiwari S, Wade JB, Ecelbarger CA. Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. Am J Physiol Renal Physiol 2006; 290:F1055-64. [PMID: 16303859 DOI: 10.1152/ajprenal.00108.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperinsulinemia is associated with hypertension. Dysregulation of renal distal tubule sodium reabsorption may play a role. We evaluated the regulation of the epithelial sodium channel (ENaC) and the thiazide-sensitive Na-Cl cotransporter (NCC) during chronic hyperinsulinemia in rats and correlated these changes to blood pressure as determined by radiotelemetry. Male Sprague-Dawley rats (∼270 g) underwent one of the following three treatments for 4 wk ( n = 6/group): 1) control; 2) insulin-infused plus 20% dextrose in drinking water; or 3) glucose water-drinking (20% dextrose in water). Mean arterial pressures were increased by insulin and glucose (mmHg at 3 wk): 98 ± 1 (control), 107 ± 2 (insulin), and 109 ± 3 (glucose), P < 0.01. Insulin (but not glucose) increased natriuretic response to benzamil (ENaC inhibitor) and hydrochlorothiazide (NCC inhibitor) on average by 125 and 60%, respectively, relative to control rats, suggesting increased activity of these reabsorptive pathways. Neither insulin nor glucose affected the renal protein abundances of NCC or the ENaC subunits (α, β, and γ) in kidney cortex, outer medulla, or inner medulla in a major way, as determined by immunoblotting. However, insulin and to some extent glucose increased apical localization of these subunits in cortical collecting duct principal cells, as determined by immunoperoxidase labeling. In addition, insulin decreased cortical “with no lysine” kinase (WNK4) abundance (by 16% relative to control), which may have increased NCC activity. Overall, insulin infusion increased blood pressure, and NCC and ENaC activity in rats. Increased apical targeting of ENaC and decreased WNK4 expression may be involved.
Collapse
Affiliation(s)
- Jian Song
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown Univ., 4000 Reservoir Rd. 233 NW, Washington, DC 20057-1412, USA
| | | | | | | | | | | |
Collapse
|
23
|
Preuss HG, Echard B, Polansky MM, Anderson R. Whole Cinnamon and Aqueous Extracts Ameliorate Sucrose-Induced Blood Pressure Elevations in Spontaneously Hypertensive Rats. J Am Coll Nutr 2006; 25:144-50. [PMID: 16582031 DOI: 10.1080/07315724.2006.10719525] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Many agents (nutrients, nutraceuticals, and drugs) that enhance insulin sensitivity and/or reduce circulating insulin concentrations lower blood pressure (BP). Recently, it was reported that cinnamon has the potential to favorably influence the glucose/insulin system. Accordingly, the purpose of the present study was to examine the effects of dietary cinnamon on systolic BP (SBP), and various glucose- and insulin-related parameters in spontaneously hypertensive rats (SHR). METHODS In a series of three experiments, treated SHR eating sucrose and non sucrose containing diets were given various amounts of cinnamon, cinnamon extracts, or chromium. Then various parameters such as: body weight, systolic blood pressure, hematology and blood chemistries were followed for three to four weeks. RESULTS Diets high in sucrose content are associated with insulin resistance and the elevation of SBP. Addition to diets of cinnamon (8% w/w) reduced the SBP of rats eating sucrose containing diets to virtually the same levels as SHR consuming non sucrose containing (only starch) diets. The presence of cinnamon in the diet also decreased the SBP of SHR consuming a non sucrose-containing diet, suggesting that cinnamon reduces more than just sucrose-induced SBP elevations--perhaps a genetic component(s) of the elevated BP as well. The effects of cinnamon on SBP tended to be dose-dependent. Cinnamon did not decrease the levels of blood glucose, but did lower circulating insulin concentrations. Aqueous extracts of cinnamon also decreased SBP and lowered the circulating levels of fructosamine. CONCLUSIONS Cinnamon is used for flavor and taste in food preparation, but cinnamon may have additional roles in glucose metabolism and BP regulation. Therefore, BP regulation may not only be influenced favorably by limiting the amounts of dietary substances that have negative effects on BP and insulin function but also by the addition of beneficial ones, such as cinnamon, that have positive effects.
Collapse
Affiliation(s)
- Harry G Preuss
- Department of Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
24
|
Girard A, Madani S, El Boustani ES, Belleville J, Prost J. Changes in lipid metabolism and antioxidant defense status in spontaneously hypertensive rats and Wistar rats fed a diet enriched with fructose and saturated fatty acids. Nutrition 2005; 21:240-8. [PMID: 15723754 DOI: 10.1016/j.nut.2004.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 03/13/2003] [Accepted: 04/20/2004] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Larger doses of fructose and saturated fat have been associated with oxidative stress and development of hypertension. The effects of modest amounts of fructose and saturated fatty acids on oxidative stress are unknown. METHODS To increase knowledge on this question, 10-wk-old spontaneously hypertensive rats and Wistar rats were fed for 8 wk with a control diet or an experimental diet enriched with fructose (18%) and saturated fatty acids (11%; FS diet). The total antioxidant status of organs and red blood cells was assayed by monitoring the rate of free radical-induced red blood cell hemolysis. Sensitivity of very low-density lipoprotein and low-density lipoprotein (VLDL-LDL) to copper-induced lipid peroxidation was determined as the production of thiobarbituric acid-reactive substances. Antioxidant enzymes and vitamins were also measured to establish the oxidative stress effect. RESULTS The FS diet did not affect blood pressure in either strain, but it increased plasma insulin concentrations only in Wistar rats without affecting those of glucose of either strain. The FS diet significantly enhanced plasma and VLDL-LDL triacylglycerol concentrations without affecting concentrations of VLDL-LDL thiobarbituric acid-reactive substances. The decreased content of arachidonic acid and total polyunsaturated fatty acids in VLDL-LDL by the FS diet may have prevented lipid peroxidation in this fraction. Moreover, FS consumption by both strains was accompanied by a significant increase in total antioxidant capacity of adipose tissue, muscle, heart, and liver. This may have resulted from increased tissue ascorbic acid levels and glutathione peroxidase and glutathione reductase activities in tissues. CONCLUSIONS These findings clearly indicate that the FS diet did not alter blood pressure of spontaneously hypertensive rats and Wistar rats. The FS diet resulted in hypertriglyceridemia but increased the total antioxidant status, which may prevent lipid peroxidation in these rats.
