1
|
Jørgensen SH, Emdal KB, Pedersen AK, Axelsen LN, Kildegaard HF, Demozay D, Pedersen TÅ, Grønborg M, Slaaby R, Nielsen PK, Olsen JV. Multi-layered proteomics identifies insulin-induced upregulation of the EphA2 receptor via the ERK pathway which is dependent on low IGF1R level. Sci Rep 2024; 14:28856. [PMID: 39572596 PMCID: PMC11582730 DOI: 10.1038/s41598-024-77817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Insulin resistance impairs the cellular insulin response, and often precedes metabolic disorders, like type 2 diabetes, impacting an increasing number of people globally. Understanding the molecular mechanisms in hepatic insulin resistance is essential for early preventive treatments. To elucidate changes in insulin signal transduction associated with hepatocellular resistance, we employed a multi-layered mass spectrometry-based proteomics approach focused on insulin receptor (IR) signaling at the interactome, phosphoproteome, and proteome levels in a long-term hyperinsulinemia-induced insulin-resistant HepG2 cell line with a knockout of the insulin-like growth factor 1 receptor (IGF1R KO). The analysis revealed insulin-stimulated recruitment of the PI3K complex in both insulin-sensitive and -resistant cells. Phosphoproteomics showed attenuated signaling via the metabolic PI3K-AKT pathway but sustained extracellular signal-regulated kinase (ERK) activity in insulin-resistant cells. At the proteome level, the ephrin type-A receptor 2 (EphA2) showed an insulin-induced increase in expression, which occurred through the ERK signaling pathway and was concordantly independent of insulin resistance. Induction of EphA2 by insulin was confirmed in additional cell lines and observed uniquely in cells with high IR-to-IGF1R ratio. The multi-layered proteomics dataset provided insights into insulin signaling, serving as a resource to generate and test hypotheses, leading to an improved understanding of insulin resistance.
Collapse
Affiliation(s)
- Sarah Hyllekvist Jørgensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Global Research Technologies, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Kristina Bennet Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | | | - Damien Demozay
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Mads Grønborg
- Global Translation, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Jesper Velgaard Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
2
|
Nhau PT, Gamede M, Sibiya N. COVID-19-Induced Diabetes Mellitus: Comprehensive Cellular and Molecular Mechanistic Insights. PATHOPHYSIOLOGY 2024; 31:197-209. [PMID: 38651404 PMCID: PMC11036300 DOI: 10.3390/pathophysiology31020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Despite evidence demonstrating the risks of developing diabetes mellitus because of SARS-CoV-2, there is, however, insufficient scientific data available to elucidate the relationship between diabetes mellitus and COVID-19. Research indicates that SARS-CoV-2 infection is associated with persistent damage to organ systems due to the systemic inflammatory response. Since COVID-19 is known to induce these conditions, further investigation is necessary to fully understand its long-term effects on human health. Consequently, it is essential to consider the effect of the COVID-19 pandemic when predicting the prevalence of diabetes mellitus in the future, especially since the incidence of diabetes mellitus was already on the rise before the pandemic. Additional research is required to fully comprehend the impact of SARS-CoV-2 infection on glucose tolerance and insulin sensitivity. Therefore, this article delves deeper into the current literature and links the perceived relationship between SARS-CoV-2 and diabetes. In addition, the article highlights the necessity for further research to fully grasp the mechanisms that SARS-CoV-2 utilises to induce new-onset diabetes. Where understanding and consensus are reached, therapeutic interventions to prevent the onset of diabetes could be proposed. Lastly, we propose advocating for the regular screening of diabetes and pre-diabetes, particularly for the high-risk population with a history of COVID-19 infection.
Collapse
Affiliation(s)
- Praise Tatenda Nhau
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa;
| | - Mlindeli Gamede
- Human Physiology Department, University of Pretoria, Pretoria 0028, South Africa;
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa;
| |
Collapse
|
3
|
Catena C, Brosolo G, Da Porto A, Donnini D, Bulfone L, Vacca A, Soardo G, Sechi LA. Association of non-alcoholic fatty liver disease with left ventricular changes in treatment-naive patients with uncomplicated hypertension. Front Cardiovasc Med 2022; 9:1030968. [PMID: 36312275 PMCID: PMC9606246 DOI: 10.3389/fcvm.2022.1030968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Cardiac structural and functional changes have been demonstrated in patients with non-alcoholic fatty liver disease (NAFLD). Because of the frequent association of NAFLD with hypertension, we aimed to examine the relationship of liver steatosis with left ventricular (LV) changes in patients with hypertension. Materials and methods In a cross-sectional study, we included 360 untreated, essential hypertensive patients who were free of major cardiovascular and renal complications. Liver steatosis was assessed by three different biochemical scores (NAFLD Liver Fat Score, LFS; Fatty Liver Index, FLI; Hepatic Steatosis Index, HSI). Echocardiography was performed with standard B-mode and tissue-Doppler imaging. Results LV hypertrophy was present in 19.4% and LV diastolic dysfunction in 49.2% of patients who had significantly higher body mass index (BMI), blood pressure (BP), and homeostatic model assessment (HOMA) index and higher frequency of the metabolic syndrome and liver steatosis that was defined by presence of 2 or more positive scores. LV mass index increased progressively across patients who had none, 1, or 2 or more liver steatosis scores, with associated progressive worsening of LV diastolic function. LV mass index was significantly and positively correlated with age, BMI, BP, HOMA-index, LFS, and HSI. Logistic regression analysis showed that age, BP, and liver steatosis scores independently predicted LV hypertrophy and diastolic dysfunction. Liver steatosis independently predicted LV dysfunction but not LV hypertrophy even after inclusion in analysis of the HOMA-index. Conclusion NAFLD is associated with LV hypertrophy and diastolic dysfunction in untreated patients with hypertension. In hypertension, NAFLD could contribute to LV diastolic dysfunction with mechanisms unrelated to insulin resistance.
Collapse
Affiliation(s)
- Cristiana Catena
- Internal Medicine and European Hypertension Excellence Center, Department of Medicine, University of Udine, Udine, Italy
| | - Gabriele Brosolo
- Internal Medicine and European Hypertension Excellence Center, Department of Medicine, University of Udine, Udine, Italy
| | - Andrea Da Porto
- Diabetes and Metabolism Unit, Department of Medicine, University of Udine, Udine, Italy
| | - Debora Donnini
- Liver Unit, Department of Medicine, University of Udine, Udine, Italy
| | - Luca Bulfone
- Internal Medicine and European Hypertension Excellence Center, Department of Medicine, University of Udine, Udine, Italy
| | - Antonio Vacca
- Internal Medicine and European Hypertension Excellence Center, Department of Medicine, University of Udine, Udine, Italy
| | - Giorgio Soardo
- Liver Unit, Department of Medicine, University of Udine, Udine, Italy
| | - Leonardo A. Sechi
- Internal Medicine and European Hypertension Excellence Center, Department of Medicine, University of Udine, Udine, Italy,Diabetes and Metabolism Unit, Department of Medicine, University of Udine, Udine, Italy,Liver Unit, Department of Medicine, University of Udine, Udine, Italy,*Correspondence: Leonardo A. Sechi,
| |
Collapse
|
4
|
Insulin Resistance and High Blood Pressure: Mechanistic Insight on the Role of the Kidney. Biomedicines 2022; 10:biomedicines10102374. [PMID: 36289636 PMCID: PMC9598512 DOI: 10.3390/biomedicines10102374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
The metabolic effects of insulin predominate in skeletal muscle, fat, and liver where the hormone binds to its receptor, thereby priming a series of cell-specific and biochemically diverse intracellular mechanisms. In the presence of a good secretory reserve in the pancreatic islets, a decrease in insulin sensitivity in the metabolic target tissues leads to compensatory hyperinsulinemia. A large body of evidence obtained in clinical and experimental studies indicates that insulin resistance and the related hyperinsulinemia are causally involved in some forms of arterial hypertension. Much of this involvement can be ascribed to the impact of insulin on renal sodium transport, although additional mechanisms might be involved. Solid evidence indicates that insulin causes sodium and water retention, and both endogenous and exogenous hyperinsulinemia have been correlated to increased blood pressure. Although important information was gathered on the cellular mechanisms that are triggered by insulin in metabolic tissues and on their abnormalities, knowledge of the insulin-related mechanisms possibly involved in blood pressure regulation is limited. In this review, we summarize the current understanding of the cellular mechanisms that are involved in the pro-hypertensive actions of insulin, focusing on the contribution of insulin to the renal regulation of sodium balance and body fluids.
