1
|
Schiffman A, Cheng Z, Ourthiague D, Hoffmann A. Gene regulatory logic of the interferon-β enhancer contains multiple selectively deployed modes of transcription factor synergy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636520. [PMID: 39975349 PMCID: PMC11838565 DOI: 10.1101/2025.02.04.636520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type I interferon IFNβ is a key regulator of the immune response, and its dysregulated expression causes disease. The regulation of IFNβ promoter activity has been a touchpoint of mammalian gene control research since the discovery of functional synergy between two stimulus-responsive transcription factors (TFs) nuclear factor kappa B (NFκB) and interferon regulatory factors (IRF). However, subsequent gene knockout studies revealed that this synergy is condition-dependent such that either NFκB or IRF activation can be dispensable, leaving the precise regulatory logic of IFNβ transcription an open question. Here, we developed a series of quantitative enhancer states models of IFNβ expression control and evaluated them with stimulus-response data from TF knockouts. Our analysis confirmed that TF synergy is a hallmark of the regulatory logic but that it need not involve NFκB, as synergy between two adjacent IRF dimers is sufficient. We found that a sigmoidal binding curve at the distal site renders the dual IRF synergy mode ultrasensitive, allowing it only in conditions of high IRF activity upon viral infection. In contrast, the proximal site has high affinity and enables expression in response to bacterial exposure through synergy with NFκB. However, its accessibility is controlled by the competitive repressor p50:p50, which prevents basal IRF levels from synergizing with NFκB, such that NFκB-only stimuli do not activate IFNβ expression. The enhancer states model identifies multiple synergy modes that are accessed differentially in response to different immune threats, enabling a highly stimulus-specific but also versatile regulatory logic for stimulus-specific IFNβ expression.
Collapse
Affiliation(s)
- Allison Schiffman
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Diana Ourthiague
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| |
Collapse
|
2
|
Sun Z, Fan J, Dang Y, Zhao Y. Enhancer in cancer pathogenesis and treatment. Genet Mol Biol 2023; 46:e20220313. [PMID: 37548349 PMCID: PMC10405138 DOI: 10.1590/1678-4685-gmb-2022-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Enhancers are essential cis-acting regulatory elements that determine cell identity and tumor progression. Enhancer function is dependent on the physical interaction between the enhancer and its target promoter inside its local chromatin environment. Enhancer reprogramming is an important mechanism in cancer pathogenesis and can be driven by both cis and trans factors. Super enhancers are acquired at oncogenes in numerous cancer types and represent potential targets for cancer treatment. BET and CDK inhibitors act through mechanisms of enhancer function and have shown promising results in therapy for various types of cancer. Genome editing is another way to reprogram enhancers in cancer treatment. The relationship between enhancers and cancer has been revised by several authors in the past few years, which mainly focuses on the mechanisms by which enhancers can impact cancer. Here, we emphasize SE's role in cancer pathogenesis and the new therapies involving epigenetic regulators (BETi and CDKi). We suggest that understanding mechanisms of activity would aid clinical success for these anti-cancer agents.
Collapse
Affiliation(s)
- Zhuo Sun
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| | - Jinbo Fan
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
| | - Yixiong Dang
- Xi’an Medical University, School of Public Health, Weiyang District, Xi’an, 710021 Shaanxi, China
| | - Yufeng Zhao
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| |
Collapse
|
3
|
Distinct roles for the NF-kappa B RelA subunit during antiviral innate immune responses. J Virol 2011; 85:2599-610. [PMID: 21209118 DOI: 10.1128/jvi.02213-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Production of type I interferons (IFNs; prominently, IFN-α/β) following virus infection is a pivotal antiviral innate immune response in higher vertebrates. The synthesis of IFN-β proceeds via the virus-induced assembly of the transcription factors IRF-3/7, ATF-2/c-Jun, and NF-κB on the ifnβ promoter. Surprisingly, recent data indicate that the NF-κB subunit RelA is not essential for virus-stimulated ifnβ expression. Here, we show that RelA instead sustains autocrine IFN-β signaling prior to infection. In the absence of RelA, virus infection results in significantly delayed ifnβ induction and consequently defective secondary antiviral gene expression. While RelA is not required for ifnβ expression after infection, it is nonetheless essential for fully one-fourth of double-stranded RNA (dsRNA)-activated genes, including several mediators of inflammation and immune cell recruitment. Further, RelA directly regulates a small subset of interferon-stimulated genes (ISGs). Finally, RelA also protects cells from dsRNA-triggered RIP1-dependent programmed necrosis. Taken together, our findings suggest distinct roles for RelA in antiviral innate immunity: RelA maintains autocrine IFN-β signaling in uninfected cells, facilitates inflammatory and adaptive immune responses following infection, and promotes infected-cell survival during this process.
