1
|
Lorentzen LG, Yeung K, Zitkeviciute A, Yang-Jensen KC, Eldrup N, Eiberg JP, Davies MJ. N-Terminal Proteomics Reveals Distinct Protein Degradation Patterns in Different Types of Human Atherosclerotic Plaques. J Proteome Res 2025; 24:144-157. [PMID: 39665830 DOI: 10.1021/acs.jproteome.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Atherosclerotic plaque rupture is a major cause of cardiovascular events. Plaque destabilization is associated with extracellular matrix (ECM) modification involving proteases which generate protein fragments with new N-termini. We hypothesized that rupture-prone plaques would contain elevated fragment levels, and their sequences would allow identification of active proteases and target proteins. Plaques from 21 patients who underwent surgery for symptomatic carotid artery stenosis were examined in an observational/cross-sectional study. Plaques were analyzed by liquid chromatography-mass spectrometry for the presence of N-terminal fragments. 33920 peptides were identified, with 17814 being N-terminal species. 5735 distinct N-terminal peptides were quantified and subjected to multidimensional scaling analysis and consensus clustering. These analyses indicated three clusters, which correlate with gross macroscopic plaque morphology (soft/mixed/hard), ultrasound classification (echolucent/echogenic), and the presence of hemorrhage/ulceration. Differences in the fragment complements are consistent with plaque-type-dependent turnover and degradation pathways. Identified peptides include signal and pro-peptides from synthesis and those from protein fragmentation. Sequence analysis indicates that targeted proteins include ECM species and responsible proteases (meprins, cathepsins, matrix metalloproteinases, elastase, and kallikreins). This study provides a large data set of peptide fragments and proteases present in plaques of differing stability. These species may have potential as biomarkers for improved atherosclerosis risk profiling.
Collapse
Affiliation(s)
- Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen─Rigshospitalet, Copenhagen 2100, Denmark
| | - Karin Yeung
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen─Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Auguste Zitkeviciute
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Karen C Yang-Jensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nikolaj Eldrup
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen─Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jonas P Eiberg
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen─Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Copenhagen Academy for Medical Education and Simulation, Capital Region of Denmark, Copenhagen 2100, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
2
|
Nádasy GL, Balla A, Dörnyei G, Hunyady L, Szekeres M. Direct Vascular Effects of Angiotensin II (A Systematic Short Review). Int J Mol Sci 2024; 26:113. [PMID: 39795971 PMCID: PMC11719566 DOI: 10.3390/ijms26010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies. All blood vessels respond to stimulation by Ang II; the immediate response is smooth muscle contraction, increasing vascular resistance, and elevating blood pressure. Such effects are conveyed by type 1 angiotensin receptors (AT1Rs) located in the plasma membrane of both endothelial and vascular smooth muscle cells. AT1Rs are heterotrimeric G protein-coupled receptors (GPCRs), but their signal pathways are much more complicated than other GPCRs. In addition to Gq/11, the G12/13, JAK/STAT, Jnk, MAPK, and ERK 1/2, and arrestin-dependent and -independent pathways are activated because of the promiscuous attachment of different signal proteins to the intracellular G protein binding site and to the intracellular C terminal loop. Substantial changes in protein expression follow, including the intracellular inflammation signal protein NF-κB, endothelial contact proteins, cytokines, matrix metalloproteinases (MMPs), and type I protocollagen, eliciting the inflammatory transformation of endothelial and vascular smooth muscle cells and fibrosis. Ang II is an important contributor to vascular pathologies in hypertensive, atherosclerotic, and aneurysmal vascular wall remodeling. Such direct vascular effects are reviewed. In addition to reducing blood pressure, AT1R antagonists and ACE inhibitors have a beneficial effect on the vascular wall by inhibiting pathological wall remodeling.
Collapse
Affiliation(s)
- György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| |
Collapse
|
3
|
Berillo O, Schiffrin EL. Advances in Understanding of the Role of Immune Cell Phenotypes in Hypertension and Associated Vascular Disease. Can J Cardiol 2024; 40:2321-2339. [PMID: 39154911 DOI: 10.1016/j.cjca.2024.08.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Many studies in the past 20 years have identified a contribution of inflammation and immune mechanisms to the pathophysiology of hypertension. Innate and adaptive immunity participate in this process. Among innate immune cells, macrophages and monocytes as well as dendritic cells, myeloid-derived suppressor cells, and neutrophils directly or via formation of neutrophil extracellular traps, play roles in the modulation of the inflammatory response in hypertension. Among adaptive immune cells, T and B cells have been implicated to varying degrees, particularly interleukin (IL)-17- and interferon γ-producing T lymphocytes, antagonized by T regulatory lymphocytes that are anti-inflammatory via production of IL-10. Among T cells that produce abundant IL-17, γδ T cells are unconventional T lymphocytes that are infrequent in the circulation in contrast to the much more abundant circulating αβ T lymphocytes, but are found mostly in tissues, and appear to play a role in triggering and sustaining inflammation in hypertension leading to vascular and renal injury. This review will provide an overview of these different immune cell phenotypes involved in the immune pathophysiology of hypertension and associated vascular disease.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Wang Q, An J, Zhou W, Zhang Y, Huang J, Liao G, Wang M, Xia L, Le A, Zhu J. S-adenosyl-L-methionine supplementation alleviates aortic dissection by decreasing inflammatory infiltration. Nutr Metab (Lond) 2024; 21:67. [PMID: 39160585 PMCID: PMC11331618 DOI: 10.1186/s12986-024-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024] Open
Abstract
Methionine, an indispensable amino acid crucial for dietary balance, intricately governs metabolic pathways. Disruption in its equilibrium has the potential to heighten homocysteine levels in both plasma and tissues, posing a conceivable risk of inducing inflammation and detriment to the integrity of vascular endothelial cells. The intricate interplay between methionine metabolism, with a specific focus on S-adenosyl-L-methionine (SAM), and the onset of thoracic aortic dissection (TAD) remains enigmatic despite acknowledging the pivotal role of inflammation in this vascular condition. In an established murine model induced by β-aminopropionitrile monofumarate (BAPN), we delved into the repercussions of supplementing with S-adenosyl-L-methionine (SAM) on the progression of TAD. Our observations uncovered a noteworthy improvement in aortic dissection and rupture rates, accompanied by a marked reduction in mortality upon SAM supplementation. Notably, SAM supplementation exhibited a considerable protective effect against BAPN-induced degradation of elastin and the extracellular matrix. Furthermore, SAM supplementation demonstrated a robust inhibitory influence on the infiltration of immune cells, particularly neutrophils and macrophages. It also manifested a notable reduction in the inflammatory polarization of macrophages, evident through diminished accumulation of MHC-IIhigh macrophages and reduced expression of inflammatory cytokines such as IL1β and TNFα in macrophages. Simultaneously, SAM supplementation exerted a suppressive effect on the activation of CD4 + and CD8 + T cells within the aorta. This was evidenced by an elevated proportion of CD44- CD62L + naïve T cells and a concurrent decrease in CD44 + CD62L- effector T cells. In summary, our findings strongly suggest that the supplementation of SAM exhibits remarkable efficacy in alleviating BAPN-induced aortic inflammation, consequently impeding the progression of thoracic aortic dissection.
Collapse
Affiliation(s)
- Qian Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun An
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Wei Zhou
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Yujing Zhang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Jiang Huang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Geping Liao
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Mingzhe Wang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Lingbo Xia
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Jianbing Zhu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Hypertension Research Institute, Nanchang, China.
| |
Collapse
|
5
|
Tan JY, Anderson DE, Rathore AP, O’Neill A, Mantri CK, Saron WA, Lee CQ, Cui CW, Kang AE, Foo R, Kalimuddin S, Low JG, Ho L, Tambyah P, Burke TW, Woods CW, Chan KR, Karhausen J, St. John AL. Mast cell activation in lungs during SARS-CoV-2 infection associated with lung pathology and severe COVID-19. J Clin Invest 2023; 133:e149834. [PMID: 37561585 PMCID: PMC10541193 DOI: 10.1172/jci149834] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in patients who are severely ill, and the pathophysiology of disease is thought to be immune mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens and often promote inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and nonhuman primates. Using a mouse model of MC deficiency, MC-dependent interstitial pneumonitis, hemorrhaging, and edema in the lung were observed during SARS-CoV-2 infection. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype in severe disease. MC activation in humans was confirmed through detection of MC-specific proteases, including chymase, the levels of which were significantly correlated with disease severity and with biomarkers of vascular dysregulation. These results support the involvement of MCs in lung tissue damage during SARS-CoV-2 infection in animal models and the association of MC activation with severe COVID-19 in humans, suggesting potential strategies for intervention.
Collapse
Affiliation(s)
- Janessa Y.J. Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Danielle E. Anderson
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Abhay P.S. Rathore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Aled O’Neill
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | | | - Cheryl Q.E. Lee
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore
| | - Chu Wern Cui
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore
| | - Adrian E.Z. Kang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Randy Foo
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Shirin Kalimuddin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jenny G. Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Lena Ho
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore
| | - Paul Tambyah
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Infectious Disease, University Medicine Cluster, National University Hospital, Singapore
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Division of Infectious Diseases, Duke University Medical Center, Durham VA Medical Center, Durham, North Carolina, USA
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Jörn Karhausen
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley L. St. John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Microbiology and Immunology, National University of Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore
| |
Collapse
|
6
|
Perumal R, Shunmugam L, Naidoo K, Wilkins D, Garzino-Demo A, Brechot C, Vahlne A, Nikolich J. Biological mechanisms underpinning the development of long COVID. iScience 2023; 26:106935. [PMID: 37265584 PMCID: PMC10193768 DOI: 10.1016/j.isci.2023.106935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
As COVID-19 evolves from a pandemic to an endemic disease, the already staggering number of people that have been or will be infected with SARS-CoV-2 is only destined to increase, and the majority of humanity will be infected. It is well understood that COVID-19, like many other viral infections, leaves a significant fraction of the infected with prolonged consequences. Continued high number of SARS-CoV-2 infections, viral evolution with escape from post-infection and vaccinal immunity, and reinfections heighten the potential impact of Long COVID. Hence, the impact of COVID-19 on human health will be seen for years to come until more effective vaccines and pharmaceutical treatments become available. To that effect, it is imperative that the mechanisms underlying the clinical manifestations of Long COVID be elucidated. In this article, we provide an in-depth analysis of the evidence on several potential mechanisms of Long COVID and discuss their relevance to its pathogenesis.