Collapse
Affiliation(s)
- Aurélie Girard
- Université de Bourgogne, UPRES Lipides Nutrition EA 2422, Faculté des Sciences Gabriel, Dijon, France
| | | | | | | | | |
Collapse
|
25
|
Song D, Hutchings S, Pang CCY. Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol 2005; 508:205-10. [PMID: 15680273 DOI: 10.1016/j.ejphar.2004.12.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 12/07/2004] [Accepted: 12/09/2004] [Indexed: 01/11/2023]
Abstract
We examined if administration of an antioxidant compound protects against the development of insulin resistance and hypertension. Male rats were assigned randomly into four groups, and treated for 12 weeks with normal chow, normal chow plus N-acetylcysteine (1.5 g/day/kg), fructose (60% of diet), and fructose plus N-acetylcysteine. After 10 weeks, plasma triglyceride and 15-F2t-isoprostane, and insulin sensitivity were measured, and after 12 weeks, pressor response to methoxamine (15-60 microg/kg min) was assessed. Relative to normal chow-fed controls, the fructose-fed rats had increased blood pressure, plasma insulin, triglyceride and 15-F2t-isoprostane, and decreased insulin sensitivity; these changes were inhibited by N-acetylcysteine. Maximal pressor response to methoxamine was attenuated in the fructose-fed rats given N-acetylcysteine relative to the other three groups. Therefore, chronic treatment with N-acetylcysteine increases insulin sensitivity and prevents the blood pressure increase associated with fructose feeding in rats, the mechanism may involve the decrease of oxidative stress and alpha-adrenoceptor-mediated vasoconstriction.
Collapse
Affiliation(s)
- Dongzhe Song
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Heath Science Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
26
|
Al-Awwadi N, Bichon-Laurent F, Dimo T, Michel A, Portet K, Cros G, Poucheret P. Differential effects of sodium tungstate and vanadyl sulfate on vascular responsiveness to vasoactive agents and insulin sensitivity in fructose-fed rats. Can J Physiol Pharmacol 2004; 82:911-8. [PMID: 15573152 DOI: 10.1139/y04-093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High fructose feeding induces insulin resistance, impaired glucose tolerance, and hypertension in rats and mimics most of the features of the metabolic syndrome X. The effects of a 6-week treatment with the transition metals administered in drinking water, vanadium (VOSO4·5H2O, 0.75 mg/mL) or tungsten (Na2O4W, 2 g/mL), were investigated on the reactivity to norepinephrine (NEPI) or acetylcholine (ACh) of thoracic aorta rings isolated from fructose (60%) or standard chow fed rats. Maximal effect (Emax) and pD2(–log EC50) values were determined in each case in the presence or absence of endothelium, while the degree of insulin resistance was determined using the euglycemic hyper insulinemic glucose clamp technique. Aortic segments isolated from 6-week fructose-fed animals were characterized by NEPI hyperresponsiveness (increase in Emax) and endothelium-dependent NEPI supersensitivity (increase in pD2) without any change in the reactivity to ACh. Vanadium or tungsten administered in fructose-fed animals prevented both hypertension and NEPI hyperresponsiveness, while vanadium, but not tungsten, reduced NEPI supersensitivity. Vanadium, but not tungsten, increased the relaxing activity of ACh, both in control and fructose-fed animals. Insulin resistance associated with high fructose feeding was reversed by vanadium but not by tungsten treatment. The differential effects of the two transition metals on vascular responsiveness to NEPI or ACh may be explained by their differential effects on insulin sensitivity.Key words: vanadium, tungsten, aorta, hypertension, fructose, glucose clamp.
Collapse
Affiliation(s)
- Najim Al-Awwadi
- Laboratoire de Pharmacologie et Physiopathologie Expérimentales, INSERM U376 and U474, Faculté de Pharmacie, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Inorganic and organic compounds of vanadium have been shown to exhibit a large range of insulinomimetic effects in the cardiovascular system, including stimulation of glucose transporter 4 (GLUT-4) translocation and glucose transport in adult cardiomyocytes. Furthermore, administration of vanadium compounds improves cardiac performance and smooth muscle contractility, and modulates blood pressure in various models of hypertension and insulin resistance. Vanadium compounds are potent inhibitors of protein tyrosine phosphatases. As a result, they promote an increase in protein tyrosine phosphorylation of several key components of the insulin signaling pathway, leading to the upregulation of phosphatidylinositol 3-kinase and protein kinase B, two enzymes involved in mediating GLUT-4 trans location and glucose transport. In addition, vanadium has also been shown to activate p38 mitogen-activated protein kinase and increase Ca2+levels in several cell types. The ability of vanadium compounds to activate these signaling events may be responsible for their ability to modulate cardiovascular functions.Key words: vanadium compounds, glucose transport, smooth muscle contractility, insulin signaling pathway.
Collapse
Affiliation(s)
- Lise Coderre
- Research Center, Centre hospitalier de l'Université de Montréal, Hôtel-Dieu, Department of Medicine, Université de Montréal, QC, Canada
| | | |
Collapse
|
28
|
Thirunavukkarasu V, Anitha Nandhini AT, Anuradha CV. Lipoic acid attenuates hypertension and improves insulin sensitivity, kallikrein activity and nitrite levels in high fructose-fed rats. J Comp Physiol B 2004; 174:587-92. [PMID: 15565449 DOI: 10.1007/s00360-004-0447-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2004] [Indexed: 11/24/2022]
Abstract
Chronic feeding of fructose to normal rats causes impaired glucose tolerance, loss of tissue sensitivity to insulin, hyperinsulinemia and hypertension. alpha-Lipoic acid (LA), a co-enzyme known for its potent antioxidant effects, stimulates insulin-mediated glucose uptake in clinical and experimental diabetes. The purpose of this study was to examine whether LA can mitigate fructose-induced insulin resistance and associated abnormalities. Male Wistar rats of body weights 150-170 g were divided into 4 groups containing 12 rats each. Control rats received a control diet containing starch and water ad libitum. Fructose rats received a fructose-enriched diet (>60% of total calories). Fructose + LA rats received a fructose diet and LA (35 mg/kg b.w.) intraperitoneally. Control + LA rats received a normal diet and LA (35 mg/kg b.w.) intraperitoneally. After the treatment period of 20 days, blood pressure (BP) was measured. Oral glucose-tolerance test, insulin-sensitivity index, urea and creatinine clearance tests, and plasma and urinary sodium and potassium levels were analysed. Kallikrein activity and nitrite content were assayed. Additionally, the activities of RBC-membrane Na(+)/K(+) ATPase and Ca(2+) ATPase enzymes were assayed. Fructose rats showed increased BP, decreased glucose tolerance, decreased insulin sensitivity and altered sodium and potassium levels and renal clearance. LA supplementation mitigated these alterations. The increase in BP was attenuated and the levels of biochemical parameters were brought close to normal. The BP-lowering effect of LA in fructose rats may be related to improvement in insulin sensitivity.