Collapse
|
5
|
Early postnatal exposure of rat pups to methylglyoxal induces oxidative stress, inflammation and dysmetabolism at adulthood. J Dev Orig Health Dis 2022; 13:617-625. [PMID: 35057878 DOI: 10.1017/s204017442100074x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
This work aimed to investigate the effects of early progeny exposure to methylglyoxal (MG), programming for metabolic dysfunction and diabetes-like complications later in life. At delivery (PN1), the animals were separated into two groups: control group (CO), treated with saline, and MG group, treated with MG (20 mg/kg of BW; i.p.) during the first 2 weeks of the lactation period. In vivo experiments and tissue collection were done at PN90. Early MG exposure decreased body weight, adipose tissue, liver and kidney weight at adulthood. On the other hand, MG group showed increased relative food intake, blood fructosamine, blood insulin and HOMA-IR, which is correlated with insulin resistance. Besides, MG-treated animals presented dyslipidaemia, increased oxidative stress and inflammation. Likewise, MG group showed steatosis and perivascular fibrosis in the liver, pancreatic islet hypertrophy, increased glomerular area and pericapsular fibrosis, but reduced capsular space. This study shows that early postnatal exposure to MG induces oxidative stress, inflammation and fibrosis markers in pancreas, liver and kidney, which are related to metabolic dysfunction features. Thus, nutritional disruptors during lactation period may be an important risk factor for metabolic alterations at adulthood.
Collapse
|
6
|
Schütten MT, Kusters YH, Houben AJ, Niessen HE, Op 't Roodt J, Scheijen JL, van de Waardenburg MP, Schalkwijk CG, de Leeuw PW, Stehouwer CDA. Glucocorticoids affect metabolic but not muscle microvascular insulin sensitivity following high versus low salt intake. JCI Insight 2020; 5:127530. [PMID: 32107343 DOI: 10.1172/jci.insight.127530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/20/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUNDSalt-sensitive hypertension is often accompanied by insulin resistance in obese individuals, but the underlying mechanisms are obscure. Microvascular function is known to affect both salt sensitivity of blood pressure and metabolic insulin sensitivity. We hypothesized that excessive salt intake increases blood pressure and decreases insulin-mediated glucose disposal, at least in part by impairing insulin-mediated muscle microvascular recruitment (IMMR).METHODSIn 20 lean and 20 abdominally obese individuals, we assessed mean arterial pressure (MAP; 24-hour ambulatory blood pressure measurements), insulin-mediated whole-body glucose disposal (M/I value; hyperinsulinemic-euglycemic clamp technique), IMMR (contrast-enhanced ultrasound), osmolyte and water balance, and excretion of mineralocorticoids, glucocorticoids, and amino and organic acids after a low- and high-salt diet during 7 days in a randomized, double-blind, crossover design.RESULTSOn a low-, as compared with a high-salt, intake, MAP was lower, M/I value was lower, and IMMR was greater in both lean and abdominally obese individuals. In addition, natural logarithm IMMR was inversely associated with MAP in lean participants on a low-salt diet only. On a high-salt diet, free water clearance decreased, and excretion of glucocorticoids and of amino acids involved in the urea cycle increased.CONCLUSIONOur findings imply that hemodynamic and metabolic changes resulting from alterations in salt intake are not necessarily associated. Moreover, they are consistent with the concept that a high-salt intake increases muscle glucose uptake as a response to high salt-induced, glucocorticoid-driven muscle catabolism to stimulate urea production and thereby renal water conservation.TRIAL REGISTRATIONClinicalTrials.gov, NCT02068781.
Collapse
|
7
|
Igreja B, Pires N, Loureiro A, Wright L, Soares-da-Silva P. Cardiometabolic and Inflammatory Benefits of Sympathetic Down-Regulation with Zamicastat in Aged Spontaneously Hypertensive Rats. ACS Pharmacol Transl Sci 2019; 2:353-360. [PMID: 32259069 PMCID: PMC7089015 DOI: 10.1021/acsptsci.9b00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/28/2022]
Abstract
The hyperactivity of the sympathetic nervous system (SNS) plays a major role in the development and progression of several cardiovascular diseases. One strategy to mitigate the SNS overdrive is by restricting the biosynthesis of norepinephrine via the inhibition of dopamine β-hydroxylase (DBH). Zamicastat is a new DBH inhibitor that decreases norepinephrine and increases dopamine levels in peripherally sympathetic-innervated tissues. The cardiometabolic and inflammatory effects of sympathetic down-regulation were evaluated in 50 week old male spontaneously hypertensive rats (SHRs) receiving zamicastat (30 mg/kg/day) for 9 weeks. After 8 weeks of treatment, the blood pressure (BP) and heart rate (HR) were assessed by tail cuff plethysmography. At the end of the study, 24 h urine, plasma, heart, and kidney were collected for biochemical and morphometric analyses. Zamicastat-induced sympathetic down-regulation decreased the high BP in SHRs, with no observed effect on HR. The heart-to-body weight ratio was lower in SHRs treated with zamicastat, whereas the body weight and kidney-to-body weight ratio were similar between both SHR cohorts. Zamicastat-treated SHRs showed reduced 24 h urine output, but the urinary amount of protein excreted and creatinine clearance rate remained unchanged. Zamicastat treatment significantly decreased plasma triglycerides, free fatty acids, and aspartate aminotransferase levels. Aged SHRs showed higher plasma levels of inflammatory markers as compared with age-matched normotensive Wistar-Kyoto rats. The inflammatory benefits attained with DBH inhibition were expressed by a decrease in CRP, MCP-1, IL-5, IL-17α, GRO/KC, MIP-1α, and RANTES plasma levels as compared with untreated SHRs. In conclusion, DBH inhibition decreased norepinephrine levels, reduced end-organ damage, and improved cardiometabolic and inflammatory biomarkers in aged male SHRs.
Collapse
Affiliation(s)
- Bruno Igreja
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
| | - Nuno Pires
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
| | - Ana Loureiro
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
| | - Lyndon Wright
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
| | - Patrício Soares-da-Silva
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
- Department
of Biomedicine, Unit of Pharmacology & Therapeutics, Faculty of
Medicine, University of Porto, Porto 4200-319, Portugal
- MedInUP
- Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| |
Collapse
|
8
|
Li F, Yang J, Jones JE, Villar VAM, Yu P, Armando I, Felder RA, Jose PA. Sorting nexin 5 and dopamine d1 receptor regulate the expression of the insulin receptor in human renal proximal tubule cells. Endocrinology 2015; 156:2211-21. [PMID: 25825816 PMCID: PMC4430625 DOI: 10.1210/en.2014-1638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sorting nexin 5 (SNX5) belongs to the SNX family, which is composed of a diverse group of proteins that mediate trafficking of plasma membrane proteins, receptors, and transporters. SNX5 is important in the resensitization of the dopamine D1-like receptor (D1R). D1R is uncoupled from its effector proteins in hypertension and diabetes, and treatment of diabetes restores D1R function and insulin receptor (IR) expression. We tested the hypothesis that the D1R and SNX5 regulate IR by studying the expression, distribution, dynamics, and functional consequences of their interaction in human renal proximal tubule cells (hRPTCs). D1R, SNX5, and IR were expressed and colocalized in the brush border of RPTs. Insulin promoted the colocalization of SNX5 and IR at the perinuclear area of hRPTCs. Unlike SNX5, the D1R colocalized and coimmunoprecipitated with IR, and this interaction was enhanced by insulin. To evaluate the role of SNX5 and D1R on IR signaling, we silenced via RNA interference the endogenous expression of SNX5 or the D1R gene DRD1 in hRPTCs. We observed a decrease in IR expression and abundance of phosphorylated IR substrate and phosphorylated protein kinase B, which are crucial components of the IR signal transduction pathway. Our data indicate that SNX5 and D1R are necessary for normal IR expression and activity. It is conceivable that D1R and SNX5 may interact to increase the sensitivity to insulin via a positive regulation of IR and insulin signaling.
