1
|
Ajay A, Rasoul D, Abdullah A, Lee Wei En B, Mashida K, Al-Munaer M, Ajay H, Duvva D, Mathew J, Adenaya A, Lip GYH, Sankaranarayanan R. Augmentation of natriuretic peptide (NP) receptor A and B (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) signalling as a therapeutic strategy in heart failure. Expert Opin Investig Drugs 2023; 32:1157-1170. [PMID: 38032188 DOI: 10.1080/13543784.2023.2290064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Heart failure is a complex, debilitating condition and despite advances in treatment, it remains a significant cause of morbidity and mortality worldwide. Therefore, the need for alternative treatment strategies is essential. In this review, we explore the therapeutic strategies of augmenting natriuretic peptide receptors (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) in heart failure. AREAS COVERED We aim to provide an overview of the evidence of preclinical and clinical studies on novel heart failure treatment strategies. Papers collected in this review have been filtered and screened following PubMed searches. This includes epigenetics, modulating enzyme activity in natriuretic peptide (NP) synthesis, gene therapy, modulation of downstream signaling by augmenting soluble guanylate cyclase (sGC) and phosphodiesterase (PDE) inhibition, nitrates, c-GMP-dependent protein kinase, synthetic and designer NP and RNA therapy. EXPERT OPINION The novel treatment strategies mentioned above have shown great potential, however, large randomized controlled trials are still lacking. The biggest challenge is translating the results seen in preclinical trials into clinical trials. We recommend a multi-disciplinary team approach with cardiologists, geneticist, pharmacologists, bioengineers, researchers, regulators, and patients to improve heart failure outcomes. Future management can involve telemedicine, remote monitoring, and artificial intelligence to optimize patient care.
Collapse
Affiliation(s)
- Ashwin Ajay
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Debar Rasoul
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Alend Abdullah
- General Medicine, The Dudley Group NHS Foundation Trust Dudley, Dudley, United Kingdom
| | - Benjamin Lee Wei En
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Knievel Mashida
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| | | | - Hanan Ajay
- General Medicine, Southport and Ormskirk Hospital NHS Trust, Southport, United Kingdom
| | - Dileep Duvva
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Jean Mathew
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Adeoye Adenaya
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Cedar House, University of Liverpool, Liverpool, United Kingdom
- Cardiology Department, Liverpool Heart & Chest Hospital NHS Trust, Liverpool, United Kingdom
- Cardiology Department, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rajiv Sankaranarayanan
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
3
|
Rubattu S, Gallo G. The Natriuretic Peptides for Hypertension Treatment. High Blood Press Cardiovasc Prev 2021; 29:15-21. [PMID: 34727352 DOI: 10.1007/s40292-021-00483-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Hypertension is a common pathological condition predisposing to a higher occurrence of cardiovascular diseases and events. Unfortunately, treatment of hypertension is still suboptimal worldwide. More efforts are needed to implement the availability of anti-hypertensive drugs. The family of natriuretic peptides, including atrial and brain natriuretic peptides (ANP and BNP), play a key role on blood pressure regulation through the natriuretic, diuretic and vasorelaxant effects. A large number of experimental and human studies, ranging from pathophysiological to genetic investigations, supported ANP as the most relevant component of the family able to modulate blood pressure and to contribute to hypertension development. On this background, it is expected that ANP-based therapeutic approaches may give a significant contribution to the development of efficacious therapies against hypertension. Since native ANP cannot be administered due to its short half-life, several approaches were attempted over the years to overcome the difficulties inherent to the ANP instability. These approaches included ANP recombinant and fusion peptides, gene therapy, inhibition of ANP degradation by neprilysin inhibition, and designer peptides. The most relevant achievements in the field are discussed in this article. Based on the available evidence, therapies targeting ANP represent efficacious and clinically applicable anti-hypertensive agents.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Gidlöf O. Toward a New Paradigm for Targeted Natriuretic Peptide Enhancement in Heart Failure. Front Physiol 2021; 12:650124. [PMID: 34721050 PMCID: PMC8548580 DOI: 10.3389/fphys.2021.650124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The natriuretic peptide system (NPS) plays a fundamental role in maintaining cardiorenal homeostasis, and its potent filling pressure-regulated diuretic and vasodilatory effects constitute a beneficial compensatory mechanism in heart failure (HF). Leveraging the NPS for therapeutic benefit in HF has been the subject of intense investigation during the last three decades and has ultimately reached widespread clinical use in the form of angiotensin receptor-neprilysin inhibition (ARNi). NPS enhancement via ARNi confers beneficial effects on mortality and hospitalization in HF, but inhibition of neprilysin leads to the accumulation of a number of other vasoactive peptides in the circulation, often resulting in hypotension and raising potential concerns over long-term adverse effects. Moreover, ARNi is less effective in the large group of HF patients with preserved ejection fraction. Alternative approaches for therapeutic augmentation of the NPS with increased specificity and efficacy are therefore warranted, and are now becoming feasible particularly with recent development of RNA therapeutics. In this review, the current state-of-the-art in terms of experimental and clinical strategies for NPS augmentation and their implementation will be reviewed and discussed.
Collapse
Affiliation(s)
- Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Pandey KN. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Front Physiol 2021; 12:693099. [PMID: 34489721 PMCID: PMC8416980 DOI: 10.3389/fphys.2021.693099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP) and their cognate receptors has greatly increased our knowledge of the control of hypertension and cardiovascular homeostasis. ANP and BNP are potent endogenous hypotensive hormones that elicit natriuretic, diuretic, vasorelaxant, antihypertrophic, antiproliferative, and antiinflammatory effects, largely directed toward the reduction of blood pressure (BP) and cardiovascular diseases (CVDs). The principal receptor involved in the regulatory actions of ANP and BNP is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which produces the intracellular second messenger cGMP. Cellular, biochemical, molecular, genetic, and clinical studies have facilitated understanding of the functional roles of natriuretic peptides (NPs), as well as the functions of their receptors, and signaling mechanisms in CVDs. Transgenic and gene-targeting (gene-knockout and gene-duplication) strategies have produced genetically altered novel mouse models and have advanced our knowledge of the importance of NPs and their receptors at physiological and pathophysiological levels in both normal and disease states. The current review describes the past and recent research on the cellular, molecular, genetic mechanisms and functional roles of the ANP-BNP/NPRA system in the physiology and pathophysiology of cardiovascular homeostasis as well as clinical and diagnostic markers of cardiac disorders and heart failure. However, the therapeutic potentials of NPs and their receptors for the diagnosis and treatment of cardiovascular diseases, including hypertension, heart failure, and stroke have just begun to be expanded. More in-depth investigations are needed in this field to extend the therapeutic use of NPs and their receptors to treat and prevent CVDs.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
6
|
Tan N, Zhang Y, Zhang Y, Li L, Zong Y, Han W, Liu L. Berberine ameliorates vascular dysfunction by a global modulation of lncRNA and mRNA expression profiles in hypertensive mouse aortae. PLoS One 2021; 16:e0247621. [PMID: 33621262 PMCID: PMC7901729 DOI: 10.1371/journal.pone.0247621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Objective The current study investigated the mechanism underlying the therapeutic effects of berberine in the vasculature in hypertension. Methods Angiotensin II (Ang II)-loaded osmotic pumps were implanted in C57BL/6J mice with or without berberine administration. Mouse aortae were suspended in myograph for force measurement. Microarray technology were performed to analyze expression profiles of lncRNAs and mRNAs in the aortae. These dysregulated expressions were then validated by qRT-PCR. LncRNA-mRNA co-expression network was constructed to reveal the specific relationships. Results Ang Ⅱ resulted in a significant increase in the blood pressure of mice, which was suppressed by berberine. The impaired endothelium-dependent aortic relaxation was restored in hypertensive mice. Microarray data revealed that 578 lncRNAs and 554 mRNAs were up-regulated, while 320 lncRNAs and 377 mRNAs were down-regulated in the aortae by Ang Ⅱ; both were reversed by berberine treatment. qRT-PCR validation results of differentially expressed genes (14 lncRNAs and 6 mRNAs) were completely consistent with the microarray data. GO analysis showed that these verified differentially expressed genes were significantly enriched in terms of “cellular process”, “biological regulation” and “regulation of biological process”, whilst KEGG analysis identified vascular function-related pathways including cAMP signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway etc. Importantly, we observed that lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 were majorly expressed in endothelial cells. Conclusion The present results suggest that the five lncRNAs ENSMUST00000144849, NR_028422, ENSMUST00000155383, AK041185, and uc.335+ might serve critical regulatory roles in hypertensive vasculature by targeting pivotal mRNAs and subsequently affecting vascular function-related pathways. Moreover, these lncRNAs were modulated by berberine, therefore providing the novel potential therapeutic targets of berberine in hypertension. Furthermore, lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 might be involved in the preservation of vascular endothelial cell function.