Collapse
Affiliation(s)
- V Thirunavukkarasu
- Department of Biochemistry, Faculty of Science, Annamalai University, 608002 Annamalai Nagar, Tamil Nadu, India
| | | | | |
Collapse
|
29
|
Al-Awwadi NA, Bornet A, Azay J, Araiz C, Delbosc S, Cristol JP, Linck N, Cros G, Teissedre PL. Red wine polyphenols alone or in association with ethanol prevent hypertension, cardiac hypertrophy, and production of reactive oxygen species in the insulin-resistant fructose-fed rat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:5593-5597. [PMID: 15373398 DOI: 10.1021/jf049295g] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of a red wine polyphenolic extract (RWPE), ethanol, or both combined were evaluated in insulin resistant rats. Rats were fed for 6 weeks with fructose (60%)-enriched food and force-fed with (a) water only (F group), (b) aqueous solution of RWPE (100 mg/kg, FP group), (c) 10% (v/v) mixture of ethanol and water (FE group), or (d) solution containing the same amount of the RWPE and ethanol (FPE group). Animals fed a standard chow (C group) were used for comparison purpose. After 6 weeks, blood pressure was higher in F (130.0 x b1 1.7 mm Hg) than in C animals (109.6 x b1 0.9 mm Hg) and similar to the C group in all other fructose-fed treatment groups. Relative heart weight was higher in F (3.10 x b1 0.05) than in C (2.78 x b1 0.07) and significantly lower in FP (2.92 x b1 0.04) and FPE (2.87 x b1 0.08 mg/g) than in F animals. Left ventricle and aorta productions of reactive oxygen species (O2*-) were higher in F than in C groups and lowered by the RWPE but not by the ethanol treatment. Ethanol but not the RWPE treatment reduced the degree of insulin resistance in the fructose-fed rats. In summary, our study showed that polyphenols are able to prevent cardiac hypertrophy and production of reactive oxygen species in the insulin resistant fructose-fed rat.
Collapse
Affiliation(s)
- Najim A Al-Awwadi
- Laboratoire de Pharmacologie et Physiopathologie Expérimentales, INSERM U376, Faculté de Pharmacie, 15 Avenue Charles Flahault, B.P. 14491, 34093 Montpellier 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Di Filippo C, Rossi F, Ongini E, Del Soldato P, Perretti M, D'Amico M. The distinct alterations produced in cardiovascular functions by prednisolone and nitro-prednisolone (NCX-1015) in the rat highlight a causal role for endothelin-1. J Pharmacol Exp Ther 2004; 310:1133-41. [PMID: 15113846 DOI: 10.1124/jpet.104.068726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Daily administration of prednisolone, but not the derivative NCX-1015 (or prednisolone 21-[4'-nitrooxymethyl]benzoate), to rats resulted in a time- and dose-dependent increase in mean arterial blood pressure (MABP), significant after 1 week for the dose of 6.9 micromol/kg i.p. (n = 10; P < 0.05), and 3 weeks for the lower dose of 1.38 micromol/kg. A similar dichotomy of behavior was observed with respect to myocardial contractility and renal vascular resistance, in either case augmented by 3-week treatment with prednisolone but not NCX-1015. In contrast, both NCX-1015 and prednisolone reduced plasma levels of corticosterone in a dose- (dose range of 0.69-6.9 micromol/kg i.p.) and time-dependent (1-3 weeks) manner. Similar profiles were obtained for plasma nitrate values, although they were increased selectively after NCX-1015 administration. In contrast, prednisolone, but not NCX-1015, augmented plasma endothelin 1 (ET-1) with a profile that mirrored the changes observed in MABP and renal blood flow. Supply in the drinking water of the ET-1 receptor type A (ETA) antagonist FR139317 [(R-2-[(R)-2-[(S)-2-[[1-(hexahydro-1H-azepinyl)]-carbonyl]amino-4-methylpentanoyl]-amino-3-(2-pyridil)propionic] or mixed ETA/B, but not of selective ETB, antagonists prevented the changes produced by a 21-day treatment with prednisolone. In conclusion, this study indicates 1) a lack of occurrence of cardiovascular alterations by nitro-releasing derivative of prednisolone (NCX-1015), and 2) a functional link between prednisolone effects and the endogenous endothelin-1 system.
Collapse
Affiliation(s)
- Clara Di Filippo
- The William Harvey Research Institute, Queen Mary School of Medicine and Dentistry, University of London, Charterhouse Square, EC1M 6BQ London, UK
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Since insulin resistance was first associated with type 2 diabetes and later with cardiovascular disease and hypertension, there has been considerable interest in the role of dietary and environmental factors. Sucrose and fructose have been a particular research focus. Research on animals, particularly rodents, has shown a clear and consistent effect of high-sucrose and high-fructose diets in decreasing insulin sensitivity. Experiments in humans have produced very conflicting results, with limited evidence for a negative effect on insulin sensitivity at higher intakes of fructose or sucrose (generally > 30% of daily energy from sucrose and > 15% of daily energy from fructose). Observation studies in humans have not shown a link between sucrose consumption and insulin sensitivity independent of other dietary factors. This is in contrast with several small studies that showed an improvement in insulin sensitivity after subjects followed dietary advice to lower the glycemic index of their food choices (where sugars were not a target for change). However, the pattern of postprandial glucose and insulin responses elicited by sucrose and fructose differs substantially from that elicited by starches, with lower troughs elicited by sucrose and fructose 2-3 h after eating. These differences in the pattern of postprandial responses offer a potential explanation for the conflicting results on insulin sensitivity, with the possibility that increases in insulin exposure may affect insulin sensitivity through down-regulation of insulin action.