Collapse
Affiliation(s)
- Rubeshan Perumal
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
- Department of Pulmonology and Critical Care, Division of Internal Medicine, School of Clinical Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, USA
| | - Letitia Shunmugam
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
| | - Kogieleum Naidoo
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
| | - Dave Wilkins
- The Global Virus Network, Baltimore, MD 21201, USA
| | - Alfredo Garzino-Demo
- The Global Virus Network, Baltimore, MD 21201, USA
- Department of Molecular Medicine, University of Padova, Padova 1- 35129, Italy
| | - Christian Brechot
- The Global Virus Network, Baltimore, MD 21201, USA
- Infectious Disease and International Health, University of South Florida, Tampa, FL 33620, USA
| | - Anders Vahlne
- The Global Virus Network, Baltimore, MD 21201, USA
- Division of Clinical Microbiology, Karolinska Institute, Stockholm 17165, Sweden
| | - Janko Nikolich
- The Global Virus Network, Baltimore, MD 21201, USA
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
7
|
St John AL, Rathore APS, Ginhoux F. New perspectives on the origins and heterogeneity of mast cells. Nat Rev Immunol 2023; 23:55-68. [PMID: 35610312 DOI: 10.1038/s41577-022-00731-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/06/2023]
Abstract
Mast cells are immune cells of the haematopoietic lineage that are now thought to have multifaceted functions during homeostasis and in various disease states. Furthermore, while mast cells have been known for a long time to contribute to allergic disease in adults, recent studies, mainly in mice, have highlighted their early origins during fetal development and potential for immune functions, including allergic responses, in early life. Our understanding of the imprinting of mast cells by particular tissues of residence and their potential for regulatory interactions with organ systems such as the peripheral immune, nervous and vascular systems is also rapidly evolving. Here, we discuss the origins of mast cells and their diverse and plastic phenotypes that are influenced by tissue residence. We explore how divergent phenotypes and functions might result from both their hard-wired 'nature' defined by their ontogeny and the 'nurture' they receive within specialized tissue microenvironments.
Collapse
Affiliation(s)
- Ashley L St John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Florent Ginhoux
- Singapore Immunology Network, A*STAR, Singapore, Singapore.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
8
|
Bian H, Wang Y, Wu P, Han N, Wang L, Li X, Zhang X, Cho K, Zhang Y, Yin J, Jiang B. Rosmarinic Acid Suppresses Abdominal Aortic Aneurysm Progression in Apolipoprotein E-deficient Mice. PLANTA MEDICA 2022; 88:899-912. [PMID: 34741296 DOI: 10.1055/a-1659-3908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An abdominal aortic aneurysm is a life-threatening cardiovascular disorder caused by dissection and rupture. No effective medicine is currently available for the > 90% of patients whose aneurysms are below the surgical threshold. The present study investigated the impact of rosmarinic acid, salvianolic acid C, or salvianolic acid B on experimental abdominal aortic aneurysms. Abdominal aortic aneurysms were induced in apolipoprotein E-deficient mice via infusion of angiotensin II for 4 wks. Rosmarinic acid, salvianolic acid C, salvianolic acid B, or doxycycline as a positive control was provided daily through intraperitoneal injection. Administration of rosmarinic acid was found to decrease the thickness of the aortic wall, as determined by histopathological assay. Rosmarinic acid also exhibited protection against elastin fragmentation in aortic media and down-regulated cell apoptosis and proliferation in the aortic adventitia. Infiltration of macrophages, T lymphocytes, and neutrophils in aortic aneurysms was found, especially at the aortic adventitia. Rosmarinic acid, salvianolic acid C, or salvianolic acid B inhibited the infiltration on macrophages specifically, but these compounds did not influence T lymphocytes and neutrophils. Expression of matrix metalloproteinase 9 and macrophage migration inhibitory factor significantly increased in aortic aneurysms. Rosmarinic acid and salvianolic acid C decreased the expression of matrix metalloproteinase-9 in media, and rosmarinic acid also tended to reduce migration inhibitory factor expression. Further then, partial least squares-discriminate analysis was used to classify metabolic changes among different treatments. Rosmarinic acid affected most of the metabolites in the biosynthesis of the citrate cycle, fatty acid pathway significantly. Our present study on mice demonstrated that rosmarinic acid inhibited multiple pathological processes, which were the key features important in abdominal aortic aneurysm formation. Further study on rosmarinic acid, the novel candidate for aneurysmal therapy, should be undertaken to determine its potential for clinical use.
Collapse
Affiliation(s)
- Huimiao Bian
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Wang
- West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Peng Wu
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Na Han
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
| | - Linlin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - XianJing Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kenka Cho
- Takarazuka University of Medical and Health Care, Hanayashiki-Midorigaoka, Takarazuka-city, Japan
| | - Yongyu Zhang
- West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Jun Yin
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Liu H, Zhang Y, Song W, Sun Y, Jiang Y. Osteopontin N-Terminal Function in an Abdominal Aortic Aneurysm From Apolipoprotein E-Deficient Mice. Front Cell Dev Biol 2021; 9:681790. [PMID: 34458254 PMCID: PMC8397420 DOI: 10.3389/fcell.2021.681790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
The cleavage of osteopontin (OPN) by thrombin results in an N-terminal fragment (OPN-N), which exposes a cryptic integrin-binding motif that promotes the adherence of cells, and plays a proinflammatory role. However, the effect of OPN-N on abdominal aortic aneurysm (AAA) remains unknown. The aim of this study was to investigate the expression of OPN-N in aortic tissue samples obtained from patients, who underwent acute aortic dissection (AD), and normal aorta, effect of OPN-N on angiotensin (Ang) II-induced AAA in mice, and relationship between OPN-N and pyroptosis-related inflammatory factors in vitro. Hematoxylin and eosin staining was conducted to detect histological changes. Next, we detected the expression of the OPN-N protein. Additionally, ApoE−/− mice were divided into four groups: control, control + M5Ab (to block the OPN-N function in mice), Ang II, and Ang II + M5Ab. All mice were euthanized after a 28-day infusion and whole aortas, including thoracic and abdominal aortas, were collected for morphological and histological analysis of the AAA. The OPN-N protein expression was higher in patients with AD than in normal individuals, while histological changes in the aortas of Ang II mice were suppressed in Ang II + M5Ab mice. The expression of OPN-N, NOD-, LRR-, and pyrin domain-containing protein 3, pro-Caspase-1, ASC, Gasdermin-d, interleukin (IL)-18, IL-1β, matrix metalloproteinase (MMP) 2, and MMP9 was lower in the Ang II + M5Ab group than in the Ang II group. The gene expression of monocyte chemoattractant protein-1, IL-6, and tumor necrosis factor-α was suppressed in the aortic tissues of the Ang II + M5Ab group compared with the Ang II group. Moreover, the expression of α-smooth muscle actin was lower in the Ang II group than in the Ang II + M5Ab group. In vitro results showed that the increase in the expression of pyroptosis-related inflammatory factors induced by OPN was mediated through the nuclear factor (NF)-κB pathway. In conclusion, OPN-N promotes AAA by increasing the expression of pyroptosis-related inflammatory factors through the NF-κB pathway, inflammation, and extracellular matrix degradation. These results highlight the potential of OPN-N as a new therapeutic target to prevent AAA expansion.
Collapse
Affiliation(s)
- Hongyang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Song
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yancui Sun
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yinong Jiang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Preventing microalbuminuria with benazepril, valsartan, and benazepril-valsartan combination therapy in diabetic patients with high-normal albuminuria: A prospective, randomized, open-label, blinded endpoint (PROBE) study. PLoS Med 2021; 18:e1003691. [PMID: 34260595 PMCID: PMC8279302 DOI: 10.1371/journal.pmed.1003691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) prevent microalbuminuria in normoalbuminuric type 2 diabetic patients. We assessed whether combined therapy with the 2 medications may prevent microalbuminuria better than ACE inhibitor or ARB monotherapy. METHODS AND FINDINGS VARIETY was a prospective, randomized, open-label, blinded endpoint (PROBE) trial evaluating whether, at similar blood pressure (BP) control, combined therapy with benazepril (10 mg/day) and valsartan (160 mg/day) would prevent microalbuminuria more effectively than benazepril (20 mg/day) or valsartan (320 mg/day) monotherapy in 612 type 2 diabetic patients with high-normal albuminuria included between July 2007 and April 2013 by the Istituto di Ricerche Farmacologiche Mario Negri IRCCS and 8 diabetology or nephrology units in Italy. Time to progression to microalbuminuria was the primary outcome. Analyses were intention to treat. Baseline characteristics were similar among groups. During a median [interquartile range, IQR] follow-up of 66 [42 to 83] months, 53 patients (27.0%) on combination therapy, 57 (28.1%) on benazepril, and 64 (31.8%) on valsartan reached microalbuminuria. Using an accelerated failure time model, the estimated acceleration factors were 1.410 (95% CI: 0.806 to 2.467, P = 0.229) for benazepril compared to combination therapy, 0.799 (95% CI: 0.422 to 1.514, P = 0.492) for benazepril compared to valsartan, and 1.665 (95% CI: 1.007 to 2.746, P = 0.047) for valsartan compared to combination therapy. Between-group differences in estimated acceleration factors were nonsignificant after adjustment for predefined confounders. BP control was similar across groups. All treatments were safe and tolerated well, with a slight excess of hyperkalemia and hypotension in the combination therapy group. The main study limitation was the lower than expected albuminuria at inclusion. CONCLUSIONS Risk/benefit profile of study treatments was similar. Dual renin-angiotensin system (RAS) blockade is not recommended as compared to benazepril or valsartan monotherapy for prevention of microalbuminuria in normoalbuminuric type 2 diabetic patients. TRIAL REGISTRATION EudraCT 2006-005954-62; ClinicalTrials.gov NCT00503152.