Collapse
Affiliation(s)
- Na Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Zong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwen Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
8
|
Pandey KN. Genetic Ablation and Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Impact on the Pathophysiology of Cardiovascular Dysfunction. Int J Mol Sci 2019; 20:ijms20163946. [PMID: 31416126 PMCID: PMC6721781 DOI: 10.3390/ijms20163946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mice bearing targeted gene mutations that affect the functions of natriuretic peptides (NPs) and natriuretic peptide receptors (NPRs) have contributed important information on the pathogenesis of hypertension, kidney disease, and cardiovascular dysfunction. Studies of mice having both complete gene disruption and tissue-specific gene ablation have contributed to our understanding of hypertension and cardiovascular disorders. These phenomena are consistent with an oligogenic inheritance in which interactions among a few alleles may account for genetic susceptibility to hypertension, renal insufficiency, and congestive heart failure. In addition to gene knockouts conferring increased risks of hypertension, kidney disorders, and cardiovascular dysfunction, studies of gene duplications have identified mutations that protect against high blood pressure and cardiovascular events, thus generating the notion that certain alleles can confer resistance to hypertension and heart disease. This review focuses on the intriguing phenotypes of Npr1 gene disruption and gene duplication in mice, with emphasis on hypertension and cardiovascular events using mouse models carrying Npr1 gene knockout and/or gene duplication. It also describes how Npr1 gene targeting in mice has contributed to our knowledge of the roles of NPs and NPRs in dose-dependently regulating hypertension and cardiovascular events.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
9
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
10
|
Dietz JR, Landon CS, Nazian SJ, Vesely DL, Gower WR. Effects of Cardiac Hormones on Arterial Pressure and Sodium Excretion in NPRA Knockout Mice. Exp Biol Med (Maywood) 2016; 229:813-8. [PMID: 15337836 DOI: 10.1177/153537020422900814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
These studies were designed to determine if the atria contains natriuretic substances that act through a non–natriuretic peptide type A (NPRA) receptor mechanism. C57BL/6 mice, either wild-type NPRA++ (WT) or NPRA —- knockout (KO), were anesthetized with pentobarbital. Catheters were placed in the trachea, carotid artery, jugular vein, and bladder. Urine was collected for six 30-min periods. Both groups received an iv injection of 100 ng of rat atrial natriuetic peptide (rANP) in 200 μl of saline after the first period (30 mins) and 200 μl of rat atrial extract after the fourth period (120 mins). ANP injection increased urine flow (UF) to 2.7 ± 0.5 μl/min in the WT versus 1.9 ± 0.2 in KO. Extract increased UF to 7.9 ± 1.5 μl/min in WT versus 2.7 ± 0.4 in KO (P < 0.01). ANP increased sodium excretion (ENa) to 0.47 ± 0.10 μmoles/min in WT versus 0.27 ± 0.04 in KO (P < 0.05). Extract increased ENa to 1.44 ± 0.47 μmoles/min in WT versus 0.26 ± 0.06 in KO (P < 0.05). Extract decreased mean arterial pressure (MAP) to 62 ± 3 mm Hg in the WT versus 81 ± 5 in KO (P < 0.01). ENa and MAP responses to extract in KO were not different from responses to 200 μl of saline. A constant 150-min infusion of rat atrial extract increased urine flow by 3-fold and ENa by 5-fold (both P < 0.05) in the WT mice but had no significant effect in the KO mice. Thus, acute renal and MAP responses to atrial extracts require the NPRA receptor.
Collapse
Affiliation(s)
- John R Dietz
- Department of Physiology and Biophysics, University of South Florida, College of Medicine, Tampa, Florida 33612, USA.
| | | | | | | | | |
Collapse
|
11
|
Atrial natriuretic peptide and regulation of vascular function in hypertension and heart failure: implications for novel therapeutic strategies. J Hypertens 2014; 31:1061-72. [PMID: 23524910 DOI: 10.1097/hjh.0b013e32835ed5eb] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atrial natriuretic peptide (ANP) plays a pivotal role in modulation of vascular function and it is also involved in the pathophysiology of several cardiovascular diseases. We provide an updated overview of the current appraisal of ANP vascular effects in both animal models and humans. We describe the physiological implications of ANP vasomodulatory properties as well as the involvement of ANP, through its control of vascular function, in hypertension and heart failure. The principal molecular mechanisms underlying regulation of vascular tone, that is natriuretic peptide receptor type A/cyclic guanylate monophosphate, natriuretic peptide receptor type C, nitric oxide system, are discussed. We review the literature on therapeutic implications of ANP in hypertension and heart failure, examining the potential use of ANP analogues, neutral endopeptidase (NEP) inhibitors, ACE/NEP inhibitors, angiotensin receptor blocker (ARB)/NEP inhibitors, the new dual endothelin-converting enzyme (ECE)/NEP inhibitors and ANP-based gene therapy. The data discussed support the role of ANP in different pathological conditions through its vasomodulatory properties. They also indicate that ANP may represent an optimal therapeutic agent in cardiovascular diseases.
Collapse
|
12
|
Reward-based hypertension control by a synthetic brain-dopamine interface. Proc Natl Acad Sci U S A 2013; 110:18150-5. [PMID: 24127594 DOI: 10.1073/pnas.1312414110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.