Collapse
Affiliation(s)
- Fengmin Li
- Department of Physiology and Biophysics (F.L., P.A.J.), Georgetown University Medical Center, Washington, DC 20057; Liver Disease Branch (F.L.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China; Division of Nephrology (J.Y.J.E.J., V.A.M.V., P.Y., I.A., P.A.J.), Department of Medicine, and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore, Maryland 21201; and University of Virginia Health Sciences Center (R.A.F.), Charlottesville, Virginia 22908
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ribeiro IMR, Ferreira-Neto HC, Antunes VR. Subdiaphragmatic vagus nerve activity and hepatic venous glucose are differentially regulated by the central actions of insulin in Wistar and SHR. Physiol Rep 2015; 3:3/5/e12381. [PMID: 25948821 PMCID: PMC4463817 DOI: 10.14814/phy2.12381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucose is the most important energy substrate for the maintenance of tissues function. The liver plays an essential role in the control of glucose production, since it is able to synthesize, store, and release glucose into the circulation under different situations. Hormones like insulin and catecholamines influence hepatic glucose production (HGP), but little is known about the role of the central actions of physiological doses of insulin in modulating HGP via the autonomic nervous system in nonanesthetized rats especially in SHR where we see a high degree of insulin resistance and metabolic dysfunction. Wistar and SHR received ICV injection of insulin (100 nU/μL) and hepatic venous glucose concentration (HVGC) was monitored for 30 min, as an indirect measure of HGP. At 10 min after insulin injection, HVGC decreased by 27% in Wistar rats, with a negligible change (3%) in SHR. Pretreatment with atropine totally blocked the reduction in HVGC, while pretreatment with propranolol and phentolamine induced a decrease of 8% in HVGC after ICV insulin injection in Wistar. Intracarotid infusion of insulin caused a significant increase in subdiaphragmatic vagus nerve (SVN) activity in Wistar (12 ± 2%), with negligible effects on the lumbar splanchnic sympathetic nerve (LSSN) activity (−6 ± 3%). No change was observed in SVN (−2 ± 2%) and LSSN activities (2 ± 3%) in SHR after ICA insulin infusion. Taken together, these results show, in nonanesthetized animals, the importance of the parasympathetic nervous system in controlling HVGC, and subdiaphragmatic nerve activity following central administration of insulin; a mechanism that is impaired in the SHR.
Collapse
Affiliation(s)
- Izabela Martina R Ribeiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Hildebrando C Ferreira-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
10
|
Garland JS, Holden RM, Ross R, Adams MA, Nolan RL, Hopman WM, Morton AR. Insulin resistance is associated with Fibroblast Growth Factor-23 in stage 3-5 chronic kidney disease patients. J Diabetes Complications 2014; 28:61-5. [PMID: 24125760 DOI: 10.1016/j.jdiacomp.2013.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/30/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
Abstract
AIM To determine the associations between insulin resistance, fibroblast growth factor 23 (FGF-23), and coronary artery calcification (CAC) in chronic kidney disease (CKD) patients. INTRODUCTION FGF-23 is associated with atherosclerosis and cardiovascular disease, but its association with insulin resistance in CKD has not been explored. SUBJECTS Cross sectional study of 72 stage 3-5 CKD patients receiving care in Ontario, Canada. MATERIALS AND METHODS Insulin resistance was measured by the homeostasis model assessment of insulin resistance (HOMA-IR), FGF-23 was measured by carboxyl terminal enzyme linked immunoassay (ctFGF-23) and CAC was measured by multi-slice computed tomography. RESULTS Median HOMA-IR was 2.19μU/ml (interquartile range 1.19 to 3.94). Patients with HOMA-IR>2.2 had greater ctFGF-23 (179.7 vs 109.6; P=0.03), and 40% higher log CAC scores (2.09±0.87 vs 1.58±1.26; P=0.049). Multivariable linear regression adjusted for 1,25 dihydroxyvitamin D, kidney function, and parathyroid hormone revealed insulin resistance was a risk factor for greater log ctFGF-23 levels (log HOMA IR β=0.37; 95% confidence interval 0.14 to 0.59; P=0.002). CONCLUSIONS Insulin resistant CKD patients demonstrated higher FGF-23 levels, and increased CAC, while PO4 levels remained normal, suggesting a potential link between insulin resistance and PO4 homeostasis in CKD.
Collapse
Affiliation(s)
- Jocelyn S Garland
- Department of Medicine, Queen's University, Kingston, ON, Canada; Queen's University Vascular Calcification Investigators, Queen's University, Kingston, ON, Canada.
| | - Rachel M Holden
- Department of Medicine, Queen's University, Kingston, ON, Canada; Queen's University Vascular Calcification Investigators, Queen's University, Kingston, ON, Canada
| | - Robert Ross
- School of Kinesiology and Health Studies, Departments of Endocrinology and Metabolism, Queen's University, Kingston, ON, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Robert L Nolan
- Queen's University Vascular Calcification Investigators, Queen's University, Kingston, ON, Canada; Department of Radiology, Queen's University, Kingston, ON, Canada
| | - Wilma M Hopman
- Queen's University Vascular Calcification Investigators, Queen's University, Kingston, ON, Canada; Clinical Research Center, Kingston General Hospital, and Department of Community Health and Epidemiology, Queen's University, Kingston, Ontario, Canada
| | - A Ross Morton
- Department of Medicine, Queen's University, Kingston, ON, Canada; Queen's University Vascular Calcification Investigators, Queen's University, Kingston, ON, Canada
| |
Collapse
|
11
|
Bosse JD, Lin HY, Sloan C, Zhang QJ, Abel ED, Pereira TJ, Dolinsky VW, Symons JD, Jalili T. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance. Am J Physiol Heart Circ Physiol 2013; 304:H1733-42. [PMID: 23604708 DOI: 10.1152/ajpheart.00631.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P < 0.05) mean arterial pressure than SHR-C (148 ± 3 vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P < 0.05) in SHR-HF vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P < 0.05). Phosphorylation of eNOSSer1177 increased (P < 0.05) in arteries from SHR-HF vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P < 0.05) in SHR-HF vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P < 0.05) phosphorylation of AktSer473 and S6 in heart and gastrocnemius similarly in SHR-C vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.
Collapse
Affiliation(s)
- John D Bosse
- Division of Nutrition, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nishida H, Sohara E, Nomura N, Chiga M, Alessi DR, Rai T, Sasaki S, Uchida S. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice. Hypertension 2012; 60:981-90. [PMID: 22949526 DOI: 10.1161/hypertensionaha.112.201509] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic syndrome patients have insulin resistance, which causes hyperinsulinemia, which in turn causes aberrant increased renal sodium reabsorption. The precise mechanisms underlying this greater salt sensitivity of hyperinsulinemic patients remain unclear. Abnormal activation of the recently identified with-no-lysine kinase (WNK)-oxidative stress-responsive kinase 1 (OSR1)/STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NaCl cotransporter (NCC) phosphorylation cascade results in the salt-sensitive hypertension of pseudohypoaldosteronism type II. Here, we report a study of renal WNK-OSR1/SPAK-NCC cascade activation in the db/db mouse model of hyperinsulinemic metabolic syndrome. Thiazide sensitivity was increased, suggesting greater activity of NCC in db/db mice. In fact, increased phosphorylation of OSR1/SPAK and NCC was observed. In both SpakT243A/+ and Osr1T185A/+ knock-in db/db mice, which carry mutations that disrupt the signal from WNK kinases, increased phosphorylation of NCC and elevated blood pressure were completely corrected, indicating that phosphorylation of SPAK and OSR1 by WNK kinases is required for the increased activation and phosphorylation of NCC in this model. Renal phosphorylated Akt was increased in db/db mice, suggesting that increased NCC phosphorylation is regulated by the phosphatidylinositol 3-kinase/Akt signaling cascade in the kidney in response to hyperinsulinemia. A phosphatidylinositol 3-kinase inhibitor (NVP-BEZ235) corrected the increased OSR1/SPAK-NCC phosphorylation. Another more specific phosphatidylinositol 3-kinase inhibitor (GDC-0941) and an Akt inhibitor (MK-2206) also inhibited increased NCC phosphorylation. These results indicate that the phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in db/db mice. This mechanism may play a role in the pathogenesis of salt-sensitive hypertension in human hyperinsulinemic conditions, such as the metabolic syndrome.