Collapse
|
11
|
Tan J, Anderson DE, Rathore APS, O'Neill A, Mantri CK, Saron WAA, Lee C, Cui CW, Kang AEZ, Foo R, Kalimuddin S, Low JG, Ho L, Tambyah P, Burke TW, Woods CW, Chan KR, Karhausen J, John ALS. Signatures of mast cell activation are associated with severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34100020 DOI: 10.1101/2021.05.31.21255594] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in severely ill patients and the pathophysiology of disease is thought to be immune-mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens, often promoting inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and non-human primates. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype. MC activation in humans was confirmed, through detection of the MC-specific protease, chymase, levels of which were significantly correlated with disease severity. These results support the association of MC activation with severe COVID-19, suggesting potential strategies for intervention.
Collapse
|
12
|
McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay-Kumar M. Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). Compr Physiol 2021; 11:1575-1589. [PMID: 33577121 DOI: 10.1002/cphy.c200020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncontrolled immune system activation amplifies end-organ injury in hypertension. Nonetheless, the exact mechanisms initiating this exacerbated inflammatory response, thereby contributing to further increases in blood pressure (BP), are still being revealed. While participation of lymphoid-derived immune cells has been well described in the hypertension literature, the mechanisms by which myeloid-derived innate immune cells contribute to T cell activation, and subsequent BP elevation, remains an active area of investigation. In this article, we critically analyze the literature to understand how monocytes, macrophages, dendritic cells, and polymorphonuclear leukocytes, including mast cells, eosinophils, basophils, and neutrophils, contribute to hypertension and hypertension-associated end-organ injury. The most abundant leukocytes, neutrophils, are indisputably increased in hypertension. However, it is unknown how (and why) they switch from critical first responders of the innate immune system, and homeostatic regulators of BP, to tissue-damaging, pro-hypertensive mediators. We propose that myeloperoxidase-derived pro-oxidants, neutrophil elastase, neutrophil extracellular traps (NETs), and interactions with other innate and adaptive immune cells are novel mechanisms that could contribute to the inflammatory cascade in hypertension. We further posit that the gut microbiota serves as a set point for neutropoiesis and their function. Finally, given that hypertension appears to be a key risk factor for morbidity and mortality in COVID-19 patients, we put forth evidence that neutrophils and NETs cause cardiovascular injury post-coronavirus infection, and thus may be proposed as an intriguing therapeutic target for high-risk individuals. © 2021 American Physiological Society. Compr Physiol 11:1575-1589, 2021.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Piu Saha
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Rachel M Golonka
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Camilla F Wenceslau
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
13
|
Xavier LL, Neves PFR, Paz LV, Neves LT, Bagatini PB, Timmers LFSM, Rasia-Filho AA, Mestriner RG, Wieck A. Does Angiotensin II Peak in Response to SARS-CoV-2? Front Immunol 2021; 11:577875. [PMID: 33519802 PMCID: PMC7842149 DOI: 10.3389/fimmu.2020.577875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Human infection by the SARS-CoV-2 is causing the current COVID-19 pandemic. With the growing numbers of cases and deaths, there is an urgent need to explore pathophysiological hypotheses in an attempt to better understand the factors determining the course of the disease. Here, we hypothesize that COVID-19 severity and its symptoms could be related to transmembrane and soluble Angiotensin-converting enzyme 2 (tACE2 and sACE2); Angiotensin II (ANG II); Angiotensin 1-7 (ANG 1-7) and angiotensin receptor 1 (AT1R) activation levels. Additionally, we hypothesize that an early peak in ANG II and ADAM-17 might represent a physiological attempt to reduce viral infection via tACE2. This viewpoint presents: (1) a brief introduction regarding the renin-angiotensin-aldosterone system (RAAS), detailing its receptors, molecular synthesis, and degradation routes; (2) a description of the proposed early changes in the RAAS in response to SARS-CoV-2 infection, including biological scenarios for the best and worst prognoses; and (3) the physiological pathways and reasoning for changes in the RAAS following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Lisiê Valeria Paz
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Pamela Brambilla Bagatini
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Luís Fernando Saraiva Macedo Timmers
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari-UNIVATES, Lajeado, Brazil
| | - Alberto Antônio Rasia-Filho
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Andrea Wieck
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
14
|
Yue JK, Chang D, Oh T, Winkler EA, Lu AY, Hetts SW, Young EP, Reddy AT, Fox CK, Abla AA, Roland JL. Multiple Tumor-Associated Intracranial Aneurysms Adjacent to a Suprasellar Germ Cell Tumor: Case Report and Review of Literature. Pediatr Neurosurg 2021; 56:482-491. [PMID: 34320494 DOI: 10.1159/000517890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Tumor-associated intracranial aneurysms are rare and not well understood. CASE PRESENTATION We describe a 4-year-old female with multiple intracranial aneurysms intimately associated with a suprasellar germ cell tumor (GCT). We provide the clinical history, medical, and surgical treatment course, as well as a comprehensive and concise synthesis of the literature on tumor-associated aneurysms. DISCUSSION We discuss mechanisms for aneurysm formation with relevance to the current case, including cellular and paracrine signaling pertinent to suprasellar GCTs and possible molecular pathways involved. We review the complex multidisciplinary treatment required for complex tumor and cerebrovascular interactions.
Collapse
Affiliation(s)
- John K Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Diana Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Taemin Oh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Steven W Hetts
- Department of Interventional Neuroradiology, University of California San Francisco, San Francisco, California, USA
| | - Elizabeth P Young
- Department of Pediatric Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Alyssa T Reddy
- Department of Pediatric Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Christine K Fox
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jarod L Roland
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
15
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
16
|
Shannon AH, Elder CT, Lu G, Su G, Mast A, Salmon MD, Montgomery WG, Spinosa MD, Upchurch GR, Sharma AK. Pharmacologic inhibition of transient receptor channel vanilloid 4 attenuates abdominal aortic aneurysm formation. FASEB J 2020; 34:9787-9801. [PMID: 32506673 DOI: 10.1096/fj.202000251r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 11/11/2022]
Abstract
Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. This study investigates the role of TRPV4 channels, which are transmembrane calcium channels that can regulate vascular tone, in modulating AAA formation. The elastase-treatment model of AAA in C57BL6 (WT) mice and Angiotensin II treatment model in ApoE-/- mice were used to confirm our hypotheses. The administration of a specific TRPV4 antagonist, GSK2193874, in elastase-treated WT mice and in AngII-treated ApoE-/- mice caused a significant attenuation of aortic diameter, decrease in pro-inflammatory cytokines (IL-1β, IL-6, IL-17, MCP-1, MIP-1α, MIP-2, RANTES, and TNF-α), inflammatory cell infiltration (CD3 + T cells, macrophages, and neutrophils), elastic fiber disruption, and an increase in smooth muscle cell α-actin expression compared to untreated mice. Similarly, elastase-treated TRPV4-/- mice had a significant decrease in AAA formation, aortic inflammation, and vascular remodeling compared to elastase-treated WT mice on Day 14. In vitro studies demonstrated that the inhibition of TRPV4 channels mitigates aortic smooth muscle cell-dependent inflammatory cytokine production as well as decreases neutrophil transmigration through aortic endothelial cells. Therefore, our results suggest that TRPV4 antagonism can attenuate aortic inflammation and remodeling via decreased smooth muscle cell activation and neutrophil transendothelial migration during AAA formation.
Collapse
Affiliation(s)
| | - Craig T Elder
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Alexis Mast
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Morgan D Salmon
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | | | - Michael D Spinosa
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | | | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Froogh G, Kandhi S, Duvvi R, Le Y, Weng Z, Alruwaili N, Ashe JO, Sun D, Huang A. The contribution of chymase-dependent formation of ANG II to cardiac dysfunction in metabolic syndrome of young rats: roles of fructose and EETs. Am J Physiol Heart Circ Physiol 2020; 318:H985-H993. [PMID: 32167781 DOI: 10.1152/ajpheart.00633.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The roles of ACE-independent ANG II production via chymase and therapeutic potential of epoxyeicosatrienoic acids (EETs) in fructose-induced metabolic syndrome (MetS) in the adolescent population remain elusive. Thus we tested the hypothesis that a high-fructose diet (HFD) in young rats elicits chymase-dependent increases in ANG II production and oxidative stress, responses that are reversible by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), an inhibitor of soluble epoxide hydrolase (sEH) that metabolizes EETs. Three groups of weanling rats (21-day-old) were fed a normal diet, 60% HFD, and HFD with TPPU, respectively, for 30 days. HFD rats developed MetS, characterized by hyperglycemia, hyperinsulinemia, and hypertension and associated with decreases in cardiac output and stroke volume and loss of nitric oxide (NO) modulation of myocardial oxygen consumption; all impairments were normalized by TPPU that significantly elevated circulating 11,12-EET, a major cardiac EET isoform. In the presence of comparable cardiac angiotensin-converting enzyme (ACE) expression/activity among the three groups, HFD rats exhibited significantly greater chymase-dependent ANG II formation in hearts, as indicated by an augmented cardiac chymase content as a function of enhanced mast cell degranulation. The enhanced chymase-dependent ANG II production was paralleled with increases in ANG II type 1 receptor (AT1R) expression and NADPH oxidase (Nox)-induced superoxide, alterations that were significantly reversed by TPPU. Conversely, HFD-induced downregulation of cardiac ACE2, followed by a lower Ang-(1-7) level displayed in an TPPU-irreversible manner. In conclusion, HFD-driven adverse chymase/ANG II/Nox/superoxide signaling in young rats was prevented by inhibition of sEH via, at least in part, an EET-mediated stabilization of mast cells, highlighting chymase and sEH as therapeutic targets during treatment of MetS.NEW & NOTEWORTHY As the highest fructose consumers, the adolescent population is highly susceptible to the metabolic syndrome, where increases in mast cell chymase-dependent formation of ANG II, ensued by cardiometabolic dysfunction, are reversible in response to inhibition of soluble epoxide hydrolase (sEH). This study highlights chymase and sEH as therapeutic targets and unravels novel avenues for the development of optimal strategies for young patients with fructose-induced metabolic syndrome.