Collapse
|
4
|
Hu CM, Jang SY, Fanzo JC, Pernis AB. Modulation of T cell cytokine production by interferon regulatory factor-4. J Biol Chem 2002; 277:49238-46. [PMID: 12374808 DOI: 10.1074/jbc.m205895200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of cytokines is one of the major mechanisms employed by CD4(+) T cells to coordinate immune responses. Although the molecular mechanisms controlling T cell cytokine production have been extensively studied, the factors that endow T cells with their ability to produce unique sets of cytokines have not been fully characterized. Interferon regulatory factor (IRF)-4 is a lymphoid-restricted member of the interferon regulatory factor family of transcriptional regulators, whose deficiency leads to a profound impairment in the ability of mature CD4(+) T cells to produce cytokines. In these studies, we have investigated the mechanisms employed by IRF-4 to control cytokine synthesis. We demonstrate that stable expression of IRF-4 in Jurkat T cells not only leads to a strong enhancement in the synthesis of interleukin (IL)-2, but also enables these cells to start producing considerable amounts of IL-4, IL-10, and IL-13. Transient transfection assays indicate that IRF-4 can transactivate luciferase reporter constructs driven by either the human IL-2 or the human IL-4 promoter. A detailed analysis of the effects of IRF-4 on the IL-4 promoter reveals that IRF-4 binds to a site adjacent to a functionally important NFAT binding element and that IRF-4 cooperates with NFATc1. These studies thus support the notion that IRF-4 represents one of the lymphoid-specific components that control the ability of T lymphocytes to produce a distinctive array of cytokines.
Collapse
Affiliation(s)
- Chuan-Min Hu
- Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Viral infection of a host leads to induction of an immune system attack against the virus along with a counterattack by the virus against the host. Interferons are highly upregulated upon viral infection and function as key regulators of the host innate defense system. Whereas many RNA viruses are sensitive to the effects of interferon, several of the large DNA viruses are relatively resistant, given their capacity to encode proteins that disarms the host response. The herpesvirus family is a large and diverse family of viruses that infects vertebrates and invertebrates and possesses the ability to remain latent in their host for life. This paper summarizes the relationship between herpesviruses and interferon, including the ability of herpesviruses to induce interferon production, mechanisms by which interferon decreases herpesvirus replication, and strategies of herpesviruses to counteract these mechanisms.
Collapse
Affiliation(s)
- Karen L Mossman
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Abstract
Appropriate activation and differentiation of lymphocytes are critical for effective immune responses. These processes are normally guided by exposure of lymphocytes to different stimuli, which need to be appropriately integrated in order for lymphocytes to proceed along their activation and differentiation pathways. Although the early steps in lymphocyte activation have been studied extensively, the downstream effectors of these activation pathways and the basic mechanisms employed by lymphocytes to integrate the information provided by different activation stimuli are not fully characterized. Interferon (IFN) regulatory factor-4 (IRF-4) is a recently described member of the IRF family of transcription factors whose expression is largely restricted to lymphocytes. Genetic studies have indicated that IRF-4 is critical for the function of mature T and B cells. Here we review the role of IRF-4 as a downstream effector and potentially an integrator of lymphocyte responses.
Collapse
|
7
|
Yang D, Lu H, Hong Y, Jinks TM, Estes PA, Erickson JW. Interpretation of X chromosome dose at Sex-lethal requires non-E-box sites for the basic helix-loop-helix proteins SISB and daughterless. Mol Cell Biol 2001; 21:1581-92. [PMID: 11238895 PMCID: PMC86704 DOI: 10.1128/mcb.21.5.1581-1592.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For Drosophila melanogaster flies, sexual fate is determined by the X chromosome number. The basic helix-loop-helix protein product of the X-linked sisterlessB (sisB or scute) gene is a key indicator of the X dose and functions to activate the switch gene Sex-lethal (Sxl) in female (XX), but not in male (XY), embryos. Zygotically expressed sisB and maternal daughterless (da) proteins are known to form heterodimers that bind E-box sites and activate transcription. We examined SISB-Da binding at Sxl by using footprinting and gel mobility shift assays and found that SISB-Da binds numerous clustered sites in the establishment promoter Sxl(Pe). Surprisingly, most SISB-Da sites at Sxl(Pe) differ from the canonical CANNTG E-box motif. These noncanonical sites have 6-bp CA(G/C)CCG and 7-bp CA(G/C)CTTG cores and exhibit a range of binding affinities. We show that the noncanonical sites can mediate SISB-Da-activated transcription in cell culture. P-element transformation experiments show that these noncanonical sites are essential for Sxl(Pe) activity in embryos. Together with previous deletion analysis, the data suggest that the number, affinity, and position of SISB-Da sites may all be important for the operation of the Sxl(Pe) switch. Comparisons with other dose-sensitive promoters suggest that threshold responses to diverse biological signals have common molecular mechanisms, with important variations tailored to suit particular functional requirements.