Collapse
Affiliation(s)
- Hidenori Nishida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at increased risk of stroke, heart disease and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Reducing dietary salt is effective in lowering blood pressure in salt-sensitive individuals. Insulin resistance and altered glucose metabolism are common features of hypertension in humans and animal models, with or without salt sensitivity. Altered glucose metabolism leads to increased formation of advanced glycation end products. Insulin resistance is also linked to oxidative stress, and alterations in the nitric oxide pathway and renin angiotensin system. A diet rich in protein containing the semiessential amino acid, arginine, and arginine treatment, lowers blood pressure in humans and in animal models. This may be due to the ability of arginine to improve insulin resistance, decrease advanced glycation end products formation, increase nitric oxide, and decrease levels of angiotensin II and oxidative stress, with improved endothelial cell function and decreased peripheral vascular resistance. The Dietary Approaches to Stop Hypertension (DASH) study demonstrated that the DASH diet, rich in vegetables, fruits and low-fat dairy products; low in fat; and including whole grains, poultry, fish and nuts, lowered blood pressures even more than a typical North American diet with similar reduced sodium content. The DASH diet is rich in protein; the blood pressure-lowering effect of the DASH diet may be due to its higher arginine-containing protein, higher antioxidants and low salt content.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland
| | | |
Collapse
|
14
|
|
15
|
DeLano FA, Zhang H, Tran EE, Zhang C, Schmid-Schönbein GW. A New Hypothesis for Insulin Resistance in Hypertension Due to Receptor Cleavage. Expert Rev Endocrinol Metab 2010; 5:149-158. [PMID: 21132054 PMCID: PMC2995254 DOI: 10.1586/eem.09.64] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND: One of the most important unresolved issues in diabetes is the mechanism for the attenuated response to insulin, i.e. insulin resistance. AIMS AND METHODS: We hypothesize that the mechanism for the insulin resistance is due to uncontrolled protease activity in the plasma, on endothelial cells and in the tissue parenchyma. To examine this hypothesis we use of microzymographic techniques in the microcirculation, plasma zymography, and receptor labeling techniques with antibodies against an extracellular domain of the insulin receptor α. RESULTS: The spontaneously hypertensive rat has an enhanced proteolytic activity and significant cleavage of the receptor with attenuated glucose transport. We present evidence for insulin receptor cleavage in a high fat diet and a transgenic model of diabetes. CONCLUSION: These results suggest that cleavage of the extracellular domain of the insulin receptor, a situation that interferes with the ability for insulin to bind and provide an intracellular signal for glucose transport, may be involved in insulin resistance.
Collapse
Affiliation(s)
- Frank A. DeLano
- Department of Bioengineering, The Whitaker Institute for Biomedical Engineering, University of California San Diego, La Jolla, CA 92093-0412, Fax: 858 534 5722, Tel: 858 534 4276 (FAD), 206 362 3590 (EET), 858 534 3852 (GWSS)
| | - Hanrui Zhang
- Departments of Internal Medicine, Medical Pharmacology & Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr. Columbia, MO 65211, Fax: 573-884-4232, Tel: 573-882-2427
| | - Edward E. Tran
- Department of Bioengineering, The Whitaker Institute for Biomedical Engineering, University of California San Diego, La Jolla, CA 92093-0412, Fax: 858 534 5722, Tel: 858 534 4276 (FAD), 206 362 3590 (EET), 858 534 3852 (GWSS)
| | - Cuihua Zhang
- Departments of Internal Medicine, Medical Pharmacology & Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr. Columbia, MO 65211, Fax: 573-884-4232, Tel: 573-882-2427
| | - Geert W. Schmid-Schönbein
- Department of Bioengineering, The Whitaker Institute for Biomedical Engineering, University of California San Diego, La Jolla, CA 92093-0412, Fax: 858 534 5722, Tel: 858 534 4276 (FAD), 206 362 3590 (EET), 858 534 3852 (GWSS)
| |
Collapse
|
16
|
Abstract
Although long recognized in microvascular research, an increasing body of evidence suggests that inflammatory markers are present in human diseases. Since the inflammatory cascade serves as a repair mechanism, the presence of inflammatory markers in patient groups has raised an important question about the mechanisms that initiate the inflammatory cascade (i.e., the mechanisms that cause tissue injury). Using a severe form of inflammation, shock, and multiorgan failure, for which there is no accepted injury mechanism, we summarize studies that suggest that the powerful pancreatic digestive enzymes play a central role in the destruction of the intestine and other tissues if their compartmentalization in the lumen of the intestine and in the pancreas is compromised. Further, we summarize evidence that uncontrolled degrading enzyme activity in plasma causes proteolytic cleavage of the extracellular domain of membrane receptors and loss of associated cell functions. For example, in a model of metabolic disease with type II diabetes, proteolytic cleavage of the insulin receptor causes the inability of insulin to signal glucose transport across membranes. The evidence suggests that uncontrolled proteolytic and lipolytic enzyme activity may trigger the mechanism for tissue injury. The significance of such mechanisms remain to be explored in human diseases.
Collapse
Affiliation(s)
- Geert W Schmid-Schönbein
- Department of Bioengineering, University of California-San Diego, La Jolla, California 92093-0412, USA.
| |
Collapse
|
17
|
DeLano FA, Schmid-Schönbein GW. Proteinase activity and receptor cleavage: mechanism for insulin resistance in the spontaneously hypertensive rat. Hypertension 2008; 52:415-23. [PMID: 18606910 PMCID: PMC2677556 DOI: 10.1161/hypertensionaha.107.104356] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 05/14/2008] [Indexed: 11/16/2022]
Abstract
Arterial hypertension is associated with organ dysfunctions, but the mechanisms are uncertain. We hypothesized that enhanced proteolytic activity in the microcirculation of spontaneously hypertensive rats (SHRs) may be a pathophysiological mechanism causing cell membrane receptor cleavage and examine this for 2 different receptors. Immunohistochemistry of matrix-degrading metalloproteinases (matrix metalloproteinase [MMP]-9) protein shows enhanced levels in SHR microvessels, mast cells, and leukocytes compared with normotensive Wistar-Kyoto rats. In vivo microzymography shows cleavage by MMP-1 and -9 in SHRs that colocalizes with MMP-9 and is blocked by metal chelation. SHR plasma also has enhanced protease activity. We demonstrate with an antibody against the extracellular domain that the insulin receptor-alpha density is reduced in SHRs, in line with elevated blood glucose levels and glycohemoglobin. There is also cleavage of the binding domain of the leukocyte integrin receptor CD18 in line with previously reported reduced leukocyte adhesion. Blockade of MMPs with a broad-acting inhibitor (doxycycline, 5.4 mg/kg per day) reduces protease activity in plasma and microvessels; blocks the proteolytic cleavage of the insulin receptor, the reduced glucose transport; normalizes blood glucose levels and glycohemoglobin levels; and reduces blood pressure and enhanced microvascular oxidative stress of SHRs. The results suggest that elevated MMP activity leads to proteolytic cleavage of membrane receptors in the SHR, eg, cleavage of the insulin receptor-binding domain associated with insulin resistance.
Collapse
Affiliation(s)
- Frank A DeLano
- Department of Bioengineering, Whitaker Institute for Biomedical Engineering, University of California San Diego, La Jolla CA 92093-0412, USA
| | | |
Collapse
|
18
|
Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J Hypertens 2008; 26:765-72. [PMID: 18327087 DOI: 10.1097/hjh.0b013e3282f4a13c] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Methylglyoxal is a reactive dicarbonyl intermediate of metabolism produced in the body. It reacts with certain proteins and forms damaging advanced glycation endproducts (AGEs) such as N epsilon-carboxyethyl-lysine (CEL) and N epsilon-carboxymethyl-lysine (CML). Increased methylglyoxal levels are found in diabetes mellitus and associated with hypertension development in the spontaneously hypertensive rats (SHR). The purpose of this study was to investigate whether increased endogenous formation of methylglyoxal and methylglyoxal-induced AGEs caused hypertension development in normotensive Sprague Dawley rats. METHODS The rats were fed chronically for 16 weeks with fructose, a known precursor of methylglyoxal formation. One group of rats was cotreated with fructose and metformin, an AGEs formation inhibitor. Methylglyoxal and reduced glutathione (GSH) were measured by high performance liquid chromatography, whereas hydrogen peroxide was measured by a dicholorofluorescin assay. Immunohistochemistry was performed for endothelial nitric oxide synthase (eNOS), CEL and CML. RESULTS Fructose-fed rats had elevated blood pressure, serum methylglyoxal and triglycerides and reduced serum levels of GSH. Methylglyoxal, hydrogen peroxide and CEL were increased in the aorta, whereas eNOS was reduced. CEL and CML were also increased in the mesenteric artery endothelium along with media/lumen ratio, signifying structural remodelling. All the harmful changes in fructose-fed rats were attenuated in metformin and fructose cotreated rats. CONCLUSION Increased methylglyoxal, AGEs, oxidative stress and reduced eNOS along with structural remodeling of the vessel wall in the aorta and mesenteric artery likely play a role in the pathogenesis of hypertension.