Collapse
Affiliation(s)
- Mark Daly
- Diabetes and Vascular Research Centre, Exeter, United Kingdom.
| |
Collapse
|
32
|
Dimo T, Rakotonirina SV, Tan PV, Azay J, Dongo E, Cros G. Leaf methanol extract of Bidens pilosa prevents and attenuates the hypertension induced by high-fructose diet in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2002; 83:183-191. [PMID: 12426085 DOI: 10.1016/s0378-8741(02)00162-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chronic fructose treatment in rats has repeatedly been shown to elevate blood pressure in association with insulin resistance and hyperinsulinemia. The purpose of the current study was to investigate the effect of the leaf methanol extract of Bidens pilosa on systolic blood pressure (SBP) and plasma glucose, insulin, cholesterol, triglycerides and creatinine levels in rats with fructose-induced hypertension. Wistar rats that drank a 10% fructose solution for 3-6 weeks showed significant increase not only in plasma insulin and cholesterol levels but also in SBP. B. pilosa extract was able to prevent the establishment of hypertension and lower elevated blood pressure levels. The extract also reduced the highly elevated plasma insulin levels provoked by the high fructose diet. These results suggest that the leaf methanol extract of B. pilosa exerts its antihypertensive effect in part by improving insulin sensitivity.
Collapse
Affiliation(s)
- Théophile Dimo
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | | | | | | | | | | |
Collapse
|
33
|
Galipeau D, Verma S, McNeill JH. Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am J Physiol Heart Circ Physiol 2002; 283:H2478-84. [PMID: 12427595 DOI: 10.1152/ajpheart.00243.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine whether the effects of a fructose diet, which causes hyperinsulinemia, insulin resistance, and hypertension in male rats, are dependent on sex. Blood pressure was measured via the tail-cuff method, and oral glucose tolerance tests were performed to assess insulin sensitivity. Blood pressure in female rats did not differ between fructose-fed and control rats at any time point (126 +/- 5 and 125 +/- 3 mmHg at week 9 for fructose-fed and control rats, respectively) nor was there a difference in any metabolic parameter measured. Furthermore, the vascular insulin resistance that is present in male fructose-fed rats was not observed. After ovariectomy, fructose caused a significant change in systolic blood pressure from baseline compared with fructose-fed ovary-intact rats (change of 21 +/- 5 vs. -2 +/- 4 mmHg). The results demonstrate that females do not develop hypertension or hyperinsulinemia upon fructose feeding except after ovariectomy, suggesting that female sex hormones may confer protection against the effects of a fructose diet.
Collapse
Affiliation(s)
- Denise Galipeau
- Division of Pharmacology and Toxicology, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
34
|
Vasdev S, Gill V, Parai S, Longerich L, Gadag V. Dietary vitamin E and C supplementation prevents fructose induced hypertension in rats. Mol Cell Biochem 2002; 241:107-14. [PMID: 12482032 DOI: 10.1023/a:1020835229591] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In fructose-induced hypertension in Wistar-Kyoto (WKY) rats, excess endogenous aldehydes bind sulfhydryl groups of membrane proteins, altering membrane Ca2+ channels and increasing cytosolic free calcium and blood pressure. The thiol compound N-acetyl cysteine prevents fructose-induced hypertension by binding excess endogenous aldehydes and normalizing membrane Ca2+ channels and cytosolic free calcium. The aim of the present study was to investigate whether dietary supplementation of vitamin E and vitamin C which are known to increase tissue glutathione, a storage form of cysteine, prevents this hypertension and its associated biochemical and histopathological changes. Starting at 7 weeks of age, animals were divided into four groups of six animals each and treated as follows: control group, normal diet and normal drinking water; fructose group, normal diet and 4% fructose in drinking water; fructose + vitamin E group, diet supplemented with vitamin E (34 mg/ kg feed) and 4% fructose in drinking water; fructose + vitamin C group, diet supplemented with vitamin C (1,000 mg/kg feed) and 4% fructose in drinking water. At 14 weeks, systolic blood pressure, platelet [Ca2+]i and kidney and aortic aldehyde conjugates were significantly higher in the fructose group. These animals also displayed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidneys. Dietary vitamin E and C supplementation in fructose-treated WKY rats prevented the increase in systolic blood pressure by normalizing cytosolic [Ca2+]i and kidney and aortic aldehyde conjugates and preventing adverse renal vascular changes.
Collapse
Affiliation(s)
- S Vasdev
- Department of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| | | | | | | | | |
Collapse
|
35
|
Verma S, McNeill JH. Alterations in the vascular actions of insulin in the pathogenesis of insulin resistance and hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 498:133-42. [PMID: 11900361 DOI: 10.1007/978-1-4615-1321-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S Verma
- The Division of Cardiology, Faculty of Medicine, University of Calgary, Canada
| | | |
Collapse
|
36
|
Galipeau DM, Yao L, McNeill JH. Relationship among hyperinsulinemia, insulin resistance, and hypertension is dependent on sex. Am J Physiol Heart Circ Physiol 2002; 283:H562-7. [PMID: 12124202 DOI: 10.1152/ajpheart.00238.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperinsulinemia and insulin resistance have been linked to hypertension; however, the influence of sex on this relationship has not been well studied. The purpose of this experiment was to compare the effects of chronic insulin treatment on insulin sensitivity and blood pressure in male and female rats. Male and female Wistar rats were treated with insulin (2 U/day) via subcutaneous sustained release implants for 5 wk. Systolic blood pressure was measured via the tail-cuff method before and after treatment, and insulin sensitivity was assessed with an oral glucose tolerance test. The insulin sensitivity of female rats was 4.5-fold greater than male rats. Chronic insulin treatment impaired insulin sensitivity in both sexes; however, this occurred to a greater degree in male rats. Blood pressure increased in male rats treated with insulin only. The results demonstrate that hyperinsulinemia and insulin resistance are associated with hypertension in male rats only. Therefore, the link between these conditions appears to depend on sex.
Collapse
Affiliation(s)
- Denise M Galipeau
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
37
|
Dimitropoulou C, Han G, Miller AW, Molero M, Fuchs LC, White RE, Carrier GO. Potassium (BK(Ca)) currents are reduced in microvascular smooth muscle cells from insulin-resistant rats. Am J Physiol Heart Circ Physiol 2002; 282:H908-17. [PMID: 11834486 DOI: 10.1152/ajpheart.00382.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance (IR) syndrome is associated with impaired vascular relaxation; however, the underlying pathophysiology is unknown. Potassium channel activation causes vascular smooth muscle hyperpolarization and relaxation. The present study determined whether a reduction in large conductance calcium- and voltage-activated potassium (BK(Ca)) channel activity contributes to impaired vascular relaxation in IR rats. BK(Ca) channels were characterized in mesenteric microvessels from IR and control rats. Macroscopic current density was reduced in myocytes from IR animals compared with controls. In addition, inhibition of BK(Ca) channels with tetraethylammonium (1 mM) or iberiotoxin (100 nM) was greater in myocytes from control (70%) compared with IR animals (approximately 20%). Furthermore, activation of BK(Ca) channels with NS-1619 was three times more effective at increasing outward current in cells from control versus IR animals. Single channel and Western blot analysis of BK(Ca) channels revealed similar conductance, amplitude, voltage sensitivity, Ca2+ sensitivity, and expression density between the two groups. These data provide the first direct evidence that microvascular potassium currents are reduced in IR and suggest a molecular mechanism that could account for impaired vascular relaxation in IR.