Collapse
|
13
|
Abstract
Kallistatin, first discovered as a human kallikrein-binding protein in the circulation, shares high homology with other plasma serine proteinase inhibitors (serpins). It forms a covalently linked complex with tissue kallikrein and inhibits kallikrein's activity. Substantial evidence has accumulated in recent years indicating that kallistatin may play a role in blood pressure regulation independent of its interaction with tissue kallikrein. Intravenous injection of kallistatin into rats and mice results in a rapid and transient reduction of blood pressure in a dose-dependent manner. Functional analysis in transgenic mice over-expressing rat kallikrein-binding protein, an analogue of human kallistatin, revealed that these mice have significantly lower blood pressure compared with control littermates. Adenovirus-mediated delivery of the human kallistatin gene can cause significant blood pressure reductions for 4 weeks in spontaneously hypertensive rats. Finally, kallistatin can induce vasorelaxation in isolated rat aortic rings and reduce renal perfusion pressure in the isolated, perfused kidney. Together, these findings suggest a direct role for kallistatin in regulating blood pressure and raise the possibility for the development of new pharmacological treatments for hypertension. (Trends Cardiovasc Med 1997;7:307-311). © 1997, Elsevier Science Inc.
Collapse
|
14
|
Pandey KN. Guanylyl cyclase / atrial natriuretic peptide receptor-A: role in the pathophysiology of cardiovascular regulation. Can J Physiol Pharmacol 2011; 89:557-73. [PMID: 21815745 DOI: 10.1139/y11-054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, SL-39 Tulane University Health Sciences Center, School of Medicine, 1430 Tulane Avenue, LA 70112, New Orleans, USA.
| |
Collapse
|
15
|
Pandey KN. The functional genomics of guanylyl cyclase/natriuretic peptide receptor-A: perspectives and paradigms. FEBS J 2011; 278:1792-807. [PMID: 21375691 DOI: 10.1111/j.1742-4658.2011.08081.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cardiac hormones atrial natriuretic peptide and B-type natriuretic peptide (brain natriuretic peptide) activate guanylyl cyclase (GC)-A/natriuretic peptide receptor-A (NPRA) and produce the second messenger cGMP. GC-A/NPRA is a member of the growing family of GC receptors. The recent biochemical, molecular and genomic studies on GC-A/NPRA have provided important insights into the regulation and functional activity of this receptor protein, with a particular emphasis on cardiac and renal protective roles in hypertension and cardiovascular disease states. The progress in this field of research has significantly strengthened and advanced our knowledge about the critical roles of Npr1 (coding for GC-A/NPRA) in the control of fluid volume, blood pressure, cardiac remodeling, and other physiological functions and pathological states. Overall, this review attempts to provide insights and to delineate the current concepts in the field of functional genomics and signaling of GC-A/NPRA in hypertension and cardiovascular disease states at the molecular level.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
16
|
Martel G, Hamet P, Tremblay J. Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem 2009; 334:53-65. [PMID: 19937369 DOI: 10.1007/s11010-009-0326-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 11/04/2009] [Indexed: 01/05/2023]
Abstract
Studied for nearly 30 years for its ability to control many parameters, such as vascular smooth muscle cell relaxation, heart fibrosis, and kidney function, the natriuretic peptide (NP) system is now considered to be a key element in several other major metabolic pathways. After stimulation by NPs, natriuretic peptide receptors (NPR) convert GTP to the second messenger cGMP. In addition to its vasodilatory effects and natriuretic and diuretic functions, cGMP has been positively associated with fat cell function, apoptosis, and NPR expression/activity modulation. The NP system is also closely linked to metabolic syndrome (MetS) progression and obesity control. A new era is now on its way targeting the NP system to not only treat high blood pressure, but to also assist in the fight against the obesity pandemic. Here, we summarize recent data on the role of NPs in hypertension and MetS.
Collapse
Affiliation(s)
- G Martel
- Laboratory of Cellular Biology of Hypertension, Centre for Ecogenomic Models of Human Diseases, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Technopôle Angus, 2901 rue Rachel est, bureau 314, Montreal, QC H1W 4A4, Canada
| | | | | |
Collapse
|
17
|
Rowe WJ. Potential renovascular hypertension, space missions, and the role of magnesium. Int J Nephrol Renovasc Dis 2009; 2:51-7. [PMID: 21694921 PMCID: PMC3108762 DOI: 10.2147/ijnrd.s8249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Indexed: 11/23/2022] Open
Abstract
Space flight (SF) and dust inhalation in habitats cause hypertension whereas in SF (alone) there is no consistent hypertension but reduced diurnal blood pressure (BP) variation instead. Current pharmaceutical subcutaneous delivery systems are inadequate and there is impairment in the absorption, metabolism, excretion, and deterioration of some pharmaceuticals. Data obtained from the National Aeronautics and Space Administration through the Freedom of Information Act shows that Irwin returned from his 12-day Apollo 15 mission in 1971 and was administered a bicycle stress test. With just three minutes of exercise, his BP was >275/125 mm Hg (heart rate of only 130 beats per minute). There was no acute renal insult. Irwin’s apparent spontaneous remission is suggested to be related to the increase of a protective vasodilator, and his atrial natriuretic peptide (ANP) reduced with SF because of reduced plasma volume. With invariable malabsorption and loss of bone/muscle storage sites, there are significant (P < 0.0001) reductions of magnesium (Mg) required for ANP synthesis and release. Reductions of Mg and ANP can trigger pronounced angiotensin (200%), endothelin, and catecholamine elevations (clearly shown in recent years) and vicious cycles between the latter and Mg deficits. There is proteinuria, elevated creatinine, and reduced renal concentrating ability with the potential for progressive inflammatory and oxidative stress-induced renal disease and hypertension with vicious cycles. After SF, animals show myocardial endothelial injuries and increased vascular resistance of extremities in humans. Even without dust, hypertension might eventually develop from renovascular hypertension during very long missions. Without sufficient endothelial protection from pharmaceuticals, a comprehensive gene research program should begin now.
Collapse
Affiliation(s)
- William J Rowe
- Former Assistant Clinical Professor of Medicine, Medical University of Ohio at Toledo, Keswick, VA, USA
| |
Collapse
|
18
|
Rowe WJ. Extraordinary hypertension after a lunar mission. Am J Med 2009; 122:e1. [PMID: 19854309 DOI: 10.1016/j.amjmed.2009.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 11/28/2022]
|
19
|
|
20
|
Natriuretic peptides: an update on bioactivity, potential therapeutic use, and implication in cardiovascular diseases. Am J Hypertens 2008; 21:733-41. [PMID: 18464748 DOI: 10.1038/ajh.2008.174] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The natriuretic peptide system includes three known peptides: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). They contribute to the regulation of cardiovascular homeostasis through diuretic, natriuretic, and vasodilatory properties. Among them, ANP has received particular attention because of its effects on blood pressure regulation and cardiac function. Although the potential for its therapeutic application in the treatment of hypertension and heart failure has been evaluated in several experimental and clinical investigations, no pharmacological approach directly targeted at modulation of ANP levels has ever reached the stage of being incorporated into clinical practice. Recently, ANP has also received attention as being a possible cardiovascular risk factor, particularly in the context of hypertension, stroke, obesity, and metabolic syndrome. Abnormalities in either peptide levels or peptide structure are thought to underlie its implied role in mediating cardiovascular diseases. Meanwhile, BNP has emerged as a relevant marker of left ventricular (LV) dysfunction and as a useful predictor of future outcome in patients with heart failure. This review deals with the major relevant findings related to the cardiovascular and metabolic effects of natriuretic peptides, to their potential therapeutic use, and to their role in mediating cardiovascular diseases.