Collapse
|
19
|
Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proc Natl Acad Sci U S A 2008; 105:6469-74. [PMID: 18424559 DOI: 10.1073/pnas.0711283105] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Renal tubule epithelial cells express the insulin receptor (IR); however, their value has not been firmly established. We generated mice with renal epithelial cell-specific knockout of the IR by Cre-recombinase-loxP recombination using a kidney-specific (Ksp) cadherin promoter. KO mice expressed significantly lower levels of IR mRNA and protein in kidney cortex (49-56% of the WT) and medulla (32-47%) homogenates. Immunofluorescence showed the greatest relative reduction in the thick ascending limb and collecting duct cell types. Body weight, kidney weight, and food and water intakes were not different from WT littermates. However, KO mice had significantly increased basal systolic blood pressure (BP, 15 mm Hg higher) as measured by radiotelemetry. In response to a volume load by gavage (20 ml/kg of body weight, 0.9% NaCl, 15% dextrose), KO mice had impaired natriuresis (37 +/- 10 versus 99 +/- 9 mmol of Na(+) per 2 h in WT). Furthermore, volume load led to a sustained increase in BP in KO mice only. In contrast, insulin administration i.p. (0.5 units/kg of body weight) resulted in a significant fall in BP in WT, but not in KO mice. To test the role of reduced renal nitric oxide (NO) production in these responses, basal urinary nitrates plus nitrites excretion (UNOx) was measured and found to be 61% lower in KO vs. WT mice. Furthermore, acute insulin increased UNOx by 202% in the WT, relative to a significantly blunted rise (67%) in KO animals. These results illuminate a previously uncharacterized role for renal IR to reduce BP and facilitate sodium and water excretion, possibly via NO production.
Collapse
|
20
|
Chateau-Degat ML, Poirier P. Insulin resistance, obesity and hypertension: is the link waist circumference? ACTA ACUST UNITED AC 2007. [DOI: 10.2217/14750708.4.5.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Tiwari S, Riazi S, Ecelbarger CA. Insulin's impact on renal sodium transport and blood pressure in health, obesity, and diabetes. Am J Physiol Renal Physiol 2007; 293:F974-84. [PMID: 17686957 DOI: 10.1152/ajprenal.00149.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Insulin has been shown to have antinatriuretic actions in humans and animal models. Moreover, endogenous hyperinsulinemia and insulin infusion have been correlated to increased blood pressure in some models. In this review, we present the current state of understanding with regard to the regulation of the major renal sodium transporters by insulin in the kidney. Several groups, using primarily cell culture, have demonstrated that insulin can directly increase activity of the epithelial sodium channel, the sodium-phosphate cotransporter, the sodium-hydrogen exchanger type III, and Na-K-ATPase. We and others have demonstrated alterations in the expression at the protein level of many of these same proteins with insulin infusion or in hyperinsulinemic models. We also discuss how this regulation is perturbed in type I and type II diabetes mellitus. Finally, we discuss a potential role for regulation of insulin receptor signaling in the kidney in contributing to sodium balance and blood pressure.
Collapse
Affiliation(s)
- Swasti Tiwari
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, District of Columbia 20007, USA
| | | | | |
Collapse
|
22
|
Chang T, Wu L. Methylglyoxal, oxidative stress, and hypertension. Can J Physiol Pharmacol 2007; 84:1229-38. [PMID: 17487230 DOI: 10.1139/y06-077] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic mechanisms for essential hypertension are unclear despite striking efforts from numerous research teams over several decades. Increased production of reactive oxygen species (ROS) has been associated with the development of hypertension and the role of ROS in hypertension has been well documented in recent years. In this context, it is important to better understand pathways and triggering factors for increased ROS production in hypertension. This review draws a causative linkage between elevated methylglyoxal level, methylglyoxal-induced production of ROS, and advanced glycation end products in the development of hypertension. It is proposed that elevated methylglyoxal level and resulting protein glycation and ROS production may be the upstream links in the chain reaction leading to the development of hypertension.
Collapse
Affiliation(s)
- Tuanjie Chang
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | | |
Collapse
|
23
|
Vasdev S, Gill V, Singal PK. Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms. Vasc Health Risk Manag 2007; 2:263-76. [PMID: 17326332 PMCID: PMC1993980 DOI: 10.2147/vhrm.2006.2.3.263] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Low ethanol intake is known to have a beneficial effect on cardiovascular disease. In cardiovascular disease, insulin resistance leads to altered glucose and lipid metabolism resulting in an increased production of aldehydes, including methylglyoxal. Aldehydes react non-enzymatically with sulfhydryl and amino groups of proteins forming advanced glycation end products (AGEs), altering protein structure and function. These alterations cause endothelial dysfunction with increased cytosolic free calcium, peripheral vascular resistance, and blood pressure. AGEs produce atherogenic effects including oxidative stress, platelet adhesion, inflammation, smooth muscle cell proliferation and modification of lipoproteins. Low ethanol intake attenuates hypertension and atherosclerosis but the mechanism of this effect is not clear. Ethanol at low concentrations is metabolized by low Km alcohol dehydrogenase and aldehyde dehydrogenase, both reactions resulting in the production of reduced nicotinamide adenine dinucleotide (NADH). This creates a reductive environment, decreasing oxidative stress and secondary production of aldehydes through lipid peroxidation. NADH may also increase the tissue levels of the antioxidants cysteine and glutathione, which bind aldehydes and stimulate methylglyoxal catabolism. Low ethanol improves insulin resistance, increases high-density lipoprotein and stimulates activity of the antioxidant enzyme, paraoxonase. In conclusion, we suggest that chronic low ethanol intake confers its beneficial effect mainly through its ability to increase antioxidant capacity and lower AGEs.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, St.John's, Newfoundland, Canada.
| | | | | |
Collapse
|
24
|
Rao R, Hao CM, Redha R, Wasserman DH, McGuinness OP, Breyer MD. Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat-fed C57BL/6J mice. Diabetologia 2007; 50:452-60. [PMID: 17151860 DOI: 10.1007/s00125-006-0552-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS In the current study, the effect of a highly specific peptide inhibitor of glycogen synthase kinase 3 (GSK3) (L803-mts) on glucose metabolism and BP was examined in a high-fat (HF) fed mouse model of diabetes. METHODS C57/BL6J mice were placed on an HF diet for 3 months and treated with L803-mts for 20 days, following which glucose metabolism was examined by euglycaemic-hyperinsulinaemic clamp studies. BP and heart rate were measured by radio-telemetry. RESULTS The HF mice were obese, with impaired glucose tolerance and high plasma insulin and leptin levels. L803-mts treatment significantly reduced the insulin levels and doubled the glucose infusion rate required to maintain a euglycaemic condition in the HF+L803-mts group compared with the HF group. Insulin failed to suppress the endogenous glucose production rate in the HF group while decreasing it by 75% in the HF+L803-mts group, accompanied by increased liver glycogen synthase activity and net hepatic glycogen synthesis. GSK3 inhibition also reduced peripheral insulin resistance. Plasma glucose disappearance rate increased by 60% in the HF+L803-mts group compared with the HF group. In addition, glucose uptake in heart and gastrocnemius muscle was markedly improved. Although mean arterial pressure increased following the HF diet, it did not change significantly during the 12 days of L803-mts treatment. CONCLUSIONS/INTERPRETATION These studies demonstrate that GSK3 inhibition improved hepatic and peripheral insulin resistance in a mouse model of HF-induced diabetes, but it failed to have an effect on BP. GSK3 may represent an important therapeutic target for insulin resistance.