Collapse
Affiliation(s)
- Christiana Dimitropoulou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912-2300, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Galipeau D, Arikawa E, Sekirov I, McNeill JH. Chronic Thromboxane Synthase Inhibition Prevents Fructose-Induced Hypertension. Hypertension 2001. [DOI: 10.1161/hyp.38.4.872] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the role of thromboxane A
2
in the development of hypertension in the fructose-fed rat, we treated male fructose-fed rats with dazmegrel (a thromboxane synthase inhibitor) and monitored blood pressure, fasting plasma parameters, and insulin sensitivity for 7 weeks. Systolic blood pressure was measured each week using tail plethysmography, and an oral glucose tolerance test was performed at the end of the study to assess insulin sensitivity. Treatment with a 60% fructose diet and dazmegrel (100 mg · kg
−1
· d
−1
via oral gavage) was initiated on the same day. Plasma triglyceride levels increased 2-fold in both fructose- and fructose/dazmegrel-treated groups, and plasma insulin levels tended to be higher in these groups, although not significantly. Systolic blood pressure increased significantly throughout the study in the fructose-fed group only (132±3 versus 112±4 mm Hg in control rats, 118±2 mm Hg in control-treated rats, 116±2 mm Hg in fructose-treated rats). Both fructose groups demonstrated a higher peak insulin response to oral glucose challenge and had 40% to 60% lower insulin sensitivity index values. The results of this study show that treatment with a thromboxane synthase inhibitor, dazmegrel, can prevent the development of hypertension but does not improve insulin sensitivity or other fructose-induced metabolic impairments. Based on these data, we conclude that the potent vasoconstrictor thromboxane is involved in the link between hyperinsulinemia/insulin resistance and hypertension.
Collapse
Affiliation(s)
- Denise Galipeau
- From the Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Emi Arikawa
- From the Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Inna Sekirov
- From the Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - John H. McNeill
- From the Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Barbagallo M, Dominguez LJ, Resnick LM. Insulin-mimetic action of vanadate: role of intracellular magnesium. Hypertension 2001; 38:701-704. [PMID: 11566960 DOI: 10.1161/hy09t1.095392] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 06/28/2001] [Indexed: 12/15/2022]
Abstract
The insulin-mimetic effect of vanadate is well established, and vanadate has been shown to improve insulin sensitivity in diabetic rats and humans. Although the exact mechanism(s) remain undefined, we have previously demonstrated a direct relation of intracellular free magnesium (Mg(i)) levels to glucose disposal, to insulinemic responses following glucose loading, and to insulin-induced ionic effects. To investigate whether the insulin-mimetic effects of vanadate could similarly be mediated by Mg(i), we utilized (31)P-nuclear magnetic resonance spectroscopy to measure Mg(i) in erythrocytes from normal (NL, n=10) and hypertensive (HTN, n=12) subjects, before and after incubation with insulin and with different doses of sodium vanadate. In NL, vanadate elevated Mg(i) levels, with maximum efficacy at 50 7 micromol/L (186+/-6 to 222+/-6 7micromol/L, P>0.01), as did physiologically maximal doses of insulin, 200 7microU/mL (185+/-6 to 222+/-8 7micromol/L, P<0.01). In HTN, only vanadate, but not insulin, increased Mg(i) (insulin: 173+/-7 to 180+/-9 7micromol/L, P=NS; vanadate: 170+/-7 to 208+/-10 7micromol/L, P<0.01). Mg(i) responses to insulin (r=0.637, P<0.001), but not to vanadate (r=0.15, P=NS), were closely and directly related to basal Mg(i) levels. We conclude that (1) both vanadate and insulin stimulate erythrocyte Mg(i) levels; (2) cellular Mg(i) responses to insulin, but not to vanadate, depend on basal Mg(i) content-the lower the basal Mg(i), the less the Mg(i) response to insulin. As such, (3) Mg(i) responses to vanadate were equivalent among HTN and NL, whereas HTN cells exhibited blunted Mg(i) responses to insulin, and (4) the ability of vanadate to improve insulin sensitivity clinically may be mediated, at least in part, by its ability to increase Mg(i) levels, which in turn, helps to determine cellular insulin action.
Collapse
Affiliation(s)
- M Barbagallo
- Institute of Internal Medicine and Geriatrics, University of Palermo, Italy.
| | | | | |
Collapse
|
40
|
Dimo T, Azay J, Tan PV, Pellecuer J, Cros G, Bopelet M, Serrano JJ. Effects of the aqueous and methylene chloride extracts of Bidens pilosa leaf on fructose-hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2001; 76:215-221. [PMID: 11448541 DOI: 10.1016/s0378-8741(01)00229-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We investigated the effects of the aqueous (150-350 mg/kg) and methylene chloride (150-300 mg/kg) extracts of Bidens pilosa on fructose-induced hypertension in rats. Food and liquid intake were measured as well as systolic blood pressure and plasma levels of glucose, insulin, cholesterol, triglycerides and creatinine. Fructose feeding for 6 weeks induced hypertension, hyperinsulinemia and increased plasma triglyceride levels in male Wistar rats. The aqueous and methylene chloride extracts of B. pilosa reversed the high blood pressure and hypertriglyceridemia developed due to fructose feeding but did not have any effects on plasma levels of insulin and glucose. High doses of the extracts reduced plasma creatinine levels and tended to increase plasma cholesterol. These results suggest that the extracts of B. pilosa possess hypotensive effects whose mechanism of action is not related to insulin sensitivity.