Collapse
Affiliation(s)
- Ghezal Froogh
- Departments of Physiology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Departments of Physiology, New York Medical College, Valhalla, New York
| | - Roopa Duvvi
- Departments of Physiology, New York Medical College, Valhalla, New York
| | - Yicong Le
- Departments of Physiology, New York Medical College, Valhalla, New York
| | - Zan Weng
- Departments of Physiology, New York Medical College, Valhalla, New York
| | - Norah Alruwaili
- Departments of Physiology, New York Medical College, Valhalla, New York
| | - Jonathan O Ashe
- Departments of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Departments of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Departments of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
18
|
Zhang H, Liao M, Cao M, Qiu Z, Yan X, Zhou Y, Wu H, Wang Y, Zheng J, Ding J, Wang M, Liao Y, Chen X. ATRQβ-001 Vaccine Prevents Experimental Abdominal Aortic Aneurysms. J Am Heart Assoc 2019; 8:e012341. [PMID: 31512549 PMCID: PMC6817999 DOI: 10.1161/jaha.119.012341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background We have developed a peptide vaccine named ATRQβ‐001, which was proved to retard signal transduction initiated by angiotensin II (Ang II). Ang II was implicated in abdominal aortic aneurysm (AAA) progression, but whether the ATRQβ‐001 vaccine would prevent AAA is unknown. Methods and Results Ang II‐infused ApoE−/− mice and calcium phosphate‐induced AAA in C57BL/6 mice were used to verify the efficiency of ATRQβ‐001 vaccine in AAA. Results demonstrated that the vaccine effectively restrained the aneurysmal dilation and vascular wall destruction of aorta in both animal models, beyond anti‐hypertensive effects. In Ang II‐induced AAA vascular sections, Immunohistochemical staining showed that the vaccine notably constrained vascular inflammation and vascular smooth muscle cell (VSMC) phenotypic transition, concurrently reduced macrophages infiltration. In cultured VSMC, the anti‐ATR‐001 antibody inhibited osteopontin secretion induced by Ang II, thereby impeded macrophage migration while co‐culture. Furthermore, metalloproteinases and other matrix proteolytic enzymes were also found to be limited by the vaccine in vivo and in vitro. Conclusions ATRQβ‐001 vaccine prevented AAA initiation and progression in both Ang II and calcium phosphate‐induced AAA models. And the beneficial effects were played beyond decrease of blood pressure, which provided a novel and promising method to take precautions against AAA.
Collapse
Affiliation(s)
- Hongrong Zhang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Mengyang Liao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Mingsi Cao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhihua Qiu
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiaole Yan
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yanzhao Zhou
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hailang Wu
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yingxuan Wang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiayu Zheng
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiaxing Ding
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Min Wang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiao Chen
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
19
|
Li Q, Xiao Y, Lu G, Xie D, Zhai Y, Zhang J, Li J, Gao X. Inhibition of perivascular mast cell activation is involved in the atheroprotective effect of rosiglitazone in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2019; 519:261-266. [PMID: 31493866 DOI: 10.1016/j.bbrc.2019.08.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
Activation of perivascular mast cells (MCs) and subsequent release of their abundant inflammatory mediators have been well documented to induce excessive inflammation and subsequent rupture of atherosclerotic plaques. Previous studies have suggested that rosiglitazone affects the stability of plaques, although the precise mechanism of action is not clearly understood. In this study, we evaluated the effects of rosiglitazone on MCs in vivo and in vitro. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat diet (HFD), with or without rosiglitazone supplemented in the drinking water (1.5 mg/kg/day). Compared with the HFD group, rosiglitazone did not affect blood glucose levels, but it attenuated serum levels of tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6), ameliorated plaque lipid accumulation and the expression of matrix metalloproteinases-2 and -9, increased the collagen content of plaques, and inhibited perivascular MC degranulation and chymase expression. The in vitro experiments showed that rosiglitazone treatment repressed the expression of TNFα and IL-6 induced by antigen-challenged RBL-2H3 cells in a peroxisome proliferator-activated receptor γ (PPARγ)-independent manner, which was related to the repression of protein kinase C (PKC)-β1 activation. Combined, these results suggest that the plaque-stabilizing effect of rosiglitazone is attributable to its ability to inhibit the activation of perivascular MCs.
Collapse
Affiliation(s)
- Qinglang Li
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Ying Xiao
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guihua Lu
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dongmei Xie
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Yuansheng Zhai
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Juhong Zhang
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Jie Li
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Xiuren Gao
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
20
|
Dell'Italia LJ, Collawn JF, Ferrario CM. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res 2019; 122:319-336. [PMID: 29348253 DOI: 10.1161/circresaha.117.310978] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chymase is the most efficient Ang II (angiotensin II)-forming enzyme in the human body and has been implicated in a wide variety of human diseases that also implicate its many other protease actions. Largely thought to be the product of mast cells, the identification of other cellular sources including cardiac fibroblasts and vascular endothelial cells demonstrates a more widely dispersed production and distribution system in various tissues. Furthermore, newly emerging evidence for its intracellular presence in cardiomyocytes and smooth muscle cells opens an entirely new compartment of chymase-mediated actions that were previously thought to be limited to the extracellular space. This review illustrates how these multiple chymase-mediated mechanisms of action can explain the residual risk in clinical trials of cardiovascular disease using conventional renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Louis J Dell'Italia
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.).
| | - James F Collawn
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.)
| | - Carlos M Ferrario
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.)
| |
Collapse
|
21
|
Liang ES, Bai WW, Wang H, Zhang JN, Zhang F, Ma Y, Jiang F, Yin M, Zhang MX, Chen XM, Qin WD. PARP-1 (Poly[ADP-Ribose] Polymerase 1) Inhibition Protects From Ang II (Angiotensin II)-Induced Abdominal Aortic Aneurysm in Mice. Hypertension 2019; 72:1189-1199. [PMID: 30354818 DOI: 10.1161/hypertensionaha.118.11184] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a common vascular degenerative disease. PARP-1 (poly[ADP-ribose] polymerase 1) is a nuclear enzyme, which plays a critical role in vascular diseases. We hypothesized that PARP-1 inhibition might have protective effects on AAA. In vivo, Ang II (angiotensin II) was continuously infused by a micropump for 28 days to induce AAA in mice. In vitro, aortic endothelial cells and smooth muscle cells were stimulated by Ang II for 24 hours. Ang II infusion increased PARP-1 expression and activity and successfully induced AAA formation partly with a hemorrhage in ApoE-/- mice. Genetic deletion of PARP-1 markedly reduced the AAA incidence, abdominal aortic diameter, macrophage infiltration, ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular adhesion molecule 1) expression, and MMP (matrix metalloproteinase) expression, as well as MMP activity; but increased smooth muscle cells content and collagens expression in AAA. PARP-1 inhibition by PJ-34 also exerted a protective effect on AAA in mice. In aortic endothelial cells, Ang II-induced oxidative stress and DNA damage, resulting in increased PARP-1 expression and activity. Compared with the control, Ang II increased TNF-α (tumor necrosis factor α) and IL-6 (interleukin-6) secretions, ICAM-1 expression and THP-1 (human acute monocytic leukemia cell line) cells adhesion, while PARP-1 inhibition by siRNA reduced the inflammatory response probably through inhibition of the phosphorylation of ERK (extracellular signal-regulated kinase), NF-κB (nuclear factor-κB), and Akt signaling pathways. In smooth muscle cells, Ang II promoted cell migration, proliferation, and apoptosis, reduced collagens expression, but increased MMPs expression, while PARP-1 deletion alleviated these effects partly by reducing NF-κB-targeted MMP-9 expression. PARP-1 inhibition might be a feasible strategy for the treatment of AAA.
Collapse
Affiliation(s)
- Er-Shun Liang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.)
| | - Wen-Wu Bai
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China (W.-w.B.)
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Jian-Ning Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Yang Ma
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Fan Jiang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.).,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (F.J.).,Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China (F.J.)
| | - Mei Yin
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China (M.Y.)
| | - Ming-Xiang Zhang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.)
| | - Xiao-Mei Chen
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Wei-Dong Qin
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| |
Collapse
|
22
|
Okamura K, Okuda T, Takamiya Y, Shirai K, Urata H. High Fib4 index in patients with suspected NASH is associated with elevation of chymase-dependent angiotensin II-forming activity in circulating mononuclear leucocytes. Heart Vessels 2019; 34:1559-1569. [PMID: 30919112 DOI: 10.1007/s00380-019-01391-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Fatal hepatic disease is closely related to non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis (NASH). NASH is associated with cardiovascular events because it develops on the background of lifestyle-related diseases. Chymase-dependent angiotensin II-forming activity (dAIIFA) in circulating mononuclear leucocytes (CML) is a marker of local angiotensin II production and inflammation. This study investigated the association between CML chymase dAIIFA and NASH. Cardiovascular outpatients were recruited and the Fib4 index (F4I) was calculated. Patients with an F4I > 2.67 were classified into the high F4I group and these patients were strongly suspected to have NASH, while patients with an F4I < 1.30 were classified into the low F4I group. Patient background factors were compared between these groups. CML chymase dAIIFA was measured by ELISA using Nma/Dnp-modified angiotensin I. Among 499 patients, 16% were classified into the high F4I group. Compared with the low F4I group, the high F4I group had a significantly higher age, pancytopenia, more frequent diabetes mellitus, lower diastolic blood pressure, lower estimated glomerular filtration rate, higher brain natriuretic peptide, lower plasma aldosterone concentration, higher total AIIFA, higher CML chymase dAIIFA, and higher pulse wave velocity. Contrary to expectations, the body mass index, triglycerides, and low-density lipoprotein cholesterol were relatively low in the high F4I group. Many cardiovascular outpatients have a high F4I and can probably be categorized as NASH. The high F4I patients had few features of metabolic syndrome and were suspected to have elevated tissue chymase dAIIFA contributing to inflammation in the liver as well as in cardiovascular organs.