Collapse
Affiliation(s)
- R Rao
- Division of Nephrology, Medical Center North, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Ahmad Banday A, Lokhandwala MF. Defective renal dopamine D1 receptor function contributes to hyperinsulinemia-mediated hypertension. Clin Exp Hypertens 2007; 28:695-705. [PMID: 17132536 DOI: 10.1080/10641960601013682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hyperinsulinemia is reported to play a role in hypertension, as abnormalities in blood pressure regulation and sodium handling exist in diabetes mellitus. Kidney dopamine promotes sodium excretion via the activation of renal D1 receptors. Because there is a close relationship between renal D1 receptor function and sodium excretion, it is hypothesized that a defect in this mechanism may contribute to decreased sodium excretion and hypertension during hyperinsulinemia. Renal D1 receptor function was studied in insulin-induced hypertension in male Sprague Dawley rats. Insulin pellets were implanted subcutaneously for controlled insulin release for three weeks; sham rats served as a control. Compared to control rats, insulin pellets increased plasma insulin levels by eight fold and decreased blood glucose by 40%. Insulin also caused a 22 mmHg increase in mean arterial blood pressure compared to control animals. The intravenous infusion of SKF-38393, a D1 receptor agonist, increased sodium excretion in control rats, but SKF-38393 failed to produce natriuresis in hyperinsulinemic animals. Renal proximal tubules from hyperinsulinemic rats had a reduced D1 receptor number, defective receptor-G protein coupling, and blunted SKF-38393 induced Na, K-ATPase inhibition. Insulin seems to reduce D1 receptor expression and coupling to the G-protein, leading to a reduced D1 receptor-mediated Na, K-ATPase inhibition, and a diminished natriuretic response to SKF-38393. These phenomena could account for sodium retention and hypertension associated with hyperinsulinemia.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/antagonists & inhibitors
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Blood Glucose/drug effects
- Dopamine Agonists/pharmacology
- GTP-Binding Proteins/metabolism
- Hyperinsulinism/complications
- Hyperinsulinism/metabolism
- Hypertension/etiology
- Hypertension/metabolism
- Insulin/pharmacology
- Kidney/drug effects
- Kidney/metabolism
- Male
- Rats
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/physiology
- Sodium/metabolism
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Sodium-Potassium-Exchanging ATPase/metabolism
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas 77204, USA
| | | |
Collapse
|
26
|
Wang H, Meng QH, Chang T, Wu L. Fructose-induced peroxynitrite production is mediated by methylglyoxal in vascular smooth muscle cells. Life Sci 2006; 79:2448-54. [PMID: 16950408 DOI: 10.1016/j.lfs.2006.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/31/2006] [Accepted: 08/11/2006] [Indexed: 11/18/2022]
Abstract
Methylglyoxal (MG), a highly reactive molecule, has been implicated in the development of insulin resistance. We investigated whether fructose, a precursor of MG, induced ONOO(-) generation and whether this process was mediated via endogenously increased MG formation. Fructose significantly increased MG generation in vascular smooth muscle cells (VSMCs) in a concentration and time dependent manner. The intracellular production of MG was increased by 153+/-23% or 259+/-28% after cells were treated 6 h with fructose (15 mM or 30 mM), compared with production from untreated cells (p<0.01, n=4 for each group). A significant increase in the production of ONOO(-), NO, and O(2)(*-), was found in the cells treated with fructose (15 mM) or MG (10 microM). Fructose- or MG-induced ONOO(-) generation was significantly inhibited by MG scavengers, including reduced glutathione or N-acetyl-l-cysteine, and by O(2)(*-) or NO inhibitors, such as diphenylene iodonium, superoxide dismutase or N-nitro-l-arginine methyl ester. Moreover, an enhanced iNOS expression was also observed in the cells treated directly with MG which was significantly inhibited when co-application with N-acetyl-l-cysteine. Our results demonstrated that fructose is capable of inducing a significant increase in ONOO(-) production, which is mediated by an enhanced formation of endogenous MG in VSMCs.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
| | | | | | | |
Collapse
|
27
|
Vasdev S, Gill V, Parai S, Gadag V. Low ethanol intake prevents salt-induced hypertension in WKY rats. Mol Cell Biochem 2006; 287:53-60. [PMID: 16685463 DOI: 10.1007/s11010-005-9058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 10/18/2005] [Indexed: 11/24/2022]
Abstract
Low alcohol intake in humans lowers the risk of coronary heart disease and may lower blood pressure. In hypertension, insulin resistance with altered glucose metabolism leads to increased formation of aldehydes. We have shown that chronic low alcohol intake decreased systolic blood pressure (SBP) and tissue aldehyde conjugates in spontaneously hypertensive rats and demonstrated a strong link between elevated tissue aldehyde conjugates and hypertension in salt-induced hypertensive Wistar-Kyoto (WKY) rats. This study investigated the antihypertensive effect of chronic low alcohol consumption in high salt-treated WKY rats and its effect on tissue aldehyde conjugates, platelet cytosolic free calcium ([Ca2+]i, and renal vascular changes. Animals, aged 7 weeks, were divided into three groups of six animals each. The control group was given normal salt diet (0.7% NaCl) and regular drinking water; the high salt group was given a high salt diet (8% NaCl) and regular drinking water; the high salt + ethanol group was given a high salt diet and 0.25% ethanol in drinking water. After 10 weeks, SBP, platelet [Ca2+]i, and tissue aldehyde conjugates were significantly higher in rats in the high salt group as compared with controls. Animals on high salt diets also showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidney. Ethanol supplementation prevented the increase in SBP and platelet [Ca2+]i and aldehyde conjugates in liver and aorta. Kidney aldehyde conjugates and renal vascular changes were attenuated. These results suggest that chronic low ethanol intake prevents salt-induced hypertension and attenuates renal vascular changes in WKY rats by preventing an increase in tissue aldehyde conjugates and cytosolic [Ca2+]i.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine Memorial University of Newfoundland St. John's, Newfoundland, A1B 3V6, Canada.
| | | | | | | |
Collapse
|
28
|
Wu L. Is methylglyoxal a causative factor for hypertension development?This paper is one of a selection of papers published in this Special Issue, entitled Young Investigator's Forum. Can J Physiol Pharmacol 2006; 84:129-39. [PMID: 16845897 DOI: 10.1139/y05-137] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypertension is a life-threatening disease that is associated with increased cardiovascular risks. Causes and mechanisms for hypertension development remain poorly understood. Methylglyoxal (MG), a highly reactive molecule, is a metabolite of sugar. Increased circulation and tissue levels of MG have been documented not only in diabetes but also in hypertension. Many recent studies also link MG-induced vascular damage to the pathogenic process of hypertension. As such, an etiological role of MG in hypertension development is proposed.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
29
|
Vasdev S, Gill V, Longerich L, Parai S, Gadag V. Salt-induced hypertension in WKY rats: prevention by alpha-lipoic acid supplementation. Mol Cell Biochem 2004; 254:319-26. [PMID: 14674712 DOI: 10.1023/a:1027354005498] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is strong evidence that points to excess dietary salt as a major factor contributing to the development of hypertension. Salt sensitivity is associated with glucose intolerance and insulin resistance in both animal models and humans. In insulin resistance, impaired glucose metabolism leads to elevated endogenous aldehydes which bind to vascular calcium channels, increasing cytosolic [Ca2+]i and blood pressure. In an insulin resistant animal model of hypertension, spontaneously hypertensive rats (SHRs), dietary supplementation with lipoic acid lowers tissue aldehydes and plasma insulin levels and normalizes blood pressure. The objective of this study is to examine the effects of a high salt diet on tissue aldehydes, cytosolic [Ca2+]i and blood pressure in WKY rats and to investigate whether dietary supplementation with lipoic acid can prevent a salt induced increase in blood pressure. Starting at 7 weeks of age, WKY rats were divided into three groups of six animals each and treated for 10 weeks with diets as follows: WKY-normal salt (0.7% NaCl); WKY-high salt (8% NaCl); WKY-high salt + lipoic acid (8% NaCl diet + lipoic acid 500 mg/Kg feed). At completion, animals in the high salt group had elevated systolic blood pressure, platelet [Ca2+]i, and tissue aldehyde conjugates compared with the normal salt group and showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidneys. Dietary alpha-lipoic acid supplementation in high salt-treated WKY rats normalized systolic blood pressure and cytosolic [Ca2+]i and aldehydes in liver and aorta. Kidney aldehydes and renal vascular changes were attenuated, but not normalized.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Department of Medicine and Laboratory Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's Newfoundland, Canada.