Collapse
|
21
|
Mitchell KD, Botros FT, Navar LG. Intrarenal renin-angiotensin system and counteracting protective mechanisms in angiotensin II-dependent hypertension. ACTA ACUST UNITED AC 2007; 94:31-48. [PMID: 17444274 DOI: 10.1556/aphysiol.94.2007.1-2.5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is now well accepted that alterations in kidney function, due either to primary renal disease or to inappropriate hormonal influences on the kidney, are a cardinal characteristic in all forms of hypertension, and lead to a reduced ability of the kidneys to excrete sodium and the consequent development of elevated arterial pressures. However, it is also apparent that many extrarenal factors are important contributors to altered kidney function and hypertension. Central to many hypertensinogenic processes is the inappropriate activation of the renin-angiotensin system (RAS) and its downstream consequences by various pathophysiologic mechanisms. There may also be derangements in arachidonic acid metabolites, endothelium derived factors such as nitric oxide and carbon monoxide, and various paracrine and neural systems that normally interact with or provide a counteracting balance to the actions of the RAS. Thus, when the capacity of the kidneys to maintain sodium balance and extracellular fluid volume within appropriate ranges is compromised, increases in arterial pressure become necessary to re-establish normal balance.
Collapse
Affiliation(s)
- K D Mitchell
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Ave, SL 39, New Orleans, Louisiana, LA 70112, USA.
| | | | | |
Collapse
|
22
|
Schillinger KJ, Tsai SY, Taffet GE, Reddy AK, Marian AJ, Entman ML, Oka K, Chan L, O'Malley BW. Regulatable atrial natriuretic peptide gene therapy for hypertension. Proc Natl Acad Sci U S A 2005; 102:13789-94. [PMID: 16162668 PMCID: PMC1236585 DOI: 10.1073/pnas.0506807102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypertension (HTN) is a disease that begins with dysfunctional renal-sodium excretion and progresses to a syndrome of highly elevated systolic, diastolic, and mean arterial pressures. Inadequacies in the therapy of HTN have led to the investigation of the gene therapy of this disease by using systemic overproduction of vasodilatory peptides, such as atrial natriuretic peptide (ANP). However, gene-therapy approaches to HTN using ANP are limited by the need for long-term ANP gene expression and, most important, control of ANP gene expression. Here, we introduce a helper-dependent adenoviral vector carrying the mifepristone (Mfp)-inducible gene-regulatory system to control in vivo ANP expression. In the BPH/2 mouse model of HTN, Mfp-inducible ANP expression was seen for a period of >120 days after administration of vector. Physiological effects of ANP, including decreased systolic blood pressure, increased urinary cGMP output, and decreases in heart weight as a percentage of body weight were also under the control of Mfp. Given these capabilities, this vector represents a paradigm for the gene therapy of HTN.
Collapse
Affiliation(s)
- Kurt J Schillinger
- Department of Molecular and Cellular Biology, Section of Cardiovascular Sciences and Cardiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Der Sarkissian S, Huentelman MJ, Stewart J, Katovich MJ, Raizada MK. ACE2: A novel therapeutic target for cardiovascular diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:163-98. [PMID: 16009403 DOI: 10.1016/j.pbiomolbio.2005.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertension afflicts over 65 million Americans and poses an increased risk for cardiovascular morbidity such as stroke, myocardial infarction and end-stage renal disease resulting in significant mortality. Overactivity of the renin-angiotensin system (RAS) has been identified as an important determinant that is implicated in the etiology of these diseases and therefore represents a major target for therapy. In spite of the successes of drugs inhibiting various elements of the RAS, the incidence of hypertension and cardiovascular diseases remain steadily on the rise. This has lead many investigators to seek novel and innovative approaches, taking advantage of new pathways and technologies, for the control and possibly the cure of hypertension and related pathologies. The main objective of this review is to forward the concept that gene therapy and the genetic targeting of the RAS is the future avenue for the successful control and treatment of hypertension and cardiovascular diseases. We will present argument that genetic targeting of angiotensin-converting enzyme 2 (ACE2), a newly discovered member of the RAS, is ideally poised for this purpose. This will be accomplished by discussion of the following: (i) summary of our current understanding of the RAS with a focus on the systemic versus tissue counterparts as they relate to hypertension and other cardiovascular pathologies; (ii) the newly discovered ACE2 enzyme with its physiological and pathophysiological implications; (iii) summary of the current antihypertensive pharmacotherapy and its limitations; (iv) the discovery and design of ACE inhibitors; (v) the emerging concepts for ACE2 drug design; (vi) the current status of genetic targeting of the RAS; (vii) the potential of ACE2 as a therapeutic target for hypertension and cardiovascular disease treatment; and (viii) future perspectives for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Shant Der Sarkissian
- Department of Physiology and Functional Genomics, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Increasing evidence suggests that natriuretic peptides (NPs) play diverse roles in mammals, including renal hemodynamics, neuroendocrine, and cardiovascular functions. Collectively, NPs are classified as hypotensive hormones; the main actions of NPs are implicated in eliciting natriuretic, diuretic, steroidogenic, antiproliferative, and vasorelaxant effects, important factors in the control of body fluid volume and blood pressure homeostasis. One of the principal loci involved in the regulatory actions of NPs is their cognate plasma membrane receptor molecules, which are activated by binding with specific NPs. Interaction of NPs with their receptors plays a central role in physiology and pathophysiology of hypertension and cardiovascular disorders. Gaining insight into the intricacies of NPs-specific receptor signaling pathways is of pivotal importance for understanding both hormone-receptor biology and the disease states arising from abnormal hormone receptor interplay. During the last decade there has been a surge in interest in NP receptors; consequently, a wealth of information has emerged concerning molecular structure and function, signaling mechanisms, and use of transgenics and gene-targeted mouse models. The objective of this present review is to summarize and document the previous findings and recent discoveries in the field of the natriuretic peptide hormone family and receptor systems with emphasis on the structure-function relationship, signaling mechanisms, and the physiological and pathophysiological significance in health and disease.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
25
|
Harrap SB. Blood Pressure Genetics. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Wang Z, Chen L, Wan C, Qu Y, Cornélissen G, Halberg F. In vitro circadian ANP secretion by gene transferring cells encapsulated in polycaprolactone tubes: gene chronotherapy. Peptides 2004; 25:1259-67. [PMID: 15350693 DOI: 10.1016/j.peptides.2004.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 05/11/2004] [Accepted: 05/12/2004] [Indexed: 11/25/2022]
Abstract
A new insofar as chronobiologic therapeutic approach by atrial natriuretic peptide (ANP) for hypertension and/or congestive heart failure (CHF) is based on the release of ANP from ANP cDNA transfected Chinese Hamster Ovary (CHO) cells encapsulated in polycaprolactone (PCL) tubes. ANP secretion was maintained for at least 6 months. The encapsulated cells remained viable during culturing. Control cells without transferred ANP cDNA were negative. ANP secretion is circadian periodic, peaking around 04:18, shifted to around 07:56 by melatonin treatment. The encapsulation technique, based on principles of chronotherapy, may provide a more efficient gene therapy, applicable for eventual human implantation of gene transferred cells.