Collapse
Affiliation(s)
- Keisuke Okamura
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1, Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan.
| | - Tetsu Okuda
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1, Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan
| | - Yosuke Takamiya
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1, Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan
| | - Kazuyuki Shirai
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1, Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1, Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan
| |
Collapse
|
23
|
Li R, Mi X, Yang S, Yang Y, Zhang S, Hui R, Chen Y, Zhang W. Long-term stimulation of angiotensin II induced endothelial senescence and dysfunction. Exp Gerontol 2019; 119:212-220. [PMID: 30776409 DOI: 10.1016/j.exger.2019.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Abstract
The role of angiotensin II (Ang II) in hypertension has been clarified, but recent studies show that aging-associated arterial changes and those with hypertension as well as atherosclerosis may have some common pathogenesis. This study aimed to clarify the effects of Ang II on endothelial senescence by establishing a replicative senescence model of human umbilical vein endothelial cells (HUVECs) in vitro. The population-doubling level (PDL) was calculated, PDL5 and PDL25 respectively referred to cells cultured for 2 days and 30 days. Compared with Ang II-treated young PDL5 cells, chronic stimulation of Ang II significantly promoted the senescence-associated β-galactosidase activity and expression of senescence-related genes p16 and p21, slowed down cell growth rate, and decreased expression of longevity-related genes sirtuin1 as well as telomerase activity in senescent PDL25 cells (all P < 0.05). Moreover, expression of pro-inflammatory cytokines and adhesion molecules were up-regulated in Ang II-treated PDL25 cells (all P < 0.05). Ang II-induced senescent progression and inflammation were attenuated by angiotensin receptor blocker valsartan. In young PDL5 cells, Ang II promoted the endothelial viability including cell proliferation, migration, angiogenesis and cell adhesion to monocytes; however, chronic stimulation of Ang II suppressed the cell viability, promoted cell adhesion and apoptosis in senescent PDL25 cells, which could be ameliorated by short-term valsartan, but long-term valsartan had no effects. In addition, Ang II-induced senescent features could be partly recovered if Ang II was stopped at PDL20. These findings suggested that chronic stimulation of Ang II can accelerate the endothelial senescence process which is implicated in aging-related atherosclerosis.
Collapse
Affiliation(s)
- Rongxia Li
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Xuenan Mi
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Shujun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Yunyun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Shuyuan Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China.
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China.
| |
Collapse
|
24
|
Okamura K, Okuda T, Shirai K, Urata H. Increase of chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes after acute myocardial infarction chymase activity after acute myocardial infarction. Heart Vessels 2019; 34:1148-1157. [PMID: 30680494 DOI: 10.1007/s00380-019-01352-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/18/2019] [Indexed: 11/24/2022]
Abstract
A previous clinical study revealed elevation of chymase- and cathepsin G-dependent angiotensin II-forming activity (AIIFA) in the myocardium after acute myocardial infarction (AMI). This study examined the time course of chymase- and cathepsin G-dependent AIIFA in circulating mononuclear leukocytes (CML) after AMI. Consecutive patients with AMI were recruited. Chymase- and cathepsin G-dependent AIIFA in CML were assayed using a modified angiotensin I substrate with Nma/Dnp fluorescence quenching. The changes of CML AIIFA were monitored over time in the patients. Fifteen consecutive AMI patients admitted to our hospital were recruited. At 1 day after the admission, CML chymase- and cathepsin G-dependent AIIFA were 2.9- and 1.7-fold higher than at discharge, respectively. The ratio of chymase-dependent AIIFA to total AIIFA was significantly increased. AIIFA gradually decreased over time after the admission. The peak value of chymase- and cathepsin G-dependent AIIFA was significantly correlated with the maximum levels of aspartate aminotransferase (r = 0.53, 0.64), lactate dehydrogenase (r = 0.57, 0.62), and creatine kinase (r = 0.60, 0.65). This is the first evidence that chymase- and cathepsin G-dependent AIIFA is elevated in CML after AMI. Our data suggested that chymase-dependent AIIFA is increased in CML as well as in the myocardium after AMI, and that the level of chymase-dependent AIIFA might reflect the severity of infarction.
Collapse
Affiliation(s)
- Keisuke Okamura
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino-shi, Fukuoka, 818-8502, Japan.
| | - Tetsu Okuda
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino-shi, Fukuoka, 818-8502, Japan
| | - Kazuyuki Shirai
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino-shi, Fukuoka, 818-8502, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino-shi, Fukuoka, 818-8502, Japan
| |
Collapse
|
25
|
Wilcock A, Bahri R, Bulfone‐Paus S, Arkwright PD. Mast cell disorders: From infancy to maturity. Allergy 2019; 74:53-63. [PMID: 30390314 DOI: 10.1111/all.13657] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
Mast cells are typically linked to immediate hypersensitivity and anaphylaxis. This review looks beyond this narrow role, focusing on how these cells have evolved and diversified via natural selection promoting serine protease gene duplication, augmenting their innate host defense function against helminths and snake envenomation. Plasticity of mast cell genes has come at a price. Somatic activating mutations in the mast cell growth factor KIT gene cause cutaneous mastocytosis in young children and systemic mastocytosis with a more guarded prognosis in adults who may also harbor other gene mutations with oncogenic potential as they age. Allelic TPSAB1 gene duplication associated with higher basal mast cell tryptase is possibly one of the commonest autosomal dominantly inherited multi-system diseases affecting the skin, gastrointestinal tract, circulation and musculoskeletal system. Mast cells are also establishing a new-found importance in severe asthma, and in remodeling of blood vessels in cancer and atherosclerotic vascular disease. Furthermore, recent evidence suggests that mast cells sense changes in oxygen tension, particularly in neonates, and that subsequent degranulation may contribute to common lung, eye, and brain diseases of prematurity classically associated with hypoxic insults. One hundred and forty years since Paul Ehrlich's initial description of "mastzellen," this review collates and highlights the complex and diverse roles that mast cells play in health and disease.
Collapse
Affiliation(s)
- Amy Wilcock
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Silvia Bulfone‐Paus
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| |
Collapse
|
26
|
Okamura K, Kuroda R, Nagata K, Urata H. Prospective single-arm observational study of human chymase inhibitor Polygonum hydropiper L in subjects with hypertension. Clin Exp Hypertens 2018; 41:717-725. [PMID: 30582370 DOI: 10.1080/10641963.2018.1545847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background and Purpose: Human chymase (h-chymase) is a serine protease that forms local angiotensin II and has been proven to be related to onset of hypertension, arteriosclerosis, and post myocardial infarction cardiac remodeling. Since no chymase inhibitor was clinically available, an extensive screening for inhibition of h-chymase in three different extracts (water, hot water, and ethanol) of approximately 800 food ingredients had been performed and we identified Polygonum hydropiper L (Polygonum). Using a dried and powdered Polygonum, we conducted a prospective, single-arm, pilot study to investigate its safety and antihypertensive effect in subjects with normal high blood pressure to moderate hypertension.Methods: First, a single oral dose of Polygonum powder (4000 mg) was administered to assess acute toxicity. Then, a pilot study was conducted in 11 subjects using the sequence of placebo and Polygonum for 2 weeks each. The dose of Polygonum was increased sequentially (200-2000 mg/day). Home blood pressure and pulse rate were monitored.Results: Oral administration of Polygonum (4000 mg) did not cause any adverse events. In the dose-escalation phase, evening systolic blood pressure was significantly decreased at 800 mg, 2000 mg doses post-treatment (p < 0.05, and p < 0.05, respectively). Depressor responders to Polygonum intake had significantly higher salt intake in spot urine (p < 0.05). No adverse events or reactions occurred.Conclusion: This was the first investigation that an h-chymase inhibitory Polygonum intake for safety and tolerability was proven and, in addition, chymase inhibitory Polygonum appeared to have depressor effect especially in a hypertensive subject with excessive salt intake.
Collapse
Affiliation(s)
- Keisuke Okamura
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Rieko Kuroda
- Biotechnology and Food Research Institute Fukuoka Industrial Technology Center, Kurume, Japan
| | | | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| |
Collapse
|
27
|
Histone deacetylase inhibition disturbs the balance between ACE and chymase expression in endothelial cells: a potential mechanism of chymase activation in preeclampsia. Hypertens Res 2018; 42:155-164. [PMID: 30518985 DOI: 10.1038/s41440-018-0150-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/15/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Chymase is a major angiotensin-converting enzyme (ACE)-independent angiotensin convertase, and its expression is upregulated in the maternal vascular endothelium in preeclampsia, a hypertensive disorder in human pregnancy. Increased chymase-dependent angiotensin II generation has been reported in several cardiovascular diseases, including atherosclerosis and aneurysmal lesions. However, it remains unclear how chymase is activated. Histone modification is an important regulatory mechanism that controls gene expression. In this study, using a chymase overexpression cell model, we investigated the mechanisms of chymase activation to test our hypothesis that histone acetylation could promote endothelial chymase expression. Human umbilical vein endothelial cells were transfected with the chymase gene. Trichostatin A was used to inhibit histone deacetylases (HDACs). The expression levels of chymase, ACE, and HDACs were determined by western blotting. Our results showed that ACE was strongly expressed in control cells, but was significantly downregulated in cells transfected to express chymase. Strikingly, we also found that HDAC inhibition resulted in a dose-dependent increase in chymase expression but a dose-dependent decrease in ACE expression in cells transfected with the chymase gene. HDAC inhibition was confirmed by the decreased expression of HDAC1 and HDAC6 in cells treated with trichostatin A. Increased chymase expression associated with reduced histone deacetylase expression was further confirmed by immunostaining of subcutaneous adipose sections from women with preeclampsia. We conclude that aberrant HDAC expression/activity could disturb the balance between ACE and chymase expression in endothelial cells. Our results support the clinical importance of chymase as a new pharmacological target for cardiovascular disorders.
Collapse
|
28
|
Abstract
Abdominal aortic aneurysm (AAA) is most commonly defined as a maximal diameter of the abdominal aorta in excess of 3 cm in either anterior-posterior or transverse planes or, alternatively, as a focal dilation ≥ 1.5 times the diameter of the normal adjacent arterial segment. Risk factors for the development of AAA include age > 60, tobacco use, male gender, Caucasian race, and family history of AAA. Aneurysm growth and rupture risk appear to be associated with persistent tobacco use, female gender, and chronic pulmonary disease. The majority of AAAs are asymptomatic and detected incidentally on various imaging studies, including abdominal ultrasound, and computed tomographic angiography. Symptoms associated with AAA may include abdominal or back pain, thromboembolization, atheroembolization, aortic rupture, or development of an arteriovenous or aortoenteric fistula. The Screening Abdominal Aortic Aneurysms Efficiently (SAAAVE) Act provides coverage for a one-time screening abdominal ultrasound at age 65 for men who have smoked at least 100 cigarettes and women who have family history of AAA disease. Medical management is recommended for asymptomatic patients with AAAs < 5 cm in diameter and focuses on modifiable risk factors, including smoking cessation and blood pressure control. Primary indications for intervention in patients with AAA include development of symptoms, rupture, rapid aneurysm growth (> 5 mm/6 months), or presence of a fusiform aneurysm with maximum diameter of 5.5 cm or greater. Intervention for AAA includes conventional open surgical repair and endovascular aortic stent graft repair.