Collapse
Affiliation(s)
- T Dimo
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | | | | | | | | | | | | |
Collapse
|
41
|
Marzban L, Bhanot S, McNeill JH. In vivo effects of insulin and bis(maltolato)oxovanadium (IV) on PKB activity in the skeletal muscle and liver of diabetic rats. Mol Cell Biochem 2001; 223:147-57. [PMID: 11681716 DOI: 10.1023/a:1017943200785] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, the in vivo effects of insulin and chronic treatment with bis(maltolato)oxovanadium (IV) (BMOV) on protein kinase B (PKB) activity were examined in the liver and skeletal muscle from two animal models of diabetes, the STZ-diabetic Wistar rat and the fatty Zucker rat. Animals were treated with BMOV in the drinking water (0.75-1 mg/ml) for 3 (or 8) weeks and sacrificed with or without insulin injection. Insulin (5 U/kg, i.v.) increased PKBalpha activity more than 10-fold and PKBbeta activity more than 3-fold in both animal models. Despite the development of insulin resistance, insulin-induced activation of PKBalpha was not impaired in the STZ-diabetic rats up to 9 weeks of diabetes, excluding a role for PKBalpha in the development of insulin resistance in type 1 diabetes. Insulin-induced PKBalpha activity was markedly reduced in the skeletal muscle of fatty Zucker rats as compared to lean littermates (fatty: 7-fold vs. lean: 14-fold). In contrast, a significant increase in insulin-stimulated PKBalpha activity was observed in the liver of fatty Zucker rats (fatty: 15.7-fold vs. lean: 7.6-fold). Chronic treatment with BMOV normalized plasma glucose levels in STZ-diabetic rats and decreased plasma insulin levels in fatty Zucker rats but did not have any effect on basal or insulin-induced PKBalpha and PKBbeta activities. In conclusion (i) in STZ-diabetic rats PKB activity was normal up to 9 weeks of diabetes; (ii) in fatty Zucker rats insulin-induced activation of PKBalpha (but not PKBbeta) was markedly altered in both tissues; (iii) changes in PKBalpha activity were tissue specific; (iv) the glucoregulatory effects of BMOV were independent of PKB activity.
Collapse
Affiliation(s)
- L Marzban
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
42
|
Dimo T, Rakotonirina A, Tan PV, Dongo E, Dongmo AB, Kamtchouing P, Azay J, Abegaz BM, Cros G, Ngadjui TB. Antihypertensive effects of Dorstenia psilurus extract in fructose-fed hyperinsulinemic, hypertensive rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2001; 8:101-106. [PMID: 11315750 DOI: 10.1078/0944-7113-00014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We examined the effect of methanol/methylene chloride extract of Dorstenia psilurus given by gastric intubation on systolic blood pressure, plasma glucose, insulin, cholesterol, triglycerides and creatinine in rats with fructose-induced hypertension. Male Wistar rats in groups of 6 animals each were fed fructose-rich diets or standard chow for 3 weeks and treated with 100 mg/kg/day or 200 mg/kg/day of plant extract or vehicle for 3 subsequent weeks. Systolic blood pressure was measured every three days using the indirect tail cuff method. Systolic blood pressure was higher in fructose-fed rats (142+/-2 mm Hg, p < 0.01) compared with the controls (112+/-2 mm Hg), and was lower in Dorstenia psilurus-treated groups (127+/-2 and 119+/-1 mm Hg for the dose of 100 and 200 mg/kg, respectively) compared with the fructose-fed rats. Plasma insulin, cholesterol and triglycerides were higher on the fructose-rich diet compared with the controls. Plasma insulin and cholesterol were lower in the Dorstenia psilurus-treated groups. These results suggest that, Dorstenia psilurus treatment could prevent and reverse high blood pressure induced by a diet rich in fructose probably by improvement of plasma insulin levels. The plant extract might prove useful in the treatment and/or prevention of hypertension.
Collapse
Affiliation(s)
- T Dimo
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde I, Cameroon.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E. Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev 2001; 17:55-66. [PMID: 11241892 DOI: 10.1002/1520-7560(2000)9999:9999<::aid-dmrr165>3.0.co;2-j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Numerous investigations have demonstrated the beneficial effect of vanadium salts on diabetes in streptozotocin (STZ)-diabetic rats, in rodents with genetically determined diabetes and in human subjects. The amelioration of diabetes included the abolition of hyperglycemia, preservation of insulin secretion, reduction in hepatic glucose production, enhanced glycolysis and lipogenesis and improved muscle glucose uptake through GLUT4 elevation and translocation. The molecular basis of vanadium salt action is not yet fully elucidated. Although evidence has been provided that the insulin receptor is activated, the possibility exists that cytosolic non-receptor tyrosine kinase, direct phosphorylation of IRS-1 and activation of PI3-K, leading to GLUT4 translocation, are involved. The raised phosphorylation of proteins in the insulin signaling pathway appears to be related to the inhibition of protein tyrosine phosphatase (PTPase) activity by vanadium salts. NOVEL EXPERIMENTS The model utilized in our study was Psammomys obesus (sand rat), a desert gerbil which becomes hyperglycemic and hyperinsulinemic on an ad libitum high energy (HE) diet. In contrast to the previously investigated insulin deficient models, vanadyl sulphate was used to correct insulin resistance and hyperinsulinemia, which led to beta-cell loss. Administration of 5 mg/kg vanadyl sulfate for 5 days resulted in prolonged restoration of normoglycemia and normoinsulinemia in most animals, return of glucose tolerance to normal, and a reduction of hepatic phosphoenolpyruvate carboxykinase activity. There was no change in food consumption and in regular growth during or after the vanadyl treatment. Pretreatment with vanadyl sulfate, followed by transfer to a HE diet, significantly delayed the onset of hyperglycemia. Hyperinsulinemic-euglycemic clamp of vanadyl sulfate treated Psammomys demonstrated an improvement in glucose utilization. However, vanadyl sulfate was ineffective when administered to animals which lost their insulin secretion capacity on protracted HE diet, but substantially reduced the hyperglycemia when given together with exogenous insulin. The in vitro insulin activation of liver and muscle insulin receptors isolated from vanadyl treated Psammomys was ineffective. The in vivo vanadyl treatment restored muscle GLUT4 total protein and mRNA contents in addition to membrane GLUT4 protein, in accordance with the increased glucose utilization during the clamp study. These results indicate that short-term vanadyl sulfate treatment corrects the nutritionally induced, insulin resistant diabetes. This action requires the presence of insulin for its beneficial effect. Thus, vanadyl action in P. obesus appears to be the result of insulin potentiation rather than mimicking, with activation of the signaling pathway proteins leading to GLUT4 translocation, probably distal to the insulin receptor.