Collapse
Affiliation(s)
- Zhengrong Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Chen LG, Wang ZR, Wan CM, Xiao J, Guo L, Guo HL, Cornélissen G, Halberg F. Circadian renal rhythms influenced by implanted encapsulated hANP-producing cells in Goldblatt hypertensive rats. Gene Ther 2004; 11:1515-22. [PMID: 15284836 DOI: 10.1038/sj.gt.3302330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal excretion in experimental hypertensive rats implanted with encapsulated human atrial natriuretic peptide (hANP)-producing cells is circadian periodic. Chinese hamster ovary (CHO) cells transfected with the plasmid hANP-cDNA were encapsulated in biocompatible polycaprolactone capsules for intraperitoneal implantation into two-kidney, one-clip (2K1C) hypertensive rats. During a 12:12 light-dark cycle, as compared to control CHO cells, the implantation of encapsulated hANP-producing CHO cells was associated with an increase in the net excretion of water, sodium and potassium, and with a reversal of the advanced circadian phases related to renovascular hypertension in 2K1C rats. The increase in blood pressure postimplantation was delayed, and increases in renal blood flow, glomerular filtration rate, sodium output, urinary excretion and urinary cyclic GMP concentrations were also found. Implantation of encapsulated hANP-producing cells affects circadian rhythms in kidney excretion functions of 2K1C rats, and may be useful for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- L G Chen
- Department of Biomedical Engineering, School of Basic and Forensic Medicine, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pan S, Gulati R, Mueske CS, Witt TA, Lerman A, Burnett JC, Simari RD. Gene transfer of a novel vasoactive natriuretic peptide stimulates cGMP and lowers blood pressure in mice. Am J Physiol Heart Circ Physiol 2004; 286:H2213-8. [PMID: 14962842 DOI: 10.1152/ajpheart.00465.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendroaspis natriuretic peptide (DNP) is a recently described peptide produced by Dendroaspis angusticeps with structural and functional similarities to mammalian natriuretic peptides. These similarities suggest a potential role for DNP in cardiovascular therapeutics. To determine the physiological effects of chronic delivery of DNP, a gene transfer approach using first generation adenoviral vectors was utilized. Although the gene for DNP has not been cloned in any species, the peptide sequence in the snake is known. Preferred mammalian codons for snake DNP were cloned downstream of either the leader sequence (referred to as pBDNP-1) or prepropeptide sequence of human brain natriuretic peptide (BNP) cDNA (referred to as pBDNP-2). Transfections with pBDNP-1 or pBDNP-2 resulted in expected forms of chimeric DNP (cDNP) in cell lysates and conditioned media. Functional studies demonstrated the ability of both forms of cDNP within conditioned media to stimulate cGMP production in human vascular smooth muscle cells (hVSMC). Expressed cDNP inhibited hVSMC proliferation and stimulated vasorelaxation in a similar fashion. To investigate the chronic physiological effects of administration of cDNP, an adenoviral vector expressing cDNP (Ad-BDNP) was generated. Intravenous delivery of Ad-BDNP in mice resulted in dose-dependent systemic expression of cDNP. The highest level of expression was associated with consistent elevation of its presumed second messenger (cGMP) for 21 days but with transient lowering of systolic blood pressure in normotensive mice. This study demonstrates the biological features of the expression of the xenogenic peptide DNP.
Collapse
Affiliation(s)
- Shuchong Pan
- Division of Cardiovascular Diseases and Internal Medicine, College of Medicine, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kintsurashvili E, Johns C, Ignjacev I, Gavras I, Gavras H. Central alpha2B-adrenergic receptor antisense in plasmid vector prolongs reversal of salt-dependent hypertension. J Hypertens 2003; 21:961-7. [PMID: 12714871 DOI: 10.1097/00004872-200305000-00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Previous studies have shown that a fully functional alpha(2B)-adrenergic receptor (AR) is necessary for the development of salt-induced hypertension. The current studies were designed to explore the effect of prolonged inhibition of central alpha(2B)-AR gene expression by antisense (AS) DNA on this hypertension. METHODS We developed a plasmid vector driven by a cytomegalovirus promoter, containing a green fluorescent protein reporter gene and AS for rat alpha(2B)-AR protein. Subtotally nephrectomized, salt-loaded hypertensive rats received intracerebroventricular injection of 500 microg of either the AS plasmid (n = 9) or sense plasmid (containing cDNA for alpha(2B)-AR), as control (n = 7). RESULTS The AS injection produced a fall in SBP from 201 +/- 4 to 171 +/- 5 mmHg within 12 h. The level of BP in the 3 days post-injection was 174 +/- 6, 181 +/- 4 and 184 +/- 6 mmHg on day 1, day 2 and day 3, respectively (P < 0.05), and returned gradually towards baseline in subsequent days, although it remained significantly lower for the 8 days of observation. The control sense plasmid injections produced no significant changes in blood pressure (BP). Neither group had histological evidence of neural tissue disruption. CONCLUSIONS These results indicate that protracted translational inhibition of the alpha(2B)-AR gene in the central nervous system can be obtained by AS DNA delivered via plasmid vector and lead to decreased generation of alpha(2B)-AR protein, which can partly reverse salt-induced hypertension for several days.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cells, Cultured
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Disease Models, Animal
- Genetic Vectors/pharmacology
- Green Fluorescent Proteins
- Hypertension/metabolism
- Hypertension/physiopathology
- Indicators and Reagents
- Injections, Intraventricular
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/drug effects
- Male
- Models, Cardiovascular
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Plasmids/pharmacology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Virus/drug effects
- Receptors, Virus/metabolism
- Systole/drug effects
- Systole/physiology
- Time Factors
- Transfection
Collapse
|
30
|
Abstract
Kallistatin is a unique serine proteinase inhibitor (serpin) and a heparin-binding protein. It has been localized in vascular smooth muscle cells and endothelial cells of human blood vessels, suggesting that kallistatin may be involved in the regulation of vascular function. Our previous study showed that kallistatin plays a role in neointima hyperplasia. In this study, we investigated the potential role of kallistatin in angiogenesis in vitro and in vivo. Purified human kallistatin significantly inhibited vascular endothelial growth factor (VEGF)- or basic fibroblast growth factor (bFGF)-induced proliferation, migration, and adhesion of cultured endothelial cells. Kallistatin attenuated VEGF- or bFGF-induced capillary density and hemoglobin content in subcutaneously implanted Matrigel plugs in mice. To further investigate the role of kallistatin in angiogenesis, we prepared adenovirus carrying the human kallistatin cDNA (Ad.HKBP) and evaluated the effect of kallistatin gene delivery on spontaneous angiogenesis in a rat model of hind-limb ischemia. Local kallistatin gene delivery significantly reduced capillary formation and regional blood perfusion recovery in the ischemic hind limb after removal of the femoral artery. Furthermore, a single intratumoral injection of Ad.HKBP into pre-established human breast tumor xenografts grown in athymic mice resulted in significant inhibition of tumor growth. CD31 immunostaining of tumor sections showed a decreased number of blood vessels in the kallistatin-treated group as compared to the control. These results demonstrate a novel role of kallistatin in the inhibition of angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Robert Q Miao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
31
|
Massfelder T, Taesch N, Fritsch S, Eichinger A, Barthelmebs M, Stewart AF, Helwig JJ. Type 1 parathyroid hormone receptor expression level modulates renal tone and plasma renin activity in spontaneously hypertensive rat. J Am Soc Nephrol 2002; 13:639-648. [PMID: 11856767 DOI: 10.1681/asn.v133639] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
These studies examine whether PTHrP(1-36), a vasodilator, modulates BP and renal vascular resistance (RVR) in spontaneously hypertensive rat (SHR). Within the kidney of normotensive rats, PTHrP(1-36) was enriched in vessels. In vessels of SHR, PTHrP was upregulated by 40% and type 1 PTH receptor (PTH1R) was downregulated by 65% compared with normotensive rats. To investigate the role of endogenous PTHrP in the regulation of BP and RVR, SHR were subjected to somatic human (h)PTH1R gene delivery. Three weeks after a single intravenous injection of pcDNA1.1 plasmid containing the hPTH1R gene under the control of the cytomegalovirus promoter, hPTH1R mRNA was detected in all of the main organs. Within the kidney, the transgene was enriched in vessels. In the isolated perfused kidney, RVR was reduced by 23% and PTHrP(1-36)-induced vasodilation, which is depressed in SHR, was restored and a vasoconstrictory response to PTH(3-34), a PTH1R antagonist, was revealed. These effects were not observed in control SHR treated with empty plasmid. BP remained unchanged, and plasma renin activity increased by 60%. Thus, in SHR renal vessels, a reduced number of PTH1R contributes to the high RVR, despite the higher expression of vasodilatory PTHrP. Moreover, these studies provide evidence for a direct link between the density of PTH1R and plasma renin activity, which might be responsible for the absence of effect of PTH1R gene delivery on BP in SHR. Overall, PTHrP significantly contributes to the homeostasis of renal and systemic hemodynamics in SHR.