Collapse
|
29
|
Urata H. Pathological involvement of chymase-dependent angiotensin II formation in the development of cardiovascular disease. J Renin Angiotensin Aldosterone Syst 2017; 1:S35-7. [PMID: 17199219 DOI: 10.3317/jraas.2000.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Chymase is a potent and specific angiotensin II (Ang II)-forming enzyme in vitro. There is also strong evidence to suggest its importance in vivo. Recent clinical studies have suggested that high serum cholesterol levels are associated with increased vascular chymase activity and this may assist in the development of atherosclerosis. This clinical finding has been reproduced in hamster models. Studies with transgenic mice overexpressing the human chymase gene suggest a direct association between vascular chymase upregulation and atherogenesis. There is also increased chymase activity following various cardiac diseases such as myocardial ischaemia, volume overload cardiac failure, cardiomyopathy and viral myocarditis, suggesting that increased cardiac chymase activity appears to be involved in cardiac remodelling.
Collapse
Affiliation(s)
- H Urata
- Department of Internal Medicine, Fukuoka University School of Medicine, Fukuoka, Japan.
| |
Collapse
|
30
|
Nehme A, Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertens Res 2017; 40:903-909. [DOI: 10.1038/hr.2017.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/26/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022]
|
31
|
Nehme A, Zibara K. Cellular distribution and interaction between extended renin-angiotensin-aldosterone system pathways in atheroma. Atherosclerosis 2017; 263:334-342. [PMID: 28600074 DOI: 10.1016/j.atherosclerosis.2017.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/14/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023]
Abstract
The importance of the renin-angiotensin-aldosterone system (RAAS) in the development of atherosclerotic has been experimentally documented. In fact, RAAS components have been shown to be locally expressed in the arterial wall and to be differentially regulated during atherosclerotic lesion progression. RAAS transcripts and proteins were shown to be differentially expressed and to interact in the 3 main cells of atheroma: endothelial cells, vascular smooth muscle cells, and macrophages. This review describes the local expression and cellular distribution of extended RAAS components in the arterial wall and their differential regulation during atherosclerotic lesion development.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional Genomics of Arterial Hypertension, Hôpital Nord-Ouest, Villefranche-sur-Saône, Université Lyon1, Lyon, France; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
32
|
Teixeira S, Pinto PS, Veiga C, Silva I, Almeida R. Aneurysmal Degeneration of the Brachial Artery after Vascular Access Creation: Surgical Treatment Results. Int J Angiol 2017; 26:186-190. [PMID: 28804237 DOI: 10.1055/s-0037-1601872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
True peripheral artery aneurysms proximal to a longstanding arteriovenous fistula is a well-recognized complication. Late aneurysmal degeneration is rare. This study analyzed the characteristics, therapeutic options, and outcomes of true donor brachial artery aneurysms (DBAA) after arteriovenous fistula (AVF) for hemodialysis. We retrospectively collected the data of patients with DBAA after AVF creation, surgically repaired between January 2001 and September 2015. We excluded patients with pseudoaneurysms, anastomotic aneurysms, and infected aneurysms. We recorded patient's demographics, type of access, aneurysm characteristics, symptoms, treatment, and follow-up. Ten patients were treated for aneurysmal degeneration of the brachial artery. Average aneurysm diameter was 37.5 mm. All cases had, at least, one previous distal AVF, ligated or thrombosed, at the time of diagnosis. The first access was created in mean 137 months before the diagnosis of DBAA. Nine patients had previous medical history of renal transplant and were under immunosuppressive therapy. All patients were symptomatic at the time of diagnosis. In all cases, the treatment was aneurysmectomy followed by interposition bypass. One patient developed a postoperative hematoma with the need of surgical drainage. At 50 months of follow-up, one patient was submitted to percutaneous angioplasty due to an anastomotic stenosis. No other complications occurred during the entire follow-up period (mean: 69 months). The pathogenesis underlying DBAA remains unclear. Increased blood flow after AVF creation, immunosuppressive therapy, and ligation/thrombosis of the AVF may contribute to aneurysm formation. Surgical treatment by aneurysmectomy and bypass, with autogenous conducts, is a safe and effective option.
Collapse
Affiliation(s)
- Sérgio Teixeira
- Department of Angiology and Vascular Surgery, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Pedro Sá Pinto
- Department of Angiology and Vascular Surgery, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Carlos Veiga
- Department of Angiology and Vascular Surgery, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Ivone Silva
- Department of Angiology and Vascular Surgery, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Rui Almeida
- Department of Angiology and Vascular Surgery, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| |
Collapse
|
33
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
34
|
Froogh G, Pinto JT, Le Y, Kandhi S, Aleligne Y, Huang A, Sun D. Chymase-dependent production of angiotensin II: an old enzyme in old hearts. Am J Physiol Heart Circ Physiol 2016; 312:H223-H231. [PMID: 27815252 DOI: 10.1152/ajpheart.00534.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 02/08/2023]
Abstract
Age-dependent alteration of the renin-angiotensin system (RAS) and generation of angiotensin II (Ang II) are well documented. By contrast, RAS-independent generation of Ang II in aging and its responses to exercise have not been explored. To this end, we examined the effects of chymase, a secretory serine protease, on the angiotensin-converting enzyme (ACE)-independent conversion of Ang I to Ang II. We hypothesized that age-dependent alteration of cardiac Ang II formation is chymase dependent in nature and is prevented by exercise training. Experiments were conducted on hearts isolated from young (3 mo), aged sedentary (24 mo), and aged rats chronically exercised on a treadmill. In the presence of low Ang I levels and downregulation of ACE expression/activity, cardiac Ang II levels were significantly higher in aged than young rats, suggesting an ACE-independent response. Aged hearts also displayed significantly increased chymase expression and activity, as well as upregulation of tryptase, a biological marker of mast cells, confirming a mast cell-sourced increase in chymase. Coincidently, cardiac superoxide produced from NADPH oxidase (Nox) was significantly enhanced in aged rats and was normalized by exercise. Conversely, a significant reduction in cardiac expression of ACE2 followed by lower Ang 1-7 levels and downregulation of the Mas receptor (binding protein of Ang 1-7) in aged rats were completely reversed by exercise. In conclusion, local formation of Ang II is increased in aged hearts, and chymase is primarily responsible for this increase. Chronic exercise is able to normalize the age-dependent alterations via compromising chymase/Ang II/angiotensin type 1 receptor/Nox actions while promoting ACE2/Ang 1-7/MasR signaling. NEW & NOTEWORTHY Aging increases angiotensin-converting enzyme (ACE)-independent production of cardiac angiotensin II (Ang II), a response that is driven by chymase in an exercise-reversible manner. These findings highlight chymase, in addition to ACE, as an important therapeutic target in the treatment and prevention of Ang II-induced deterioration of cardiac function in the elderly.
Collapse
Affiliation(s)
- Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - John T Pinto
- Department of Biochemistry, New York Medical College, Valhalla, New York
| | - Yicong Le
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Yeabsra Aleligne
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
35
|
Babiker F, Al-Jarallah A, Joseph S. The Interplay between the Renin Angiotensin System and Pacing Postconditioning Induced Cardiac Protection. PLoS One 2016; 11:e0165777. [PMID: 27814397 PMCID: PMC5096684 DOI: 10.1371/journal.pone.0165777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Accumulating evidence suggests a cardioprotective role of pacing postconditioning (PPC) maneuvers in animal models and more recently in humans. The procedure however remains to be optimized and its interaction with physiological systems remains to be further explored. The renin angiotensin system (RAS) plays a dual role in ischemia/reperfusion (I/R) injury. The interaction between RAS and PPC induced cardiac protection is however not clearly understood. We have recently demonstrated that angiotensin (1–7) via Mas receptor played a significant role in PPC mediated cardiac protection against I/R injury. Objective The objective of this study was to investigate the role of angiotensin converting enzyme (ACE)—chymase—angiotensin II (Ang II)—angiotensin receptor 1 (AT1) axes of RAS in PPC mediated cardiac protection. Methods Isolated rat hearts were subjected to I/R (control) or PPC in the presence or absence of Ang II, chymostatin (inhibitor of locally produced Ang II), ACE blocker (captopril) or AT1 antagonist (irbesartan). Hemodynamics data was computed digitally and infarct size was determined histologically using TTC staining and biochemically by measuring creatine kinase (CK) and lactate dehydrogenase levels. Results Cardiac hemodynamics were significantly (P<0.001) improved and infarct size and cardiac enzymes were significantly (P<0.001) reduced in hearts subjected to PPC relative to hearts subjected to I/R injury. Exogenous administration of Ang II did not affect I/R injury or PPC mediated protection. Nonetheless inhibition of endogenously synthesized Ang II protected against I/R induced cardiac damage yet did not block or augment the protective effects of PPC. The administration of AT1 antagonist did not alleviate I/R induced damage. Interestingly it abrogated PPC induced cardiac protection in isolated rat hearts. Finally, PPC induced protection and blockade of locally produced Ang II involved enhanced activation of ERK1/2 and Akt components of the reperfusion injury salvage kinase (RISK) pathway. Conclusions This study demonstrate a novel role of endogenously produced Ang II in mediating I/R injury and highlights the significance of AT1 signaling in PPC mediated cardiac protection in isolated rodents hearts ex vivo. The interaction between Ang II-AT1 and PPC appears to involve alterations in the activation state of ERK1/2 and Akt components of the RISK pathway.