Collapse
Affiliation(s)
- E Shafrir
- Department of Biochemistry and Diabetes Research Unit, Hadassah University Hospital and Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | | | | | |
Collapse
|
44
|
Verma S, Yao L, Dumont AS, McNeill JH. Metformin treatment corrects vascular insulin resistance in hypertension. J Hypertens 2000; 18:1445-50. [PMID: 11057432 DOI: 10.1097/00004872-200018100-00012] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE In states of insulin resistance, the vasorelaxant actions of insulin are blunted, which may contribute towards the development of increased vascular tone/hypertension and reduced glucose uptake. To examine whether treating insulin resistance in hypertension restores the vascular actions of insulin, we studied the long-term effects of metformin on the contractile responses of isolated aortas from control and insulin-resistant, hyperinsulinaemic fructose-hypertensive rats in the presence and absence of insulin. DESIGN AND METHODS Sprague Dawley rats were divided into control, control metformin-treated, fructose and fructose metformin-treated groups (n = 8 per group). The treated groups received metformin (500 mg/kg per day for 6 weeks), following which isometric responses to noradrenaline (NA) and angiotensin II (A-II) were examined in thoracic aortas in the presence and absence of insulin (100 mU/ml for 2 h) using isolated organ-bath apparatus. In addition, endothelium-dependent and independent vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were also studied. RESULTS Metformin treatment prevented the development of fructose-induced insulin resistance, hyperinsulinaemia and hypertension. Insulin attenuated the contractile responses to NA and A-II in control rat aortas; however, blood vessels from untreated fructose rats were refractory to insulin-induced vasodilation. Strikingly, long-term metformin treatment restored the vasodepressor actions of insulin in fructose rats. Metformin did not affect the contractile responses to NA or A-II in either control or fructose rats. In addition, metformin treatment restored ACh-induced endothelium-dependent vasorelaxation in aortas from fructose rats without affecting SNP-induced relaxation. CONCLUSIONS These data show, for the first time, that long-term metformin treatment corrects vascular insulin resistance and improves endothelium-dependent vasorelaxation in hypertension. These effects appear to be secondary to metformin-induced improvements in metabolic derangements (versus a direct vascular action of metformin). Improving the vascular effects of insulin may serve to decrease peripheral tone, attenuate blood pressure and improve insulin sensitivity.
Collapse
Affiliation(s)
- S Verma
- Faculty of Medicine, The University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
45
|
Shimoni Y, Severson D, Ewart HS. Insulin resistance and the modulation of rat cardiac K(+) currents. Am J Physiol Heart Circ Physiol 2000; 279:H639-49. [PMID: 10924063 DOI: 10.1152/ajpheart.2000.279.2.h639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K(+) currents were measured using a whole cell voltage-clamp method in enzymatically isolated rat ventricular myocytes obtained from two hyperinsulinemic, insulin-resistant models. Fructose-fed rats as well as genetically obese rats, both of which are resistant to the metabolic effects of insulin, were used. The normal augmentation of a calcium-independent sustained K(+) current was reduced or abolished in insulin-resistant states. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadyl sulfate (3-4 wk treatment or after 5-6 h in vitro) enhanced the sustained K(+) current. The in vitro effect of vanadyl was blocked by cycloheximide. Insulin resistance of the K(+) current was not reversed by vanadyl sulfate. The results show that insulin resistance is expressed in terms of insulin actions on ion channels, in addition to its actions on metabolism. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadate compounds, which mimic the effects of insulin on metabolism, also mimic the augmenting effects of insulin on a cardiac K(+) current in a manner suggesting synthesis of new channels.
Collapse
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | |
Collapse
|
46
|
Giacchetti G, Sechi LA, Griffin CA, Don BR, Mantero F, Schambelan M. The tissue renin-angiotensin system in rats with fructose-induced hypertension: overexpression of type 1 angiotensin II receptor in adipose tissue. J Hypertens 2000; 18:695-702. [PMID: 10872553 DOI: 10.1097/00004872-200018060-00006] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Fructose feeding induces hypertension, insulin-resistance and hypertriglyceridemia in Sprague-Dawley rats. The mechanisms of fructose-induced hypertension are as yet unknown. Here we investigate the effects of fructose feeding and of varying salt intake on blood pressure, glucose tolerance, plasma renin activity, and tissue angiotensinogen, renin, and AT1 receptor mRNA levels in this model of hypertension. DESIGN AND METHODS To investigate the role of the renin-angiotensin system in fructose-induced hypertension we measured angiotensinogen, renin and angiotensin II type 1 (AT1) receptor mRNA levels in tissues of Sprague-Dawley rats that were fed either standard rat chow or a diet containing 66% fructose. RESULTS Blood pressure (P < 0.05) and triglyceride (P < 0.01) levels were significantly greater in the fructose-fed animals. Plasma glucose and insulin responses to an oral glucose load were significantly greater (P< 0.05) in fructose-fed than control rats. Angiotensinogen mRNA levels in liver and fat, and renin mRNA levels in kidney did not differ between fructose-fed and control animals. Levels of AT1 receptor mRNA were significantly greater in the fat obtained from fructose-fed rats than in that from control rats (P< 0.05), but this was not so in the kidney. To determine whether fructose-induced hypertension is dependent on dietary salt content, rats were fed standard rat chow and a fructose-enriched diet with low and high sodium chloride concentrations. Blood pressure increased significantly (P< 0.05) only in the fructose-fed rats receiving the high-salt diet Similarly, increased AT1 receptor mRNA levels were observed only in the fructose-fed rats that were maintained on the high-salt diet CONCLUSIONS Fructose feeding induces hypertension in normal- or high-salt fed animals and it is associated with an increased expression of the AT1 receptor in adipose tissue. These findings suggest that AT1 receptors might play a role in the pathophysiology of metabolic and hemodynamic abnormalities induced by fructose feeding.