Collapse
Affiliation(s)
- D Yang
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | | | | | |
Collapse
|
8
|
Hamamdzic D, Phillips-Dorsett T, Altman-Hamamdzic S, London SD, London L. Reovirus triggers cell type-specific proinflammatory responses dependent on the autocrine action of IFN-beta. Am J Physiol Lung Cell Mol Physiol 2001; 280:L18-29. [PMID: 11133491 DOI: 10.1152/ajplung.2001.280.1.l18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resident cells of the respiratory and gastrointestinal tracts, including epithelial and fibroblast cells, are the initial sites of entry for many viral pathogens. We investigated the role that these cells play in the inflammatory process in response to infection with reovirus 1/L. In A549 human bronchial or HT-29 human colonic epithelial cells, interferon (IFN)-beta, regulated on activation T cell expressed and secreted (RANTES), IFN-gamma-inducible protein (IP)-10, and interleukin-8 were upregulated regardless of whether cells were infected with replication-competent or replication-deficient reovirus 1/L. However, in CCD-34Lu human lung fibroblast cells, IFN-beta, IP-10, and RANTES were expressed only after infection with replication-competent reovirus 1/L. Expression of interleukin-8 in CCD-34Lu fibroblast cells was viral replication independent. This differential expression of IFN-beta, RANTES, and IP-10 was shown to be due to the lack of induction of IFN regulatory factor-1 and -2 in CCD-34Lu fibroblast cells treated with replication-deficient reovirus 1/L. We have shown that cytokine and/or chemokine expression may not be dependent on viral replication. Therefore, treatment of viral infections with inhibitors of replication may not effectively alleviate inflammatory mediators because most viral infections result in the generation of replication-competent and replication-deficient virions in vivo.
Collapse
Affiliation(s)
- D Hamamdzic
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
9
|
Harcourt JL, Hagan MK, Offermann MK. Modulation of double-stranded RNA-mediated gene induction by interferon in human umbilical vein endothelial cells. J Interferon Cytokine Res 2000; 20:1007-13. [PMID: 11096458 DOI: 10.1089/10799900050198453] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endothelial cells respond to double-stranded RNA (dsRNA) with expression of a number of important immunomodulatory and inflammatory response genes, including adhesion molecules, cytokines, and antiviral genes. Considerable differences are seen when genes are induced by dsRNA compared with cytokines. Much higher levels of mRNA for interleukin-6 (IL-6), 2',5'-oligoadenylate synthetase (2',5'-OAS), protein kinase (PKR), and interferon (IFN) regulatory factor-1 (IRF-1) result from incubation with dsRNA than with IL-1beta, tumor necrosis factor-alpha (TNF-alpha), or IFN-alpha, whereas the differences in vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin mRNA expression in response to dsRNA, IL-1beta, and TNF-alpha are relatively minor. IFN-alpha priming enhances responsiveness of some, but not all, genes to dsRNA but not to IL-1beta, but the optimal time for pretreatment varies considerably among different dsRNA-responsive genes. Protein translation is reduced in human umbilical vein endothelial cells (HUVEC) in response to incubation with dsRNA, and this decrease is accentuated if cells are primed with IFN-alpha. Despite this decrease, IFN-alpha priming causes very high levels of IL-6 protein expression in response to dsRNA but not in response to IL-1beta or TNF-alpha. These studies demonstrate that priming with class I IFN can enhance the response to dsRNA through the heightened expression of genes that contribute to both the cellular response to viral infection and the host immunologic response.
Collapse
Affiliation(s)
- J L Harcourt
- Program in Biochemistry, Cellular and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
10
|
Gupta S, Jiang M, Anthony A, Pernis AB. Lineage-specific modulation of interleukin 4 signaling by interferon regulatory factor 4. J Exp Med 1999; 190:1837-48. [PMID: 10601358 PMCID: PMC2195723 DOI: 10.1084/jem.190.12.1837] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interleukin (IL)-4 is an immunoregulatory cytokine that exerts distinct biological activities on different cell types. Our studies indicate that interferon regulatory factor (IRF)-4 is both a target and a modulator of the IL-4 signaling cascade. IRF-4 expression is strongly upregulated upon costimulation of B cells with CD40 and IL-4. Furthermore, we find that IRF-4 can interact with signal transducer and activator of transcription (Stat)6 and drive the expression of IL-4-inducible genes. The transactivating ability of IRF-4 is blocked by the repressor factor BCL-6. Since expression of IRF-4 is mostly confined to lymphoid cells, these data provide a potential mechanism by which IL-4-inducible genes can be regulated in a lineage-specific manner.
Collapse
Affiliation(s)
- Sanjay Gupta
- Department of Medicine, Columbia University, New York, New York 10032
| | - Man Jiang
- Department of Medicine, Columbia University, New York, New York 10032
| | - Alissa Anthony
- Department of Medicine, Columbia University, New York, New York 10032
| | | |
Collapse
|