| | | | | | | | | |
Collapse
|
30
|
Catena C, Cavarape A, Novello M, Giacchetti G, Sechi LA. Insulin receptors and renal sodium handling in hypertensive fructose-fed rats. Kidney Int 2004; 64:2163-71. [PMID: 14633139 DOI: 10.1046/j.1523-1755.2003.00313.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Insulin resistance and hypertension are present in Sprague-Dawley rats fed a fructose-enriched diet. In these rats, insulin might elevate blood pressure via an antinatriuretic action. METHODS To investigate the sodium-insulin interaction in fructose-fed rats, we compared insulin sensitivity, insulin receptor binding, and insulin receptor mRNA levels in the kidney and skeletal muscle of rats that were fed standard rat chow or a fructose-enriched diet (66%) with either low (0.07%), normal (0.3%), or high (7.5%) NaCl concentrations for 3 weeks. RESULTS Systolic blood pressure increased in the fructose-fed rats receiving the normal and high-salt diet, but not the low-salt diet. When the rats were fed the low-salt diet, the rate of glucose infusion required to maintain euglycemia during a hyperinsulinemic clamp and insulin receptor number and mRNA levels in skeletal muscle were lower in fructose-fed than control rats. High-salt diet decreased significantly the rate of glucose disposal during the clamp and muscular insulin receptor number and mRNA levels in control, but not fructose-fed rats. During the low-salt diet, renal insulin receptor number and mRNA levels were comparable in fructose-fed and control rats and hyperinsulinemia had comparable acute antinatriuretic effects in the two groups; when the rats were maintained on the high-salt diet, the expected decrease in renal insulin receptor number and mRNA levels occurred in control but not fructose-fed rats and, consistent with this finding, the antinatriuretic response to hyperinsulinemia was blunted only in controls. An inverse relationship between dietary NaCl content and renal insulin receptor mRNA levels was observed in control but not fructose-fed rats. CONCLUSION Fructose-fed rats appear to have lost the feedback mechanism that limits insulin-induced sodium retention through a down-regulation of the renal insulin receptor when the dietary NaCl content is increased. This abnormality might possibly contribute to the elevation of blood pressure in these rats.
Collapse
Affiliation(s)
- Cristiana Catena
- Clinica Medica, Hypertension Unit, Department of Experimental and Clinical Pathology and Medicine, University of Udine, Udine, Italy
| | | | | | | | | |
Collapse
|
31
|
Savelli JL, Narce M, Fustier V, Poisson JP. Liver oleic acid biogenesis is impaired during the prehypertensive period in the spontaneously hypertensive rat. Prostaglandins Leukot Essent Fatty Acids 2003; 69:27-32. [PMID: 12878447 DOI: 10.1016/s0952-3278(03)00052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we have investigated the liver microsomal stearic acid delta9 desaturation, and the fatty acid composition of liver microsomal total lipids in 10- and 30-day-old spontaneously hypertensive rats (SHRs), compared to the normotensive Wistar Kyoto (WKY) control rats. So as to avoid any influence related to the diet, the composition of the milk being different in SHR and WKY strains, the pups were suckled by adoptive normotensive female Wistar. After weaning, the 30-day-old rats were fed a standard commercial diet and then killed. Our results show lower liver microsomal delta9 desaturase activities in the 10- and 30-day-old SHR versus the WKY of the same age. The fatty acid composition of the SHR liver microsomal total lipids are not in agreement with the changes in the delta9 desaturase activities at the two studied ages. This phenomenon depends not only on desaturation/elongation but also on other interacting aspects of lipid metabolism including oxidation, substrate availability, acyl exchange, and eicosanoid synthesis, as well as hormonal status.
Collapse
|
32
|
Savelli JL, Narce M, Fustier V, Poisson JP. Composition en acides gras des hémisphères cérébraux de rats spontanément hypertendus allaités par des femelles Wistar. C R Biol 2003; 326:543-52. [PMID: 14558474 DOI: 10.1016/s1631-0691(03)00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Total lipid fatty acid composition was investigated in brain hemispheres of male Spontaneously Hypertensive Rats (SHR), compared with normotensive Wistar Kyoto rats (WKY) used as controls. Both strains were suckled by adoptive Wistar mothers, and then fed a standard diet after weaning. No difference was observed between the two hemispheres of WKY killed either at 10 or 30 days. In SHR killed at 10 days, the two hemispheres showed differences, SHR left hemispheres exhibiting greater fatty acid composition changes than those of WKY, phenomenon that toned down at 30 days. Hence, SHR pups showed a different total lipid fatty acid composition of their brain hemispheres when compared with their WKY controls, though the two strains received the same diet. Genetically programmed hypertension might be, directly or not, involved in these changes.
Collapse
Affiliation(s)
- Jean-Luc Savelli
- Faculté des sciences et techniques, université de Corse, Corté, France
| | | | | | | |
Collapse
|
33
|
Savelli JL, Narce M, Fustier V, Poisson JP. Desaturase activities are depleted before and after weaning in liver microsomes of spontaneously hypertensive rats. Prostaglandins Leukot Essent Fatty Acids 2002; 66:541-7. [PMID: 12144877 DOI: 10.1054/plef.2002.0397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present study, we have investigated the microsomal linoleic acid desaturation steps into arachidonic acid in 10- and 30-day-old spontaneously hypertensive rats (SHR), as compared to their normotensive control rats, Wistar Kyoto (WKY). Suckled by adoptive Wistar normotensive female, the SHR and WKY were fed the same diet. Our results show lower Delta 6 and Delta 5 desaturase activities (the limiting steps in the bioconversion of linoleic acid into arachidonic acid) in the young SHR, as compared to the WKY normotensive rats. The fatty acid composition of liver microsomal total lipids evidences a higher proportion of linoleic acid in SHR than in WKY, in agreement with the partially depleted desaturase activities. Such a loss of desaturase activities may be under the control of hormones involved in the regulation of SHR blood pressure.
Collapse
|
34
|
Bikhazi AB, Azar ST, Birbari AE, El-Zein GN, Haddad GE, Haddad RE, Bitar KM. Characterization of insulin-resistance: role of receptor alteration in insulin-dependent diabetes mellitus, essential hypertension and cardiac hypertrophy. Eur J Pharm Sci 2000; 11:299-306. [PMID: 11033073 DOI: 10.1016/s0928-0987(00)00110-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin-resistance is associated with a number of disease states such as diabetes, syndrome X, and hypertension. These situations may be coupled to insulin-resistance through the insulin signaling system as a common pathway. The purpose of this study was to investigate the receptor binding alterations in streptozotocin-induced diabetic rats, spontaneously hypertensive rats and aortocaval shunted rats (eccentric cardiac hypertrophy). A physical model describing a 1:1 stoichiometry of ligand binding with its receptor is proposed describing reversible binding of [(125)I]insulin or [(125)I]IGF-1 at the microvascular endothelial as well as with the cardiac myocytes after CHAPS-treatment. Analysis of the collected effluents are curve-fitted with a conservation equation and a first-order Bessel function which allowed the calculation of the forward binding constants (k(n)), the reversible constants (k(-n)), the dissociation constants (k(d)) and the residency time constants (tau). The results showed that streptozotocin-induced diabetic rats showed insulin-resistance through alterations in the kinetics of insulin receptor binding. The normotensive controls of the spontaneously hypertension rats (SHR) carry themselves insulin-resistant receptors whose binding to insulin worsens in the hypertensive SHR. Negative cooperativity between insulin-like growth factor IGF-1 and insulin receptors could be a causative factor predisposing for insulin-resistance in the aortocaval shunted rats to insulin resistance. The defects may be occurring at the receptor level in insulin-dependent diabetes mellitus, Wistar-Kyoto rats and spontaneously hypertensive rats. In conclusion, alterations in the kinetics of insulin binding to its receptor seem to play a central role for the initiation of insulin-resistance during the various pathophysiological states.