Collapse
Affiliation(s)
- G Giacchetti
- Division of Endocrinology, University of Ancona, Ospedale 'Umberto l'Torrette, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Daly ME, Vale C, Walker M, Littlefield A, George K, Alberti M, Mathers J. Acute fuel selection in response to high-sucrose and high-starch meals in healthy men. Am J Clin Nutr 2000; 71:1516-24. [PMID: 10837293 DOI: 10.1093/ajcn/71.6.1516] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite considerable controversy over the inclusion of sucrose in the diets of people with diabetes, the acute metabolism of sucrose is not completely understood. OBJECTIVE Our objective was to investigate the metabolism of the monomeric constituents of sucrose after a high-sucrose meal. DESIGN Three test meals were consumed in a randomized, crossover design by 7 healthy male volunteers. Two of the meals were high in sucrose; one was supplemented with 200 mg uniformly labeled [13C]fructose and one was supplemented with 200 mg [13C]glucose. The other meal was high in starch, supplemented with 200 mg [13C]glucose. Fifty percent of energy was supplied as sucrose in the high-sucrose meals and as starch in the high-starch meal. Breath (13)CO(2) enrichment was measured at 15-min intervals and indirect calorimetry was performed for five 20-min sessions immediately before and during a 6-h postprandial period. RESULTS Carbohydrate oxidation rates rose much faster after the high-sucrose meals than after the high-starch meal. Breath (13)CO(2) enrichment rose faster and peaked earlier and at a higher value when [13C]fructose rather than [13C]glucose was given with the high-sucrose test meal. Values for breath (13)CO(2) enrichment from [13C]glucose after the high-starch meal were intermediate. CONCLUSIONS These results show that fructose is preferentially oxidized compared with glucose after a high-sucrose meal and that glucose is oxidized more slowly after a high-sucrose meal than after a high-starch meal.
Collapse
Affiliation(s)
- M E Daly
- Human Nutrition Research Centre, the Department of Biological and Nutritional Sciences, the Human Diabetes and Metabolism Research Centre, and the Department of Medicine, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Goldfine AB, Patti ME, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, Jiang ZY, Willsky GR, Kahn CR. Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism 2000; 49:400-10. [PMID: 10726921 DOI: 10.1016/s0026-0495(00)90418-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To investigate the efficacy and mechanism of action of vanadium salts as oral hypoglycemic agents, 16 type 2 diabetic patients were studied before and after 6 weeks of vanadyl sulfate (VOSO4) treatment at three doses. Glucose metabolism during a euglycemic insulin clamp did not increase at 75 mg/d, but improved in 3 of 5 subjects receiving 150 mg VOSO4 and 4 of 8 subjects receiving 300 mg VOSO4. Basal hepatic glucose production (HGP) and suppression of HGP by insulin were unchanged at all doses. Fasting glucose and hemoglobin A1c (HbA1c) decreased significantly in the 150- and 300-mg VOSO4 groups. At the highest dose, total cholesterol decreased, associated with a decrease in high-density lipoprotein (HDL). There was no change in systolic, diastolic, or mean arterial blood pressure on 24-hour ambulatory monitors at any dose. There was no apparent correlation between the clinical response and peak serum level of vanadium. The 150- and 300-mg vanadyl doses caused some gastrointestinal intolerance but did not increase tissue oxidative stress as assessed by thiobarbituric acid-reactive substances (TBARS). In muscle obtained during clamp studies prior to vanadium therapy, insulin stimulated the tyrosine phosphorylation of the insulin receptor, insulin receptor substrate-1 (IRS-1), and Shc proteins by 2- to 3-fold, while phosphatidylinositol 3-kinase (PI 3-kinase) activity associated with IRS-1 increased 4.7-fold during insulin stimulation (P = .02). Following vanadium, there was a consistent trend for increased basal levels of insulin receptor, Shc, and IRS-1 protein tyrosine phosphorylation and IRS-1-associated PI 3-kinase, but no further increase with insulin. There was no discernible correlation between tyrosine phosphorylation patterns and glucose disposal responses to vanadyl. While glycogen synthase fractional activity increased 1.5-fold following insulin infusion, there was no change in basal or insulin-stimulated activity after vanadyl. There was no increase in the protein phosphatase activity of muscle homogenates to exogenous substrate after vanadyl. Vanadyl sulfate appears safe at these doses for 6 weeks, but at the tolerated doses, it does not dramatically improve insulin sensitivity or glycemic control. Vanadyl modifies proteins in human skeletal muscle involved in early insulin signaling, including basal insulin receptor and substrate tyrosine phosphorylation and activation of PI 3-kinase, and is not additive or synergistic with insulin at these steps. Vanadyl sulfate does not modify the action of insulin to stimulate glycogen synthesis. Since glucose utilization is improved in some patients, vanadyl must also act at other steps of insulin action.
Collapse
Affiliation(s)
- A B Goldfine
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Katovich MJ, Pachori A. Effects of inhibition of the renin-angiotensin system on the cardiovascular actions of insulin. Diabetes Obes Metab 2000; 2:3-14. [PMID: 11220351 DOI: 10.1046/j.1463-1326.2000.00044.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville 32610, USA.
| | | |
Collapse
|
50
|
Bhanot S, Girn J, Poucheret P, McNeill JH. Effects of bis(maltolato) oxovanadium (IV) on protein serine kinases in skeletal muscle of streptozotocin-diabetic rats. Mol Cell Biochem 1999; 202:131-40. [PMID: 10706003 DOI: 10.1023/a:1007001818411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The in vivo effects of bis(maltolato)oxovanadium (IV) (BMOV) on the activity of protein serine kinases in skeletal muscle of STZ-diabetic Wistar rats were studied. BMOV was administered to STZ-diabetic rats at a concentration of 0.75 mg/ml for 8 weeks. Chronic BMOV treatment completely normalized plasma glucose levels in the diabetic animals after 8 weeks of treatment. Insulin-stimulated ERK-1 and ERK-2 activity was markedly increased in STZ-diabetic rats. Chronic BMOV treatment normalized the activity of ERK-2 in the diabetic treated animals, whereas the activity of ERK-1 was unaffected. In contrast to ERK-1 and ERK-2, the activity of the ribosomal S6 kinase p90rsk was decreased in STZ-diabetic rats. BMOV treatment restored the activity to normal levels. Basal p70 S6K activity was increased about 2.5-fold in the untreated diabetic group and no further increase in activity was observed after insulin stimulation. BMOV treatment did not correct the changes in p70 S6K activity in either the basal or insulin-stimulated states. In conclusion (i) the activity of ERK-1, ERK-2 and p90rsk were altered in skeletal muscle of STZ-diabetic rats; (ii) the glucoregulatory effects of BMOV were accompanied by concurrent improvement in the activities of ERK-2 and p90rsk; and (iii) there appears to be a dissociation between the activation of ERK-2 and p90rsk, suggesting that the regulation of p90rsk may be much more complex in vivo.
Collapse
Affiliation(s)
- S Bhanot
- Kinetek Pharmaceuticals Inc., Vancouver, Canada
| | | | | | | |
Collapse
|