Collapse
Affiliation(s)
- Thierry Massfelder
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Nathalie Taesch
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Samuel Fritsch
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne Eichinger
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mariette Barthelmebs
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew F Stewart
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jean-Jacques Helwig
- *Section of Renovascular Pharmacology and Physiology (INSERM-ULP), University Louis Pasteur School of Medicine, Strasbourg, France; and Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Metcalfe BL, Raizada M, Katovich MJ. Genetic targeting of the renin-angiotensin system for long-term control of hypertension. Curr Hypertens Rep 2002; 4:25-31. [PMID: 11790288 DOI: 10.1007/s11906-002-0049-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although traditional approaches are effective for the treatment and control of hypertension, they have not succeeded in curing the disease, and have therefore reached a plateau. As a result of the completion of the Human Genome Project and the continuous advancement in gene delivery systems, it is now possible to investigate genetic means for the treatment and possible cure for hypertension. In this review we discuss the potential of genetic targeting of the renin-angiotensin system for the treatment of hypertension. We provide examples of various approaches that have used antisense technology with a high degree of success. We focus on our own research, which targets the use of antisense of the angiotensin type I receptor in various models of hypertension. Finally, we discuss the future of antisense technology in the treatment of human hypertension.
Collapse
Affiliation(s)
- Beverly L Metcalfe
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, PO Box 100487, Gainesville, FL 32610-0487, USA
| | | | | |
Collapse
|
33
|
Obineche EN, Frossard PM, Bokhari AM. Association between an ANF Gene I/D dimorphism and left ventricular hypertrophy in a Gulf Arab population. Ann Saudi Med 2002; 22:22-5. [PMID: 17259761 DOI: 10.5144/0256-4947.2002.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND An association case-controlled study was carried out on a group of 151 United Arab Emirates nationals--62 normotensives with and without left ventricular hypertrophy (LVH) and 89 hypertensives, also with and without LVH--with a view to evaluating the value of an insertion/deletion (I/D) dimorphism located in the second intron of the human atrial natriuretic factor (ANF) gene in relation to left ventricular hypertrophy. SUBJECTS AND METHODS Criteria used for LVH inclusion were: demonstration of Sokoloe and Lyon ECG criteria (sum of S wave in V(1), and tallest R wave in lead V5 or V6 > or =35 mm) and echocardiography findings (interventricular septum > or =1.2 cm; posterior LV wall > or =1.3 cm) in the long axis. ANF gene was obtained according to the usual methods by DNA extraction by means of polymerase chain reactions (PCR). The frequencies of this marker were performed according to the Hardy-Weinberg proportions. RESULTS Our findings show that there was a significant difference in the distribution of the I and D alleles between the two groups (LVH vs non-LVH), with chi(2) = 12.34, 2df, P=0.002, making this a significant association of the D allele with LVH. CONCLUSION Our results do suggest that variants of the ANF gene might be involved in the determination of left ventricular hypertrophy.
Collapse
Affiliation(s)
- Enyioma N Obineche
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | | |
Collapse
|
34
|
Gardon M, Raizada MK, Katovich MJ, Berecek KH, Gelband CH. Gene therapy for hypertension and restenosis. J Renin Angiotensin Aldosterone Syst 2000; 1:211-6. [PMID: 11881028 DOI: 10.3317/jraas.2000.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
35
|
Byun J, Kim SH, Kim SZ, Heard JM, Huh JE, Choe YH, Park SJ, Jung EA, Kim DK. Ectopic expression of active processed form of atrial natriuretic peptide in skeletal myoblasts. Biochem Biophys Res Commun 2000; 270:637-42. [PMID: 10753676 DOI: 10.1006/bbrc.2000.2468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone that elicits a profound diuresis, natriuresis, and hypotension. As a preliminary study toward ANP gene therapy of cardiovascular disorders, we have cloned a cDNA for mouse preproANP and carried out expression studies in muscle cells. The expression cassette, which was flanked by ITRs from AAV-2, consisted of HCMV IE enhancer/promoter, preproANP gene, and polyadenylation signal from bovine growth hormone. We transfected this expression vector into primary skeletal myoblasts and examined the following points: (1) secretion of immunoreactive ANP, (2) biological activity, and (3) nature of secreted ANP(s). The conditioned media from cells transfected with ANP vector had significantly higher levels of irANP in comparison to mock control. The secreted irANP had biological activity as confirmed by the elevated level of intracellular cGMP in human umbilical vein endothelial cells. Reverse-phase HPLC analysis showed that the processed form of ANP was the predominant form. These results demonstrate that preproANP gene could be ectopically expressed and correctly processed in skeletal myoblasts, which has implications for development of muscle-based ANP gene therapy.
Collapse
Affiliation(s)
- J Byun
- Center for Clinical Research, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Raizada MK, Francis SC, Wang H, Gelband CH, Reaves PY, Katovich MJ. Targeting of the renin-angiotensin system by antisense gene therapy: a possible strategy for the long-term control of hypertension. J Hypertens 2000; 18:353-62. [PMID: 10779083 DOI: 10.1097/00004872-200018040-00001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Traditional pharmacological agents have been successfully used for the treatment of hypertension for a number of decades. However, this therapeutic regimen has reached a conceptual plateau and a cure for the disease is far from appearing on the horizon. With this in mind, and recent advances in state of the art gene delivery system coupled with the anticipated completion of the human genome project, it is timely to think about the possibility of treating and/or curing hypertension using genetic means. In this review, we discuss the role of renin-angiotensin system (RAS) in hypertension; the current gene delivery/gene transfer systems and the RAS as a target for gene therapy to treat hypertension; the successful use of retroviral vectors to deliver antisense to the AT1 receptor (AT1-AS) to prevent the development of hypertension and cardiovascular pathophysiology; the potential use of the viral vectors for the reversal of hypertension; and the future of antisense gene therapy and potential advantages and limitations of this regimen in the treatment and/or control of hypertension.