Collapse
Affiliation(s)
- Fawzi Babiker
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
- * E-mail:
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| | - Shaji Joseph
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
36
|
Nehme A, Cerutti C, Zibara K. Transcriptomic Analysis Reveals Novel Transcription Factors Associated With Renin-Angiotensin-Aldosterone System in Human Atheroma. Hypertension 2016; 68:1375-1384. [PMID: 27754866 DOI: 10.1161/hypertensionaha.116.08070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/16/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022]
Abstract
Despite the well-known role of the renin-angiotensin-aldosterone system (RAAS) in atheroma, its global local organization is poorly understood. In this study, we used transcriptomic meta-analysis to reveal the local transcriptional organization and regulation of 37 extended RAAS (extRAAS) genes in atheroma. Expression analysis and hierarchical clustering were done on extRAAS genes in 32 paired early and advanced atherosclerotic lesions. Contrary to receptor-coding transcripts, multiple angiotensin-metabolizing enzymes showed higher expression in advance, in comparison to early lesions. Interestingly, similar results were obtained from GEO data sets containing human (n=839) and mouse (n=18) atherosclerotic samples, but different from normal human (n=11) arterial tissues. The expression and coordination patterns were then used to construct transcriptional maps of extRAAS, displaying favored pathways in atheroma. Three coexpression modules (M1, M2, and M3) with >80% reproducibility across human atheroma data sets were identified. M1 and M3 contained angiotensin-metabolizing enzymes transcripts, whereas M2 contained proatherogenic receptor-coding transcripts. Interestingly, M1 and M2 were negatively correlated. A total of 21 transcription factors with enriched binding sites in the promoters of coordinated genes were extracted, among which IRF5, MAX, and ETV5 showed significant positive correlations with M1, but negative correlations with M2. However, ETS1 and SMAD1 transcripts were positively correlated to receptor-coding genes in M2. Despite sharing some similarities in extRAAS organization with kidney and adipose, atheroma showed specific correlations between extRAAS and transcription factors. In conclusion, our transcriptional map helps in designing more efficient treatments for atherosclerosis. In addition, the identified transcription factors provide a basis for the discovery of atheroma-specific modulators of extRAAS.
Collapse
Affiliation(s)
- Ali Nehme
- From the EA4173, Functional Genomics of Arterial Hypertension, UCBL-1, Lyon, France (A.N., C.C.); and ER045, Laboratory of Stem Cells, DSST (A.N., K.Z.) and Department of Biology, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon
| | - Catherine Cerutti
- From the EA4173, Functional Genomics of Arterial Hypertension, UCBL-1, Lyon, France (A.N., C.C.); and ER045, Laboratory of Stem Cells, DSST (A.N., K.Z.) and Department of Biology, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- From the EA4173, Functional Genomics of Arterial Hypertension, UCBL-1, Lyon, France (A.N., C.C.); and ER045, Laboratory of Stem Cells, DSST (A.N., K.Z.) and Department of Biology, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon.
| |
Collapse
|
37
|
The kinetics of angiotensin-I metabolism in human carotid atheroma: An emerging role for angiotensin (1-7). Vascul Pharmacol 2016; 85:50-56. [PMID: 27497910 DOI: 10.1016/j.vph.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/21/2016] [Accepted: 08/02/2016] [Indexed: 11/19/2022]
Abstract
AIM Local levels of angiotensin peptides depend on their rates of production and degradation, which induce proatherogenic or atheroprotective effects. Here, we reveal the kinetics of Angiotensin-I metabolism in paired early and advanced atherosclerotic lesions. METHODS Lesions were spiked with labeled Ang-I* and supernatants withdrawn after 0, 10, 20, 40 and 80min. The concentration of produced Ang-II*, Ang-III*, Ang-IV* and Ang-(1-7)* peptides were measured using multiple reaction monitoring mass spectrometry coupled to ultra-performance liquid chromatography, normalized to tissue weight and initial [Ang-I*]. RESULTS Ang-(1-7)* was the major angiotensin peptide produced, showing increased levels in both tissue types, with 2-3 fold lower levels in advanced compared to early lesions. In contrast, Ang-II* was 2-3 fold higher in advanced compared to early lesions, showing a decrease between 0 and 40min then an increase at 80min in both tissue types. The levels of Ang-IV were stable in both tissue types across all time points. Finally, Ang-III was non-detectable in both lesions across all time points. CONCLUSION Our results suggest that progression of atherosclerosis depends on the increased levels of Ang-II along with the decreased levels of Ang-(1-7), which supports the use of Ang-(1-7) along with Angiotensin type-1 receptor (AT1R) blockers.
Collapse
|
38
|
Houde M, Desbiens L, Schwertani A, Pejler G, Iglarz M, D'Orléans-Juste P. Endothelin receptor antagonist macitentan or deletion of mouse mast cell protease 4 delays lesion development in atherosclerotic mice. Life Sci 2016; 159:71-75. [PMID: 26976326 DOI: 10.1016/j.lfs.2016.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
Abstract
AIMS To determine the impact of mixed endothelin receptor antagonist and mouse mast cell protease-4 (mMCP-4) in the development of atherosclerosis in the mouse model. MATERIALS AND METHODS Apolipoprotein E (ApoE) KO mice were crossed with mMCP-4 KO mice to generate ApoE/mMCP-4 double KO mice. Atherosclerosis was induced with a normal- or high-fat diet for 12, 27 or 52weeks. Macitentan (30mg/kg/day), a dual ETA/ETB receptor antagonist, was given orally for 6weeks (27week protocol). At sacrifice, aortas and brachiocephalic arteries (BCAs) were collected. En face Sudan IV staining was performed on aortas and BCA sections were subjected to Masson's trichrome stain and α-smooth muscle actin labeling. KEY FINDINGS Under normal diet, both macitentan treatment and the absence of mMCP-4 reduced the development of aortic atherosclerotic lesions in 27-week old ApoE KO mice, but mMCP-4 deletion failed to maintain this effect on 52-week old mice. Under high-fat diet (WD), macitentan, but not the absence of mMCP-4, reduced aortic lesion development in ApoE KO mice. On BCA lesions of 27-week old WD mice, macitentan treatment had a small impact while mMCP-4 deletion showed improved features of plaque stability. SIGNIFICANCE These results suggest that the inhibition of mMCP-4 reduces lesion spreading in the earlier phases of atherosclerosis development and can help stabilise the more advanced plaque. Macitentan treatment was more effective to prevent lesion spreading but did not improve plaque features to the same extent.
Collapse
Affiliation(s)
- Martin Houde
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louisane Desbiens
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Adel Schwertani
- Department of Cardiology, McGill University, Montréal, QC, Canada
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marc Iglarz
- Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | | |
Collapse
|
39
|
Traditional Chinese Medicine Decreases the Stroke Risk of Systemic Corticosteroid Treatment in Dermatitis: A Nationwide Population-Based Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:543517. [PMID: 26508980 PMCID: PMC4609859 DOI: 10.1155/2015/543517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022]
Abstract
Epidemiological studies have shown a strong association between dermatitis and stroke. Systemic corticosteroid, the mainstay treatment for dermatitis, could enhance the atherosclerotic process. Traditional Chinese Medicine (TCM) has been used for dermatitis to decrease the side effects of corticosteroid. However, the different stroke risk in dermatitis patients treated with systemic corticosteroid or TCM remains unclear. This study identified 235,220 dermatitis patients and same comorbidity matched subjects between 2000 and 2009 from database of NHRI in Taiwan. The two cohorts were followed until December 31, 2011. The primary outcome of interest was new diagnosis of stroke. The crude hazard ratio (HR) for future stroke among dermatitis patients treated with systemic corticosteroid was 1.40 (95% CI, 1.34–1.45; P < 0.0001) and TCM was 1.09 (95% CI, 1.05–1.13; P < 0.0001). The log-rank test showed a higher cumulative incidence of ischemic stroke in the patient treated with only systemic corticosteroid group than that treated with systemic corticosteroid and TCM, only TCM, and neither systemic corticosteroid nor TCM in the matched cohort during the follow-up period (P < 0.0001). We demonstrated that patients treated with systemic corticosteroid had an increased risk of stroke and that the risk probably decreased by TCM treatment.
Collapse
|
40
|
Devarajan S, Yahiro E, Uehara Y, Habe S, Nishiyama A, Miura SI, Saku K, Urata H. Depressor effect of chymase inhibitor in mice with high salt-induced moderate hypertension. Am J Physiol Heart Circ Physiol 2015; 309:H1987-96. [PMID: 26432844 DOI: 10.1152/ajpheart.00721.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/02/2015] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to determine whether long-term high salt intake in the drinking water induces hypertension in wild-type (WT) mice and whether a chymase inhibitor or other antihypertensive drugs could reverse the increase of blood pressure. Eight-week-old male WT mice were supplied with drinking water containing 2% salt for 12 wk (high-salt group) or high-salt drinking water plus an oral chymase inhibitor (TPC-806) at four different doses (25, 50, 75, or 100 mg/kg), captopril (75 mg/kg), losartan (100 mg/kg), hydrochlorothiazide (3 mg/kg), eplerenone (200 mg/kg), or amlodipine (6 mg/kg). Control groups were given normal water with or without the chymase inhibitor. Blood pressure and heart rate gradually showed a significant increase in the high-salt group, whereas a dose-dependent depressor effect of the chymase inhibitor was observed. There was also partial improvement of hypertension in the losartan- and eplerenone-treated groups but not in the captopril-, hydrochlorothiazide-, and amlodipine-treated groups. A high salt load significantly increased chymase-dependent ANG II-forming activity in the alimentary tract. In addition, the relative contribution of chymase to ANG II formation, but not actual average activity, showed a significant increase in skin and skeletal muscle, whereas angiotensin-converting enzyme-dependent ANG II-forming activity and its relative contribution were reduced by high salt intake. Plasma and urinary renin-angiotensin system components were significantly increased in the high-salt group but were significantly suppressed in the chymase inhibitor-treated group. In conclusion, 2% salt water drinking for 12 wk caused moderate hypertension and activated the renin-angiotensin system in WT mice. A chymase inhibitor suppressed both the elevation of blood pressure and heart rate, indicating a definite involvement of chymase in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sankar Devarajan
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Eiji Yahiro
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshinari Uehara
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Shigehisa Habe
- Department of Parasitology, Fukuoka University School of Medicine, Fukuoka, Japan; and
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Fukuoka, Japan;
| |
Collapse
|
41
|
Wu J, Grassia G, Cambrook H, Ialenti A, MacRitchie N, Carberry J, Wadsworth RM, Lawrence C, Kennedy S, Maffia P. Perivascular mast cells regulate vein graft neointimal formation and remodeling. PeerJ 2015; 3:e1192. [PMID: 26312183 PMCID: PMC4548472 DOI: 10.7717/peerj.1192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/26/2015] [Indexed: 01/26/2023] Open
Abstract
Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling.