Collapse
Affiliation(s)
- A B Bikhazi
- Department of Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- E Faloia
- Department Internal of Medicine, University of Ancona, Italy.
| | | | | |
Collapse
|
36
|
Sechi LA. Mechanisms of insulin resistance in rat models of hypertension and their relationships with salt sensitivity. J Hypertens 1999; 17:1229-37. [PMID: 10489099 DOI: 10.1097/00004872-199917090-00001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several lines of evidence suggest that insulin resistance and the resultant hyperinsulinaemia are causally related to hypertension. Insulin actions are initiated by binding to a high-affinity transmembrane protein receptor which is present in all mammalian cells. These effects are predominant in skeletal muscle, liver, and fat and involve a number of tissue-specific and biochemically diverse events. Less well known are effects of insulin occurring in tissues not usually considered as insulin targets, which are hypothetical contributors to the pro-hypertensive action of the hormone. These effects include activation of renal sodium reabsorption, stimulation of the sympathetic nervous system, growth-promoting activity on vascular smooth muscle cells, and modulation of transmembrane cation transport. Epidemiological investigations have implicated sodium intake in the pathogenesis of hypertension. Because of the sodium-retaining effects of insulin, it has been postulated that insulin resistance with associated hyperinsulinaemia may be critical for the pathogenesis of salt-sensitivity in essential hypertensive subjects. Insulin resistance is present also in strains of rats with genetic hypertension that can be utilized as models to study the molecular mechanisms of this abnormality. In the present article, we summarize the current knowledge of the mechanisms of insulin resistance in rat models of arterial hypertension in which decreased sensitivity to insulin occurs and propose a rationale hypothesis that links insulin resistance with salt-sensitivity and hypertension.
Collapse
Affiliation(s)
- L A Sechi
- Department of Internal Medicine, University of Udine School of Medicine, Italy.
| |
Collapse
|
37
|
Bikhazi AB, Saadeh FA, Haddad RE, Nahle ZA, Abou Fares MF, Bitar KM, Birbari AE. Insulin-receptor binding characteristics in perfused SHR and WKY rat hearts. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 120:127-36. [PMID: 9827025 DOI: 10.1016/s0742-8413(98)00033-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work uses a new heart-perfusion technique to measure 125I-insulin binding on capillary endothelium and myofiber cell membranes in Wistar-Kyoto and spontaneously hypertensive rats. Ringer-Lock buffer was infused at a rate of 1 ml min-1 in the presence of 20 meq l-1 K+ and 125I-insulin through an aortic cannula. The effluent was collected through a catheter introduced into the right atrium. The capillary endothelial lining was removed by detergent treatment to expose the cardiac myocyte surfaces. A physical model describing a 1:1 binding stoichiometry of 125I-insulin with its receptors is proposed and the derived mathematical equations allow for the calculation of binding constants (kn), unbinding constants (k-n), dissociation constants (kd), and residency time constants (tau). The results showed that in the spontaneously hypertensive rats' hearts significant alterations were not noticed in the kinetics of insulin binding with its receptor at the capillary endothelial site compared to hearts of the normotensive control Wistar-Kyoto rats. However, at the myocyte site and in the spontaneously hypertensive rats, steric, configurational, and/or structural modifications for insulin binding with the receptor were observed as indicated by changes in insulin affinity for its receptor. Hence, alterations in insulin binding rather than reduction in insulin receptor number due to hyperinsulinemia, can be considered among the peculiarities of insulin resistance in the spontaneously hypertensive rats. Hyperinsulinemia, therefore, may be considered an upregulatory process as a consequence of insulin-resistance. The results support the hypothesis that insulin-resistance on the myocytes could be a pathophysiologic defect in insulin-receptor structure, function and affinity, and therefore myocardial function.
Collapse
Affiliation(s)
- A B Bikhazi
- Department of Physiology, Faculty of Medicine, American University of Beirut, Lebanon.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lou Y, Zee RY, Li M, Morris BJ. Insulin receptor exon 11+/- isoform mRNA in spontaneously hypertensive and adrenocorticotropin-hypertensive rats. J Hypertens 1998; 16:1009-14. [PMID: 9794742 DOI: 10.1097/00004872-199816070-00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test the hypothesis that insulin resistance of the spontaneously hypertensive rat (SHR) and adrenocorticotropin-hypertensive rat is related to a difference in the proportion of the functionally different, alternatively spliced exon 11 isoforms of the insulin receptor. DESIGN We determined the proportions of mRNA for the exon 11+ and exon 11- isoforms in various tissues of SHR and Wistar-Kyoto rats aged 3, 6, 9 and 12 weeks, which span the pre-hypertensive phase through to established hypertension, as well as in Sprague-Dawley rats with adrenocorticotropin-induced hypertension and Sprague-Dawley controls. METHODS Detection of mRNA involved a reverse-transcriptase polymerase chain reaction technique specific for each isoform and quantification was by slot and dot blot hybridization. RESULTS Mean proportions of exon 11+ mRNA in SHR, Wistar-Kyoto rats, adrenocorticotropin-hypertensive rats and Sprague-Dawley control rats at each age were 95% for liver, 82% for adipose tissue, 77% for kidney, 66% for adrenal, 53% for heart, 26% for cerebral cortex, 23% for hypothalamus, and 3% for skeletal muscle. There was also no difference in concentration of total insulin receptor mRNA. CONCLUSIONS The absence of any difference in proportions of insulin receptor mRNA isoforms argues against the hypothesis that an alteration of differential splicing plays a role in the models of hypertension studied.
Collapse
Affiliation(s)
- Y Lou
- Department of Physiology and Institute for Biomedical Research, The University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
39
|
Marita AR, Desai A, Mokal R, Agarkar RY, Dalal KP. Association of insulin resistance to electrocardiographic changes in non obese Asian Indian subjects with hypertension. Endocr Res 1998; 24:215-33. [PMID: 9738699 DOI: 10.1080/07435809809135530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To investigate the relationship between insulin resistance and electrocardiographic changes in hypertension in the absence of confounding influences, plasma glucose and insulin responses to oral glucose were studied in 26 normotensive and 38 hypertensive subjects. Resting ECG was taken and classified into normal or abnormal using the Minnesota code. Among the 38 subjects, 16 had ECG abnormalities. All the hypertensive subjects had normal glucose tolerance. Serum insulin response of hypertensive subjects with ECG changes was 43% higher than those of hypertensive subjects without ECG changes and of normotensive subjects. The ratio AUC glucose/AUC insulin, a measure of insulin sensitivity was significantly reduced in subjects with abnormal ECG. Serum LDL cholesterol was significantly elevated and was the highest in hypertensive subjects with abnormal ECG. The ratio, Total Cholesterol/HDL Cholesterol was elevated to 5.81+/-0.47. I(125)-insulin binding to erythrocytes from 6 normotensive subjects, and 16 hypertensive subjects (8 with and 8 without ECG abnormalities) indicated 50% reduction in insulin receptor number in both the groups of hypertensive subjects compared to normotensive subjects. Multiple logistic regression analysis using mean blood pressure, serum total cholesterol, LDL cholesterol/HDL cholesterol, sex, insulin level at 60 min in OGTT, treatment, serum triglyceride, presence of family history of diabetes, CHD, hypertension and tobacco as independent variables causing ECG changes, revealed correct classification in 84% of cases. Among the variables, insulin level in OGTT contributed the most to ECG abnormalities. The data suggest that in the non obese, non diabetic Asian Indian hypertensive subjects, the presence of electrocardiographic abnormalities might be partly related to hyperinsulinemia or insulin resistance in them.
Collapse
Affiliation(s)
- A R Marita
- Sir Hurkisondas Nurrotumdas Medical Research Society, Mumbai, India
| | | | | | | | | |
Collapse
|
40
|
Abstract
The first molecular genetic association with human essential hypertension (HT) involved the insulin receptor gene (INSR). This highly significant result in Caucasians was for an insertion/deletion polymorphism in intron 9. A polymorphism in exon 8 showed a weak association, but a microsatellite in intron 2 proved negative for HT, although has shown an association with plasma insulin in Japanese. A similar spectrum of genetic associations for variants spanning INSR has been noted for insulin-dependent diabetic patients with rapidly-progressing renal disease, a subgroup having a strong family history of essential HT. Association with HT has also been found for an INSR variant in CHinese. Insulin resistance secondary to an INSR 'defect', or other causes, would increase insulin, which has cardiovascular effects, and insulin can raise angiotensinogen. Also, insulin is co-secreted with amylin, which can increase renin secretion. In the spontaneously HT rat there is evidence for reduced down-regulation of INSR expression in response to NaCl-loading, consistent with a promoter effect. When combined with observations of insulin resistance in essential HT patients and their pre-HT offspring, the possibility of dys-regulation of INSR merits attention in disease etiology in a proportion of essential HT patients.
Collapse
Affiliation(s)
- B J Morris
- Department of Physiology, University of Sydney, NSW, Australia
| |
Collapse
|