Collapse
Affiliation(s)
- M K Raizada
- Department of Physiology, College of Medicine, University of Florida, Gainesville 32610-0274, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Hypertension and vascular injury usually require prolonged treatment, and compliance is a key to efficacy for pharmacologically-based antihypertensive therapy. Gene therapy has the potential to be long lasting, with few side effects. Recent studies have provided promising results, in which hypertension can be treated by either augmentation of vasodilation or inhibition of vasoconstriction through gene transfer in experimental models. Gene transfer is also becoming useful for the study of mechanisms of physiologic and pathophysiologic conditions, including hypertension. In this mini-review, we summarize some recent studies in this area of research, and suggest some areas where progress is needed to advance the research toward gene therapy.
Collapse
Affiliation(s)
- Y Chu
- Cardiovascular Center, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
38
|
Qin YJ, Zhang JF, Wei YJ, Ding JF, Chen KH, Tang J. Gene suture--a novel method for intramuscular gene transfer and its application in hypertension therapy. Life Sci 1999; 65:2193-203. [PMID: 10576591 DOI: 10.1016/s0024-3205(99)00484-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this report, reporter gene beta-galactosidase (LacZ) was chosen to compare two different intramuscular gene transfer methods, direct injection and gene suture. Evidence showed that gene suture can produce a higher foreign gene express efficiency in skeletal muscle compared with the direct injection method. The highly efficient eukaryotic expressing vectors of human atrial natriuretic factor (ANF) were constructed (pcD2/pAdVAntage/hANF and pcDNA3/hANF), and in vivo ANF gene delivery was performed by intramuscular gene suture. The effects of ANF gene transfer on blood pressure and renal sodium and water excretion were studied in three models of hypertensive animals. Results showed that a marked decrease of mean arterial pressure (MAP) and a significant increase of urine volume and urinary sodium excretion was produced in rats receiving the hANF construct due to the local expression of ANF and its secretion into plasma. Taken together, these results indicate that gene suture may represent a novel gene delivery modality in gene therapy.
Collapse
Affiliation(s)
- Y J Qin
- Institute of Cardiovascular Basic Research, Beijing Medical University, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Mohuczy D, Tang X, Phillips MI. Delivery of antisense DNA by vectors for prolonged effects in vitro and in vivo. Methods Enzymol 1999; 314:32-51. [PMID: 10565003 DOI: 10.1016/s0076-6879(99)14093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
MESH Headings
- Adenoviridae/genetics
- Animals
- DNA, Antisense/administration & dosage
- DNA, Antisense/genetics
- Dependovirus/genetics
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Hypertension/therapy
- Injections, Intraventricular
- Models, Genetic
- Rats
- Rats, Inbred SHR
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Retroviridae/genetics
Collapse
Affiliation(s)
- D Mohuczy
- Department of Physiology, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | |
Collapse
|
40
|
Abstract
In this review, we attempt to outline the age-dependent interactions of principal systems controlling the structure and function of the cardiovascular system in immature rats developing hypertension. We focus our attention on the cardiovascular effects of various pharmacological, nutritional, and behavioral interventions applied at different stages of ontogeny. Several distinct critical periods (developmental windows), in which particular stimuli affect the further development of the cardiovascular phenotype, are specified in the rat. It is evident that short-term transient treatment of genetically hypertensive rats with certain antihypertensive drugs in prepuberty and puberty (at the age of 4-10 wk) has long-term beneficial effects on further development of their cardiovascular apparatus. This juvenile critical period coincides with the period of high susceptibility to the hypertensive effects of increased salt intake. If the hypertensive process develops after this critical period (due to early antihypertensive treatment or late administration of certain hypertensive stimuli, e.g., high salt intake), blood pressure elevation, cardiovascular hypertrophy, connective tissue accumulation, and end-organ damage are considerably attenuated compared with rats developing hypertension during the juvenile critical period. As far as the role of various electrolytes in blood pressure modulation is concerned, prohypertensive effects of dietary Na+ and antihypertensive effects of dietary Ca2+ are enhanced in immature animals, whereas vascular protective and antihypertensive effects of dietary K+ are almost independent of age. At a given level of dietary electrolyte intake, the balance between dietary carbohydrate and fat intake can modify blood pressure even in rats with established hypertension, but dietary protein intake affects the blood pressure development in immature animals only. Dietary protein restriction during gestation, as well as altered mother-offspring interactions in the suckling period, might have important long-term hypertensive consequences. The critical periods (developmental windows) should be respected in the future pharmacological or gene therapy of human hypertension.
Collapse
Affiliation(s)
- J Zicha
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
41
|
Raizada MK, Katovich MJ, Wang H, Berecek KH, Gelband CH. Is antisense gene therapy a step in the right direction in the control of hypertension? THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H423-32. [PMID: 10444465 DOI: 10.1152/ajpheart.1999.277.2.h423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Chetboul V, Adam M, Deprez I, Ambriovic A, Rosenberg D, Crespeau F, Saana M, Pham I, Eloit M, Adnot S, Pouchelon JL. Expression of biologically active atrial natriuretic factor following intrahepatic injection of a replication-defective adenoviral vector in dogs. Hum Gene Ther 1999; 10:281-90. [PMID: 10022552 DOI: 10.1089/10430349950019066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Atrial natriuretic factor (ANF) is a potent natriuretic, diuretic, and vasoactive hormone produced and released by atrial cardiomyocytes. We investigated whether adenovirus-mediated ANF gene delivery to dogs leads to a sustained increase in circulating ANF levels resulting in long-lasting biological effects. An adenoviral vector containing the canine ANF cDNA under the control of the Rous sarcoma virus 3' long terminal repeat (AdRSV-ANF) was injected via the intrahepatic route to nonvaccinated 2-month-old dogs. In the first group of four dogs injected with AdRSV-ANF (10(10.2) TCID50), a short-lived increase in plasma ANF concentrations not associated with biological effects occurred 8-10 days after the injection, as compared with four control dogs injected with an adenovirus encoding a luciferase reporter gene (AdRSV-luc). In a second series of experiments, six dogs received AdRSV-ANF at a dose of 10(10) TCID50 and a replication-defective type 5 adenovirus harboring a modified VAI gene (Ad-VAr) at the same dose. Sustained increases in plasma ANF concentrations and urinary cGMP excretion starting on day 2 and persisting until day 20 were seen, as well as concomitant elevations in natriuresis and diuresis, a transient increase in cardiac output, and a delay in body weight gain, as compared with control dogs injected with AdRSV-luc/Ad-VAr. These results show that adenovirus-mediated ANF gene expression can lead to systemic biological effects in dogs, a finding of potential relevance for the treatment of cardiovascular diseases and sodium-retaining disorders.