Collapse
Affiliation(s)
- Junxi Wu
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Helen Cambrook
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Armando Ialenti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Jaclyn Carberry
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Roger M Wadsworth
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Catherine Lawrence
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
42
|
|
43
|
Dale MA, Ruhlman MK, Baxter BT. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy. Arterioscler Thromb Vasc Biol 2015; 35:1746-55. [PMID: 26044582 DOI: 10.1161/atvbaha.115.305269] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention.
Collapse
Affiliation(s)
- Matthew A Dale
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| | - Melissa K Ruhlman
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| | - B Timothy Baxter
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| |
Collapse
|
44
|
Kritikou E, Kuiper J, Kovanen PT, Bot I. The impact of mast cells on cardiovascular diseases. Eur J Pharmacol 2015; 778:103-15. [PMID: 25959384 DOI: 10.1016/j.ejphar.2015.04.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
Mast cells comprise an innate immune cell population, which accumulates in tissues proximal to the outside environment and, upon activation, augments the progression of immunological reactions through the release and diffusion of either pre-formed or newly generated mediators. The released products of mast cells include histamine, proteases, as well as a variety of cytokines, chemokines and growth factors, which act on the surrounding microenvironment thereby shaping the immune responses triggered in various diseased states. Mast cells have also been detected in the arterial wall and are implicated in the onset and progression of numerous cardiovascular diseases. Notably, modulation of distinct mast cell actions using genetic and pharmacological approaches highlights the crucial role of this cell type in cardiovascular syndromes. The acquired evidence renders mast cells and their mediators as potential prognostic markers and therapeutic targets in a broad spectrum of pathophysiological conditions related to cardiovascular diseases.
Collapse
Affiliation(s)
- Eva Kritikou
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
45
|
Liao M, Liu CL, Lv BJ, Zhang JY, Cheng L, Cheng X, Lindholt JS, Rasmussen LM, Shi GP. Plasma cytokine levels and risks of abdominal aortic aneurysms: A population-based prospective cohort study. Ann Med 2015; 47:245-52. [PMID: 25856542 PMCID: PMC4669056 DOI: 10.3109/07853890.2015.1019916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is characterized by inflammatory cell accumulation in AAA lesions that produce inflammatory cytokines and advance its pathogenesis. Peripheral cytokines may predict the degree or risk of AAA. METHODS AND RESULTS ELISA determined plasma interleukin-6 (IL6), IL10, IL17A, IFN-γ, and C-reactive protein (CRP) from 476 AAA patients and 200 controls. AAA patients had lower IL6, IFN-γ, IL10, IL17A, and higher CRP than controls. IL10 correlated positively with IFN-γ, IL17A, or IL6, but not CRP in control or AAA populations. IL10 associated negatively with systolic blood pressure, whereas CRP associated positively with diastolic blood pressure and body mass index. CRP was an independent AAA risk factor and correlated positively with aortic diameters before and after adjustments for other risk factors. IFN-γ, IL17A, and CRP correlated positively with cross-sectional AAA area after adjustment. IL10 correlated positively with AAA growth rate before and after adjustment. The risk of death doubled in AAA patients with CRP levels above the median. CONCLUSIONS Reduced IFN-γ, IL10, and IL17A in AAA patients, positive correlations of IFN-γ and IL17A with cross-sectional AAA area, IL10 with AAA growth rate, and IL10 with IFN-γ and IL17A suggest combined Th1, Th2, and Th17 immune responses in human AAAs.
Collapse
Affiliation(s)
- Mengyang Liao
- Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Complete inhibition of the renin-angiotensin-aldosterone system; where do we stand? Curr Opin Nephrol Hypertens 2015; 23:449-55. [PMID: 25014549 DOI: 10.1097/mnh.0000000000000043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW This review presents the role of combination therapy of renin-angiotensin-aldosterone system blockade on cardiovascular and kidney disease. RECENT FINDINGS Three large randomized controlled trials comparing combination therapy of renin-angiotensin-aldosterone system blockade to monotherapy in individuals with increased cardiovascular risk, chronic kidney disease, or diabetic nephropathy have been reported. These trials - ONTARGET, ALTITUDE, and VA NEPHRON-D - demonstrated an excess risk of adverse effects [especially acute kidney injury (AKI) and hyperkalemia] with combination therapy, without significant benefit in reducing cardiovascular and renal morbidity. SUMMARY Current evidence supports avoiding dual renin-angiotensin-aldosterone system blockade in patients with chronic kidney disease. Subsequent studies of dual renin-angiotensin-aldosterone system blockade should examine adverse event risks and renal progression endpoints.
Collapse
|
47
|
Ahmad S, Varagic J, Groban L, Dell'Italia LJ, Nagata S, Kon ND, Ferrario CM. Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep 2014; 16:429. [PMID: 24633843 DOI: 10.1007/s11906-014-0429-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The classical view of biochemical pathways for the formation of biologically active angiotensins continues to undergo significant revision as new data uncovers the existence of important species differences between humans and rodents. The discovery of two novel substrates that, cleaved from angiotensinogen, can lead to direct tissue angiotensin II formation has the potential of radically altering our understanding of how tissues source angiotensin II production and explain the relative lack of efficacy that characterizes the use of angiotensin converting enzyme inhibitors in cardiovascular disease. This review addresses the discovery of angiotensin-(1-12) as an endogenous substrate for the production of biologically active angiotensin peptides by a non-renin dependent mechanism and the revealing role of cardiac chymase as the angiotensin II convertase in the human heart. This new information provides a renewed argument for exploring the role of chymase inhibitors in the correction of cardiac arrhythmias and left ventricular systolic and diastolic dysfunction.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Li J, Jubair S, Janicki JS. Estrogen inhibits mast cell chymase release to prevent pressure overload-induced adverse cardiac remodeling. Hypertension 2014; 65:328-34. [PMID: 25403608 DOI: 10.1161/hypertensionaha.114.04238] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogen regulation of myocardial chymase and chymase effects on cardiac remodeling are unknown. To test the hypothesis that estrogen prevents pressure overload-induced adverse cardiac remodeling by inhibiting mast cell (MC) chymase release, transverse aortic constriction or sham surgery was performed in 7-week-old intact and ovariectomized (OVX) rats. Three days before creating the constriction, additional groups of OVX rats began receiving 17β-estradiol, a chymase inhibitor, or a MC stabilizer. Left ventricular function, cardiomyocyte size, collagen volume fraction, MC density and degranulation, and myocardial and plasma chymase levels were assessed 18 days postsurgery. Aortic constriction resulted in ventricular hypertrophy in intact and OVX groups, whereas collagen volume fraction was increased only in OVX rats. Chymase protein content was increased by aortic constriction in the intact and OVX groups, with the magnitude of the increase being greater in OVX rats. MC density and degranulation, plasma chymase levels, and myocardial active transforming growth factor-β1 levels were increased by aortic constriction only in OVX rats. Estrogen replacement markedly attenuated the constriction-increased myocardial chymase, MC density and degranulation, plasma chymase, and myocardial active transforming growth factor-β1, as well as prevented ventricular hypertrophy and increased collagen volume fraction. Chymostatin attenuated the aortic constriction-induced ventricular hypertrophy and collagen volume fraction in the OVX rats similar to that achieved by estrogen replacement. Nedocromil yielded similar effects, except for the reduction of chymase content. We conclude that the estrogen-inhibited release of MC chymase is responsible for the cardioprotection against transverse aortic constriction-induced adverse cardiac remodeling.
Collapse
Affiliation(s)
- Jianping Li
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia
| | - Shaiban Jubair
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia
| | - Joseph S Janicki
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia.
| |
Collapse
|
49
|
Nadeem S, Batisky DL. Aliskiren, the first direct renin inhibitor: assessing a role in pediatric hypertension and kidney diseases. Pediatr Nephrol 2014; 29:2105-11. [PMID: 24337365 PMCID: PMC4057986 DOI: 10.1007/s00467-013-2716-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 01/01/2023]
Abstract
This article provides a review of the role of aliskiren, a direct renin inhibitor, in pediatric hypertension and kidney diseases. Among the many mechanisms involved in regulating blood pressure, the renin-angiotensin-aldosterone system (RAAS) plays a major role. Additionally, the RAAS has been identified as a contributing factor to cardiovascular and renal diseases for more than three decades. The potential benefits of inhibiting the RAAS by aliskiren alone or in combination with other RAAS blockers (ACEIs, ARBs) seem to be theoretically promising. However, caution should be exercised in treating children, especially in those with significant chronic kidney disease until there is more evidence regarding the safety and efficacy of this new drug in the pediatric population from ongoing clinical trials.
Collapse
|
50
|
Bot I, Shi GP, Kovanen PT. Mast cells as effectors in atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 35:265-71. [PMID: 25104798 DOI: 10.1161/atvbaha.114.303570] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mast cell is a potent immune cell known for its functions in host defense responses and diseases, such as asthma and allergies. In the past years, accumulating evidence established the contribution of the mast cell to cardiovascular diseases as well, in particular, by its effects on atherosclerotic plaque progression and destabilization. Through its release not only of mediators, such as the mast cell-specific proteases chymase and tryptase, but also of growth factors, histamine, and chemokines, activated mast cells can have detrimental effects on its immediate surroundings in the vessel wall. This results in matrix degradation, apoptosis, and enhanced recruitment of inflammatory cells, thereby actively contributing to cardiovascular diseases. In this review, we will discuss the current knowledge on mast cell function in cardiovascular diseases and speculate on potential novel therapeutic strategies to prevent acute cardiovascular syndromes via targeting of mast cells.
Collapse
Affiliation(s)
- Ilze Bot
- From the Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.); Department of Medicine, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA (G.-P.S.); and Wihuri Research Institute, Helsinki, Finland (P.T.K.).
| | - Guo-Ping Shi
- From the Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.); Department of Medicine, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA (G.-P.S.); and Wihuri Research Institute, Helsinki, Finland (P.T.K.)
| | - Petri T Kovanen
- From the Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.); Department of Medicine, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA (G.-P.S.); and Wihuri Research Institute, Helsinki, Finland (P.T.K.)
| |
Collapse
|