Collapse
Affiliation(s)
- V Chetboul
- Unité de Cardiologie d'Alfort, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ni A, Chai KX, Chao L, Chao J. Molecular cloning and expression of rat bradykinin B1 receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:177-85. [PMID: 9804950 DOI: 10.1016/s0167-4781(98)00163-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gene encoding rat bradykinin B1 receptor has been cloned by using a partial rat B1 cDNA probe. The rat B1 receptor gene contains two exons and the entire coding region is within the second exon. The 5'-flanking region of the rat B1 receptor gene contains several putative transcriptional regulatory sites including TATA box, cAMP response element, NF-kappaB and AP-1. It showed promoter activity inducible by lipopolysaccharide in vascular smooth muscle cells. Rat B1 receptor mRNA was found to be alternatively spliced and induced by lipopolysaccharide treatment in a wide range of tissues, such as the salivary gland, testis, kidney, lung, heart, prostate and aorta. The deduced rat B1 receptor amino acid sequence is 71% homologous to human and rabbit counterparts, and 89% homologous to the mouse counterpart. The expressed B1 receptor in HEK293 cells displayed a rank order of affinity for the kinin peptides: des-Arg9-BK>Lys-des-Arg9-BK approximately des-Arg9, Leu8-BK>Sar-Tyr-epsilonAhx-Lys-[D-betaNal7, Ile8]-des-Arg9-BK>Sar-Tyr-epsilonAhx-Lys-des-Arg9-BK>>BK>> Hoe140. These results indicate that the cloned gene encodes a functional rat B1 receptor.
Collapse
Affiliation(s)
- A Ni
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
44
|
Han Z, Wax MB, Patil RV. Potential role of aquaporins and atrial natriuretic peptides in the aqueous humor dynamics. Exp Eye Res 1998; 67:251-3. [PMID: 9733591 DOI: 10.1006/exer.1998.0536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Chao J, Zhang JJ, Lin KF, Chao L. Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in Dahl salt-sensitive rats. Hum Gene Ther 1998; 9:21-31. [PMID: 9458239 DOI: 10.1089/hum.1998.9.1-21] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tissue kallikrein-kinin system has been documented to be involved in the pathogenesis of hypertension and renal diseases. To investigate the protective effects of kallikrein gene delivery on salt-induced renal damage, cardiac dysfunction, and hypertension, adenovirus harboring the human tissue kallikrein gene under the control of the cytomegalovirus promoter Ad.CMV-cHK was delivered into Dahl salt-sensitive (Dahl-SS) rats fed to a high-salt (4% NaCl) diet. A single intravenous injection of Ad.CMV-cHK resulted in a significant reduction of blood pressure beginning 2 days post injection and the effect lasted for 4 weeks. The human kallikrein mRNA was detected in rat heart, kidney, lung, liver, and adrenal gland; immunoreactive human kallikrein can be measured in the liver, kidney, sera, and urine of rats receiving kallikrein gene delivery. Following Ad.CMV-cHK injection, a significant increase in urine excretion, urinary sodium output, kinin, and cGMP level was observed. Kallikrein gene delivery caused a significant reduction in the left ventricular mass and cardiomyocyte size as well as inhibition of glomerular sclerotic lesions and tubular dilatation. This study shows that adenovirus-mediated gene delivery in Dahl-SS rats fed a high-salt diet resulted in (i) prolonged reduction of blood pressure and increased urinary kinin and cGMP levels, consistent with blood pressure reductions mediated via kinin through a cGMP-dependent signal transduction pathway, (ii) inhibition of cardiac hypertrophy, and (iii) attenuation of renal injury. The ability of kallikrein gene transfer to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating salt-related hypertension as well as cardiovascular and renal diseases.
Collapse
Affiliation(s)
- J Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston 29425-2211, USA
| | | | | | | |
Collapse
|
46
|
Patil RV, Han Z, Wax MB. Regulation of water channel activity of aquaporin 1 by arginine vasopressin and atrial natriuretic peptide. Biochem Biophys Res Commun 1997; 238:392-6. [PMID: 9299519 DOI: 10.1006/bbrc.1997.7310] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aquaporin 1 (AQP1), a six-transmembrane domain protein that functions as a water channel, is present in many fluid secreting and absorbing tissues such as kidney, brain, heart, and eye. It is believed that among the five known mammalian aquaporins, kidney aquaporin (AQP2) is the only water channel that is regulated by arginine vasopressin (AVP). The present data suggest that AQP1 may also be regulated by AVP. The application of AVP to Xenopus oocytes injected with AQP1 cRNA increased the membrane permeability to water. In addition, our data reveal that atrial natriuretic peptide (ANP), a peptide hormone that plays an important role in the regulation of body fluid homeostasis, blocks the AQP1-mediated increase in water permeability. Incubation with 8-bromo-cAMP or direct 8-bromo-cAMP injection into oocytes expressing AQP1 cRNA significantly increased membrane permeability to water, suggesting that stimulation of AQP1 activity by AVP may involve a cAMP-dependent mechanism. Regulation of water permeability by AVP and ANP has potential relevance to active water transport in a variety of tissues that express AQP1 including kidney, brain, and eye.
Collapse
Affiliation(s)
- R V Patil
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
47
|
Affiliation(s)
- M R Wilkins
- Department of Clinical Pharmacology, Royal Postgraduate Medical School, London, UK
| | | | | |
Collapse
|
48
|
Chen LM, Chao L, Chao J. Adenovirus-mediated delivery of human kallistatin gene reduces blood pressure of spontaneously hypertensive rats. Hum Gene Ther 1997; 8:341-7. [PMID: 9048201 DOI: 10.1089/hum.1997.8.3-341] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human kallistatin, or human tissue kallikrein-binding protein (HKBP), is a serine proteinase inhibitor (serpin). Transgenic mice overexpressing rat kallikrein-binding protein are hypotensive. To elucidate therapeutic potentials of kallistatin in hypertension, the human kallistatin gene in an adenoviral vector was directly introduced into spontaneously hypertensive rats (SHR) through portal vein injection. The kallistatin cDNA construct (RSV-cHKBP) under the promoter control of Rous sarcoma virus 3' long terminal repeat (LTR) was incorporated into adenovirus (Ad.RSV-cHKBP). Recombinant kallistatin in 293 cells transfected with RSV-cHKBP or Ad.RSV-cHKBP was measured by ELISA and by its complex formation with tissue kallikrein. A single intraportal vein injection of Ad.RSV-cHKBP at a dose of 8 x 10(10) pfu results in a significant reduction of blood pressure of SHR for 4 weeks. Human kallistatin mRNA was detected in the liver, spleen, kidney, aorta, and lung of rats receiving gene delivery. Immunoreactive human kallistatin in rat serum was detected at the highest level 1 day post injection and at lesser amounts in rat tissues. This study shows that adenovirus harboring Ad.RSV-cHKBP produces functional kallistatin, and adenovirus-mediated transfer of the human kallistatin gene reduces blood pressures of SHR. The results suggest that kallistatin may function as a vasodilator in vivo and provide important information for a potential gene therapy approach to hypertension.
Collapse
Affiliation(s)
- L M Chen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston 29425-2211, USA
| | | | | |
Collapse
|